Generated at 2025-12-26 05:03:16
We have 151 news from different sources.
2feed¶
2.1腾讯按下AI加速键,人才、组织、开源动作密集¶
2025/12/25 05:24 GTM
挖人、重组、开源、落地,腾讯AI开始狂飙。
2.2无需再训练微调,一个辅助系统让GPT-5.2准确率飙到创纪录的75%¶
2025/12/25 05:24 GTM
不直接依赖模型底层调优,而通过优化推理过程来进一步提升模型性能。
2.3越狱成功率飙升至87.6%,南京大学联合美团、上交破解主流视频生成模型安全漏洞¶
2025/12/25 05:24 GTM
首个面向图生视频模型的多模态自进化越狱攻击框架。
2.4致敬经典!手搓3D版《Attention Is All You Need》,M2.1只用了3分钟¶
2025/12/25 10:16 GTM
批量打造“科研黑科技”
3paper¶
3.1HiStream: Efficient High-Resolution Video Generation via Redundancy-Eliminated Streaming¶
2025/12/26 05:02 GTM
High-resolution video generation, while crucial for digital media and film, is computationally bottlenecked by the quadratic complexity of diffusion models, making practical inference infeasible. To address this, we introduce HiStream, an efficient autoregressive framework that systematically reduces redundancy across three axes: i) Spatial Compression: denoising at low resolution before refining at high resolution with cached features; ii) Temporal Compression: a chunk-by-chunk strategy with a fixed-size anchor cache, ensuring stable inference speed; and iii) Timestep Compression: applying fewer denoising steps to subsequent, cache-conditioned chunks. On 1080p benchmarks, our primary HiStream model (i+ii) achieves state-of-the-art visual quality while demonstrating up to 76.2x faster denoising compared to the Wan2.1 baseline and negligible quality loss. Our faster variant, HiStream+, applies all three optimizations (i+ii+iii), achieving a 107.5x acceleration over the baseline, offering a compelling trade-off between speed and quality, thereby making high-resolution video generation both practical and scalable.
3.2Beyond Memorization: A Multi-Modal Ordinal Regression Benchmark to Expose Popularity Bias in Vision-Language Models¶
2025/12/26 05:02 GTM
We expose a significant popularity bias in state-of-the-art vision-language models (VLMs), which achieve up to 34% higher accuracy on famous buildings compared to ordinary ones, indicating a reliance on memorization over generalizable understanding. To systematically investigate this, we introduce the largest open benchmark for this task: the YearGuessr dataset, a collection of 55,546 building images with multi-modal attributes from 157 countries, annotated with continuous ordinal labels of their construction year (1001-2024), GPS data, and page-view counts as a proxy for popularity. Using this dataset, we frame the construction year prediction task as ordinal regression and introduce popularity-aware interval accuracy metrics to quantify this bias. Our resulting benchmark of 30+ models, including our YearCLIP model, confirms that VLMs excel on popular, memorized items but struggle significantly with unrecognized subjects, exposing a critical flaw in their reasoning capabilities. Project page: https://
3.3Streaming Video Instruction Tuning¶
2025/12/26 05:02 GTM
We present Streamo, a real-time streaming video LLM that serves as a general-purpose interactive assistant. Unlike existing online video models that focus narrowly on question answering or captioning, Streamo performs a broad spectrum of streaming video tasks, including real-time narration, action understanding, event captioning, temporal event grounding, and time-sensitive question answering. To develop such versatility, we construct Streamo-Instruct-465K, a large-scale instruction-following dataset tailored for streaming video understanding. The dataset covers diverse temporal contexts and multi-task supervision, enabling unified training across heterogeneous streaming tasks. After training end-to-end on the instruction-following dataset through a streamlined pipeline, Streamo exhibits strong temporal reasoning, responsive interaction, and broad generalization across a variety of streaming benchmarks. Extensive experiments show that Streamo bridges the gap between offline video perception models and real-time multimodal assistants, making a step toward unified, intelligent video understanding in continuous video streams.
3.4Fast SAM2 with Text-Driven Token Pruning¶
2025/12/26 05:02 GTM
Segment Anything Model 2 (SAM2), a vision foundation model has significantly advanced in prompt-driven video object segmentation, yet their practical deployment remains limited by the high computational and memory cost of processing dense visual tokens across time. The SAM2 pipelines typically propagate all visual tