Generated at 2025-12-12 05:02:51
We have 173 news from different sources.
2feed¶
2.1Google Scholar被玩坏:10篇“水文”刷出600+引用,H-index还能信吗?¶
2025/12/11 05:36 GTM
深扒学术圈“刷分”黑产
2.2EMNLP 2025 | 视频理解Token压缩新范式:VidCom²减少70.8%推理延迟¶
2025/12/11 05:36 GTM
视频LLM加速新突破
3paper¶
3.1WorldLens: Full-Spectrum Evaluations of Driving World Models in Real World¶
2025/12/12 05:01 GTM
Generative world models are reshaping embodied AI, enabling agents to synthesize realistic 4D driving environments that look convincing but often fail physically or behaviorally. Despite rapid progress, the field still lacks a unified way to assess whether generated worlds preserve geometry, obey physics, or support reliable control. We introduce WorldLens, a full-spectrum benchmark evaluating how well a model builds, understands, and behaves within its generated world. It spans five aspects -- Generation, Reconstruction, Action-Following, Downstream Task, and Human Preference -- jointly covering visual realism, geometric consistency, physical plausibility, and functional reliability. Across these dimensions, no existing world model excels universally: those with strong textures often violate physics, while geometry-stable ones lack behavioral fidelity. To align objective metrics with human judgment, we further construct WorldLens-26K, a large-scale dataset of human-annotated videos with numerical scores and textual rationales, and develop WorldLens-Agent, an evaluation model distilled from these annotations to enable scalable, explainable scoring. Together, the benchmark, dataset, and agent form a unified ecosystem for measuring world fidelity -- standardizing how future models are judged not only by how real they look, but by how real they behave.
3.2Bidirectional Normalizing Flow: From Data to Noise and Back¶
2025/12/12 05:01 GTM
Normalizing Flows (NFs) have been established as a principled framework for generative modeling. Standard NFs consist of a forward process and a reverse process: the forward process maps data to noise, while the reverse process generates samples by inverting it. Typical NF forward transformations are constrained by explicit invertibility, ensuring that the reverse process can serve as their exact analytic inverse. Recent developments in TARFlow and its variants have revitalized NF methods by combining Transformers and autoregressive flows, but have also exposed causal decoding as a major bottleneck. In this work, we introduce Bidirectional Normalizing Flow (), a framework that removes the need for an exact analytic inverse. BiFlow learns a reverse model that approximates the underlying noise-to-data inverse mapping, enabling more flexible loss functions and architectures. Experiments on ImageNet demonstrate that BiFlow, compared to its causal decoding counterpart, improves generation quality while accelerating sampling by up to two orders of magnitude. BiFlow yields state-of-the-art results among NF-based methods and competitive performance among single-evaluation (“1-NFE”) methods. Following recent encouraging progress on NFs, we hope our work will draw further attention to this classical paradigm.
3.3Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation¶
2025/12/12 05:01 GTM
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://
3.4VL-JEPA: Joint Embedding Predictive Architecture for Vision-language¶
2025/12/12 05:01 GTM
We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA). Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective decoding that reduces the number of decoding operations by 2.85x while maintaining similar performance compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA’s embedding space naturally supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2, despite only having 1.6B parameters.
3.5Stronger Normalization-Free Transformers¶
2025/12/12 05:01 GTM
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce , where is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.
3.6MoCapAnything: Unified 3D Motion Capture for Arbitrary Skeletons from Monocular Videos¶
2025/12/12 05:01 GTM
Motion capture now underpins content creation far beyond digital humans, yet most existing pipelines remain species- or template-specific. We formalize this gap as Category-Agnostic Motion Capture (CAMoCap): given a monocular video and an arbitrary rigged 3D asset as a prompt, the goal is to reconstruct a rotation-based animation such as BVH that directly drives the specific asset. We present MoCapAnything, a reference-guided, factorized framework that first predicts 3D joint trajectories and then recovers asset-specific rotations via constraint-aware inverse kinematics. The system contains three learnable modules and a lightweight IK stage: (1) a Reference Prompt Encoder that extracts per-joint queries from the asset’s skeleton, mesh, and rendered images; (2) a Video Feature Extractor that computes dense visual descriptors and reconstructs a coarse 4D deforming mesh to bridge the gap between video and joint space; and (3) a Unified Motion Decoder that fuses these cues to produce temporally coherent trajectories. We also curate Truebones Zoo with 1038 motion clips, each providing a standardized skeleton-mesh-render triad. Experiments on both in-domain benchmarks and in-the-wild videos show that MoCapAnything delivers high-quality skeletal animations and exhibits meaningful cross-species retargeting across heterogeneous rigs, enabling scalable, prompt-driven 3D motion capture for arbitrary assets. Project page: https://
3.7SWiT-4D: Sliding-Window Transformer for Lossless and Parameter-Free Temporal 4D Generation¶
2025/12/12 05:01 GTM
Despite significant progress in 4D content generation, the conversion of monocular videos into high-quality animated 3D assets with explicit 4D meshes remains considerably challenging. The scarcity of large-scale, naturally captured 4D mesh datasets further limits the ability to train generalizable video-to-4D models from scratch in a purely data-driven manner. Meanwhile, advances in image-to-3D generation, supported by extensive datasets, offer powerful prior models that can be leveraged. To better utilize these priors while minimizing reliance on 4D supervision, we introduce SWiT-4D, a Sliding-Window Transformer for lossless, parameter-free temporal 4D mesh generation. SWiT-4D integrates seamlessly with any Diffusion Transformer (DiT)-based image-to-3D generator, adding spatial-temporal modeling across video frames while preserving the original single-image forward process, enabling 4D mesh reconstruction from videos of arbitrary length. To recover global translation, we further introduce an optimization-based trajectory module tailored for static-camera monocular videos. SWiT-4D demonstrates strong data efficiency: with only a single short (<10s) video for fine-tuning, it achieves high-fidelity geometry and stable temporal consistency, indicating practical deployability under extremely limited 4D supervision. Comprehensive experiments on both in-domain zoo-test sets and challenging out-of-domain benchmarks (C4D, Objaverse, and in-the-wild videos) show that SWiT-4D consistently outperforms existing baselines in temporal smoothness. Project page: https://
3.8PoseGAM: Robust Unseen Object Pose Estimation via Geometry-Aware Multi-View Reasoning¶
2025/12/12 05:01 GTM
6D object pose estimation, which predicts the transformation of an object relative to the camera, remains challenging for unseen objects. Existing approaches typically rely on explicitly constructing feature correspondences between the query image and either the object model or template images. In this work, we propose PoseGAM, a geometry-aware multi-view framework that directly predicts object pose from a query image and multiple template images, eliminating the need for explicit matching. Built upon recent multi-view-based foundation model architectures, the method integrates object geometry information through two complementary mechanisms: explicit point-based geometry and learned features from geometry representation networks. In addition, we construct a large-scale synthetic dataset containing more than 190k objects under diverse environmental conditions to enhance robustness and generalization. Extensive evaluations across multiple benchmarks demonstrate our state-of-the-art performance, yielding an average AR improvement of 5.1% over prior methods and achieving up to 17.6% gains on individual datasets, indicating strong generalization to unseen objects. Project page: https://
3.9Agile Deliberation: Concept Deliberation for Subjective Visual Classification¶
2025/12/12 05:01 GTM
From content moderation to content curation, applications requiring vision classifiers for visual concepts are rapidly expanding. Existing human-in-the-loop approaches typically assume users begin with a clear, stable concept understanding to be able to provide high-quality supervision. In reality, users often start with a vague idea and must iteratively refine it through “concept deliberation”, a practice we uncovered through structured interviews with content moderation experts. We operationalize the common strategies in deliberation used by real content moderators into a human-in-the-loop framework called “Agile Deliberation” that explicitly supports evolving and subjective concepts. The system supports users in defining the concept for themselves by exposing them to borderline cases. The system does this with two deliberation stages: (1) concept scoping, which decomposes the initial concept into a structured hierarchy of sub-concepts, and (2) concept iteration, which surfaces semantically borderline examples for user reflection and feedback to iteratively align an image classifier with the user’s evolving intent. Since concept deliberation is inherently subjective and interactive, we painstakingly evaluate the framework through 18 user sessions, each 1.5h long, rather than standard benchmarking datasets. We find that Agile Deliberation achieves 7.5% higher F1 scores than automated decomposition baselines and more than 3% higher than manual deliberation, while participants reported clearer conceptual understanding and lower cognitive effort.
3.10Self-Ensemble Post Learning for Noisy Domain Generalization¶
2025/12/12 05:01 GTM
While computer vision and machine learning have made great progress, their robustness is still challenged by two key issues: data distribution shift and label noise. When domain generalization (DG) encounters noise, noisy labels further exacerbate the emergence of spurious features in deep layers, i.e. spurious feature enlargement, leading to a degradation in the performance of existing algorithms. This paper, starting from domain generalization, explores how to make existing methods rework when meeting noise. We find that the latent features inside the model have certain discriminative capabilities, and different latent features focus on different parts of the image. Based on these observations, we propose the Self-Ensemble Post Learning approach (SEPL) to diversify features which can be leveraged. Specifically, SEPL consists of two parts: feature probing training and prediction ensemble inference. It leverages intermediate feature representations within the model architecture, training multiple probing classifiers to fully exploit the capabilities of pre-trained models, while the final predictions are obtained through the integration of outputs from these diverse classification heads. Considering the presence of noisy labels, we employ semi-supervised algorithms to train probing classifiers. Given that different probing classifiers focus on different areas, we integrate their predictions using a crowdsourcing inference approach. Extensive experimental evaluations demonstrate that the proposed method not only enhances the robustness of existing methods but also exhibits significant potential for real-world applications with high flexibility.
3.11Extrapolation of Periodic Functions Using Binary Encoding of Continuous Numerical Values¶
2025/12/12 05:01 GTM
We report the discovery that binary encoding allows neural networks to extrapolate periodic functions beyond their training bounds. We introduce Normalized Base-2 Encoding (NB2E) as a method for encoding continuous numerical values and demonstrate that, using this input encoding, vanilla multi-layer perceptrons (MLP) successfully extrapolate diverse periodic signals without prior knowledge of their functional form. Internal activation analysis reveals that NB2E induces bit-phase representations, enabling MLPs to learn and extrapolate signal structure independently of position.
3.12Graph Laplacian Transformer with Progressive Sampling for Prostate Cancer Grading¶
2025/12/12 05:01 GTM
Prostate cancer grading from whole-slide images (WSIs) remains a challenging task due to the large-scale nature of WSIs, the presence of heterogeneous tissue structures, and difficulty of selecting diagnostically relevant regions. Existing approaches often rely on random or static patch selection, leading to the inclusion of redundant or non-informative regions that degrade performance. To address this, we propose a Graph Laplacian Attention-Based Transformer (GLAT) integrated with an Iterative Refinement Module (IRM) to enhance both feature learning and spatial consistency. The IRM iteratively refines patch selection by leveraging a pretrained ResNet50 for local feature extraction and a foundation model in no-gradient mode for importance scoring, ensuring only the most relevant tissue regions are preserved. The GLAT models tissue-level connectivity by constructing a graph where patches serve as nodes, ensuring spatial consistency through graph Laplacian constraints and refining feature representations via a learnable filtering mechanism that enhances discriminative histological structures. Additionally, a convex aggregation mechanism dynamically adjusts patch importance to generate a robust WSI-level representation. Extensive experiments on five public and one private dataset demonstrate that our model outperforms state-of-the-art methods, achieving higher performance and spatial consistency while maintaining computational efficiency.
3.13Interpretable and Steerable Concept Bottleneck Sparse Autoencoders¶
2025/12/12 05:01 GTM
Sparse autoencoders (SAEs) promise a unified approach for mechanistic interpretability, concept discovery, and model steering in LLMs and LVLMs. However, realizing this potential requires that the learned features be both interpretable and steerable. To that end, we introduce two new computationally inexpensive interpretability and steerability metrics and conduct a systematic analysis on LVLMs. Our analysis uncovers two observations; (i) a majority of SAE neurons exhibit either low interpretability or low steerability or both, rendering them ineffective for downstream use; and (ii) due to the unsupervised nature of SAEs, user-desired concepts are often absent in the learned dictionary, thus limiting their practical utility. To address these limitations, we propose Concept Bottleneck Sparse Autoencoders (CB-SAE) - a novel post-hoc framework that prunes low-utility neurons and augments the latent space with a lightweight concept bottleneck aligned to a user-defined concept set. The resulting CB-SAE improves interpretability by +32.1% and steerability by +14.5% across LVLMs and image generation tasks. We will make our code and model weights available.
3.14What matters for Representation Alignment: Global Information or Spatial Structure?¶
2025/12/12 05:01 GTM
Representation alignment (REPA) guides generative training by distilling representations from a strong, pretrained vision encoder to intermediate diffusion features. We investigate a fundamental question: what aspect of the target representation matters for generation, its \textit{global} \revision{semantic} information (e.g., measured by ImageNet-1K accuracy) or its spatial structure (i.e. pairwise cosine similarity between patch tokens)? Prevalent wisdom holds that stronger global semantic performance leads to better generation as a target representation. To study this, we first perform a large-scale empirical analysis across 27 different vision encoders and different model scales. The results are surprising; spatial structure, rather than global performance, drives the generation performance of a target representation. To further study this, we introduce two straightforward modifications, which specifically accentuate the transfer of \emph{spatial} information. We replace the standard MLP projection layer in REPA with a simple convolution layer and introduce a spatial normalization layer for the external representation. Surprisingly, our simple method (implemented in 4 lines of code), termed iREPA, consistently improves convergence speed of REPA, across a diverse set of vision encoders, model sizes, and training variants (such as REPA, REPA-E, Meanflow, JiT etc). %, etc. Our work motivates revisiting the fundamental working mechanism of representational alignment and how it can be leveraged for improved training of generative models. The code and project page are available at https://
3.15Blood Pressure Prediction for Coronary Artery Disease Diagnosis using Coronary Computed Tomography Angiography¶
2025/12/12 05:01 GTM
Computational fluid dynamics (CFD) based simulation of coronary blood flow provides valuable hemodynamic markers, such as pressure gradients, for diagnosing coronary artery disease (CAD). However, CFD is computationally expensive, time-consuming, and difficult to integrate into large-scale clinical workflows. These limitations restrict the availability of labeled hemodynamic data for training AI models and hinder broad adoption of non-invasive, physiology based CAD assessment. To address these challenges, we develop an end to end pipeline that automates coronary geometry extraction from coronary computed tomography angiography (CCTA), streamlines simulation data generation, and enables efficient learning of coronary blood pressure distributions. The pipeline reduces the manual burden associated with traditional CFD workflows while producing consistent training data. We further introduce a diffusion-based regression model designed to predict coronary blood pressure directly from CCTA derived features, bypassing the need for slow CFD computation during inference. Evaluated on a dataset of simulated coronary hemodynamics, the proposed model achieves state of the art performance, with an R2 of 64.42%, a root mean squared error of 0.0974, and a normalized RMSE of 0.154, outperforming several baseline approaches. This work provides a scalable and accessible framework for rapid, non-invasive blood pressure prediction to support CAD diagnosis.
3.16LDP: Parameter-Efficient Fine-Tuning of Multimodal LLM for Medical Report Generation¶
2025/12/12 05:01 GTM
Colonoscopic polyp diagnosis is pivotal for early colorectal cancer detection, yet traditional automated reporting suffers from inconsistencies and hallucinations due to the scarcity of high-quality multimodal medical data. To bridge this gap, we propose LDP, a novel framework leveraging multimodal large language models (MLLMs) for professional polyp diagnosis report generation. Specifically, we curate MMEndo, a multimodal endoscopic dataset comprising expert-annotated colonoscopy image-text pairs. We fine-tune the Qwen2-VL-7B backbone using Parameter-Efficient Fine-Tuning (LoRA) and align it with clinical standards via Direct Preference Optimization (DPO). Extensive experiments show that our LDP outperforms existing baselines on both automated metrics and rigorous clinical expert evaluations (achieving a Physician Score of 7.2/10), significantly reducing training computational costs by 833x compared to full fine-tuning. The proposed solution offers a scalable, clinically viable path for primary healthcare, with additional validation on the IU-XRay dataset confirming its robustness.
3.17IRG-MotionLLM: Interleaving Motion Generation, Assessment and Refinement for Text-to-Motion Generation¶
2025/12/12 05:01 GTM
Recent advances in motion-aware large language models have shown remarkable promise for unifying motion understanding and generation tasks. However, these models typically treat understanding and generation separately, limiting the mutual benefits that could arise from interactive feedback between tasks. In this work, we reveal that motion assessment and refinement tasks act as crucial bridges to enable bidirectional knowledge flow between understanding and generation. Leveraging this insight, we propose Interleaved Reasoning for Motion Generation (IRMoGen), a novel paradigm that tightly couples motion generation with assessment and refinement through iterative text-motion dialogue. To realize this, we introduce IRG-MotionLLM, the first model that seamlessly interleaves motion generation, assessment, and refinement to improve generation performance. IRG-MotionLLM is developed progressively with a novel three-stage training scheme, initializing and subsequently enhancing native IRMoGen capabilities. To facilitate this development, we construct an automated data engine to synthesize interleaved reasoning annotations from existing text-motion datasets. Extensive experiments demonstrate that: (i) Assessment and refinement tasks significantly improve text-motion alignment; (ii) Interleaving motion generation, assessment, and refinement steps yields consistent performance gains across training stages; and (iii) IRG-MotionLLM clearly outperforms the baseline model and achieves advanced performance on standard text-to-motion generation benchmarks. Cross-evaluator testing further validates its effectiveness. Code & Data: https://
3.18Video Depth Propagation¶
2025/12/12 05:01 GTM
Depth estimation in videos is essential for visual perception in real-world applications. However, existing methods either rely on simple frame-by-frame monocular models, leading to temporal inconsistencies and inaccuracies, or use computationally demanding temporal modeling, unsuitable for real-time applications. These limitations significantly restrict general applicability and performance in practical settings. To address this, we propose VeloDepth, an efficient and robust online video depth estimation pipeline that effectively leverages spatiotemporal priors from previous depth predictions and performs deep feature propagation. Our method introduces a novel Propagation Module that refines and propagates depth features and predictions using flow-based warping coupled with learned residual corrections. In addition, our design structurally enforces temporal consistency, resulting in stable depth predictions across consecutive frames with improved efficiency. Comprehensive zero-shot evaluation on multiple benchmarks demonstrates the state-of-the-art temporal consistency and competitive accuracy of VeloDepth, alongside its significantly faster inference compared to existing video-based depth estimators. VeloDepth thus provides a practical, efficient, and accurate solution for real-time depth estimation suitable for diverse perception tasks. Code and models are available at https://
3.19SpaceDrive: Infusing Spatial Awareness into VLM-based Autonomous Driving¶
2025/12/12 05:01 GTM
End-to-end autonomous driving methods built on vision language models (VLMs) have undergone rapid development driven by their universal visual understanding and strong reasoning capabilities obtained from the large-scale pretraining. However, we find that current VLMs struggle to understand fine-grained 3D spatial relationships which is a fundamental requirement for systems interacting with the physical world. To address this issue, we propose SpaceDrive, a spatial-aware VLM-based driving framework that treats spatial information as explicit positional encodings (PEs) instead of textual digit tokens, enabling joint reasoning over semantic and spatial representations. SpaceDrive employs a universal positional encoder to all 3D coordinates derived from multi-view depth estimation, historical ego-states, and text prompts. These 3D PEs are first superimposed to augment the corresponding 2D visual tokens. Meanwhile, they serve as a task-agnostic coordinate representation, replacing the digit-wise numerical tokens as both inputs and outputs for the VLM. This mechanism enables the model to better index specific visual semantics in spatial reasoning and directly regress trajectory coordinates rather than generating digit-by-digit, thereby enhancing planning accuracy. Extensive experiments validate that SpaceDrive achieves state-of-the-art open-loop performance on the nuScenes dataset and the second-best Driving Score of 78.02 on the Bench2Drive closed-loop benchmark over existing VLM-based methods.
3.20CheXmask-U: Quantifying uncertainty in landmark-based anatomical segmentation for X-ray images¶
2025/12/12 05:01 GTM
Uncertainty estimation is essential for the safe clinical deployment of medical image segmentation systems, enabling the identification of unreliable predictions and supporting human oversight. While prior work has largely focused on pixel-level uncertainty, landmark-based segmentation offers inherent topological guarantees yet remains underexplored from an uncertainty perspective. In this work, we study uncertainty estimation for anatomical landmark-based segmentation on chest X-rays. Inspired by hybrid neural network architectures that combine standard image convolutional encoders with graph-based generative decoders, and leveraging their variational latent space, we derive two complementary measures: (i) latent uncertainty, captured directly from the learned distribution parameters, and (ii) predictive uncertainty, obtained by generating multiple stochastic output predictions from latent samples. Through controlled corruption experiments we show that both uncertainty measures increase with perturbation severity, reflecting both global and local degradation. We demonstrate that these uncertainty signals can identify unreliable predictions by comparing with manual ground-truth, and support out-of-distribution detection on the CheXmask dataset. More importantly, we release CheXmask-U (huggingface
3.21Enhancing Radiology Report Generation and Visual Grounding using Reinforcement Learning¶
2025/12/12 05:01 GTM
Recent advances in vision-language models (VLMs) have improved Chest X-ray (CXR) interpretation in multiple aspects. However, many medical VLMs rely solely on supervised fine-tuning (SFT), which optimizes next-token prediction without evaluating answer quality. In contrast, reinforcement learning (RL) can incorporate task-specific feedback, and its combination with explicit intermediate reasoning (“thinking”) has demonstrated substantial gains on verifiable math and coding tasks. To investigate the effects of RL and thinking in a CXR VLM, we perform large-scale SFT on CXR data to build an updated RadVLM based on Qwen3-VL, followed by a cold-start SFT stage that equips the model with basic thinking ability. We then apply Group Relative Policy Optimization (GRPO) with clinically grounded, task-specific rewards for report generation and visual grounding, and run matched RL experiments on both domain-specific and general-domain Qwen3-VL variants, with and without thinking. Across these settings, we find that while strong SFT remains crucial for high base performance, RL provides additional gains on both tasks, whereas explicit thinking does not appear to further improve results. Under a unified evaluation pipeline, the RL-optimized RadVLM models outperform their baseline counterparts and reach state-of-the-art performance on both report generation and grounding, highlighting clinically aligned RL as a powerful complement to SFT for medical VLMs.
3.22Sharp Monocular View Synthesis in Less Than a Second¶
2025/12/12 05:01 GTM
We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements. Experimental results demonstrate that SHARP delivers robust zero-shot generalization across datasets. It sets a new state of the art on multiple datasets, reducing LPIPS by 25-34% and DISTS by 21-43% versus the best prior model, while lowering the synthesis time by three orders of magnitude. Code and weights are provided at https://
3.23Optimal transport unlocks end-to-end learning for single-molecule localization¶
2025/12/12 05:01 GTM
Single-molecule localization microscopy (SMLM) allows reconstructing biology-relevant structures beyond the diffraction limit by detecting and localizing individual fluorophores -- fluorescent molecules stained onto the observed specimen -- over time to reconstruct super-resolved images. Currently, efficient SMLM requires non-overlapping emitting fluorophores, leading to long acquisition times that hinders live-cell imaging. Recent deep-learning approaches can handle denser emissions, but they rely on variants of non-maximum suppression (NMS) layers, which are unfortunately non-differentiable and may discard true positives with their local fusion strategy. In this presentation, we reformulate the SMLM training objective as a set-matching problem, deriving an optimal-transport loss that eliminates the need for NMS during inference and enables end-to-end training. Additionally, we propose an iterative neural network that integrates knowledge of the microscope’s optical system inside our model. Experiments on synthetic benchmarks and real biological data show that both our new loss function and architecture surpass the state of the art at moderate and high emitter densities. Code is available at https://
3.24Evaluating Gemini Robotics Policies in a Veo World Simulator¶
2025/12/12 05:01 GTM
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
3.25Geo6DPose: Fast Zero-Shot 6D Object Pose Estimation via Geometry-Filtered Feature Matching¶
2025/12/12 05:01 GTM
Recent progress in zero-shot 6D object pose estimation has been driven largely by large-scale models and cloud-based inference. However, these approaches often introduce high latency, elevated energy consumption, and deployment risks related to connectivity, cost, and data governance; factors that conflict with the practical constraints of real-world robotics, where compute is limited and on-device inference is frequently required. We introduce Geo6DPose, a lightweight, fully local, and training-free pipeline for zero-shot 6D pose estimation that trades model scale for geometric reliability. Our method combines foundation model visual features with a geometric filtering strategy: Similarity maps are computed between onboarded template DINO descriptors and scene patches, and mutual correspondences are established by projecting scene patch centers to 3D and template descriptors to the object model coordinate system. Final poses are recovered via correspondence-driven RANSAC and ranked using a weighted geometric alignment metric that jointly accounts for reprojection consistency and spatial support, improving robustness to noise, clutter, and partial visibility. Geo6DPose achieves sub-second inference on a single commodity GPU while matching the average recall of significantly larger zero-shot baselines (53.7 AR, 1.08 FPS). It requires no training, fine-tuning, or network access, and remains compatible with evolving foundation backbones, advancing practical, fully local 6D perception for robotic deployment.
3.26XDen-1K: A Density Field Dataset of Real-World Objects¶
2025/12/12 05:01 GTM
A deep understanding of the physical world is a central goal for embodied AI and realistic simulation. While current models excel at capturing an object’s surface geometry and appearance, they largely neglect its internal physical properties. This omission is critical, as properties like volumetric density are fundamental for predicting an object’s center of mass, stability, and interaction dynamics in applications ranging from robotic manipulation to physical simulation. The primary bottleneck has been the absence of large-scale, real-world data. To bridge this gap, we introduce XDen-1K, the first large-scale, multi-modal dataset designed for real-world physical property estimation, with a particular focus on volumetric density. The core of this dataset consists of 1,000 real-world objects across 148 categories, for which we provide comprehensive multi-modal data, including a high-resolution 3D geometric model with part-level annotations and a corresponding set of real-world biplanar X-ray scans. Building upon this data, we introduce a novel optimization framework that recovers a high-fidelity volumetric density field of each object from its sparse X-ray views. To demonstrate its practical value, we add X-ray images as a conditioning signal to an existing segmentation network and perform volumetric segmentation. Furthermore, we conduct experiments on downstream robotics tasks. The results show that leveraging the dataset can effectively improve the accuracy of center-of-mass estimation and the success rate of robotic manipulation. We believe XDen-1K will serve as a foundational resource and a challenging new benchmark, catalyzing future research in physically grounded visual inference and embodied AI.
3.27NaviHydra: Controllable Navigation-guided End-to-end Autonomous Driving with Hydra-distillation¶
2025/12/12 05:01 GTM
The complexity of autonomous driving scenarios requires robust models that can interpret high-level navigation commands and generate safe trajectories. While traditional rule-based systems can react to these commands, they often struggle in dynamic environments, and end-to-end methods face challenges in complying with explicit navigation commands. To address this, we present NaviHydra, a controllable navigation-guided end-to-end model distilled from an existing rule-based simulator. Our framework accepts high-level navigation commands as control signals, generating trajectories that align with specified intentions. We utilize a Bird’s Eye View (BEV) based trajectory gathering method to enhance the trajectory feature extraction. Additionally, we introduce a novel navigation compliance metric to evaluate adherence to intended route, improving controllability and navigation safety. To comprehensively assess our model’s controllability, we design a test that evaluates its response to various navigation commands. Our method significantly outperforms baseline models, achieving state-of-the-art results in the NAVSIM benchmark, demonstrating its effectiveness in advancing autonomous driving.
3.28TriDF: Evaluating Perception, Detection, and Hallucination for Interpretable DeepFake Detection¶
2025/12/12 05:01 GTM
Advances in generative modeling have made it increasingly easy to fabricate realistic portrayals of individuals, creating serious risks for security, communication, and public trust. Detecting such person-driven manipulations requires systems that not only distinguish altered content from authentic media but also provide clear and reliable reasoning. In this paper, we introduce TriDF, a comprehensive benchmark for interpretable DeepFake detection. TriDF contains high-quality forgeries from advanced synthesis models, covering 16 DeepFake types across image, video, and audio modalities. The benchmark evaluates three key aspects: Perception, which measures the ability of a model to identify fine-grained manipulation artifacts using human-annotated evidence; Detection, which assesses classification performance across diverse forgery families and generators; and Hallucination, which quantifies the reliability of model-generated explanations. Experiments on state-of-the-art multimodal large language models show that accurate perception is essential for reliable detection, but hallucination can severely disrupt decision-making, revealing the interdependence of these three aspects. TriDF provides a unified framework for understanding the interaction between detection accuracy, evidence identification, and explanation reliability, offering a foundation for building trustworthy systems that address real-world synthetic media threats.
3.29K-Track: Kalman-Enhanced Tracking for Accelerating Deep Point Trackers on Edge Devices¶
2025/12/12 05:01 GTM
Point tracking in video sequences is a foundational capability for real-world computer vision applications, including robotics, autonomous systems, augmented reality, and video analysis. While recent deep learning-based trackers achieve state-of-the-art accuracy on challenging benchmarks, their reliance on per-frame GPU inference poses a major barrier to deployment on resource-constrained edge devices, where compute, power, and connectivity are limited. We introduce K-Track (Kalman-enhanced Tracking), a general-purpose, tracker-agnostic acceleration framework designed to bridge this deployment gap. K-Track reduces inference cost by combining sparse deep learning keyframe updates with lightweight Kalman filtering for intermediate frame prediction, using principled Bayesian uncertainty propagation to maintain temporal coherence. This hybrid strategy enables 5-10X speedup while retaining over 85% of the original trackers’ accuracy. We evaluate K-Track across multiple state-of-the-art point trackers and demonstrate real-time performance on edge platforms such as the NVIDIA Jetson Nano and RTX Titan. By preserving accuracy while dramatically lowering computational requirements, K-Track provides a practical path toward deploying high-quality point tracking in real-world, resource-limited settings, closing the gap between modern tracking algorithms and deployable vision systems.
3.30DOCR-Inspector: Fine-Grained and Automated Evaluation of Document Parsing with VLM¶
2025/12/12 05:01 GTM
Document parsing aims to transform unstructured PDF images into semi-structured data, facilitating the digitization and utilization of information in diverse domains. While vision language models (VLMs) have significantly advanced this task, achieving reliable, high-quality parsing in real-world scenarios remains challenging. Common practice often selects the top-performing model on standard benchmarks. However, these benchmarks may carry dataset-specific biases, leading to inconsistent model rankings and limited correlation with real-world performance. Moreover, benchmark metrics typically provide only overall scores, which can obscure distinct error patterns in output. This raises a key challenge: how can we reliably and comprehensively assess document parsing quality in the wild? We address this problem with DOCR-Inspector, which formalizes document parsing assessment as fine-grained error detection and analysis. Leveraging VLM-as-a-Judge, DOCR-Inspector analyzes a document image and its parsed output, identifies all errors, assigns them to one of 28 predefined types, and produces a comprehensive quality assessment. To enable this capability, we construct DOCRcase-200K for training and propose the Chain-of-Checklist reasoning paradigm to enable the hierarchical structure of parsing quality assessment. For empirical validation, we introduce DOCRcaseBench, a set of 882 real-world document parsing cases with manual annotations. On this benchmark, DOCR-Inspector-7B outperforms commercial models like Gemini 2.5 Pro, as well as leading open-source models. Further experiments demonstrate that its quality assessments provide valuable guidance for parsing results refinement, making DOCR-Inspector both a practical evaluator and a driver for advancing document parsing systems at scale. Model and code are released at: https://
3.31Lang2Motion: Bridging Language and Motion through Joint Embedding Spaces¶
2025/12/12 05:01 GTM
We present Lang2Motion, a framework for language-guided point trajectory generation by aligning motion manifolds with joint embedding spaces. Unlike prior work focusing on human motion or video synthesis, we generate explicit trajectories for arbitrary objects using motion extracted from real-world videos via point tracking. Our transformer-based auto-encoder learns trajectory representations through dual supervision: textual motion descriptions and rendered trajectory visualizations, both mapped through CLIP’s frozen encoders. Lang2Motion achieves 34.2% Recall@1 on text-to-trajectory retrieval, outperforming video-based methods by 12.5 points, and improves motion accuracy by 33-52% (12.4 ADE vs 18.3-25.3) compared to video generation baselines. We demonstrate 88.3% Top-1 accuracy on human action recognition despite training only on diverse object motions, showing effective transfer across motion domains. Lang2Motion supports style transfer, semantic interpolation, and latent-space editing through CLIP-aligned trajectory representations.
3.32Robust Multi-Disease Retinal Classification via Xception-Based Transfer Learning and W-Net Vessel Segmentation¶
2025/12/12 05:01 GTM
In recent years, the incidence of vision-threatening eye diseases has risen dramatically, necessitating scalable and accurate screening solutions. This paper presents a comprehensive study on deep learning architectures for the automated diagnosis of ocular conditions. To mitigate the “black-box” limitations of standard convolutional neural networks (CNNs), we implement a pipeline that combines deep feature extraction with interpretable image processing modules. Specifically, we focus on high-fidelity retinal vessel segmentation as an auxiliary task to guide the classification process. By grounding the model’s predictions in clinically relevant morphological features, we aim to bridge the gap between algorithmic output and expert medical validation, thereby reducing false positives and improving deployment viability in clinical settings.
3.33Track and Caption Any Motion: Query-Free Motion Discovery and Description in Videos¶
2025/12/12 05:01 GTM
We propose Track and Caption Any Motion (TCAM), a motion-centric framework for automatic video understanding that discovers and describes motion patterns without user queries. Understanding videos in challenging conditions like occlusion, camouflage, or rapid movement often depends more on motion dynamics than static appearance. TCAM autonomously observes a video, identifies multiple motion activities, and spatially grounds each natural language description to its corresponding trajectory through a motion-field attention mechanism. Our key insight is that motion patterns, when aligned with contrastive vision-language representations, provide powerful semantic signals for recognizing and describing actions. Through unified training that combines global video-text alignment with fine-grained spatial correspondence, TCAM enables query-free discovery of multiple motion expressions via multi-head cross-attention. On the MeViS benchmark, TCAM achieves 58.4% video-to-text retrieval, 64.9 JF for spatial grounding, and discovers 4.8 relevant expressions per video with 84.7% precision, demonstrating strong cross-task generalization.
3.34Beyond Pixels: A Training-Free, Text-to-Text Framework for Remote Sensing Image Retrieval¶
2025/12/12 05:01 GTM
Semantic retrieval of remote sensing (RS) images is a critical task fundamentally challenged by the \textquote{semantic gap}, the discrepancy between a model’s low-level visual features and high-level human concepts. While large Vision-Language Models (VLMs) offer a promising path to bridge this gap, existing methods often rely on costly, domain-specific training, and there is a lack of benchmarks to evaluate the practical utility of VLM-generated text in a zero-shot retrieval context. To address this research gap, we introduce the Remote Sensing Rich Text (RSRT) dataset, a new benchmark featuring multiple structured captions per image. Based on this dataset, we propose a fully training-free, text-only retrieval reference called TRSLLaVA. Our methodology reformulates cross-modal retrieval as a text-to-text (T2T) matching problem, leveraging rich text descriptions as queries against a database of VLM-generated captions within a unified textual embedding space. This approach completely bypasses model training or fine-tuning. Experiments on the RSITMD and RSICD benchmarks show our training-free method is highly competitive with state-of-the-art supervised models. For instance, on RSITMD, our method achieves a mean Recall of 42.62%, nearly doubling the 23.86% of the standard zero-shot CLIP baseline and surpassing several top supervised models. This validates that high-quality semantic representation through structured text provides a powerful and cost-effective paradigm for remote sensing image retrieval.
3.35Salient Object Detection in Complex Weather Conditions via Noise Indicators¶
2025/12/12 05:01 GTM
Salient object detection (SOD), a foundational task in computer vision, has advanced from single-modal to multi-modal paradigms to enhance generalization. However, most existing SOD methods assume low-noise visual conditions, overlooking the degradation of segmentation accuracy caused by weather-induced noise in real-world scenarios. In this paper, we propose a SOD framework tailored for diverse weather conditions, encompassing a specific encoder and a replaceable decoder. To enable handling of varying weather noises, we introduce a one-hot vector as a noise indicator to represent different weather types and design a Noise Indicator Fusion Module (NIFM). The NIFM takes both semantic features and the noise indicator as dual inputs and is inserted between consecutive stages of the encoder to embed weather-aware priors via adaptive feature modulation. Critically, the proposed specific encoder retains compatibility with mainstream SOD decoders. Extensive experiments are conducted on the WXSOD dataset under varying training data scales (100%, 50%, 30% of the full training set), three encoder and seven decoder configurations. Results show that the proposed SOD framework (particularly the NIFM-enhanced specific encoder) improves segmentation accuracy under complex weather conditions compared to a vanilla encoder.
3.36Unleashing Degradation-Carrying Features in Symmetric U-Net: Simpler and Stronger Baselines for All-in-One Image Restoration¶
2025/12/12 05:01 GTM
All-in-one image restoration aims to handle diverse degradations (e.g., noise, blur, adverse weather) within a unified framework, yet existing methods increasingly rely on complex architectures (e.g., Mixture-of-Experts, diffusion models) and elaborate degradation prompt strategies. In this work, we reveal a critical insight: well-crafted feature extraction inherently encodes degradation-carrying information, and a symmetric U-Net architecture is sufficient to unleash these cues effectively. By aligning feature scales across encoder-decoder and enabling streamlined cross-scale propagation, our symmetric design preserves intrinsic degradation signals robustly, rendering simple additive fusion in skip connections sufficient for state-of-the-art performance. Our primary baseline, SymUNet, is built on this symmetric U-Net and achieves better results across benchmark datasets than existing approaches while reducing computational cost. We further propose a semantic enhanced variant, SE-SymUNet, which integrates direct semantic injection from frozen CLIP features via simple cross-attention to explicitly amplify degradation priors. Extensive experiments on several benchmarks validate the superiority of our methods. Both baselines SymUNet and SE-SymUNet establish simpler and stronger foundations for future advancements in all-in-one image restoration. The source code is available at https://
3.37Audio-sync Video Instance Editing with Granularity-Aware Mask Refiner¶
2025/12/12 05:01 GTM
Recent advancements in video generation highlight that realistic audio-visual synchronization is crucial for engaging content creation. However, existing video editing methods largely overlook audio-visual synchronization and lack the fine-grained spatial and temporal controllability required for precise instance-level edits. In this paper, we propose AVI-Edit, a framework for audio-sync video instance editing. We propose a granularity-aware mask refiner that iteratively refines coarse user-provided masks into precise instance-level regions. We further design a self-feedback audio agent to curate high-quality audio guidance, providing fine-grained temporal control. To facilitate this task, we additionally construct a large-scale dataset with instance-centric correspondence and comprehensive annotations. Extensive experiments demonstrate that AVI-Edit outperforms state-of-the-art methods in visual quality, condition following, and audio-visual synchronization. Project page: https://
3.38Data-Efficient American Sign Language Recognition via Few-Shot Prototypical Networks¶
2025/12/12 05:01 GTM
Isolated Sign Language Recognition (ISLR) is critical for bridging the communication gap between the Deaf and Hard-of-Hearing (DHH) community and the hearing world. However, robust ISLR is fundamentally constrained by data scarcity and the long-tail distribution of sign vocabulary, where gathering sufficient examples for thousands of unique signs is prohibitively expensive. Standard classification approaches struggle under these conditions, often overfitting to frequent classes while failing to generalize to rare ones. To address this bottleneck, we propose a Few-Shot Prototypical Network framework adapted for a skeleton based encoder. Unlike traditional classifiers that learn fixed decision boundaries, our approach utilizes episodic training to learn a semantic metric space where signs are classified based on their proximity to dynamic class prototypes. We integrate a Spatiotemporal Graph Convolutional Network (ST-GCN) with a novel Multi-Scale Temporal Aggregation (MSTA) module to capture both rapid and fluid motion dynamics. Experimental results on the WLASL dataset demonstrate the superiority of this metric learning paradigm: our model achieves 43.75% Top-1 and 77.10% Top-5 accuracy on the test set. Crucially, this outperforms a standard classification baseline sharing the identical backbone architecture by over 13%, proving that the prototypical training strategy effectively outperforms in a data scarce situation where standard classification fails. Furthermore, the model exhibits strong zero-shot generalization, achieving nearly 30% accuracy on the unseen SignASL dataset without fine-tuning, offering a scalable pathway for recognizing extensive sign vocabularies with limited data.
3.39Grounding Everything in Tokens for Multimodal Large Language Models¶
2025/12/12 05:01 GTM
Multimodal large language models (MLLMs) have made significant advancements in vision understanding and reasoning. However, the autoregressive Transformer architecture used by MLLMs requries tokenization on input images, which limits their ability to accurately ground objects within the 2D image space. This raises an important question: how can sequential language tokens be improved to better ground objects in 2D spatial space for MLLMs? To address this, we present a spatial representation method for grounding objects, namely GETok, that integrates a specialized vocabulary of learnable tokens into MLLMs. GETok first uses grid tokens to partition the image plane into structured spatial anchors, and then exploits offset tokens to enable precise and iterative refinement of localization predictions. By embedding spatial relationships directly into tokens, GETok significantly advances MLLMs in native 2D space reasoning without modifying the autoregressive architecture. Extensive experiments demonstrate that GETok achieves superior performance over the state-of-the-art methods across various referring tasks in both supervised fine-tuning and reinforcement learning settings.
3.40Blink: Dynamic Visual Token Resolution for Enhanced Multimodal Understanding¶
2025/12/12 05:01 GTM
Multimodal large language models (MLLMs) have achieved remarkable progress on various vision-language tasks, yet their visual perception remains limited. Humans, in comparison, perceive complex scenes efficiently by dynamically scanning and focusing on salient regions in a sequential “blink-like” process. Motivated by this strategy, we first investigate whether MLLMs exhibit similar behavior. Our pilot analysis reveals that MLLMs naturally attend to different visual regions across layers and that selectively allocating more computation to salient tokens can enhance visual perception. Building on this insight, we propose Blink, a dynamic visual token resolution framework that emulates the human-inspired process within a single forward pass. Specifically, Blink includes two modules: saliency-guided scanning and dynamic token resolution. It first estimates the saliency of visual tokens in each layer based on the attention map, and extends important tokens through a plug-and-play token super-resolution (TokenSR) module. In the next layer, it drops the extended tokens when they lose focus. This dynamic mechanism balances broad exploration and fine-grained focus, thereby enhancing visual perception adaptively and efficiently. Extensive experiments validate Blink, demonstrating its effectiveness in enhancing visual perception and multimodal understanding.
3.41Mode-Seeking for Inverse Problems with Diffusion Models¶
2025/12/12 05:01 GTM
A pre-trained unconditional diffusion model, combined with posterior sampling or maximum a posteriori (MAP) estimation techniques, can solve arbitrary inverse problems without task-specific training or fine-tuning. However, existing posterior sampling and MAP estimation methods often rely on modeling approximations and can be computationally demanding. In this work, we propose the variational mode-seeking loss (VML), which, when minimized during each reverse diffusion step, guides the generated sample towards the MAP estimate. VML arises from a novel perspective of minimizing the Kullback-Leibler (KL) divergence between the diffusion posterior and the measurement posterior , where denotes the measurement. Importantly, for linear inverse problems, VML can be analytically derived and need not be approximated. Based on further theoretical insights, we propose VML-MAP, an empirically effective algorithm for solving inverse problems, and validate its efficacy over existing methods in both performance and computational time, through extensive experiments on diverse image-restoration tasks across multiple datasets.
3.42Take a Peek: Efficient Encoder Adaptation for Few-Shot Semantic Segmentation via LoRA¶
2025/12/12 05:01 GTM
Few-shot semantic segmentation (FSS) aims to segment novel classes in query images using only a small annotated support set. While prior research has mainly focused on improving decoders, the encoder’s limited ability to extract meaningful features for unseen classes remains a key bottleneck. In this work, we introduce \textit{Take a Peek} (TaP), a simple yet effective method that enhances encoder adaptability for both FSS and cross-domain FSS (CD-FSS). TaP leverages Low-Rank Adaptation (LoRA) to fine-tune the encoder on the support set with minimal computational overhead, enabling fast adaptation to novel classes while mitigating catastrophic forgetting. Our method is model-agnostic and can be seamlessly integrated into existing FSS pipelines. Extensive experiments across multiple benchmarks--including COCO , Pascal , and cross-domain datasets such as DeepGlobe, ISIC, and Chest X-ray--demonstrate that TaP consistently improves segmentation performance across diverse models and shot settings. Notably, TaP delivers significant gains in complex multi-class scenarios, highlighting its practical effectiveness in realistic settings. A rank sensitivity analysis also shows that strong performance can be achieved even with low-rank adaptations, ensuring computational efficiency. By addressing a critical limitation in FSS--the encoder’s generalization to novel classes--TaP paves the way toward more robust, efficient, and generalizable segmentation systems. The code is available at https://
3.433D Blood Pulsation Maps¶
2025/12/12 05:01 GTM
We present Pulse3DFace, the first dataset of its kind for estimating 3D blood pulsation maps. These maps can be used to develop models of dynamic facial blood pulsation, enabling the creation of synthetic video data to improve and validate remote pulse estimation methods via photoplethysmography imaging. Additionally, the dataset facilitates research into novel multi-view-based approaches for mitigating illumination effects in blood pulsation analysis. Pulse3DFace consists of raw videos from 15 subjects recorded at 30 Hz with an RGB camera from 23 viewpoints, blood pulse reference measurements, and facial 3D scans generated using monocular structure-from-motion techniques. It also includes processed 3D pulsation maps compatible with the texture space of the 3D head model FLAME. These maps provide signal-to-noise ratio, local pulse amplitude, phase information, and supplementary data. We offer a comprehensive evaluation of the dataset’s illumination conditions, map consistency, and its ability to capture physiologically meaningful features in the facial and neck skin regions.
3.44Robust Shape from Focus via Multiscale Directional Dilated Laplacian and Recurrent Network¶
2025/12/12 05:01 GTM
Shape-from-Focus (SFF) is a passive depth estimation technique that infers scene depth by analyzing focus variations in a focal stack. Most recent deep learning-based SFF methods typically operate in two stages: first, they extract focus volumes (a per pixel representation of focus likelihood across the focal stack) using heavy feature encoders; then, they estimate depth via a simple one-step aggregation technique that often introduces artifacts and amplifies noise in the depth map. To address these issues, we propose a hybrid framework. Our method computes multi-scale focus volumes traditionally using handcrafted Directional Dilated Laplacian (DDL) kernels, which capture long-range and directional focus variations to form robust focus volumes. These focus volumes are then fed into a lightweight, multi-scale GRU-based depth extraction module that iteratively refines an initial depth estimate at a lower resolution for computational efficiency. Finally, a learned convex upsampling module within our recurrent network reconstructs high-resolution depth maps while preserving fine scene details and sharp boundaries. Extensive experiments on both synthetic and real-world datasets demonstrate that our approach outperforms state-of-the-art deep learning and traditional methods, achieving superior accuracy and generalization across diverse focal conditions.
3.45Error-Propagation-Free Learned Video Compression With Dual-Domain Progressive Temporal Alignment¶
2025/12/12 05:01 GTM
Existing frameworks for learned video compression suffer from a dilemma between inaccurate temporal alignment and error propagation for motion estimation and compensation (ME/MC). The separate-transform framework employs distinct transforms for intra-frame and inter-frame compression to yield impressive rate-distortion (R-D) performance but causes evident error propagation, while the unified-transform framework eliminates error propagation via shared transforms but is inferior in ME/MC in shared latent domains. To address this limitation, in this paper, we propose a novel unifiedtransform framework with dual-domain progressive temporal alignment and quality-conditioned mixture-of-expert (QCMoE) to enable quality-consistent and error-propagation-free streaming for learned video compression. Specifically, we propose dualdomain progressive temporal alignment for ME/MC that leverages coarse pixel-domain alignment and refined latent-domain alignment to significantly enhance temporal context modeling in a coarse-to-fine fashion. The coarse pixel-domain alignment efficiently handles simple motion patterns with optical flow estimated from a single reference frame, while the refined latent-domain alignment develops a Flow-Guided Deformable Transformer (FGDT) over latents from multiple reference frames to achieve long-term motion refinement (LTMR) for complex motion patterns. Furthermore, we design a QCMoE module for continuous bit-rate adaptation that dynamically assigns different experts to adjust quantization steps per pixel based on target quality and content rather than relies on a single quantization step. QCMoE allows continuous and consistent rate control with appealing R-D performance. Experimental results show that the proposed method achieves competitive R-D performance compared with the state-of-the-arts, while successfully eliminating error propagation.
3.46An M-Health Algorithmic Approach to Identify and Assess Physiotherapy Exercises in Real Time¶
2025/12/12 05:01 GTM
This work presents an efficient algorithmic framework for real-time identification, classification, and evaluation of human physiotherapy exercises using mobile devices. The proposed method interprets a kinetic movement as a sequence of static poses, which are estimated from camera input using a pose-estimation neural network. Extracted body keypoints are transformed into trigonometric angle-based features and classified with lightweight supervised models to generate frame-level pose predictions and accuracy scores. To recognize full exercise movements and detect deviations from prescribed patterns, we employ a dynamic-programming scheme based on a modified Levenshtein distance algorithm, enabling robust sequence matching and localization of inaccuracies. The system operates entirely on the client side, ensuring scalability and real-time performance. Experimental evaluation demonstrates the effectiveness of the methodology and highlights its applicability to remote physiotherapy supervision and m-health applications.
3.47Neural Collapse in Test-Time Adaptation¶
2025/12/12 05:01 GTM
Test-Time Adaptation (TTA) enhances model robustness to out-of-distribution (OOD) data by updating the model online during inference, yet existing methods lack theoretical insights into the fundamental causes of performance degradation under domain shifts. Recently, Neural Collapse (NC) has been proposed as an emergent geometric property of deep neural networks (DNNs), providing valuable insights for TTA. In this work, we extend NC to the sample-wise level and discover a novel phenomenon termed Sample-wise Alignment Collapse (NC3+), demonstrating that a sample’s feature embedding, obtained by a trained model, aligns closely with the corresponding classifier weight. Building on NC3+, we identify that the performance degradation stems from sample-wise misalignment in adaptation which exacerbates under larger distribution shifts. This indicates the necessity of realigning the feature embeddings with their corresponding classifier weights. However, the misalignment makes pseudo-labels unreliable under domain shifts. To address this challenge, we propose NCTTA, a novel feature-classifier alignment method with hybrid targets to mitigate the impact of unreliable pseudo-labels, which blends geometric proximity with predictive confidence. Extensive experiments demonstrate the effectiveness of NCTTA in enhancing robustness to domain shifts. For example, NCTTA outperforms Tent by 14.52% on ImageNet-C.
3.48TransLocNet: Cross-Modal Attention for Aerial-Ground Vehicle Localization with Contrastive Learning¶
2025/12/12 05:01 GTM
Aerial-ground localization is difficult due to large viewpoint and modality gaps between ground-level LiDAR and overhead imagery. We propose TransLocNet, a cross-modal attention framework that fuses LiDAR geometry with aerial semantic context. LiDAR scans are projected into a bird’s-eye-view representation and aligned with aerial features through bidirectional attention, followed by a likelihood map decoder that outputs spatial probability distributions over position and orientation. A contrastive learning module enforces a shared embedding space to improve cross-modal alignment. Experiments on CARLA and KITTI show that TransLocNet outperforms state-of-the-art baselines, reducing localization error by up to 63% and achieving sub-meter, sub-degree accuracy. These results demonstrate that TransLocNet provides robust and generalizable aerial-ground localization in both synthetic and real-world settings.
3.49Beyond Endpoints: Path-Centric Reasoning for Vectorized Off-Road Network Extraction¶
2025/12/12 05:01 GTM
Deep learning has advanced vectorized road extraction in urban settings, yet off-road environments remain underexplored and challenging. A significant domain gap causes advanced models to fail in wild terrains due to two key issues: lack of large-scale vectorized datasets and structural weakness in prevailing methods. Models such as SAM-Road employ a node-centric paradigm that reasons at sparse endpoints, making them fragile to occlusions and ambiguous junctions in off-road scenes, leading to topological errors.This work addresses these limitations in two complementary ways. First, we release WildRoad, a gloabal off-road road network dataset constructed efficiently with a dedicated interactive annotation tool tailored for road-network labeling. Second, we introduce MaGRoad (Mask-aware Geodesic Road network extractor), a path-centric framework that aggregates multi-scale visual evidence along candidate paths to infer connectivity robustly.Extensive experiments show that MaGRoad achieves state-of-the-art performance on our challenging WildRoad benchmark while generalizing well to urban datasets. A streamlined pipeline also yields roughly 2.5x faster inference, improving practical applicability. Together, the dataset and path-centric paradigm provide a stronger foundation for mapping roads in the wild.
3.50MultiHateLoc: Towards Temporal Localisation of Multimodal Hate Content in Online Videos¶
2025/12/12 05:01 GTM
The rapid growth of video content on platforms such as TikTok and YouTube has intensified the spread of multimodal hate speech, where harmful cues emerge subtly and asynchronously across visual, acoustic, and textual streams. Existing research primarily focuses on video-level classification, leaving the practically crucial task of temporal localisation, identifying when hateful segments occur, largely unaddressed. This challenge is even more noticeable under weak supervision, where only video-level labels are available, and static fusion or classification-based architectures struggle to capture cross-modal and temporal dynamics. To address these challenges, we propose MultiHateLoc, the first framework designed for weakly-supervised multimodal hate localisation. MultiHateLoc incorporates (1) modality-aware temporal encoders to model heterogeneous sequential patterns, including a tailored text-based preprocessing module for feature enhancement; (2) dynamic cross-modal fusion to adaptively emphasise the most informative modality at each moment and a cross-modal contrastive alignment strategy to enhance multimodal feature consistency; (3) a modality-aware MIL objective to identify discriminative segments under video-level supervision. Despite relying solely on coarse labels, MultiHateLoc produces fine-grained, interpretable frame-level predictions. Experiments on HateMM and MultiHateClip show that our method achieves state-of-the-art performance in the localisation task.
3.51Adaptive Dual-Weighted Gravitational Point Cloud Denoising Method¶
2025/12/12 05:01 GTM
High-quality point cloud data is a critical foundation for tasks such as autonomous driving and 3D reconstruction. However, LiDAR-based point cloud acquisition is often affected by various disturbances, resulting in a large number of noise points that degrade the accuracy of subsequent point cloud object detection and recognition. Moreover, existing point cloud denoising methods typically sacrifice computational efficiency in pursuit of higher denoising accuracy, or, conversely, improve processing speed at the expense of preserving object boundaries and fine structural details, making it difficult to simultaneously achieve high denoising accuracy, strong edge preservation, and real-time performance. To address these limitations, this paper proposes an adaptive dual-weight gravitational-based point cloud denoising method. First, an octree is employed to perform spatial partitioning of the global point cloud, enabling parallel acceleration. Then, within each leaf node, adaptive voxel-based occupancy statistics and k-nearest neighbor (kNN) density estimation are applied to rapidly remove clearly isolated and low-density noise points, thereby reducing the effective candidate set. Finally, a gravitational scoring function that combines density weights with adaptive distance weights is constructed to finely distinguish noise points from object points. Experiments conducted on the Stanford 3D Scanning Repository, the Canadian Adverse Driving Conditions (CADC) dataset, and in-house FMCW LiDAR point clouds acquired in our laboratory demonstrate that, compared with existing methods, the proposed approach achieves consistent improvements in F1, PSNR, and Chamfer Distance (CD) across various noise conditions while reducing the single-frame processing time, thereby validating its high accuracy, robustness, and real-time performance in multi-noise scenarios.
3.52Towards Fine-Grained Recognition with Large Visual Language Models: Benchmark and Optimization Strategies¶
2025/12/12 05:01 GTM
Large Vision Language Models (LVLMs) have made remarkable progress, enabling sophisticated vision-language interaction and dialogue applications. However, existing benchmarks primarily focus on reasoning tasks, often neglecting fine-grained recognition, which is crucial for practical application scenarios. To address this gap, we introduce the Fine-grained Recognition Open World (FROW) benchmark, designed for detailed evaluation of LVLMs with GPT-4o. On the basis of that, we propose a novel optimization strategy from two perspectives: \textit{data construction} and \textit{training process}, to improve the performance of LVLMs. Our dataset includes mosaic data, which combines multiple short-answer responses, and open-world data, generated from real-world questions and answers using GPT-4o, creating a comprehensive framework for evaluating fine-grained recognition in LVLMs. Experiments show that mosaic data improves category recognition accuracy by 1% and open-world data boosts FROW benchmark accuracy by 10%-20% and content accuracy by 6%-12%. Meanwhile, incorporating fine-grained data into the pre-training phase can improve the model’s category recognition accuracy by up to 10%. The benchmark will be available at https://
3.53Self-Supervised Contrastive Embedding Adaptation for Endoscopic Image Matching¶
2025/12/12 05:01 GTM
Accurate spatial understanding is essential for image-guided surgery, augmented reality integration and context awareness. In minimally invasive procedures, where visual input is the sole intraoperative modality, establishing precise pixel-level correspondences between endoscopic frames is critical for 3D reconstruction, camera tracking, and scene interpretation. However, the surgical domain presents distinct challenges: weak perspective cues, non-Lambertian tissue reflections, and complex, deformable anatomy degrade the performance of conventional computer vision techniques. While Deep Learning models have shown strong performance in natural scenes, their features are not inherently suited for fine-grained matching in surgical images and require targeted adaptation to meet the demands of this domain. This research presents a novel Deep Learning pipeline for establishing feature correspondences in endoscopic image pairs, alongside a self-supervised optimization framework for model training. The proposed methodology leverages a novel-view synthesis pipeline to generate ground-truth inlier correspondences, subsequently utilized for mining triplets within a contrastive learning paradigm. Through this self-supervised approach, we augment the DINOv2 backbone with an additional Transformer layer, specifically optimized to produce embeddings that facilitate direct matching through cosine similarity thresholding. Experimental evaluation demonstrates that our pipeline surpasses state-of-the-art methodologies on the SCARED datasets improved matching precision and lower epipolar error compared to the related work. The proposed framework constitutes a valuable contribution toward enabling more accurate high-level computer vision applications in surgical endoscopy.
3.54RaLiFlow: Scene Flow Estimation with 4D Radar and LiDAR Point Clouds¶
2025/12/12 05:01 GTM
Recent multimodal fusion methods, integrating images with LiDAR point clouds, have shown promise in scene flow estimation. However, the fusion of 4D millimeter wave radar and LiDAR remains unexplored. Unlike LiDAR, radar is cheaper, more robust in various weather conditions and can detect point-wise velocity, making it a valuable complement to LiDAR. However, radar inputs pose challenges due to noise, low resolution, and sparsity. Moreover, there is currently no dataset that combines LiDAR and radar data specifically for scene flow estimation. To address this gap, we construct a Radar-LiDAR scene flow dataset based on a public real-world automotive dataset. We propose an effective preprocessing strategy for radar denoising and scene flow label generation, deriving more reliable flow ground truth for radar points out of the object boundaries. Additionally, we introduce RaLiFlow, the first joint scene flow learning framework for 4D radar and LiDAR, which achieves effective radar-LiDAR fusion through a novel Dynamic-aware Bidirectional Cross-modal Fusion (DBCF) module and a carefully designed set of loss functions. The DBCF module integrates dynamic cues from radar into the local cross-attention mechanism, enabling the propagation of contextual information across modalities. Meanwhile, the proposed loss functions mitigate the adverse effects of unreliable radar data during training and enhance the instance-level consistency in scene flow predictions from both modalities, particularly for dynamic foreground areas. Extensive experiments on the repurposed scene flow dataset demonstrate that our method outperforms existing LiDAR-based and radar-based single-modal methods by a significant margin.
3.55Breaking the Vicious Cycle: Coherent 3D Gaussian Splatting from Sparse and Motion-Blurred Views¶
2025/12/12 05:01 GTM
3D Gaussian Splatting (3DGS) has emerged as a state-of-the-art method for novel view synthesis. However, its performance heavily relies on dense, high-quality input imagery, an assumption that is often violated in real-world applications, where data is typically sparse and motion-blurred. These two issues create a vicious cycle: sparse views ignore the multi-view constraints necessary to resolve motion blur, while motion blur erases high-frequency details crucial for aligning the limited views. Thus, reconstruction often fails catastrophically, with fragmented views and a low-frequency bias. To break this cycle, we introduce CoherentGS, a novel framework for high-fidelity 3D reconstruction from sparse and blurry images. Our key insight is to address these compound degradations using a dual-prior strategy. Specifically, we combine two pre-trained generative models: a specialized deblurring network for restoring sharp details and providing photometric guidance, and a diffusion model that offers geometric priors to fill in unobserved regions of the scene. This dual-prior strategy is supported by several key techniques, including a consistency-guided camera exploration module that adaptively guides the generative process, and a depth regularization loss that ensures geometric plausibility. We evaluate CoherentGS through both quantitative and qualitative experiments on synthetic and real-world scenes, using as few as 3, 6, and 9 input views. Our results demonstrate that CoherentGS significantly outperforms existing methods, setting a new state-of-the-art for this challenging task. The code and video demos are available at https://
3.56Point to Span: Zero-Shot Moment Retrieval for Navigating Unseen Hour-Long Videos¶
2025/12/12 05:01 GTM
Zero-shot Long Video Moment Retrieval (ZLVMR) is the task of identifying temporal segments in hour-long videos using a natural language query without task-specific training. The core technical challenge of LVMR stems from the computational infeasibility of processing entire lengthy videos in a single pass. This limitation has established a ‘Search-then-Refine’ approach, where candidates are rapidly narrowed down, and only those portions are analyzed, as the dominant paradigm for LVMR. However, existing approaches to this paradigm face severe limitations. Conventional supervised learning suffers from limited scalability and poor generalization, despite substantial resource consumption. Yet, existing zero-shot methods also fail, facing a dual challenge: (1) their heuristic strategies cause a ‘search’ phase candidate explosion, and (2) the ‘refine’ phase, which is vulnerable to semantic discrepancy, requires high-cost VLMs for verification, incurring significant computational overhead. We propose \textbf{P}oint-\textbf{to}-\textbf{S}pan (P2S), a novel training-free framework to overcome this challenge of inefficient ‘search’ and costly ‘refine’ phases. P2S overcomes these challenges with two key innovations: an ‘Adaptive Span Generator’ to prevent the search phase candidate explosion, and ‘Query Decomposition’ to refine candidates without relying on high-cost VLM verification. To our knowledge, P2S is the first zero-shot framework capable of temporal grounding in hour-long videos, outperforming supervised state-of-the-art methods by a significant margin (e.g., +3.7% on R5@0.1 on MAD).
3.57Visual Funnel: Resolving Contextual Blindness in Multimodal Large Language Models¶
2025/12/12 05:01 GTM
Multimodal Large Language Models (MLLMs) demonstrate impressive reasoning capabilities, but often fail to perceive fine-grained visual details, limiting their applicability in precision-demanding tasks. While methods that crop salient regions of an image offer a partial solution, we identify a critical limitation they introduce: “Contextual Blindness”. This failure occurs due to structural disconnect between high-fidelity details (from the crop) and the broader global context (from the original image), even when all necessary visual information is present. We argue that this limitation stems not from a lack of information ‘Quantity’, but from a lack of ‘Structural Diversity’ in the model’s input. To resolve this, we propose Visual Funnel, a training-free, two-step approach. Visual Funnel first performs Contextual Anchoring to identify the region of interest in a single forward pass. It then constructs an Entropy-Scaled Portfolio that preserves the hierarchical context - ranging from focal detail to broader surroundings - by dynamically determining crop sizes based on attention entropy and refining crop centers. Through extensive experiments, we demonstrate that Visual Funnel significantly outperforms naive single-crop and unstructured multi-crop baselines. Our results further validate that simply adding more unstructured crops provides limited or even detrimental benefits, confirming that the hierarchical structure of our portfolio is key to resolving Contextual Blindness.
3.58Tool-Augmented Spatiotemporal Reasoning for Streamlining Video Question Answering Task¶
2025/12/12 05:01 GTM
Video Question Answering (VideoQA) task serves as a critical playground for evaluating whether foundation models can effectively perceive, understand, and reason about dynamic real-world scenarios. However, existing Multimodal Large Language Models (MLLMs) struggle with simultaneously modeling spatial relationships within video frames and understanding the causal dynamics of temporal evolution on complex and reasoning-intensive VideoQA task. In this work, we equip MLLM with a comprehensive and extensible Video Toolkit, to enhance MLLM’s spatiotemporal reasoning capabilities and ensure the harmony between the quantity and diversity of tools. To better control the tool invocation sequence and avoid toolchain shortcut issues, we propose a Spatiotemporal Reasoning Framework (STAR) that strategically schedules temporal and spatial tools, thereby progressively localizing the key area in the video. Our STAR framework enhances GPT-4o using lightweight tools, achieving an 8.2% gain on VideoMME and 4.6% on LongVideoBench. We believe that our proposed Video Toolkit and STAR framework make an important step towards building autonomous and intelligent video analysis assistants. The code is publicly available at https://
3.59mmCounter: Static People Counting in Dense Indoor Scenarios Using mmWave Radar¶
2025/12/12 05:01 GTM
mmWave radars struggle to detect or count individuals in dense, static (non-moving) groups due to limitations in spatial resolution and reliance on movement for detection. We present mmCounter, which accurately counts static people in dense indoor spaces (up to three people per square meter). mmCounter achieves this by extracting ultra-low frequency (< 1 Hz) signals, primarily from breathing and micro-scale body movements such as slight torso shifts, and applying novel signal processing techniques to differentiate these subtle signals from background noise and nearby static objects. Our problem differs significantly from existing studies on breathing rate estimation, which assume the number of people is known a priori. In contrast, mmCounter utilizes a novel multi-stage signal processing pipeline to extract relevant low-frequency sources along with their spatial information and map these sources to individual people, enabling accurate counting. Extensive evaluations in various environments demonstrate that mmCounter delivers an 87% average F1 score and 0.6 mean absolute error in familiar environments, and a 60% average F1 score and 1.1 mean absolute error in previously untested environments. It can count up to seven individuals in a three square meter space, such that there is no side-by-side spacing and only a one-meter front-to-back distance.
3.60Hybrid Transformer-Mamba Architecture for Weakly Supervised Volumetric Medical Segmentation¶
2025/12/12 05:01 GTM
Weakly supervised semantic segmentation offers a label-efficient solution to train segmentation models for volumetric medical imaging. However, existing approaches often rely on 2D encoders that neglect the inherent volumetric nature of the data. We propose TranSamba, a hybrid Transformer-Mamba architecture designed to capture 3D context for weakly supervised volumetric medical segmentation. TranSamba augments a standard Vision Transformer backbone with Cross-Plane Mamba blocks, which leverage the linear complexity of state space models for efficient information exchange across neighboring slices. The information exchange enhances the pairwise self-attention within slices computed by the Transformer blocks, directly contributing to the attention maps for object localization. TranSamba achieves effective volumetric modeling with time complexity that scales linearly with the input volume depth and maintains constant memory usage for batch processing. Extensive experiments on three datasets demonstrate that TranSamba establishes new state-of-the-art performance, consistently outperforming existing methods across diverse modalities and pathologies. Our source code and trained models are openly accessible at: https://
3.61Topology-Agnostic Animal Motion Generation from Text Prompt¶
2025/12/12 05:01 GTM
Motion generation is fundamental to computer animation and widely used across entertainment, robotics, and virtual environments. While recent methods achieve impressive results, most rely on fixed skeletal templates, which prevent them from generalizing to skeletons with different or perturbed topologies. We address the core limitation of current motion generation methods - the combined lack of large-scale heterogeneous animal motion data and unified generative frameworks capable of jointly modeling arbitrary skeletal topologies and textual conditions. To this end, we introduce OmniZoo, a large-scale animal motion dataset spanning 140 species and 32,979 sequences, enriched with multimodal annotations. Building on OmniZoo, we propose a generalized autoregressive motion generation framework capable of producing text-driven motions for arbitrary skeletal topologies. Central to our model is a Topology-aware Skeleton Embedding Module that encodes geometric and structural properties of any skeleton into a shared token space, enabling seamless fusion with textual semantics. Given a text prompt and a target skeleton, our method generates temporally coherent, physically plausible, and semantically aligned motions, and further enables cross-species motion style transfer.
3.62CoSPlan: Corrective Sequential Planning via Scene Graph Incremental Updates¶
2025/12/12 05:01 GTM
Large-scale Vision-Language Models (VLMs) exhibit impressive complex reasoning capabilities but remain largely unexplored in visual sequential planning, i.e., executing multi-step actions towards a goal. Additionally, practical sequential planning often involves non-optimal (erroneous) steps, challenging VLMs to detect and correct such steps. We propose Corrective Sequential Planning Benchmark (CoSPlan) to evaluate VLMs in error-prone, vision-based sequential planning tasks across 4 domains: maze navigation, block rearrangement, image reconstruction,and object reorganization. CoSPlan assesses two key abilities: Error Detection (identifying non-optimal action) and Step Completion (correcting and completing action sequences to reach the goal). Despite using state-of-the-art reasoning techniques such as Chain-of-Thought and Scene Graphs, VLMs (e.g. Intern-VLM and Qwen2) struggle on CoSPlan, failing to leverage contextual cues to reach goals. Addressing this, we propose a novel training-free method, Scene Graph Incremental updates (SGI), which introduces intermediate reasoning steps between the initial and goal states. SGI helps VLMs reason about sequences, yielding an average performance gain of 5.2%. In addition to enhancing reliability in corrective sequential planning, SGI generalizes to traditional planning tasks such as Plan-Bench and VQA.
3.63Zero-shot Adaptation of Stable Diffusion via Plug-in Hierarchical Degradation Representation for Real-World Super-Resolution¶
2025/12/12 05:01 GTM
Real-World Image Super-Resolution (Real-ISR) aims to recover high-quality images from low-quality inputs degraded by unknown and complex real-world factors. Real-world scenarios involve diverse and coupled degradations, making it necessary to provide diffusion models with richer and more informative guidance. However, existing methods often assume known degradation severity and rely on CLIP text encoders that cannot capture numerical severity, limiting their generalization ability. To address this, we propose \textbf{HD-CLIP} (\textbf{H}ierarchical \textbf{D}egradation CLIP), which decomposes a low-quality image into a semantic embedding and an ordinal degradation embedding that captures ordered relationships and allows interpolation across unseen levels. Furthermore, we integrated it into diffusion models via classifier-free guidance (CFG) and proposed classifier-free projection guidance (CFPG). HD-CLIP leverages semantic cues to guide generative restoration while using degradation cues to suppress undesired hallucinations and artifacts. As a \textbf{plug-and-play module}, HD-CLIP can be seamlessly integrated into various super-resolution frameworks without training, significantly improving detail fidelity and perceptual realism across diverse real-world datasets.
3.64A Conditional Generative Framework for Synthetic Data Augmentation in Segmenting Thin and Elongated Structures in Biological Images¶
2025/12/12 05:01 GTM
Thin and elongated filamentous structures, such as microtubules and actin filaments, often play important roles in biological systems. Segmenting these filaments in biological images is a fundamental step for quantitative analysis. Recent advances in deep learning have significantly improved the performance of filament segmentation. However, there is a big challenge in acquiring high quality pixel-level annotated dataset for filamentous structures, as the dense distribution and geometric properties of filaments making manual annotation extremely laborious and time-consuming. To address the data shortage problem, we propose a conditional generative framework based on the Pix2Pix architecture to generate realistic filaments in microscopy images from binary masks. We also propose a filament-aware structural loss to improve the structure similarity when generating synthetic images. Our experiments have demonstrated the effectiveness of our approach and outperformed existing model trained without synthetic data.
3.65Simple Yet Effective Selective Imputation for Incomplete Multi-view Clustering¶
2025/12/12 05:01 GTM
Incomplete multi-view data, where different views suffer from missing and unbalanced observations, pose significant challenges for clustering. Existing imputation-based methods attempt to estimate missing views to restore data associations, but indiscriminate imputation often introduces noise and bias, especially when the available information is insufficient. Imputation-free methods avoid this risk by relying solely on observed data, but struggle under severe incompleteness due to the lack of cross-view complementarity. To address this issue, we propose Informativeness-based Selective imputation Multi-View Clustering (ISMVC). Our method evaluates the imputation-relevant informativeness of each missing position based on intra-view similarity and cross-view consistency, and selectively imputes only when sufficient support is available. Furthermore, we integrate this selection with a variational autoencoder equipped with a mixture-of-Gaussians prior to learn clustering-friendly latent representations. By performing distribution-level imputation, ISMVC not only stabilizes the aggregation of posterior distributions but also explicitly models imputation uncertainty, enabling robust fusion and preventing overconfident reconstructions. Compared with existing cautious imputation strategies that depend on training dynamics or model feedback, our method is lightweight, data-driven, and model-agnostic. It can be readily integrated into existing IMC models as a plug-in module. Extensive experiments on multiple benchmark datasets under a more realistic and challenging unbalanced missing scenario demonstrate that our method outperforms both imputation-based and imputation-free approaches.
3.66StainNet: A Special Staining Self-Supervised Vision Transformer for Computational Pathology¶
2025/12/12 05:01 GTM
Foundation models trained with self-supervised learning (SSL) on large-scale histological images have significantly accelerated the development of computational pathology. These models can serve as backbones for region-of-interest (ROI) image analysis or patch-level feature extractors in whole-slide images (WSIs) based on multiple instance learning (MIL). Existing pathology foundation models (PFMs) are typically pre-trained on Hematoxylin-Eosin (H&E) stained pathology images. However, images with special stains, such as immunohistochemistry, are also frequently used in clinical practice. PFMs pre-trained mainly on H&E-stained images may be limited in clinical applications involving special stains. To address this issue, we propose StainNet, a specialized foundation model for special stains based on the vision transformer (ViT) architecture. StainNet adopts a self-distillation SSL approach and is trained on over 1.4 million patch images cropping from 20,231 publicly available special staining WSIs in the HISTAI database. To evaluate StainNet, we conduct experiments on an in-house slide-level liver malignancy classification task and two public ROI-level datasets to demonstrate its strong ability. We also perform few-ratio learning and retrieval evaluations, and compare StainNet with recently larger PFMs to further highlight its strengths. We have released the StainNet model weights at: https://
3.67EchoingPixels: Cross-Modal Adaptive Token Reduction for Efficient Audio-Visual LLMs¶
2025/12/12 05:01 GTM
Audio-Visual Large Language Models (AV-LLMs) face prohibitive computational overhead from massive audio and video tokens. Token reduction, while extensively explored for video-only LLMs, is insufficient for the audio-visual domain, as these unimodal methods cannot leverage audio-visual cross-modal synergies. Furthermore, the distinct and dynamic information densities of audio and video render static budgets per modality suboptimal. How to perform token reduction on a joint audio-visual stream thus remains an unaddressed bottleneck. To fill this gap, we introduce EchoingPixels, a framework inspired by the coexistence and interaction of visuals and sound in real-world scenes. The core of our framework is the Cross-Modal Semantic Sieve (CS2), a module enabling early audio-visual interaction. Instead of compressing modalities independently, CS2 co-attends to the joint multimodal stream and reduces tokens from an entire combined pool of audio-visual tokens rather than using fixed budgets per modality. This single-pool approach allows it to adaptively allocate the token budget across both modalities and dynamically identify salient tokens in concert. To ensure this aggressive reduction preserves the vital temporal modeling capability, we co-design a Synchronization-Augmented RoPE (Sync-RoPE) to maintain critical temporal relationships for the sparsely selected tokens. Extensive experiments demonstrate that EchoingPixels achieves performance comparable to strong baselines using only 5-20% of the original tokens, with a 2-3x speedup and memory reduction.
3.68Point2Pose: A Generative Framework for 3D Human Pose Estimation with Multi-View Point Cloud Dataset¶
2025/12/12 05:01 GTM
We propose a novel generative approach for 3D human pose estimation. 3D human pose estimation poses several key challenges due to the complex geometry of the human body, self-occluding joints, and the requirement for large-scale real-world motion datasets. To address these challenges, we introduce Point2Pose, a framework that effectively models the distribution of human poses conditioned on sequential point cloud and pose history. Specifically, we employ a spatio-temporal point cloud encoder and a pose feature encoder to extract joint-wise features, followed by an attention-based generative regressor. Additionally, we present a large-scale indoor dataset MVPose3D, which contains multiple modalities, including IMU data of non-trivial human motions, dense multi-view point clouds, and RGB images. Experimental results show that the proposed method outperforms the baseline models, demonstrating its superior performance across various datasets.
3.69Design of a six wheel suspension and a three-axis linear actuation mechanism for a laser weeding robot¶
2025/12/12 05:01 GTM
Mobile robots are increasingly utilized in agriculture to automate labor-intensive tasks such as weeding, sowing, harvesting and soil analysis. Recently, agricultural robots have been developed to detect and remove weeds using mechanical tools or precise herbicide sprays. Mechanical weeding is inefficient over large fields, and herbicides harm the soil ecosystem. Laser weeding with mobile robots has emerged as a sustainable alternative in precision farming. In this paper, we present an autonomous weeding robot that uses controlled exposure to a low energy laser beam for weed removal. The proposed robot is six-wheeled with a novel double four-bar suspension for higher stability. The laser is guided towards the detected weeds by a three-dimensional linear actuation mechanism. Field tests have demonstrated the robot’s capability to navigate agricultural terrains effectively by overcoming obstacles up to 15 cm in height. At an optimal speed of 42.5 cm/s, the robot achieves a weed detection rate of 86.2% and operating time of 87 seconds per meter. The laser actuation mechanism maintains a minimal mean positional error of 1.54 mm, combined with a high hit rate of 97%, ensuring effective and accurate weed removal. This combination of speed, accuracy, and efficiency highlights the robot’s potential for significantly enhancing precision farming practices.
3.70ConStruct: Structural Distillation of Foundation Models for Prototype-Based Weakly Supervised Histopathology Segmentation¶
2025/12/12 05:01 GTM
Weakly supervised semantic segmentation (WSSS) in histopathology relies heavily on classification backbones, yet these models often localize only the most discriminative regions and struggle to capture the full spatial extent of tissue structures. Vision-language models such as CONCH offer rich semantic alignment and morphology-aware representations, while modern segmentation backbones like SegFormer preserve fine-grained spatial cues. However, combining these complementary strengths remains challenging, especially under weak supervision and without dense annotations. We propose a prototype learning framework for WSSS in histopathological images that integrates morphology-aware representations from CONCH, multi-scale structural cues from SegFormer, and text-guided semantic alignment to produce prototypes that are simultaneously semantically discriminative and spatially coherent. To effectively leverage these heterogeneous sources, we introduce text-guided prototype initialization that incorporates pathology descriptions to generate more complete and semantically accurate pseudo-masks. A structural distillation mechanism transfers spatial knowledge from SegFormer to preserve fine-grained morphological patterns and local tissue boundaries during prototype learning. Our approach produces high-quality pseudo masks without pixel-level annotations, improves localization completeness, and enhances semantic consistency across tissue types. Experiments on BCSS-WSSS datasets demonstrate that our prototype learning framework outperforms existing WSSS methods while remaining computationally efficient through frozen foundation model backbones and lightweight trainable adapters.
3.71DualProtoSeg: Simple and Efficient Design with Text- and Image-Guided Prototype Learning for Weakly Supervised Histopathology Image Segmentation¶
2025/12/12 05:01 GTM
Weakly supervised semantic segmentation (WSSS) in histopathology seeks to reduce annotation cost by learning from image-level labels, yet it remains limited by inter-class homogeneity, intra-class heterogeneity, and the region-shrinkage effect of CAM-based supervision. We propose a simple and effective prototype-driven framework that leverages vision-language alignment to improve region discovery under weak supervision. Our method integrates CoOp-style learnable prompt tuning to generate text-based prototypes and combines them with learnable image prototypes, forming a dual-modal prototype bank that captures both semantic and appearance cues. To address oversmoothing in ViT representations, we incorporate a multi-scale pyramid module that enhances spatial precision and improves localization quality. Experiments on the BCSS-WSSS benchmark show that our approach surpasses existing state-of-the-art methods, and detailed analyses demonstrate the benefits of text description diversity, context length, and the complementary behavior of text and image prototypes. These results highlight the effectiveness of jointly leveraging textual semantics and visual prototype learning for WSSS in digital pathology.
3.72Efficient-VLN: A Training-Efficient Vision-Language Navigation Model¶
2025/12/12 05:01 GTM
Multimodal large language models (MLLMs) have shown promising potential in Vision-Language Navigation (VLN). However, their practical development is severely hindered by the substantial training overhead. We recognize two key issues that contribute to the overhead: (1) the quadratic computational burden from processing long-horizon historical observations as massive sequences of tokens, and (2) the exploration-efficiency trade-off in DAgger, i.e., a data aggregation process of collecting agent-explored trajectories. While more exploration yields effective error-recovery trajectories for handling test-time distribution shifts, it comes at the cost of longer trajectory lengths for both training and inference. To address these challenges, we propose Efficient-VLN, a training-efficient VLN model. Specifically, to mitigate the token processing burden, we design two efficient memory mechanisms: a progressive memory that dynamically allocates more tokens to recent observations, and a learnable recursive memory that utilizes the key-value cache of learnable tokens as the memory state. Moreover, we introduce a dynamic mixed policy to balance the exploration-efficiency trade-off. Extensive experiments show that Efficient-VLN achieves state-of-the-art performance on R2R-CE (64.2% SR) and RxR-CE (67.0% SR). Critically, our model consumes merely 282 H800 GPU hours, demonstrating a dramatic reduction in training overhead compared to state-of-the-art methods.
3.73Physically Aware 360° View Generation from a Single Image using Disentangled Scene Embeddings¶
2025/12/12 05:01 GTM
We introduce Disentangled360, an innovative 3D-aware technology that integrates the advantages of direction disentangled volume rendering with single-image 360° unique view synthesis for applications in medical imaging and natural scene reconstruction. In contrast to current techniques that either oversimplify anisotropic light behavior or lack generalizability across various contexts, our framework distinctly differentiates between isotropic and anisotropic contributions inside a Gaussian Splatting backbone. We implement a dual-branch conditioning framework, one optimized for CT intensity driven scattering in volumetric data and the other for real-world RGB scenes through normalized camera embeddings. To address scale ambiguity and maintain structural realism, we present a hybrid pose agnostic anchoring method that adaptively samples scene depth and material transitions, functioning as stable pivots during scene distillation. Our design integrates preoperative radiography simulation and consumer-grade 360° rendering into a singular inference pipeline, facilitating rapid, photorealistic view synthesis with inherent directionality. Evaluations on the Mip-NeRF 360, RealEstate10K, and DeepDRR datasets indicate superior SSIM and LPIPS performance, while runtime assessments confirm its viability for interactive applications. Disentangled360 facilitates mixed-reality medical supervision, robotic perception, and immersive content creation, eliminating the necessity for scene-specific finetuning or expensive photon simulations.
3.74ShotDirector: Directorially Controllable Multi-Shot Video Generation with Cinematographic Transitions¶
2025/12/12 05:01 GTM
Shot transitions play a pivotal role in multi-shot video generation, as they determine the overall narrative expression and the directorial design of visual storytelling. However, recent progress has primarily focused on low-level visual consistency across shots, neglecting how transitions are designed and how cinematographic language contributes to coherent narrative expression. This often leads to mere sequential shot changes without intentional film-editing patterns. To address this limitation, we propose ShotDirector, an efficient framework that integrates parameter-level camera control and hierarchical editing-pattern-aware prompting. Specifically, we adopt a camera control module that incorporates 6-DoF poses and intrinsic settings to enable precise camera information injection. In addition, a shot-aware mask mechanism is employed to introduce hierarchical prompts aware of professional editing patterns, allowing fine-grained control over shot content. Through this design, our framework effectively combines parameter-level conditions with high-level semantic guidance, achieving film-like controllable shot transitions. To facilitate training and evaluation, we construct ShotWeaver40K, a dataset that captures the priors of film-like editing patterns, and develop a set of evaluation metrics for controllable multi-shot video generation. Extensive experiments demonstrate the effectiveness of our framework.
3.75MotionEdit: Benchmarking and Learning Motion-Centric Image Editing¶
2025/12/12 05:01 GTM
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness.
3.76Sample-wise Adaptive Weighting for Transfer Consistency in Adversarial Distillation¶
2025/12/12 05:01 GTM
Adversarial distillation in the standard min-max adversarial training framework aims to transfer adversarial robustness from a large, robust teacher network to a compact student. However, existing work often neglects to incorporate state-of-the-art robust teachers. Through extensive analysis, we find that stronger teachers do not necessarily yield more robust students-a phenomenon known as robust saturation. While typically attributed to capacity gaps, we show that such explanations are incomplete. Instead, we identify adversarial transferability-the fraction of student-crafted adversarial examples that remain effective against the teacher-as a key factor in successful robustness transfer. Based on this insight, we propose Sample-wise Adaptive Adversarial Distillation (SAAD), which reweights training examples by their measured transferability without incurring additional computational cost. Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet show that SAAD consistently improves AutoAttack robustness over prior methods. Our code is available at https://
3.77Long-LRM++: Preserving Fine Details in Feed-Forward Wide-Coverage Reconstruction¶
2025/12/12 05:01 GTM
Recent advances in generalizable Gaussian splatting (GS) have enabled feed-forward reconstruction of scenes from tens of input views. Long-LRM notably scales this paradigm to 32 input images at resolution, achieving 360° scene-level reconstruction in a single forward pass. However, directly predicting millions of Gaussian parameters at once remains highly error-sensitive: small inaccuracies in positions or other attributes lead to noticeable blurring, particularly in fine structures such as text. In parallel, implicit representation methods such as LVSM and LaCT have demonstrated significantly higher rendering fidelity by compressing scene information into model weights rather than explicit Gaussians, and decoding RGB frames using the full transformer or TTT backbone. However, this computationally intensive decompression process for every rendered frame makes real-time rendering infeasible. These observations raise key questions: Is the deep, sequential “decompression” process necessary? Can we retain the benefits of implicit representations while enabling real-time performance? We address these questions with Long-LRM++, a model that adopts a semi-explicit scene representation combined with a lightweight decoder. Long-LRM++ matches the rendering quality of LaCT on DL3DV while achieving real-time 14 FPS rendering on an A100 GPU, overcoming the speed limitations of prior implicit methods. Our design also scales to 64 input views at the resolution, demonstrating strong generalization to increased input lengths. Additionally, Long-LRM++ delivers superior novel-view depth prediction on ScanNetv2 compared to direct depth rendering from Gaussians. Extensive ablation studies validate the effectiveness of each component in the proposed framework.
3.78VLM-NCD:Novel Class Discovery with Vision-Based Large Language Models¶
2025/12/12 05:01 GTM
Novel Class Discovery aims to utilise prior knowledge of known classes to classify and discover unknown classes from unlabelled data. Existing NCD methods for images primarily rely on visual features, which suffer from limitations such as insufficient feature discriminability and the long-tail distribution of data. We propose LLM-NCD, a multimodal framework that breaks this bottleneck by fusing visual-textual semantics and prototype guided clustering. Our key innovation lies in modelling cluster centres and semantic prototypes of known classes by jointly optimising known class image and text features, and a dualphase discovery mechanism that dynamically separates known or novel samples via semantic affinity thresholds and adaptive clustering. Experiments on the CIFAR-100 dataset show that compared to the current methods, this method achieves up to 25.3% improvement in accuracy for unknown classes. Notably, our method shows unique resilience to long tail distributions, a first in NCD literature.
3.79GDKVM: Echocardiography Video Segmentation via Spatiotemporal Key-Value Memory with Gated Delta Rule¶
2025/12/12 05:01 GTM
Accurate segmentation of cardiac chambers in echocardiography sequences is crucial for the quantitative analysis of cardiac function, aiding in clinical diagnosis and treatment. The imaging noise, artifacts, and the deformation and motion of the heart pose challenges to segmentation algorithms. While existing methods based on convolutional neural networks, Transformers, and space-time memory networks have improved segmentation accuracy, they often struggle with the trade-off between capturing long-range spatiotemporal dependencies and maintaining computational efficiency with fine-grained feature representation. In this paper, we introduce GDKVM, a novel architecture for echocardiography video segmentation. The model employs Linear Key-Value Association (LKVA) to effectively model inter-frame correlations, and introduces Gated Delta Rule (GDR) to efficiently store intermediate memory states. Key-Pixel Feature Fusion (KPFF) module is designed to integrate local and global features at multiple scales, enhancing robustness against boundary blurring and noise interference. We validated GDKVM on two mainstream echocardiography video datasets (CAMUS and EchoNet-Dynamic) and compared it with various state-of-the-art methods. Experimental results show that GDKVM outperforms existing approaches in terms of segmentation accuracy and robustness, while ensuring real-time performance. Code is available at https://
3.80THE-Pose: Topological Prior with Hybrid Graph Fusion for Estimating Category-Level 6D Object Pose¶
2025/12/12 05:01 GTM
Category-level object pose estimation requires both global context and local structure to ensure robustness against intra-class variations. However, 3D graph convolution (3D-GC) methods only focus on local geometry and depth information, making them vulnerable to complex objects and visual ambiguities. To address this, we present THE-Pose, a novel category-level 6D pose estimation framework that leverages a topological prior via surface embedding and hybrid graph fusion. Specifically, we extract consistent and invariant topological features from the image domain, effectively overcoming the limitations inherent in existing 3D-GC based methods. Our Hybrid Graph Fusion (HGF) module adaptively integrates the topological features with point-cloud features, seamlessly bridging 2D image context and 3D geometric structure. These fused features ensure stability for unseen or complicated objects, even under significant occlusions. Extensive experiments on the REAL275 dataset show that THE-Pose achieves a 35.8% improvement over the 3D-GC baseline (HS-Pose) and surpasses the previous state-of-the-art by 7.2% across all key metrics. The code is avaialbe on https://
3.81RobustSora: De-Watermarked Benchmark for Robust AI-Generated Video Detection¶
2025/12/12 05:01 GTM
The proliferation of AI-generated video technologies poses challenges to information integrity. While recent benchmarks advance AIGC video detection, they overlook a critical factor: many state-of-the-art generative models embed digital watermarks in outputs, and detectors may partially rely on these patterns. To evaluate this influence, we present RobustSora, the benchmark designed to assess watermark robustness in AIGC video detection. We systematically construct a dataset of 6,500 videos comprising four types: Authentic-Clean (A-C), Authentic-Spoofed with fake watermarks (A-S), Generated-Watermarked (G-W), and Generated-DeWatermarked (G-DeW). Our benchmark introduces two evaluation tasks: Task-I tests performance on watermark-removed AI videos, while Task-II assesses false alarm rates on authentic videos with fake watermarks. Experiments with ten models spanning specialized AIGC detectors, transformer architectures, and MLLM approaches reveal performance variations of 2-8pp under watermark manipulation. Transformer-based models show consistent moderate dependency (6-8pp), while MLLMs exhibit diverse patterns (2-8pp). These findings indicate partial watermark dependency and highlight the need for watermark-aware training strategies. RobustSora provides essential tools to advance robust AIGC detection research.
3.82Solving Semi-Supervised Few-Shot Learning from an Auto-Annotation Perspective¶
2025/12/12 05:01 GTM
Semi-supervised few-shot learning (SSFSL) formulates real-world applications like ‘‘auto-annotation’’, as it aims to learn a model over a few labeled and abundant unlabeled examples to annotate the unlabeled ones. Despite the availability of powerful open-source Vision-Language Models (VLMs) and their pretraining data, the SSFSL literature largely neglects these open-source resources. In contrast, the related area few-shot learning (FSL) has already exploited them to boost performance. Arguably, to achieve auto-annotation in the real world, SSFSL should leverage such open-source resources. To this end, we start by applying established SSL methods to finetune a VLM. Counterintuitively, they significantly underperform FSL baselines. Our in-depth analysis reveals the root cause: VLMs produce rather ‘‘flat’’ distributions of softmax probabilities. This results in zero utilization of unlabeled data and weak supervision signals. We address this issue with embarrassingly simple techniques: classifier initialization and temperature tuning. They jointly increase the confidence scores of pseudo-labels, improving the utilization rate of unlabeled data, and strengthening supervision signals. Building on this, we propose: Stage-Wise Finetuning with Temperature Tuning (SWIFT), which enables existing SSL methods to effectively finetune a VLM on limited labeled data, abundant unlabeled data, and task-relevant but noisy data retrieved from the VLM’s pretraining set. Extensive experiments on five SSFSL benchmarks show that SWIFT outperforms recent FSL and SSL methods by 5 accuracy points. SWIFT even rivals supervised learning, which finetunes VLMs with the unlabeled data being labeled with ground truth!
3.83Multi-dimensional Preference Alignment by Conditioning Reward Itself¶
2025/12/12 05:01 GTM
Reinforcement Learning from Human Feedback has emerged as a standard for aligning diffusion models. However, we identify a fundamental limitation in the standard DPO formulation because it relies on the Bradley-Terry model to aggregate diverse evaluation axes like aesthetic quality and semantic alignment into a single scalar reward. This aggregation creates a reward conflict where the model is forced to unlearn desirable features of a specific dimension if they appear in a globally non-preferred sample. To address this issue, we propose Multi Reward Conditional DPO (MCDPO). This method resolves reward conflicts by introducing a disentangled Bradley-Terry objective. MCDPO explicitly injects a preference outcome vector as a condition during training, which allows the model to learn the correct optimization direction for each reward axis independently within a single network. We further introduce dimensional reward dropout to ensure balanced optimization across dimensions. Extensive experiments on Stable Diffusion 1.5 and SDXL demonstrate that MCDPO achieves superior performance on benchmarks. Notably, our conditional framework enables dynamic and multiple-axis control at inference time using Classifier Free Guidance to amplify specific reward dimensions without additional training or external reward models.
3.84Emerging Standards for Machine-to-Machine Video Coding¶
2025/12/12 05:01 GTM
Machines are increasingly becoming the primary consumers of visual data, yet most deployments of machine-to-machine systems still rely on remote inference where pixel-based video is streamed using codecs optimized for human perception. Consequently, this paradigm is bandwidth intensive, scales poorly, and exposes raw images to third parties. Recent efforts in the Moving Picture Experts Group (MPEG) redesigned the pipeline for machine-to-machine communication: Video Coding for Machines (VCM) is designed to apply task-aware coding tools in the pixel domain, and Feature Coding for Machines (FCM) is designed to compress intermediate neural features to reduce bitrate, preserve privacy, and support compute offload. Experiments show that FCM is capable of maintaining accuracy close to edge inference while significantly reducing bitrate. Additional analysis of H.26X codecs used as inner codecs in FCM reveals that H.265/High Efficiency Video Coding (HEVC) and H.266/Versatile Video Coding (VVC) achieve almost identical machine task performance, with an average BD-Rate increase of 1.39% when VVC is replaced with HEVC. In contrast, H.264/Advanced Video Coding (AVC) yields an average BD-Rate increase of 32.28% compared to VVC. However, for the tracking task, the impact of codec choice is minimal, with HEVC outperforming VVC and achieving BD Rate of -1.81% and 8.79% for AVC, indicating that existing hardware for already deployed codecs can support machine-to-machine communication without degrading performance.
3.85Latent Chain-of-Thought World Modeling for End-to-End Driving¶
2025/12/12 05:01 GTM
Recent Vision-Language-Action (VLA) models for autonomous driving explore inference-time reasoning as a way to improve driving performance and safety in challenging scenarios. Most prior work uses natural language to express chain-of-thought (CoT) reasoning before producing driving actions. However, text may not be the most efficient representation for reasoning. In this work, we present Latent-CoT-Drive (LCDrive): a model that expresses CoT in a latent language that captures possible outcomes of the driving actions being considered. Our approach unifies CoT reasoning and decision making by representing both in an action-aligned latent space. Instead of natural language, the model reasons by interleaving (1) action-proposal tokens, which use the same vocabulary as the model’s output actions; and (2) world model tokens, which are grounded in a learned latent world model and express future outcomes of these actions. We cold start latent CoT by supervising the model’s action proposals and world model tokens based on ground-truth future rollouts of the scene. We then post-train with closed-loop reinforcement learning to strengthen reasoning capabilities. On a large-scale end-to-end driving benchmark, LCDrive achieves faster inference, better trajectory quality, and larger improvements from interactive reinforcement learning compared to both non-reasoning and text-reasoning baselines.
3.86Federated Domain Generalization with Latent Space Inversion¶
2025/12/12 05:01 GTM
Federated domain generalization (FedDG) addresses distribution shifts among clients in a federated learning framework. FedDG methods aggregate the parameters of locally trained client models to form a global model that generalizes to unseen clients while preserving data privacy. While improving the generalization capability of the global model, many existing approaches in FedDG jeopardize privacy by sharing statistics of client data between themselves. Our solution addresses this problem by contributing new ways to perform local client training and model aggregation. To improve local client training, we enforce (domain) invariance across local models with the help of a novel technique, \textbf{latent space inversion}, which enables better client privacy. When clients are not \emph{i.i.d}, aggregating their local models may discard certain local adaptations. To overcome this, we propose an \textbf{important weight} aggregation strategy to prioritize parameters that significantly influence predictions of local models during aggregation. Our extensive experiments show that our approach achieves superior results over state-of-the-art methods with less communication overhead.
3.87Feature Coding for Scalable Machine Vision¶
2025/12/12 05:01 GTM
Deep neural networks (DNNs) drive modern machine vision but are challenging to deploy on edge devices due to high compute demands. Traditional approaches-running the full model on-device or offloading to the cloud face trade-offs in latency, bandwidth, and privacy. Splitting the inference workload between the edge and the cloud offers a balanced solution, but transmitting intermediate features to enable such splitting introduces new bandwidth challenges. To address this, the Moving Picture Experts Group (MPEG) initiated the Feature Coding for Machines (FCM) standard, establishing a bitstream syntax and codec pipeline tailored for compressing intermediate features. This paper presents the design and performance of the Feature Coding Test Model (FCTM), showing significant bitrate reductions-averaging 85.14%-across multiple vision tasks while preserving accuracy. FCM offers a scalable path for efficient and interoperable deployment of intelligent features in bandwidth-limited and privacy-sensitive consumer applications.
3.88Topological Conditioning for Mammography Models via a Stable Wavelet-Persistence Vectorization¶
2025/12/12 05:01 GTM
Breast cancer is the most commonly diagnosed cancer in women and a leading cause of cancer death worldwide. Screening mammography reduces mortality, yet interpretation still suffers from substantial false negatives and false positives, and model accuracy often degrades when deployed across scanners, modalities, and patient populations. We propose a simple conditioning signal aimed at improving external performance based on a wavelet based vectorization of persistent homology. Using topological data analysis, we summarize image structure that persists across intensity thresholds and convert this information into spatial, multi scale maps that are provably stable to small intensity perturbations. These maps are integrated into a two stage detection pipeline through input level channel concatenation. The model is trained and validated on the CBIS DDSM digitized film mammography cohort from the United States and evaluated on two independent full field digital mammography cohorts from Portugal (INbreast) and China (CMMD), with performance reported at the patient level. On INbreast, augmenting ConvNeXt Tiny with wavelet persistence channels increases patient level AUC from 0.55 to 0.75 under a limited training budget.
3.89Hierarchical Instance Tracking to Balance Privacy Preservation with Accessible Information¶
2025/12/12 05:01 GTM
We propose a novel task, hierarchical instance tracking, which entails tracking all instances of predefined categories of objects and parts, while maintaining their hierarchical relationships. We introduce the first benchmark dataset supporting this task, consisting of 2,765 unique entities that are tracked in 552 videos and belong to 40 categories (across objects and parts). Evaluation of seven variants of four models tailored to our novel task reveals the new dataset is challenging. Our dataset is available at https://
3.90TraceFlow: Dynamic 3D Reconstruction of Specular Scenes Driven by Ray Tracing¶
2025/12/12 05:01 GTM
We present TraceFlow, a novel framework for high-fidelity rendering of dynamic specular scenes by addressing two key challenges: precise reflection direction estimation and physically accurate reflection modeling. To achieve this, we propose a Residual Material-Augmented 2D Gaussian Splatting representation that models dynamic geometry and material properties, allowing accurate reflection ray computation. Furthermore, we introduce a Dynamic Environment Gaussian and a hybrid rendering pipeline that decomposes rendering into diffuse and specular components, enabling physically grounded specular synthesis via rasterization and ray tracing. Finally, we devise a coarse-to-fine training strategy to improve optimization stability and promote physically meaningful decomposition. Extensive experiments on dynamic scene benchmarks demonstrate that TraceFlow outperforms prior methods both quantitatively and qualitatively, producing sharper and more realistic specular reflections in complex dynamic environments.
3.91Independent Density Estimation¶
2025/12/12 05:01 GTM
Large-scale Vision-Language models have achieved remarkable results in various domains, such as image captioning and conditioned image generation. Neverthe- less, these models still encounter difficulties in achieving human-like composi- tional generalization. In this study, we propose a new method called Independent Density Estimation (IDE) to tackle this challenge. IDE aims to learn the connec- tion between individual words in a sentence and the corresponding features in an image, enabling compositional generalization. We build two models based on the philosophy of IDE. The first one utilizes fully disentangled visual representations as input, and the second leverages a Variational Auto-Encoder to obtain partially disentangled features from raw images. Additionally, we propose an entropy- based compositional inference method to combine predictions of each word in the sentence. Our models exhibit superior generalization to unseen compositions compared to current models when evaluated on various datasets.
3.92MetaVoxel: Joint Diffusion Modeling of Imaging and Clinical Metadata¶
2025/12/12 05:01 GTM
Modern deep learning methods have achieved impressive results across tasks from disease classification, estimating continuous biomarkers, to generating realistic medical images. Most of these approaches are trained to model conditional distributions defined by a specific predictive direction with a specific set of input variables. We introduce MetaVoxel, a generative joint diffusion modeling framework that models the joint distribution over imaging data and clinical metadata by learning a single diffusion process spanning all variables. By capturing the joint distribution, MetaVoxel unifies tasks that traditionally require separate conditional models and supports flexible zero-shot inference using arbitrary subsets of inputs without task-specific retraining. Using more than 10,000 T1-weighted MRI scans paired with clinical metadata from nine datasets, we show that a single MetaVoxel model can perform image generation, age estimation, and sex prediction, achieving performance comparable to established task-specific baselines. Additional experiments highlight its capabilities for flexible inference.Together, these findings demonstrate that joint multimodal diffusion offers a promising direction for unifying medical AI models and enabling broader clinical applicability.
3.93Diffusion Is Your Friend in Show, Suggest and Tell¶
2025/12/12 05:01 GTM
Diffusion Denoising models demonstrated impressive results across generative Computer Vision tasks, but they still fail to outperform standard autoregressive solutions in the discrete domain, and only match them at best. In this work, we propose a different paradigm by adopting diffusion models to provide suggestions to the autoregressive generation rather than replacing them. By doing so, we combine the bidirectional and refining capabilities of the former with the strong linguistic structure provided by the latter. To showcase its effectiveness, we present Show, Suggest and Tell (SST), which achieves State-of-the-Art results on COCO, among models in a similar setting. In particular, SST achieves 125.1 CIDEr-D on the COCO dataset without Reinforcement Learning, outperforming both autoregressive and diffusion model State-of-the-Art results by 1.5 and 2.5 points. On top of the strong results, we performed extensive experiments to validate the proposal and analyze the impact of the suggestion module. Results demonstrate a positive correlation between suggestion and caption quality, overall indicating a currently underexplored but promising research direction. Code will be available at: https://
3.94ABBSPO: Adaptive Bounding Box Scaling and Symmetric Prior based Orientation Prediction for Detecting Aerial Image Objects¶
2025/12/12 05:01 GTM
Weakly supervised oriented object detection (WS-OOD) has gained attention as a cost-effective alternative to fully supervised methods, providing both efficiency and high accuracy. Among weakly supervised approaches, horizontal bounding box (HBox)-supervised OOD stands out for its ability to directly leverage existing HBox annotations while achieving the highest accuracy under weak supervision settings. This paper introduces adaptive bounding box scaling and symmetry-prior-based orientation prediction, called ABBSPO, a framework for WS-OOD. Our ABBSPO addresses limitations of previous HBox-supervised OOD methods, which compare ground truth (GT) HBoxes directly with the minimum circumscribed rectangles of predicted RBoxes, often leading to inaccurate scale estimation. To overcome this, we propose: (i) Adaptive Bounding Box Scaling (ABBS), which appropriately scales GT HBoxes to optimize for the size of each predicted RBox, ensuring more accurate scale prediction; and (ii) a Symmetric Prior Angle (SPA) loss that exploits inherent symmetry of aerial objects for self-supervised learning, resolving issues in previous methods where learning collapses when predictions for all three augmented views (original, rotated, and flipped) are consistently incorrect. Extensive experimental results demonstrate that ABBSPO achieves state-of-the-art performance, outperforming existing methods.
3.95Neuromorphic Eye Tracking for Low-Latency Pupil Detection¶
2025/12/12 05:01 GTM
Eye tracking for wearable systems demands low latency and milliwatt-level power, but conventional frame-based pipelines struggle with motion blur, high compute cost, and limited temporal resolution. Such capabilities are vital for enabling seamless and responsive interaction in emerging technologies like augmented reality (AR) and virtual reality (VR), where understanding user gaze is key to immersion and interface design. Neuromorphic sensors and spiking neural networks (SNNs) offer a promising alternative, yet existing SNN approaches are either too specialized or fall short of the performance of modern ANN architectures. This paper presents a neuromorphic version of top-performing event-based eye-tracking models, replacing their recurrent and attention modules with lightweight LIF layers and exploiting depth-wise separable convolutions to reduce model complexity. Our models obtain 3.7-4.1px mean error, approaching the accuracy of the application-specific neuromorphic system, Retina (3.24px), while reducing model size by 20x and theoretical compute by 850x, compared to the closest ANN variant of the proposed model. These efficient variants are projected to operate at an estimated 3.9-4.9 mW with 3 ms latency at 1 kHz. The present results indicate that high-performing event-based eye-tracking architectures can be redesigned as SNNs with substantial efficiency gains, while retaining accuracy suitable for real-time wearable deployment.
3.96Echo-CoPilot: A Multi-View, Multi-Task Agent for Echocardiography Interpretation and Reporting¶
2025/12/12 05:01 GTM
Echocardiography is central to contemporary cardiovascular care, but full-study interpretation remains a cognitively demanding, multi-view task that is still performed manually. While recent foundation models for echocardiography can achieve strong performance on individual perceptual subtasks such as view classification, segmentation, or disease prediction, they typically operate in isolation and do not provide a unified, clinically coherent assessment. In this work, we introduce Echo-CoPilot, a multi-view, multi-task agent that uses a large language model to orchestrate a suite of specialized echocardiography tools. Within a ReAct-style loop, the agent decomposes clinician queries, invokes tools for view recognition, cardiac structure segmentation, measurement and disease prediction, and report synthesis, and integrates their outputs into guideline-aware answers and narrative summaries. We evaluate Echo-CoPilot on the public MIMIC-EchoQA benchmark, where it achieves an accuracy of 50.8%, outperforming both general-purpose and biomedical video vision-language models. Qualitative analyses further show that the agent leverages quantitative measurements and physiologic context to resolve challenging cases near clinical decision thresholds, such as borderline left ventricular hypertrophy or pericardial effusion severity. The code will be released upon acceptance of the paper.
3.97Metaphor-based Jailbreaking Attacks on Text-to-Image Models¶
2025/12/12 05:01 GTM
Text-to-image~(T2I) models commonly incorporate defense mechanisms to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attacks have shown that adversarial prompts can effectively bypass these mechanisms and induce T2I models to produce sensitive content, revealing critical safety vulnerabilities. However, existing attack methods implicitly assume that the attacker knows the type of deployed defenses, which limits their effectiveness against unknown or diverse defense mechanisms. In this work, we introduce \textbf{MJA}, a \textbf{m}etaphor-based \textbf{j}ailbreaking \textbf{a}ttack method inspired by the Taboo game, aiming to effectively and efficiently attack diverse defense mechanisms without prior knowledge of their type by generating metaphor-based adversarial prompts. Specifically, MJA consists of two modules: an LLM-based multi-agent generation module~(MLAG) and an adversarial prompt optimization module~(APO). MLAG decomposes the generation of metaphor-based adversarial prompts into three subtasks: metaphor retrieval, context matching, and adversarial prompt generation. Subsequently, MLAG coordinates three LLM-based agents to generate diverse adversarial prompts by exploring various metaphors and contexts. To enhance attack efficiency, APO first trains a surrogate model to predict the attack results of adversarial prompts and then designs an acquisition strategy to adaptively identify optimal adversarial prompts. Extensive experiments on T2I models with various external and internal defense mechanisms demonstrate that MJA outperforms six baseline methods, achieving stronger attack performance while using fewer queries. Code is available in https://
3.98CC-GRMAS: A Multi-Agent Graph Neural System for Spatiotemporal Landslide Risk Assessment in High Mountain Asia¶
2025/12/12 05:01 GTM
Landslides are a growing climate induced hazard with severe environmental and human consequences, particularly in high mountain Asia. Despite increasing access to satellite and temporal datasets, timely detection and disaster response remain underdeveloped and fragmented. This work introduces CC-GRMAS, a framework leveraging a series of satellite observations and environmental signals to enhance the accuracy of landslide forecasting. The system is structured around three interlinked agents Prediction, Planning, and Execution, which collaboratively enable real time situational awareness, response planning, and intervention. By incorporating local environmental factors and operationalizing multi agent coordination, this approach offers a scalable and proactive solution for climate resilient disaster preparedness across vulnerable mountainous terrains.
3.99Are We Ready for RL in Text-to-3D Generation? A Progressive Investigation¶
2025/12/12 05:01 GTM
Reinforcement learning (RL), earlier proven to be effective in large language and multi-modal models, has been successfully extended to enhance 2D image generation recently. However, applying RL to 3D generation remains largely unexplored due to the higher spatial complexity of 3D objects, which require globally consistent geometry and fine-grained local textures. This makes 3D generation significantly sensitive to reward designs and RL algorithms. To address these challenges, we conduct the first systematic study of RL for text-to-3D autoregressive generation across several dimensions. (1) Reward designs: We evaluate reward dimensions and model choices, showing that alignment with human preference is crucial, and that general multi-modal models provide robust signal for 3D attributes. (2) RL algorithms: We study GRPO variants, highlighting the effectiveness of token-level optimization, and further investigate the scaling of training data and iterations. (3) Text-to-3D Benchmarks: Since existing benchmarks fail to measure implicit reasoning abilities in 3D generation models, we introduce MME-3DR. (4) Advanced RL paradigms: Motivated by the natural hierarchy of 3D generation, we propose Hi-GRPO, which optimizes the global-to-local hierarchical 3D generation through dedicated reward ensembles. Based on these insights, we develop AR3D-R1, the first RL-enhanced text-to-3D model, expert from coarse shape to texture refinement. We hope this study provides insights into RL-driven reasoning for 3D generation. Code is released at https://
3.100Stronger Normalization-Free Transformers¶
2025/12/12 05:01 GTM
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce , where is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.
3.101LabelFusion: Learning to Fuse LLMs and Transformer Classifiers for Robust Text Classification¶
2025/12/12 05:01 GTM
LabelFusion is a fusion ensemble for text classification that learns to combine a traditional transformer-based classifier (e.g., RoBERTa) with one or more Large Language Models (LLMs such as OpenAI GPT, Google Gemini, or DeepSeek) to deliver accurate and cost-aware predictions across multi-class and multi-label tasks. The package provides a simple high-level interface (AutoFusionClassifier) that trains the full pipeline end-to-end with minimal configuration, and a flexible API for advanced users. Under the hood, LabelFusion integrates vector signals from both sources by concatenating the ML backbone’s embeddings with the LLM-derived per-class scores -- obtained through structured prompt-engineering strategies -- and feeds this joint representation into a compact multi-layer perceptron (FusionMLP) that produces the final prediction. This learned fusion approach captures complementary strengths of LLM reasoning and traditional transformer-based classifiers, yielding robust performance across domains -- achieving 92.4% accuracy on AG News and 92.3% on 10-class Reuters 21578 topic classification -- while enabling practical trade-offs between accuracy, latency, and cost.
3.102The FACTS Leaderboard: A Comprehensive Benchmark for Large Language Model Factuality¶
2025/12/12 05:01 GTM
We introduce The FACTS Leaderboard, an online leaderboard suite and associated set of benchmarks that comprehensively evaluates the ability of language models to generate factually accurate text across diverse scenarios. The suite provides a holistic measure of factuality by aggregating the performance of models on four distinct sub-leaderboards: (1) FACTS Multimodal, which measures the factuality of responses to image-based questions; (2) FACTS Parametric, which assesses models’ world knowledge by answering closed-book factoid questions from internal parameters; (3) FACTS Search, which evaluates factuality in information-seeking scenarios, where the model must use a search API; and (4) FACTS Grounding (v2), which evaluates whether long-form responses are grounded in provided documents, featuring significantly improved judge models. Each sub-leaderboard employs automated judge models to score model responses, and the final suite score is an average of the four components, designed to provide a robust and balanced assessment of a model’s overall factuality. The FACTS Leaderboard Suite will be actively maintained, containing both public and private splits to allow for external participation while guarding its integrity. It can be found at https://
3.103Replace, Don’t Expand: Mitigating Context Dilution in Multi-Hop RAG via Fixed-Budget Evidence Assembly¶
2025/12/12 05:01 GTM
Retrieval-Augmented Generation (RAG) systems often fail on multi-hop queries when the initial retrieval misses a bridge fact. Prior corrective approaches, such as Self-RAG, CRAG, and Adaptive-, typically address this by \textit{adding} more context or pruning existing lists. However, simply expanding the context window often leads to \textbf{context dilution}, where distractors crowd out relevant information. We propose \textbf{SEAL-RAG}, a training-free controller that adopts a \textbf{``replace, don’t expand’'} strategy to fight context dilution under a fixed retrieval depth . SEAL executes a (\textbf{S}earch \textbf{E}xtract \textbf{A}ssess \textbf{L}oop) cycle: it performs on-the-fly, entity-anchored extraction to build a live \textit{gap specification} (missing entities/relations), triggers targeted micro-queries, and uses \textit{entity-first ranking} to actively swap out distractors for gap-closing evidence. We evaluate SEAL-RAG against faithful re-implementations of Basic RAG, CRAG, Self-RAG, and Adaptive- in a shared environment on \textbf{HotpotQA} and \textbf{2WikiMultiHopQA}. On HotpotQA (), SEAL improves answer correctness by \textbf{+3--13 pp} and evidence precision by \textbf{+12--18 pp} over Self-RAG. On 2WikiMultiHopQA (), it outperforms Adaptive- by \textbf{+8.0 pp} in accuracy and maintains \textbf{96%} evidence precision compared to 22% for CRAG. These gains are statistically significant (). By enforcing fixed- replacement, SEAL yields a predictable cost profile while ensuring the top- slots are optimized for precision rather than mere breadth. We release our code and data at https://
3.104Script Gap: Evaluating LLM Triage on Indian Languages in Native vs Roman Scripts in a Real World Setting¶
2025/12/12 05:01 GTM
Large Language Models (LLMs) are increasingly deployed in high-stakes clinical applications in India. In many such settings, speakers of Indian languages frequently communicate using romanized text rather than native scripts, yet existing research rarely evaluates this orthographic variation using real-world data. We investigate how romanization impacts the reliability of LLMs in a critical domain: maternal and newborn healthcare triage. We benchmark leading LLMs on a real-world dataset of user-generated queries spanning five Indian languages and Nepali. Our results reveal consistent degradation in performance for romanized messages, with F1 scores trailing those of native scripts by 5-12 points. At our partner maternal health organization in India, this gap could cause nearly 2 million excess errors in triage. Crucially, this performance gap by scripts is not due to a failure in clinical reasoning. We demonstrate that LLMs often correctly infer the semantic intent of romanized queries. Nevertheless, their final classification outputs remain brittle in the presence of orthographic noise in romanized inputs. Our findings highlight a critical safety blind spot in LLM-based health systems: models that appear to understand romanized input may still fail to act on it reliably.
3.105Grow Up and Merge: Scaling Strategies for Efficient Language Adaptation¶
2025/12/12 05:01 GTM
Achieving high-performing language models which include medium- and lower-resource languages remains a challenge. Massively multilingual models still underperform compared to language-specific adaptations, especially at smaller model scales. In this work, we investigate scaling as an efficient strategy for adapting pretrained models to new target languages. Through comprehensive scaling ablations with approximately FLOP-matched models, we test whether upscaling an English base model enables more effective and resource-efficient adaptation than standard continued pretraining. We find that, once exposed to sufficient target-language data, larger upscaled models can match or surpass the performance of smaller models continually pretrained on much more data, demonstrating the benefits of scaling for data efficiency. Scaling also helps preserve the base model’s capabilities in English, thus reducing catastrophic forgetting. Finally, we explore whether such scaled, language-specific models can be merged to construct modular and flexible multilingual systems. We find that while merging remains less effective than joint multilingual training, upscaled merges perform better than smaller ones. We observe large performance differences across merging methods, suggesting potential for improvement through merging approaches specialized for language-level integration.
3.106OPV: Outcome-based Process Verifier for Efficient Long Chain-of-Thought Verification¶
2025/12/12 05:01 GTM
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the Outcome-based Process Verifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV’s superior performance and broad applicability. It achieves new state-of-the-art results on our held-out OPV-Bench, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2% to 73.3% on AIME2025 as the compute budget scales.
3.107TRIDENT: A Redundant Architecture for Caribbean-Accented Emergency Speech Triage¶
2025/12/12 05:01 GTM
Emergency speech recognition systems exhibit systematic performance degradation on non-standard English varieties, creating a critical gap in services for Caribbean populations. We present TRIDENT (Transcription and Routing Intelligence for Dispatcher-Empowered National Triage), a three-layer dispatcher-support architecture designed to structure emergency call inputs for human application of established triage protocols (the ESI for routine operations and START for mass casualty events), even when automatic speech recognition fails. The system combines Caribbean-accent-tuned ASR, local entity extraction via large language models, and bio-acoustic distress detection to provide dispatchers with three complementary signals: transcription confidence, structured clinical entities, and vocal stress indicators. Our key insight is that low ASR confidence, rather than representing system failure, serves as a valuable queue prioritization signal -- particularly when combined with elevated vocal distress markers indicating a caller in crisis whose speech may have shifted toward basilectal registers. A complementary insight drives the entity extraction layer: trained responders and composed bystanders may report life-threatening emergencies without elevated vocal stress, requiring semantic analysis to capture clinical indicators that paralinguistic features miss. We describe the architectural design, theoretical grounding in psycholinguistic research on stress-induced code-switching, and deployment considerations for offline operation during disaster scenarios. This work establishes a framework for accent-resilient emergency AI that ensures Caribbean voices receive equitable access to established national triage protocols. Empirical validation on Caribbean emergency calls remains future work.
3.108Long-horizon Reasoning Agent for Olympiad-Level Mathematical Problem Solving¶
2025/12/12 05:01 GTM
Large language models (LLMs) have achieved significant progress in solving complex reasoning tasks by Reinforcement Learning with Verifiable Rewards (RLVR). This advancement is also inseparable from the oversight automated by reliable verifiers. However, current outcome-based verifiers (OVs) are unable to inspect the unreliable intermediate steps in the long reasoning chains of thought (CoTs). Meanwhile, current process-based verifiers (PVs) have difficulties in reliably detecting errors in the complex long CoTs, limited by the scarcity of high-quality annotations due to the prohibitive costs of human annotations. Therefore, we propose the \textbf{O}utcome-based \textbf{P}rocess \textbf{V}erifier (OPV), which verifies the rationale process of summarized outcomes from long CoTs to achieve both accurate and efficient verification and enable large-scale annotation. To empower the proposed verifier, we adopt an iterative active learning framework with expert annotations to progressively improve the verification capability of OPV with fewer annotation costs. Specifically, in each iteration, the most uncertain cases of the current best OPV are annotated and then subsequently used to train a new OPV through Rejection Fine-Tuning (RFT) and RLVR for the next round. Extensive experiments demonstrate OPV’s superior performance and broad applicability. It achieves new state-of-the-art results on our held-out \textsc{\thisbench}, outperforming much larger open-source models such as Qwen3-Max-Preview with an F1 score of 83.1 compared to 76.3. Furthermore, OPV effectively detects false positives within synthetic dataset, closely align with expert assessment. When collaborating with policy models, OPV consistently yields performance gains, e.g., raising the accuracy of DeepSeek-R1-Distill-Qwen-32B from 55.2% to 73.3% on AIME2025 as the compute budget scales.
3.109Textual Data Bias Detection and Mitigation - An Extensible Pipeline with Experimental Evaluation¶
2025/12/12 05:01 GTM
Textual data used to train large language models (LLMs) exhibits multifaceted bias manifestations encompassing harmful language and skewed demographic distributions. Regulations such as the European AI Act require identifying and mitigating biases against protected groups in data, with the ultimate goal of preventing unfair model outputs. However, practical guidance and operationalization are lacking. We propose a comprehensive data bias detection and mitigation pipeline comprising four components that address two data bias types, namely representation bias and (explicit) stereotypes for a configurable sensitive attribute. First, we leverage LLM-generated word lists created based on quality criteria to detect relevant group labels. Second, representation bias is quantified using the Demographic Representation Score. Third, we detect and mitigate stereotypes using sociolinguistically informed filtering. Finally, we compensate representation bias through Grammar- and Context-Aware Counterfactual Data Augmentation. We conduct a two-fold evaluation using the examples of gender, religion and age. First, the effectiveness of each individual component on data debiasing is evaluated through human validation and baseline comparison. The findings demonstrate that we successfully reduce representation bias and (explicit) stereotypes in a text dataset. Second, the effect of data debiasing on model bias reduction is evaluated by bias benchmarking of several models (0.6B-8B parameters), fine-tuned on the debiased text dataset. This evaluation reveals that LLMs fine-tuned on debiased data do not consistently show improved performance on bias benchmarks, exposing critical gaps in current evaluation methodologies and highlighting the need for targeted data manipulation to address manifested model bias.
3.110Remember Me, Refine Me: A Dynamic Procedural Memory Framework for Experience-Driven Agent Evolution¶
2025/12/12 05:01 GTM
Procedural memory enables large language model (LLM) agents to internalize “how-to” knowledge, theoretically reducing redundant trial-and-error. However, existing frameworks predominantly suffer from a “passive accumulation” paradigm, treating memory as a static append-only archive. To bridge the gap between static storage and dynamic reasoning, we propose (), a comprehensive framework for experience-driven agent evolution. ReMe innovates across the memory lifecycle via three mechanisms: 1) , which extracts fine-grained experiences by recognizing success patterns, analyzing failure triggers and generating comparative insights; 2) , which tailors historical insights to new contexts via scenario-aware indexing; and 3) , which autonomously adds valid memories and prunes outdated ones to maintain a compact, high-quality experience pool. Extensive experiments on BFCL-V3 and AppWorld demonstrate that ReMe establishes a new state-of-the-art in agent memory system. Crucially, we observe a significant memory-scaling effect: Qwen3-8B equipped with ReMe outperforms larger, memoryless Qwen3-14B, suggesting that self-evolving memory provides a computation-efficient pathway for lifelong learning. We release our code and the dataset to facilitate further research.
3.111From Data Scarcity to Data Care: Reimagining Language Technologies for Serbian and other Low-Resource Languages¶
2025/12/12 05:01 GTM
Large language models are commonly trained on dominant languages like English, and their representation of low resource languages typically reflects cultural and linguistic biases present in the source language materials. Using the Serbian language as a case, this study examines the structural, historical, and sociotechnical factors shaping language technology development for low resource languages in the AI age. Drawing on semi structured interviews with ten scholars and practitioners, including linguists, digital humanists, and AI developers, it traces challenges rooted in historical destruction of Serbian textual heritage, intensified by contemporary issues that drive reductive, engineering first approaches prioritizing functionality over linguistic nuance. These include superficial transliteration, reliance on English-trained models, data bias, and dataset curation lacking cultural specificity. To address these challenges, the study proposes Data Care, a framework grounded in CARE principles (Collective Benefit, Authority to Control, Responsibility, and Ethics), that reframes bias mitigation from a post hoc technical fix to an integral component of corpus design, annotation, and governance, and positions Data Care as a replicable model for building inclusive, sustainable, and culturally grounded language technologies in contexts where traditional LLM development reproduces existing power imbalances and cultural blind spots.
3.112AgriGPT-Omni: A Unified Speech-Vision-Text Framework for Multilingual Agricultural Intelligence¶
2025/12/12 05:01 GTM
Despite rapid advances in multimodal large language models, agricultural applications remain constrained by the lack of multilingual speech data, unified multimodal architectures, and comprehensive evaluation benchmarks. To address these challenges, we present AgriGPT-Omni, an agricultural omni-framework that integrates speech, vision, and text in a unified framework. First, we construct a scalable data synthesis and collection pipeline that converts agricultural texts and images into training data, resulting in the largest agricultural speech dataset to date, including 492K synthetic and 1.4K real speech samples across six languages. Second, based on this, we train the first agricultural omni-model via a three-stage paradigm: textual knowledge injection, progressive multimodal alignment, and GRPO-based reinforcement learning, enabling unified reasoning across languages and modalities. Third, we propose AgriBench-Omni-2K, the first tri-modal benchmark for agriculture, covering diverse speech-vision-text tasks and multilingual slices, with standardized protocols and reproducible tools. Experiments show that AgriGPT-Omni significantly outperforms general-purpose baselines on multilingual and multimodal reasoning as well as real-world speech understanding. All models, data, benchmarks, and code will be released to promote reproducible research, inclusive agricultural intelligence, and sustainable AI development for low-resource regions.
3.113RoleRMBench & RoleRM: Towards Reward Modeling for Profile-Based Role Play in Dialogue Systems¶
2025/12/12 05:01 GTM
Reward modeling has become a cornerstone of aligning large language models (LLMs) with human preferences. Yet, when extended to subjective and open-ended domains such as role play, existing reward models exhibit severe degradation, struggling to capture nuanced and persona-grounded human judgments. To address this gap, we introduce RoleRMBench, the first systematic benchmark for reward modeling in role-playing dialogue, covering seven fine-grained capabilities from narrative management to role consistency and engagement. Evaluation on RoleRMBench reveals large and consistent gaps between general-purpose reward models and human judgment, particularly in narrative and stylistic dimensions. We further propose RoleRM, a reward model trained with Continuous Implicit Preferences (CIP), which reformulates subjective evaluation as continuous consistent pairwise supervision under multiple structuring strategies. Comprehensive experiments show that RoleRM surpasses strong open- and closed-source reward models by over 24% on average, demonstrating substantial gains in narrative coherence and stylistic fidelity. Our findings highlight the importance of continuous preference representation and annotation consistency, establishing a foundation for subjective alignment in human-centered dialogue systems.
3.114Causal Reasoning Favors Encoders: On The Limits of Decoder-Only Models¶
2025/12/12 05:01 GTM
In context learning (ICL) underpins recent advances in large language models (LLMs), although its role and performance in causal reasoning remains unclear. Causal reasoning demands multihop composition and strict conjunctive control, and reliance on spurious lexical relations of the input could provide misleading results. We hypothesize that, due to their ability to project the input into a latent space, encoder and encoder decoder architectures are better suited for said multihop conjunctive reasoning versus decoder only models. To do this, we compare fine-tuned versions of all the aforementioned architectures with zero and few shot ICL in both natural language and non natural language scenarios. We find that ICL alone is insufficient for reliable causal reasoning, often overfocusing on irrelevant input features. In particular, decoder only models are noticeably brittle to distributional shifts, while finetuned encoder and encoder decoder models can generalize more robustly across our tests, including the non natural language split. Both architectures are only matched or surpassed by decoder only architectures at large scales. We conclude by noting that for cost effective, short horizon robust causal reasoning, encoder or encoder decoder architectures with targeted finetuning are preferable.
3.115XDoGE: Multilingual Data Reweighting to Enhance Language Inclusivity in LLMs¶
2025/12/12 05:01 GTM
Current large language models (LLMs) are trained on massive amounts of text data, primarily from a few dominant languages. Studies suggest that this over-reliance on high-resource languages, such as English, hampers LLM performance in mid- and low-resource languages. To mitigate this problem, we propose to (i) optimize the language distribution by training a small proxy model within a domain-reweighing DoGE algorithm that we extend to XDoGE for a multilingual setup, and (ii) rescale the data and train a full-size model with the established language weights either from scratch or within a continual pre-training phase (CPT). We target six languages possessing a variety of geographic and intra- and inter-language-family relations, namely, English and Spanish (high-resource), Portuguese and Catalan (mid-resource), Galician and Basque (low-resource). We experiment with Salamandra-2b, which is a promising model for these languages. We investigate the effects of substantial data repetition on minor languages and under-sampling on dominant languages using the IberoBench framework for quantitative evaluation. Finally, we release a new promising IberianLLM-7B-Instruct model centering on Iberian languages and English that we pretrained from scratch and further improved using CPT with the XDoGE weights.
3.116Grammaticality Judgments in Humans and Language Models: Revisiting Generative Grammar with LLMs¶
2025/12/12 05:01 GTM
What counts as evidence for syntactic structure? In traditional generative grammar, systematic contrasts in grammaticality such as subject-auxiliary inversion and the licensing of parasitic gaps are taken as evidence for an internal, hierarchical grammar. In this paper, we test whether large language models (LLMs), trained only on surface forms, reproduce these contrasts in ways that imply an underlying structural representation. We focus on two classic constructions: subject-auxiliary inversion (testing recognition of the subject boundary) and parasitic gap licensing (testing abstract dependency structure). We evaluate models including GPT-4 and LLaMA-3 using prompts eliciting acceptability ratings. Results show that LLMs reliably distinguish between grammatical and ungrammatical variants in both constructions, and as such support that they are sensitive to structure and not just linear order. Structural generalizations, distinct from cognitive knowledge, emerge from predictive training on surface forms, suggesting functional sensitivity to syntax without explicit encoding.
3.117When Reject Turns into Accept: Quantifying the Vulnerability of LLM-Based Scientific Reviewers to Indirect Prompt Injection¶
2025/12/12 05:01 GTM
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the “Lazy Reviewer” hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford’s Agents4Science. This study investigates the robustness of these “LLM-as-a-Judge” systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping “Reject” decisions to “Accept,” for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like “Maximum Mark Magyk” successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
3.118Decoding Student Minds: Leveraging Conversational Agents for Psychological and Learning Analysis¶
2025/12/12 05:01 GTM
This paper presents a psychologically-aware conversational agent designed to enhance both learning performance and emotional well-being in educational settings. The system combines Large Language Models (LLMs), a knowledge graph-enhanced BERT (KG-BERT), and a bidirectional Long Short-Term Memory (LSTM) with attention to classify students’ cognitive and affective states in real time. Unlike prior chatbots limited to either tutoring or affective support, our approach leverages multimodal data-including textual semantics, prosodic speech features, and temporal behavioral trends-to infer engagement, stress, and conceptual understanding. A pilot study with university students demonstrated improved motivation, reduced stress, and moderate academic gains compared to baseline methods. These results underline the promise of integrating semantic reasoning, multimodal fusion, and temporal modeling to support adaptive, student-centered educational interventions.
3.119Enhancing Next-Generation Language Models with Knowledge Graphs: Extending Claude, Mistral IA, and GPT-4 via KG-BERT¶
2025/12/12 05:01 GTM
Large language models (LLMs) like Claude, Mistral IA, and GPT-4 excel in NLP but lack structured knowledge, leading to factual inconsistencies. We address this by integrating Knowledge Graphs (KGs) via KG-BERT to enhance grounding and reasoning. Experiments show significant gains in knowledge-intensive tasks such as question answering and entity linking. This approach improves factual reliability and enables more context-aware next-generation LLMs.
3.120Semantic Reconstruction of Adversarial Plagiarism: A Context-Aware Framework for Detecting and Restoring “Tortured Phrases” in Scientific Literature¶
2025/12/12 05:01 GTM
The integrity and reliability of scientific literature is facing a serious threat by adversarial text generation techniques, specifically from the use of automated paraphrasing tools to mask plagiarism. These tools generate “tortured phrases”, statistically improbable synonyms (e.g. “counterfeit consciousness” for “artificial intelligence”), that preserve the local grammar while obscuring the original source. Most existing detection methods depend heavily on static blocklists or general-domain language models, which suffer from high false-negative rates for novel obfuscations and cannot determine the source of the plagiarized content. In this paper, we propose Semantic Reconstruction of Adversarial Plagiarism (SRAP), a framework designed not only to detect these anomalies but to mathematically recover the original terminology. We use a two-stage architecture: (1) statistical anomaly detection with a domain-specific masked language model (SciBERT) using token-level pseudo-perplexity, and (2) source-based semantic reconstruction using dense vector retrieval (FAISS) and sentence-level alignment (SBERT). Experiments on a parallel corpus of adversarial scientific text show that while zero-shot baselines fail completely (0.00 percent restoration accuracy), our retrieval-augmented approach achieves 23.67 percent restoration accuracy, significantly outperforming baseline methods. We also show that static decision boundaries are necessary for robust detection in jargon-heavy scientific text, since dynamic thresholding fails under high variance. SRAP enables forensic analysis by linking obfuscated expressions back to their most probable source documents.
3.121T-pro 2.0: An Efficient Russian Hybrid-Reasoning Model and Playground¶
2025/12/12 05:01 GTM
We introduce T-pro 2.0, an open-weight Russian LLM for hybrid reasoning and efficient inference. The model supports direct answering and reasoning-trace generation, using a Cyrillic-dense tokenizer and an adapted EAGLE speculative-decoding pipeline to reduce latency. To enable reproducible and extensible research, we release the model weights, the T-Wix 500k instruction corpus, the T-Math reasoning benchmark, and the EAGLE weights on Hugging Face. These resources allow users to study Russian-language reasoning and to extend or adapt both the model and the inference pipeline. A public web demo exposes reasoning and non-reasoning modes and illustrates the speedups achieved by our inference stack across domains. T-pro 2.0 thus serves as an accessible open system for building and evaluating efficient, practical Russian LLM applications.
3.122Cooperative Retrieval-Augmented Generation for Question Answering: Mutual Information Exchange and Ranking by Contrasting Layers¶
2025/12/12 05:01 GTM
Since large language models (LLMs) have a tendency to generate factually inaccurate output, retrieval-augmented generation (RAG) has gained significant attention as a key means to mitigate this downside of harnessing only LLMs. However, existing RAG methods for simple and multi-hop question answering (QA) are still prone to incorrect retrievals and hallucinations. To address these limitations, we propose CoopRAG, a novel RAG framework for the question answering task in which a retriever and an LLM work cooperatively with each other by exchanging informative knowledge, and the earlier and later layers of the retriever model work cooperatively with each other to accurately rank the retrieved documents relevant to a given query. In this framework, we (i) unroll a question into sub-questions and a reasoning chain in which uncertain positions are masked, (ii) retrieve the documents relevant to the question augmented with the sub-questions and the reasoning chain, (iii) rerank the documents by contrasting layers of the retriever, and (iv) reconstruct the reasoning chain by filling the masked positions via the LLM. Our experiments demonstrate that CoopRAG consistently outperforms state-of-the-art QA methods on three multi-hop QA datasets as well as a simple QA dataset in terms of both the retrieval and QA performances. Our code is available.\footnote{https://
3.123Sliding Window Attention Adaptation¶
2025/12/12 05:01 GTM
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving “sink” tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios. Our code is available at https://
3.124BRACE: A Benchmark for Robust Audio Caption Quality Evaluation¶
2025/12/12 05:01 GTM
Automatic audio captioning is essential for audio understanding, enabling applications such as accessibility and content indexing. However, evaluating the quality of audio captions remains a major challenge, especially in reference-free settings where high-quality ground-truth captions are unavailable. While CLAPScore is currently the most widely used reference-free Audio Caption Evaluation Metric(ACEM), its robustness under diverse conditions has not been systematically validated. To address this gap, we introduce BRACE, a new benchmark designed to evaluate audio caption alignment quality in a reference-free setting. BRACE is primarily designed for assessing ACEMs, and can also be extended to measure the modality alignment abilities of Large Audio Language Model(LALM). BRACE consists of two sub-benchmarks: BRACE-Main for fine-grained caption comparison and BRACE-Hallucination for detecting subtle hallucinated content. We construct these datasets through high-quality filtering, LLM-based corruption, and human annotation. Given the widespread adoption of CLAPScore as a reference-free ACEM and the increasing application of LALMs in audio-language tasks, we evaluate both approaches using the BRACE benchmark, testing CLAPScore across various CLAP model variants and assessing multiple LALMs. Notably, even the best-performing CLAP-based ACEM achieves only a 70.01 F1-score on the BRACE-Main benchmark, while the best LALM reaches just 63.19. By revealing the limitations of CLAP models and LALMs, our BRACE benchmark offers valuable insights into the direction of future research.
3.125Confucius Code Agent: An Open-sourced AI Software Engineer at Industrial Scale¶
2025/12/12 05:01 GTM
Real-world AI software engineering demands coding agents that can reason over massive repositories, maintain durable memory across and within long sessions, and robustly coordinate complex toolchains at test time. Existing open-source coding agents provide transparency but frequently fall short when pushed to these industrial-scale workloads, while proprietary coding agents offer strong practical performance but limited extensibility, interpretability, and controllability. We present the Confucius Code Agent (CCA), an open-sourced AI software engineer that can operate at an industrial scale. CCA is built atop the Confucius SDK, an open-sourced agent development platform designed around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK introduces a unified orchestrator with hierarchical working memory for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension module for robust tool use. Moreover, a meta-agent automates the synthesis, evaluation, and refinement of agent configurations through a build-test-improve loop, enabling rapid agent development on new tasks, environments, and tool stacks. Instantiated on Confucius SDK with these mechanisms, CCA delivers strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a state-of-the-art Resolve@1 performance of 54.3%, substantially improving over prior coding agents. Together, the Confucius SDK and CCA provide a transparent, extensible, and reproducible foundation for AI agents, bridge gaps between research prototypes and production-grade systems, and support agent development and deployment at industrial scale.
3.126GPG: Generalized Policy Gradient Theorem for Transformer-based Policies¶
2025/12/12 05:01 GTM
We present the Generalized Policy Gradient (GPG) Theorem, specifically designed for Transformer-based policies. Notably, we demonstrate that both standard Policy Gradient Theorem and GRPO emerge as special cases within our GPG framework. Furthermore, we explore its practical applications in training Large Language Models (LLMs), offering new insights into efficient policy optimization.
3.127Multilingual VLM Training: Adapting an English-Trained VLM to French¶
2025/12/12 05:01 GTM
Artificial intelligence has made great progress in recent years, particularly in the development of Vision--Language Models (VLMs) that understand both visual and textual data. However, these advancements remain largely limited to English, reducing their accessibility for non--English speakers. It is essential to extend these capabilities to a broader range of languages. This paper explores the challenges of adapting an English-trained VLM to different languages. To this end, we will explore and compare different methods for their performance and computational cost. We consider a translation-based pipeline, LoRA finetuning, and a two-stage finetuning strategy that separates vision adaptation from language adaptation. To evaluate these methods, we use a combination of standard multimodal benchmarks translated into the target language and manual assessments by native experts. The results reveal that dataset translation remains a major bottleneck in multilingual VLM performance, with data quality limiting the effectiveness of training and evaluation. These findings suggest that future efforts should focus on native-language dataset collection and improved translation strategies.
3.128MotionEdit: Benchmarking and Learning Motion-Centric Image Editing¶
2025/12/12 05:01 GTM
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness.
3.129AutoMedic: An Automated Evaluation Framework for Clinical Conversational Agents with Medical Dataset Grounding¶
2025/12/12 05:01 GTM
Evaluating large language models (LLMs) has recently emerged as a critical issue for safe and trustworthy application of LLMs in the medical domain. Although a variety of static medical question-answering (QA) benchmarks have been proposed, many aspects remain underexplored, such as the effectiveness of LLMs in generating responses in dynamic, interactive clinical multi-turn conversation situations and the identification of multi-faceted evaluation strategies beyond simple accuracy. However, formally evaluating a dynamic, interactive clinical situation is hindered by its vast combinatorial space of possible patient states and interaction trajectories, making it difficult to standardize and quantitatively measure such scenarios. Here, we introduce AutoMedic, a multi-agent simulation framework that enables automated evaluation of LLMs as clinical conversational agents. AutoMedic transforms off-the-shelf static QA datasets into virtual patient profiles, enabling realistic and clinically grounded multi-turn clinical dialogues between LLM agents. The performance of various clinical conversational agents is then assessed based on our CARE metric, which provides a multi-faceted evaluation standard of clinical conversational accuracy, efficiency/strategy, empathy, and robustness. Our findings, validated by human experts, demonstrate the validity of AutoMedic as an automated evaluation framework for clinical conversational agents, offering practical guidelines for the effective development of LLMs in conversational medical applications.
3.130Watermarks for Language Models via Probabilistic Automata¶
2025/12/12 05:01 GTM
A recent watermarking scheme for language models achieves distortion-free embedding and robustness to edit-distance attacks. However, it suffers from limited generation diversity and high detection overhead. In parallel, recent research has focused on undetectability, a property ensuring that watermarks remain difficult for adversaries to detect and spoof. In this work, we introduce a new class of watermarking schemes constructed through probabilistic automata. We present two instantiations: (i) a practical scheme with exponential generation diversity and computational efficiency, and (ii) a theoretical construction with formal undetectability guarantees under cryptographic assumptions. Extensive experiments on LLaMA-3B and Mistral-7B validate the superior performance of our scheme in terms of robustness and efficiency.
3.131CIEGAD: Cluster-Conditioned Interpolative and Extrapolative Framework for Geometry-Aware and Domain-Aligned Data Augmentation¶
2025/12/12 05:01 GTM
In practical deep learning deployment, the scarcity of data and the imbalance of label distributions often lead to semantically uncovered regions within the real-world data distribution, hindering model training and causing misclassification near class boundaries as well as unstable behaviors in peripheral areas. Although recent large language models (LLMs) show promise for data augmentation, an integrated framework that simultaneously achieves directional control of generation, domain alignment, and quality control has not yet been fully established. To address these challenges, we propose a Cluster-conditioned Interpolative and Extrapolative framework for Geometry-Aware and Domain-aligned data augmentation (CIEGAD), which systematically complements both in-distribution and out-of-distribution semantically uncovered regions. CIEGAD constructs domain profiles through cluster conditioning, allocates generation with a hierarchical frequency-geometric allocation integrating class frequency and geometric indicators, and finely controls generation directions via the coexistence of interpolative and extrapolative synthesis. It further performs quality control through geometry-constrained filtering combined with an LLM-as-a-Judge mechanism. Experiments on multiple classification tasks demonstrate that CIEGAD effectively extends the periphery of real-world data distributions while maintaining high alignment between generated and real-world data as well as semantic diversity. In particular, for long-tailed and multi-class classification tasks, CIEGAD consistently improves F1 and recall, validating the triple harmony of distributional consistency, diversity, and quality. These results indicate that CIEGAD serves as a practically oriented data augmentation framework that complements underrepresented regions while preserving alignment with real-world data.
3.132Offscript: Automated Auditing of Instruction Adherence in LLMs¶
2025/12/12 05:01 GTM
Large Language Models (LLMs) and generative search systems are increasingly used for information seeking by diverse populations with varying preferences for knowledge sourcing and presentation. While users can customize LLM behavior through custom instructions and behavioral prompts, no mechanism exists to evaluate whether these instructions are being followed effectively. We present Offscript, an automated auditing tool that efficiently identifies potential instruction following failures in LLMs. In a pilot study analyzing custom instructions sourced from Reddit, Offscript detected potential deviations from instructed behavior in 86.4% of conversations, 22.2% of which were confirmed as material violations through human review. Our findings suggest that automated auditing serves as a viable approach for evaluating compliance to behavioral instructions related to information seeking.
3.133Unforgotten Safety: Preserving Safety Alignment of Large Language Models with Continual Learning¶
2025/12/12 05:01 GTM
The safety alignment of large language models (LLMs) is becoming increasingly important with their democratization. In this paper, we study the safety degradation that comes with adapting LLMs to new tasks. We attribute this safety compromise to catastrophic forgetting and frame the problem of preserving safety when fine-tuning as a continual learning (CL) problem. We consider the fine-tuning-as-a-service setup where the user uploads their data to a service provider to get a customized model that excels on the user’s selected task. We adapt several CL approaches from the literature and systematically evaluate their ability to mitigate safety degradation. These include regularization-based, memory-based, and model merging approaches. We consider two scenarios, (1) benign user data and (2) poisoned user data. Our results demonstrate that CL approaches consistently achieve lower attack success rates than standard fine-tuning. Among these, DER outperforms both other CL methods and existing safety-preserving baselines while maintaining task utility. These findings generalize across three downstream tasks (GSM8K, SST2, Code) and three model families (LLaMA2-7B, Mistral-7B, Gemma-2B), establishing CL as a practical solution to preserve safety.
3.134PARAN: Persona-Augmented Review ANswering system on Food Delivery Review Dataset¶
2025/12/12 05:01 GTM
Personalized review response generation presents a significant challenge in domains where user information is limited, such as food delivery platforms. While large language models (LLMs) offer powerful text generation capabilities, they often produce generic responses when lacking contextual user data, reducing engagement and effectiveness. In this work, we propose a two-stage prompting framework that infers both explicit (e.g., user-stated preferences) and implicit (e.g., demographic or stylistic cues) personas directly from short review texts. These inferred persona attributes are then incorporated into the response generation prompt to produce user-tailored replies. To encourage diverse yet faithful generations, we adjust decoding temperature during inference. We evaluate our method using a real-world dataset collected from a Korean food delivery app, and assess its impact on precision, diversity, and semantic consistency. Our findings highlight the effectiveness of persona-augmented prompting in enhancing the relevance and personalization of automated responses without requiring model fine-tuning.
3.135Workflow is All You Need: Escaping the “Statistical Smoothing Trap” via High-Entropy Information Foraging and Adversarial Pacing¶
2025/12/12 05:01 GTM
Central to long-form text generation in vertical domains is the “impossible trinity” confronting current large language models (LLMs): the simultaneous achievement of low hallucination, deep logical coherence, and personalized expression. This study establishes that this bottleneck arises from existing generative paradigms succumbing to the Statistical Smoothing Trap, a phenomenon that overlooks the high-entropy information acquisition and structured cognitive processes integral to expert-level writing. To address this limitation, we propose the DeepNews Framework, an agentic workflow that explicitly models the implicit cognitive processes of seasoned financial journalists. The framework integrates three core modules: first, a dual-granularity retrieval mechanism grounded in information foraging theory, which enforces a 10:1 saturated information input ratio to mitigate hallucinatory outputs; second, schema-guided strategic planning, a process leveraging domain expert knowledge bases (narrative schemas) and Atomic Blocks to forge a robust logical skeleton; third, adversarial constraint prompting, a technique deploying tactics including Rhythm Break and Logic Fog to disrupt the probabilistic smoothness inherent in model-generated text. Experiments delineate a salient Knowledge Cliff in deep financial reporting: content truthfulness collapses when retrieved context falls below 15,000 characters, while a high-redundancy input exceeding 30,000 characters stabilizes the Hallucination-Free Rate (HFR) above 85%. In an ecological validity blind test conducted with a top-tier Chinese technology media outlet, the DeepNews system--built on a previous-generation model (DeepSeek-V3-0324)-achieved a 25% submission acceptance rate, significantly outperforming the 0% acceptance rate of zero-shot generation by a state-of-the-art (SOTA) model (GPT-5).
3.136Generate-Then-Validate: A Novel Question Generation Approach Using Small Language Models¶
2025/12/12 05:01 GTM
We explore the use of small language models (SLMs) for automatic question generation as a complement to the prevalent use of their large counterparts in learning analytics research. We present a novel question generation pipeline that leverages both the text generation and the probabilistic reasoning abilities of SLMs to generate high-quality questions. Adopting a “generate-then-validate” strategy, our pipeline first performs expansive generation to create an abundance of candidate questions and refine them through selective validation based on novel probabilistic reasoning. We conducted two evaluation studies, one with seven human experts and the other with a large language model (LLM), to assess the quality of the generated questions. Most judges (humans or LLMs) agreed that the generated questions had clear answers and generally aligned well with the intended learning objectives. Our findings suggest that an SLM can effectively generate high-quality questions when guided by a well-designed pipeline that leverages its strengths.
3.137What Kind of Reasoning (if any) is an LLM actually doing? On the Stochastic Nature and Abductive Appearance of Large Language Models¶
2025/12/12 05:01 GTM
This article looks at how reasoning works in current Large Language Models (LLMs) that function using the token-completion method. It examines their stochastic nature and their similarity to human abductive reasoning. The argument is that these LLMs create text based on learned patterns rather than performing actual abductive reasoning. When their output seems abductive, this is largely because they are trained on human-generated texts that include reasoning structures. Examples are used to show how LLMs can produce plausible ideas, mimic commonsense reasoning, and give explanatory answers without being grounded in truth, semantics, verification, or understanding, and without performing any real abductive reasoning. This dual nature, where the models have a stochastic base but appear abductive in use, has important consequences for how LLMs are evaluated and applied. They can assist with generating ideas and supporting human thinking, but their outputs must be critically assessed because they cannot identify truth or verify their explanations. The article concludes by addressing five objections to these points, noting some limitations in the analysis, and offering an overall evaluation.
3.138Parallel Decoder Transformer: Model-Internal Parallel Decoding with Speculative Invariance via Note Conditioning¶
2025/12/12 05:01 GTM
Autoregressive decoding in Large Language Models (LLMs) is inherently sequential, creating a latency bottleneck that scales linearly with output length. While Decomposition-and-Fill'' methods like Skeleton-of-Thought attempt to parallelize generation via external orchestration, they suffer from \textit{coherence drift} due to the lack of cross-stream communication. In this work, we introduce the \textbf{Parallel Decoder Transformer (PDT)}, a parameter-efficient architecture that embeds coordination primitives directly into the inference process of a frozen pre-trained model. Instead of retraining the base model, PDT injects lightweight \textit{Speculative Note Conditioning (SNC)} adapters that allow parallel decoding streams to synchronize via a shared, dynamic latent space. We formulate coordination as a \textit{speculative consensus} problem, where sibling streams broadcast semantic notes’’ to a global bus, gated by a learned verification head. We validate our approach on a 50,000-step curriculum using a frozen 20B-parameter backbone. Our results demonstrate that PDT achieves effective self-correction, reaching \textbf{77.8% precision} in coverage prediction and recovering approximate serial semantics without modifying the trunk weights. This establishes PDT as a scalable, efficient alternative to full model fine-tuning for structured parallel generation.
3.139Diffusion Is Your Friend in Show, Suggest and Tell¶
2025/12/12 05:01 GTM
Diffusion Denoising models demonstrated impressive results across generative Computer Vision tasks, but they still fail to outperform standard autoregressive solutions in the discrete domain, and only match them at best. In this work, we propose a different paradigm by adopting diffusion models to provide suggestions to the autoregressive generation rather than replacing them. By doing so, we combine the bidirectional and refining capabilities of the former with the strong linguistic structure provided by the latter. To showcase its effectiveness, we present Show, Suggest and Tell (SST), which achieves State-of-the-Art results on COCO, among models in a similar setting. In particular, SST achieves 125.1 CIDEr-D on the COCO dataset without Reinforcement Learning, outperforming both autoregressive and diffusion model State-of-the-Art results by 1.5 and 2.5 points. On top of the strong results, we performed extensive experiments to validate the proposal and analyze the impact of the suggestion module. Results demonstrate a positive correlation between suggestion and caption quality, overall indicating a currently underexplored but promising research direction. Code will be available at: https://
3.140Exploring LLMs for Scientific Information Extraction Using The SciEx Framework¶
2025/12/12 05:01 GTM
Large language models (LLMs) are increasingly touted as powerful tools for automating scientific information extraction. However, existing methods and tools often struggle with the realities of scientific literature: long-context documents, multi-modal content, and reconciling varied and inconsistent fine-grained information across multiple publications into standardized formats. These challenges are further compounded when the desired data schema or extraction ontology changes rapidly, making it difficult to re-architect or fine-tune existing systems. We present SciEx, a modular and composable framework that decouples key components including PDF parsing, multi-modal retrieval, extraction, and aggregation. This design streamlines on-demand data extraction while enabling extensibility and flexible integration of new models, prompting strategies, and reasoning mechanisms. We evaluate SciEx on datasets spanning three scientific topics for its ability to extract fine-grained information accurately and consistently. Our findings provide practical insights into both the strengths and limitations of current LLM-based pipelines.
3.141BAMBO: Construct Ability and Efficiency LLM Pareto Set via Bayesian Adaptive Multi-objective Block-wise Optimization¶
2025/12/12 05:01 GTM
Constructing a Pareto set is pivotal for navigating the capability-efficiency trade-offs in Large Language Models (LLMs); however, existing merging techniques remain inadequate for this task. Coarse-grained, model-level methods yield only a sparse set of suboptimal solutions, while fine-grained, layer-wise approaches suffer from the “curse of dimensionality,” rendering the search space computationally intractable. To resolve this dichotomy, we propose BAMBO (Bayesian Adaptive Multi-objective Block-wise Optimization), a novel framework that automatically constructs the LLM Pareto set. BAMBO renders the search tractable by introducing a Hybrid Optimal Block Partitioning strategy. Formulated as a 1D clustering problem, this strategy leverages a dynamic programming approach to optimally balance intra-block homogeneity and inter-block information distribution, thereby dramatically reducing dimensionality without sacrificing critical granularity. The entire process is automated within an evolutionary loop driven by the q-Expected Hypervolume Improvement (qEHVI) acquisition function. Experiments demonstrate that BAMBO discovers a superior and more comprehensive Pareto frontier than baselines, enabling agile model selection tailored to diverse operational constraints. Code is available at: https://
3.142Planning, Living and Judging: A Multi-agent LLM-based Framework for Cyclical Urban Planning¶
2025/12/12 05:01 GTM
Urban regeneration presents significant challenges within the context of urbanization, requiring adaptive approaches to tackle evolving needs. Leveraging advancements in large language models (LLMs), we propose Cyclical Urban Planning (CUP), a new paradigm that continuously generates, evaluates, and refines urban plans in a closed-loop. Specifically, our multi-agent LLM-based framework consists of three key components: (1) Planning, where LLM agents generate and refine urban plans based on contextual data; (2) Living, where agents simulate the behaviors and interactions of residents, modeling life in the urban environment; and (3) Judging, which involves evaluating plan effectiveness and providing iterative feedback for improvement. The cyclical process enables a dynamic and responsive planning approach. Experiments on the real-world dataset demonstrate the effectiveness of our framework as a continuous and adaptive planning process.
3.143ImplicitRDP: An End-to-End Visual-Force Diffusion Policy with Structural Slow-Fast Learning¶
2025/12/12 05:01 GTM
Human-level contact-rich manipulation relies on the distinct roles of two key modalities: vision provides spatially rich but temporally slow global context, while force sensing captures rapid, high-frequency local contact dynamics. Integrating these signals is challenging due to their fundamental frequency and informational disparities. In this work, we propose ImplicitRDP, a unified end-to-end visual-force diffusion policy that integrates visual planning and reactive force control within a single network. We introduce Structural Slow-Fast Learning, a mechanism utilizing causal attention to simultaneously process asynchronous visual and force tokens, allowing the policy to perform closed-loop adjustments at the force frequency while maintaining the temporal coherence of action chunks. Furthermore, to mitigate modality collapse where end-to-end models fail to adjust the weights across different modalities, we propose Virtual-target-based Representation Regularization. This auxiliary objective maps force feedback into the same space as the action, providing a stronger, physics-grounded learning signal than raw force prediction. Extensive experiments on contact-rich tasks demonstrate that ImplicitRDP significantly outperforms both vision-only and hierarchical baselines, achieving superior reactivity and success rates with a streamlined training pipeline. Code and videos will be publicly available at https://
3.144Decoupled Q-Chunking¶
2025/12/12 05:01 GTM
Temporal-difference (TD) methods learn state and action values efficiently by bootstrapping from their own future value predictions, but such a self-bootstrapping mechanism is prone to bootstrapping bias, where the errors in the value targets accumulate across steps and result in biased value estimates. Recent work has proposed to use chunked critics, which estimate the value of short action sequences (“chunks”) rather than individual actions, speeding up value backup. However, extracting policies from chunked critics is challenging: policies must output the entire action chunk open-loop, which can be sub-optimal for environments that require policy reactivity and also challenging to model especially when the chunk length grows. Our key insight is to decouple the chunk length of the critic from that of the policy, allowing the policy to operate over shorter action chunks. We propose a novel algorithm that achieves this by optimizing the policy against a distilled critic for partial action chunks, constructed by optimistically backing up from the original chunked critic to approximate the maximum value achievable when a partial action chunk is extended to a complete one. This design retains the benefits of multi-step value propagation while sidestepping both the open-loop sub-optimality and the difficulty of learning action chunking policies for long action chunks. We evaluate our method on challenging, long-horizon offline goal-conditioned tasks and show that it reliably outperforms prior methods. Code: github
3.145V-OCBF: Learning Safety Filters from Offline Data via Value-Guided Offline Control Barrier Functions¶
2025/12/12 05:01 GTM
Ensuring safety in autonomous systems requires controllers that satisfy hard, state-wise constraints without relying on online interaction. While existing Safe Offline RL methods typically enforce soft expected-cost constraints, they do not guarantee forward invariance. Conversely, Control Barrier Functions (CBFs) provide rigorous safety guarantees but usually depend on expert-designed barrier functions or full knowledge of the system dynamics. We introduce Value-Guided Offline Control Barrier Functions (V-OCBF), a framework that learns a neural CBF entirely from offline demonstrations. Unlike prior approaches, V-OCBF does not assume access to the dynamics model; instead, it derives a recursive finite-difference barrier update, enabling model-free learning of a barrier that propagates safety information over time. Moreover, V-OCBF incorporates an expectile-based objective that avoids querying the barrier on out-of-distribution actions and restricts updates to the dataset-supported action set. The learned barrier is then used with a Quadratic Program (QP) formulation to synthesize real-time safe control. Across multiple case studies, V-OCBF yields substantially fewer safety violations than baseline methods while maintaining strong task performance, highlighting its scalability for offline synthesis of safety-critical controllers without online interaction or hand-engineered barriers.
3.146AERMANI-Diffusion: Regime-Conditioned Diffusion for Dynamics Learning in Aerial Manipulators¶
2025/12/12 05:01 GTM
Aerial manipulators undergo rapid, configuration-dependent changes in inertial coupling forces and aerodynamic forces, making accurate dynamics modeling a core challenge for reliable control. Analytical models lose fidelity under these nonlinear and nonstationary effects, while standard data-driven methods such as deep neural networks and Gaussian processes cannot represent the diverse residual behaviors that arise across different operating conditions. We propose a regime-conditioned diffusion framework that models the full distribution of residual forces using a conditional diffusion process and a lightweight temporal encoder. The encoder extracts a compact summary of recent motion and configuration, enabling consistent residual predictions even through abrupt transitions or unseen payloads. When combined with an adaptive controller, the framework enables dynamics uncertainty compensation and yields markedly improved tracking accuracy in real-world tests.
3.147Distribution-Free Stochastic MPC for Joint-in-Time Chance-Constrained Linear Systems¶
2025/12/12 05:01 GTM
This work presents a stochastic model predictive control (MPC) framework for linear systems subject to joint-in-time chance constraints under unknown disturbance distributions. Unlike existing stochastic MPC formulations that rely on parametric or Gaussian assumptions or require expensive offline computations, the proposed method leverages conformal prediction (CP) as a streamlined tool to construct finite-sample confidence regions for the system’s stochastic error trajectories with minimal computational effort. These regions enable the relaxation of probabilistic constraints while providing formal guarantees. By employing an indirect feedback mechanism and a probabilistic set-based formulation, we prove recursive feasibility of the relaxed optimization problem and establish chance constraint satisfaction in closed-loop. Furthermore, we extend the approach to the more general output feedback setting with unknown measurement noise distributions. Given available noise samples, we establish satisfaction of the joint chance constraints and recursive feasibility via output measurements alone. Numerical examples demonstrate the effectiveness and advantages of the proposed method compared to existing approaches.
3.148On the Stabilization of Rigid Formations on Regular Curves¶
2025/12/12 05:01 GTM
This work deals with the problem of stabilizing a multi-agent rigid formation on a general class of planar curves. Namely, we seek to stabilize an equilateral polygonal formation on closed planar differentiable curves after a path sweep. The task of finding an inscribed regular polygon centered at the point of interest is solved via a randomized multi-start Newton-Like algorithm for which one is able to ascertain the existence of a minimizer. Then we design a continuous feedback law that guarantees convergence to, and sufficient sweeping of the curve, followed by convergence to the desired formation vertices while ensuring inter-agent avoidance. The proposed approach is validated through numerical simulations for different classes of curves and different rigid formations. Code: https://
3.149How to Brake? Ethical Emergency Braking with Deep Reinforcement Learning¶
2025/12/12 05:01 GTM
Connected and automated vehicles (CAVs) have the potential to enhance driving safety, for example by enabling safe vehicle following and more efficient traffic scheduling. For such future deployments, safety requirements should be addressed, where the primary such are avoidance of vehicle collisions and substantial mitigating of harm when collisions are unavoidable. However, conservative worst-case-based control strategies come at the price of reduced flexibility and may compromise overall performance. In light of this, we investigate how Deep Reinforcement Learning (DRL) can be leveraged to improve safety in multi-vehicle-following scenarios involving emergency braking. Specifically, we investigate how DRL with vehicle-to-vehicle communication can be used to ethically select an emergency breaking profile in scenarios where overall, or collective, three-vehicle harm reduction or collision avoidance shall be obtained instead of single-vehicle such. As an algorithm, we provide a hybrid approach that combines DRL with a previously published method based on analytical expressions for selecting optimal constant deceleration. By combining DRL with the previous method, the proposed hybrid approach increases the reliability compared to standalone DRL, while achieving superior performance in terms of overall harm reduction and collision avoidance.
3.150Evaluating Gemini Robotics Policies in a Veo World Simulator¶
2025/12/12 05:01 GTM
Generative world models hold significant potential for simulating interactions with visuomotor policies in varied environments. Frontier video models can enable generation of realistic observations and environment interactions in a scalable and general manner. However, the use of video models in robotics has been limited primarily to in-distribution evaluations, i.e., scenarios that are similar to ones used to train the policy or fine-tune the base video model. In this report, we demonstrate that video models can be used for the entire spectrum of policy evaluation use cases in robotics: from assessing nominal performance to out-of-distribution (OOD) generalization, and probing physical and semantic safety. We introduce a generative evaluation system built upon a frontier video foundation model (Veo). The system is optimized to support robot action conditioning and multi-view consistency, while integrating generative image-editing and multi-view completion to synthesize realistic variations of real-world scenes along multiple axes of generalization. We demonstrate that the system preserves the base capabilities of the video model to enable accurate simulation of scenes that have been edited to include novel interaction objects, novel visual backgrounds, and novel distractor objects. This fidelity enables accurately predicting the relative performance of different policies in both nominal and OOD conditions, determining the relative impact of different axes of generalization on policy performance, and performing red teaming of policies to expose behaviors that violate physical or semantic safety constraints. We validate these capabilities through 1600+ real-world evaluations of eight Gemini Robotics policy checkpoints and five tasks for a bimanual manipulator.
3.151LEO-RobotAgent: A General-purpose Robotic Agent for Language-driven Embodied Operator¶
2025/12/12 05:01 GTM
We propose LEO-RobotAgent, a general-purpose language-driven intelligent agent framework for robots. Under this framework, LLMs can operate different types of robots to complete unpredictable complex tasks across various scenarios. This framework features strong generalization, robustness, and efficiency. The application-level system built around it can fully enhance bidirectional human-robot intent understanding and lower the threshold for human-robot interaction. Regarding robot task planning, the vast majority of existing studies focus on the application of large models in single-task scenarios and for single robot types. These algorithms often have complex structures and lack generalizability. Thus, the proposed LEO-RobotAgent framework is designed with a streamlined structure as much as possible, enabling large models to independently think, plan, and act within this clear framework. We provide a modular and easily registrable toolset, allowing large models to flexibly call various tools to meet different requirements. Meanwhile, the framework incorporates a human-robot interaction mechanism, enabling the algorithm to collaborate with humans like a partner. Experiments have verified that this framework can be easily adapted to mainstream robot platforms including unmanned aerial vehicles (UAVs), robotic arms, and wheeled robot, and efficiently execute a variety of carefully designed tasks with different complexity levels. Our code is available at https://
3.152Motion Planning for Safe Landing of a Human-Piloted Parafoil¶
2025/12/12 05:01 GTM
Most skydiving accidents occur during the parafoil-piloting and landing stages and result from human lapses in judgment while piloting the parafoil. Training of novice pilots is protracted due to the lack of functional and easily accessible training simulators. Moreover, work on parafoil trajectory planning suitable for aiding human training remains limited. To bridge this gap, we study the problem of computing safe trajectories for human-piloted parafoil flight and examine how such trajectories fare against human-generated solutions. For the algorithmic part, we adapt the sampling-based motion planner Stable Sparse RRT (SST) by Li et al., to cope with the problem constraints while minimizing the bank angle (control effort) as a proxy for safety. We then compare the computer-generated solutions with data from human-generated parafoil flight, where the algorithm offers a relative cost improvement of 20%-80% over the performance of the human pilot. We observe that human pilots tend to, first, close the horizontal distance to the landing area, and then address the vertical gap by spiraling down to the suitable altitude for starting a landing maneuver. The algorithm considered here makes smoother and more gradual descents, arriving at the landing area at the precise altitude necessary for the final approach while maintaining safety constraints. Overall, the study demonstrates the potential of computer-generated guidelines, rather than traditional rules of thumb, which can be integrated into future simulators to train pilots for safer and more cost-effective flights.
3.153Mr. Virgil: Learning Multi-robot Visual-range Relative Localization¶
2025/12/12 05:01 GTM
Ultra-wideband (UWB)-vision fusion localization has achieved extensive applications in the domain of multi-agent relative localization. The challenging matching problem between robots and visual detection renders existing methods highly dependent on identity-encoded hardware or delicate tuning algorithms. Overconfident yet erroneous matches may bring about irreversible damage to the localization system. To address this issue, we introduce Mr. Virgil, an end-to-end learning multi-robot visual-range relative localization framework, consisting of a graph neural network for data association between UWB rangings and visual detections, and a differentiable pose graph optimization (PGO) back-end. The graph-based front-end supplies robust matching results, accurate initial position predictions, and credible uncertainty estimates, which are subsequently integrated into the PGO back-end to elevate the accuracy of the final pose estimation. Additionally, a decentralized system is implemented for real-world applications. Experiments spanning varying robot numbers, simulation and real-world, occlusion and non-occlusion conditions showcase the stability and exactitude under various scenes compared to conventional methods. Our code is available at: https://
3.154Neural Ranging Inertial Odometry¶
2025/12/12 05:01 GTM
Ultra-wideband (UWB) has shown promising potential in GPS-denied localization thanks to its lightweight and drift-free characteristics, while the accuracy is limited in real scenarios due to its sensitivity to sensor arrangement and non-Gaussian pattern induced by multi-path or multi-signal interference, which commonly occurs in many typical applications like long tunnels. We introduce a novel neural fusion framework for ranging inertial odometry which involves a graph attention UWB network and a recurrent neural inertial network. Our graph net learns scene-relevant ranging patterns and adapts to any number of anchors or tags, realizing accurate positioning without calibration. Additionally, the integration of least squares and the incorporation of nominal frame enhance overall performance and scalability. The effectiveness and robustness of our methods are validated through extensive experiments on both public and self-collected datasets, spanning indoor, outdoor, and tunnel environments. The results demonstrate the superiority of our proposed IR-ULSG in handling challenging conditions, including scenarios outside the convex envelope and cases where only a single anchor is available.
3.155Contact SLAM: An Active Tactile Exploration Policy Based on Physical Reasoning Utilized in Robotic Fine Blind Manipulation Tasks¶
2025/12/12 05:01 GTM
Contact-rich manipulation is difficult for robots to execute and requires accurate perception of the environment. In some scenarios, vision is occluded. The robot can then no longer obtain real-time scene state information through visual feedback. This is called blind manipulation". In this manuscript, a novel physically-driven contact cognition method, called Contact SLAM", is proposed. It estimates the state of the environment and achieves manipulation using only tactile sensing and prior knowledge of the scene. To maximize exploration efficiency, this manuscript also designs an active exploration policy. The policy gradually reduces uncertainties in the manipulation scene. The experimental results demonstrated the effectiveness and accuracy of the proposed method in several contact-rich tasks, including the difficult and delicate socket assembly task and block-pushing task.
3.156Seamless Outdoor-Indoor Pedestrian Positioning System with GNSS/UWB/IMU Fusion: A Comparison of EKF, FGO, and PF¶
2025/12/12 05:01 GTM
Accurate and continuous pedestrian positioning across outdoor-indoor environments remains challenging because GNSS, UWB, and inertial PDR are complementary yet individually fragile under signal blockage, multipath, and drift. This paper presents a unified GNSS/UWB/IMU fusion framework for seamless pedestrian localization and provides a controlled comparison of three probabilistic back-ends: an error-state extended Kalman filter, sliding-window factor graph optimization, and a particle filter. The system uses chest-mounted IMU-based PDR as the motion backbone and integrates absolute updates from GNSS outdoors and UWB indoors. To enhance transition robustness and mitigate urban GNSS degradation, we introduce a lightweight map-based feasibility constraint derived from OpenStreetMap building footprints, treating most building interiors as non-navigable while allowing motion inside a designated UWB-instrumented building. The framework is implemented in ROS 2 and runs in real time on a wearable platform, with visualization in Foxglove. We evaluate three scenarios: indoor (UWB+PDR), outdoor (GNSS+PDR), and seamless outdoor-indoor (GNSS+UWB+PDR). Results show that the ESKF provides the most consistent overall performance in our implementation.
3.157Symphony: A Heuristic Normalized Calibrated Advantage Actor and Critic Algorithm in application for Humanoid Robots¶
2025/12/12 05:01 GTM
In our work we not explicitly hint that it is a misconception to think that humans learn fast. Learning process takes time. Babies start learning to move in the restricted liquid area called placenta. Children often are limited by underdeveloped body. Even adults are not allowed to participate in complex competitions right away. However, with robots, when learning from scratch, we often don’t have the privilege of waiting for dozen millions of steps. “Swaddling” regularization is responsible for restraining an agent in rapid but unstable development penalizing action strength in a specific way not affecting actions directly. The Symphony, Transitional-policy Deterministic Actor and Critic algorithm, is a concise combination of different ideas for possibility of training humanoid robots from scratch with Sample Efficiency, Sample Proximity and Safety of Actions in mind. It is no secret that continuous increase in Gaussian noise without appropriate smoothing is harmful for motors and gearboxes. Compared to Stochastic algorithms, we set a limited parametric noise and promote a reduced strength of actions, safely increasing entropy, since the actions are kind of immersed in weaker noise. When actions require more extreme values, actions rise above the weak noise. Training becomes empirically much safer for both the environment around and the robot’s mechanisms. We use Fading Replay Buffer: using a fixed formula containing the hyperbolic tangent, we adjust the batch sampling probability: the memory contains a recent memory and a long-term memory trail. Fading Replay Buffer allows us to use Temporal Advantage when we improve the current Critic Network prediction compared to the exponential moving average. Temporal Advantage allows us to update Actor and Critic in one pass, as well as combine Actor and Critic in one Object and implement their Losses in one line.
3.158Design and Implementation of a High-Precision Wind-Estimation UAV with Onboard Sensors¶
2025/12/12 05:01 GTM
Accurate real-time wind vector estimation is essential for enhancing the safety, navigation accuracy, and energy efficiency of unmanned aerial vehicles (UAVs). Traditional approaches rely on external sensors or simplify vehicle dynamics, which limits their applicability during agile flight or in resource-constrained platforms. This paper proposes a real-time wind estimation method based solely on onboard sensors. The approach first estimates external aerodynamic forces using a disturbance observer (DOB), and then maps these forces to wind vectors using a thin-plate spline (TPS) model. A custom-designed wind barrel mounted on the UAV enhances aerodynamic sensitivity, further improving estimation accuracy. The system is validated through comprehensive experiments in wind tunnels, indoor and outdoor flights. Experimental results demonstrate that the proposed method achieves consistently high-accuracy wind estimation across controlled and real-world conditions, with speed RMSEs as low as \SI{0.06}{m/s} in wind tunnel tests, \SI{0.22}{m/s} during outdoor hover, and below \SI{0.38}{m/s} in indoor and outdoor dynamic flights, and direction RMSEs under \ang{7.3} across all scenarios, outperforming existing baselines. Moreover, the method provides vertical wind estimates -- unavailable in baselines -- with RMSEs below \SI{0.17}{m/s} even during fast indoor translations.
3.159RoboNeuron: A Modular Framework Linking Foundation Models and ROS for Embodied AI¶
2025/12/12 05:01 GTM
Current embodied AI systems face severe engineering impediments, primarily characterized by poor cross-scenario adaptability, rigid inter-module coupling, and fragmented inference acceleration. To overcome these limitations, we propose RoboNeuron, a universal deployment framework for embodied intelligence. RoboNeuron is the first framework to deeply integrate the cognitive capabilities of Large Language Models (LLMs) and Vision-Language-Action (VLA) models with the real-time execution backbone of the Robot Operating System (ROS). We utilize the Model Context Protocol (MCP) as a semantic bridge, enabling the LLM to dynamically orchestrate underlying robotic tools. The framework establishes a highly modular architecture that strictly decouples sensing, reasoning, and control by leveraging ROS’s unified communication interfaces. Crucially, we introduce an automated tool to translate ROS messages into callable MCP functions, significantly streamlining development. RoboNeuron significantly enhances cross-scenario adaptability and component flexibility, while establishing a systematic platform for horizontal performance benchmarking, laying a robust foundation for scalable real-world embodied applications.
3.160CLASH: Collaborative Large-Small Hierarchical Framework for Continuous Vision-and-Language Navigation¶
2025/12/12 05:01 GTM
Vision-and-Language Navigation (VLN) requires robots to follow natural language instructions and navigate complex environments without prior maps. While recent vision-language large models demonstrate strong reasoning abilities, they often underperform task-specific panoramic small models in VLN tasks. To address this, we propose CLASH (Collaborative Large-Small Hierarchy), a VLN-CE framework that integrates a reactive small-model planner (RSMP) with a reflective large-model reasoner (RLMR). RSMP adopts a causal-learning-based dual-branch architecture to enhance generalization, while RLMR leverages panoramic visual prompting with chain-of-thought reasoning to support interpretable spatial understanding and navigation. We further introduce an uncertainty-aware collaboration mechanism (UCM) that adaptively fuses decisions from both models. For obstacle avoidance, in simulation, we replace the rule-based controller with a fully learnable point-goal policy, and in real-world deployment, we design a LiDAR-based clustering module for generating navigable waypoints and pair it with an online SLAM-based local controller. CLASH achieves state-of-the-art (SoTA) results (ranking 1-st) on the VLN-CE leaderboard, significantly improving SR and SPL on the test-unseen set over the previous SoTA methods. Real-world experiments demonstrate CLASH’s strong robustness, validating its effectiveness in both simulation and deployment scenarios.
3.161Design and Validation of an Under-actuated Robotic Finger with Synchronous Tendon Routing¶
2025/12/12 05:01 GTM
Tendon-driven under-actuated robotic fingers provide advantages for dexterous manipulation through reduced actuator requirements and simplified mechanical design. However, achieving both high load capacity and adaptive compliance in a compact form remains challenging. This paper presents an under-actuated tendon-driven robotic finger (UTRF) featuring a synchronous tendon routing that mechanically couples all joints with fixed angular velocity ratios, enabling the entire finger to be actuated by a single actuator. This approach significantly reduces the number of actuators required in multi-finger hands, resulting in a lighter and more compact structure without sacrificing stiffness or compliance. The kinematic and static models of the finger are derived, incorporating tendon elasticity to predict structural stiffness. A single-finger prototype was fabricated and tested under static loading, showing an average deflection prediction error of 1.0 mm (0.322% of total finger length) and a measured stiffness of 1.2x10^3 N/m under a 3 kg tip load. Integration into a five-finger robotic hand (UTRF-RoboHand) demonstrates effective object manipulation across diverse scenarios, confirming that the proposed routing achieves predictable stiffness and reliable grasping performance with a minimal actuator count.
3.162Design of a six wheel suspension and a three-axis linear actuation mechanism for a laser weeding robot¶
2025/12/12 05:01 GTM
Mobile robots are increasingly utilized in agriculture to automate labor-intensive tasks such as weeding, sowing, harvesting and soil analysis. Recently, agricultural robots have been developed to detect and remove weeds using mechanical tools or precise herbicide sprays. Mechanical weeding is inefficient over large fields, and herbicides harm the soil ecosystem. Laser weeding with mobile robots has emerged as a sustainable alternative in precision farming. In this paper, we present an autonomous weeding robot that uses controlled exposure to a low energy laser beam for weed removal. The proposed robot is six-wheeled with a novel double four-bar suspension for higher stability. The laser is guided towards the detected weeds by a three-dimensional linear actuation mechanism. Field tests have demonstrated the robot’s capability to navigate agricultural terrains effectively by overcoming obstacles up to 15 cm in height. At an optimal speed of 42.5 cm/s, the robot achieves a weed detection rate of 86.2% and operating time of 87 seconds per meter. The laser actuation mechanism maintains a minimal mean positional error of 1.54 mm, combined with a high hit rate of 97%, ensuring effective and accurate weed removal. This combination of speed, accuracy, and efficiency highlights the robot’s potential for significantly enhancing precision farming practices.
3.163Lies We Can Trust: Quantifying Action Uncertainty with Inaccurate Stochastic Dynamics through Conformalized Nonholonomic Lie Groups¶
2025/12/12 05:01 GTM
We propose Conformal Lie-group Action Prediction Sets (CLAPS), a symmetry-aware conformal prediction-based algorithm that constructs, for a given action, a set guaranteed to contain the resulting system configuration at a user-defined probability. Our assurance holds under both aleatoric and epistemic uncertainty, non-asymptotically, and does not require strong assumptions about the true system dynamics, the uncertainty sources, or the quality of the approximate dynamics model. Typically, uncertainty quantification is tackled by making strong assumptions about the error distribution or magnitude, or by relying on uncalibrated uncertainty estimates - i.e., with no link to frequentist probabilities - which are insufficient for safe control. Recently, conformal prediction has emerged as a statistical framework capable of providing distribution-free probabilistic guarantees on test-time prediction accuracy. While current conformal methods treat robots as Euclidean points, many systems have non-Euclidean configurations, e.g., some mobile robots have SE(2). In this work, we rigorously analyze configuration errors using Lie groups, extending previous Euclidean Space theoretical guarantees to SE(2). Our experiments on a simulated JetBot, and on a real MBot, suggest that by considering the configuration space’s structure, our symmetry-informed nonconformity score leads to more volume-efficient prediction regions which represent the underlying uncertainty better than existing approaches.
3.164Task-Oriented Grasping Using Reinforcement Learning with a Contextual Reward Machine¶
2025/12/12 05:01 GTM
This paper presents a reinforcement learning framework that incorporates a Contextual Reward Machine for task-oriented grasping. The Contextual Reward Machine reduces task complexity by decomposing grasping tasks into manageable sub-tasks. Each sub-task is associated with a stage-specific context, including a reward function, an action space, and a state abstraction function. This contextual information enables efficient intra-stage guidance and improves learning efficiency by reducing the state-action space and guiding exploration within clearly defined boundaries. In addition, transition rewards are introduced to encourage or penalize transitions between stages which guides the model toward desirable stage sequences and further accelerates convergence. When integrated with the Proximal Policy Optimization algorithm, the proposed method achieved a 95% success rate across 1,000 simulated grasping tasks encompassing diverse objects, affordances, and grasp topologies. It outperformed the state-of-the-art methods in both learning speed and success rate. The approach was transferred to a real robot, where it achieved a success rate of 83.3% in 60 grasping tasks over six affordances. These experimental results demonstrate superior accuracy, data efficiency, and learning efficiency. They underscore the model’s potential to advance task-oriented grasping in both simulated and real-world settings.
3.165Latent Chain-of-Thought World Modeling for End-to-End Driving¶
2025/12/12 05:01 GTM
Recent Vision-Language-Action (VLA) models for autonomous driving explore inference-time reasoning as a way to improve driving performance and safety in challenging scenarios. Most prior work uses natural language to express chain-of-thought (CoT) reasoning before producing driving actions. However, text may not be the most efficient representation for reasoning. In this work, we present Latent-CoT-Drive (LCDrive): a model that expresses CoT in a latent language that captures possible outcomes of the driving actions being considered. Our approach unifies CoT reasoning and decision making by representing both in an action-aligned latent space. Instead of natural language, the model reasons by interleaving (1) action-proposal tokens, which use the same vocabulary as the model’s output actions; and (2) world model tokens, which are grounded in a learned latent world model and express future outcomes of these actions. We cold start latent CoT by supervising the model’s action proposals and world model tokens based on ground-truth future rollouts of the scene. We then post-train with closed-loop reinforcement learning to strengthen reasoning capabilities. On a large-scale end-to-end driving benchmark, LCDrive achieves faster inference, better trajectory quality, and larger improvements from interactive reinforcement learning compared to both non-reasoning and text-reasoning baselines.
3.166Active Optics for Hyperspectral Imaging of Reflective Agricultural Leaf Sensors¶
2025/12/12 05:01 GTM
Monitoring plant health increasingly relies on leaf-mounted sensors that provide real-time physiological data, yet efficiently locating and sampling these sensors in complex agricultural environments remains a major challenge. We present an integrated, adaptive, and scalable system that autonomously detects and interrogates plant sensors using a coordinated suite of low-cost optical components including a LiDAR, liquid lens, monochrome camera, filter wheel, and Fast Steering Mirror (FSM). The system first uses LiDAR to identify the distinct reflective signatures of sensors within the field, then dynamically redirects the camera s field of view via the FSM to target each sensor for hyperspectral imaging. The liquid lens continuously adjusts focus to maintain image sharpness across varying depths, enabling precise spectral measurements. We validated the system in controlled indoor experiments, demonstrating accurate detection and tracking of reflective plant sensors and successful acquisition of their spectral data. To our knowledge, no other system currently integrates these sensing and optical modalities for agricultural monitoring. This work establishes a foundation for adaptive, low-cost, and automated plant sensor interrogation, representing a significant step toward scalable, real-time plant health monitoring in precision agriculture.
3.167Inertial Magnetic SLAM Systems Using Low-Cost Sensors¶
2025/12/12 05:01 GTM
Spatially inhomogeneous magnetic fields offer a valuable, non-visual information source for positioning. Among systems leveraging this, magnetic field-based simultaneous localization and mapping (SLAM) systems are particularly attractive because they can provide positioning information and build a magnetic field map on the fly. Moreover, they have bounded error within mapped regions. However, state-of-the-art methods typically require low-drift odometry data provided by visual odometry or a wheel encoder, etc. This is because these systems need to minimize/reduce positioning errors while exploring, which happens when they are in unmapped regions. To address these limitations, this work proposes a loosely coupled and a tightly coupled inertial magnetic SLAM (IM-SLAM) system. The proposed systems use commonly available low-cost sensors: an inertial measurement unit (IMU), a magnetometer array, and a barometer. The use of non-visual data provides a significant advantage over visual-based systems, making it robust to low-visibility conditions. Both systems employ state-space representations, and magnetic field models on different scales. The difference lies in how they use a local and global magnetic field model. The loosely coupled system uses these models separately in two state-space models, while the tightly coupled system integrates them into one state-space model. Experiment results show that the tightly coupled IM-SLAM system achieves lower positioning errors than the loosely coupled system in most scenarios, with typical errors on the order of meters per 100 meters traveled. These results demonstrate the feasiblity of developing a full 3D IM-SLAM systems using low-cost sensors and the potential of applying these systems in emergency response scenarios such as mine/fire rescue.
3.168CHyLL: Learning Continuous Neural Representations of Hybrid Systems¶
2025/12/12 05:01 GTM
Learning the flows of hybrid systems that have both continuous and discrete time dynamics is challenging. The existing method learns the dynamics in each discrete mode, which suffers from the combination of mode switching and discontinuities in the flows. In this work, we propose CHyLL (Continuous Hybrid System Learning in Latent Space), which learns a continuous neural representation of a hybrid system without trajectory segmentation, event functions, or mode switching. The key insight of CHyLL is that the reset map glues the state space at the guard surface, reformulating the state space as a piecewise smooth quotient manifold where the flow becomes spatially continuous. Building upon these insights and the embedding theorems grounded in differential topology, CHyLL concurrently learns a singularity-free neural embedding in a higher-dimensional space and the continuous flow in it. We showcase that CHyLL can accurately predict the flow of hybrid systems with superior accuracy and identify the topological invariants of the hybrid systems. Finally, we apply CHyLL to the stochastic optimal control problem.
3.169Fast Functionally Redundant Inverse Kinematics for Robotic Toolpath Optimisation in Manufacturing Tasks¶
2025/12/12 05:01 GTM
Industrial automation with six-axis robotic arms is critical for many manufacturing tasks, including welding and additive manufacturing applications; however, many of these operations are functionally redundant due to the symmetrical tool axis, which effectively makes the operation a five-axis task. Exploiting this redundancy is crucial for achieving the desired workspace and dexterity required for the feasibility and optimisation of toolpath planning. Inverse kinematics algorithms can solve this in a fast, reactive framework, but these techniques are underutilised over the more computationally expensive offline planning methods. We propose a novel algorithm to solve functionally redundant inverse kinematics for robotic manipulation utilising a task space decomposition approach, the damped least-squares method and Halley’s method to achieve fast and robust solutions with reduced joint motion. We evaluate our methodology in the case of toolpath optimisation in a cold spray coating application on a non-planar surface. The functionally redundant inverse kinematics algorithm can quickly solve motion plans that minimise joint motion, expanding the feasible operating space of the complex toolpath. We validate our approach on an industrial ABB manipulator and cold-spray gun executing the computed toolpath.
3.170Push Smarter, Not Harder: Hierarchical RL-Diffusion Policy for Efficient Nonprehensile Manipulation¶
2025/12/12 05:01 GTM
Nonprehensile manipulation, such as pushing objects across cluttered environments, presents a challenging control problem due to complex contact dynamics and long-horizon planning requirements. In this work, we propose HeRD, a hierarchical reinforcement learning-diffusion policy that decomposes pushing tasks into two levels: high-level goal selection and low-level trajectory generation. We employ a high-level reinforcement learning (RL) agent to select intermediate spatial goals, and a low-level goal-conditioned diffusion model to generate feasible, efficient trajectories to reach them. This architecture combines the long-term reward maximizing behaviour of RL with the generative capabilities of diffusion models. We evaluate our method in a 2D simulation environment and show that it outperforms the state-of-the-art baseline in success rate, path efficiency, and generalization across multiple environment configurations. Our results suggest that hierarchical control with generative low-level planning is a promising direction for scalable, goal-directed nonprehensile manipulation. Code, documentation, and trained models are available: https://
3.171Openpi Comet: Competition Solution For 2025 BEHAVIOR Challenge¶
2025/12/12 05:01 GTM
The 2025 BEHAVIOR Challenge is designed to rigorously track progress toward solving long-horizon tasks by physical agents in simulated environments. BEHAVIOR-1K focuses on everyday household tasks that people most want robots to assist with and these tasks introduce long-horizon mobile manipulation challenges in realistic settings, bridging the gap between current research and real-world, human-centric applications. This report presents our solution to the 2025 BEHAVIOR Challenge in a very close 2nd place and substantially outperforms the rest of the submissions. Building on , we focus on systematically building our solution by studying the effects of training techniques and data. Through careful ablations, we show the scaling power in pre-training and post-training phases for competitive performance. We summarize our practical lessons and design recommendations that we hope will provide actionable insights for the broader embodied AI community when adapting powerful foundation models to complex embodied scenarios.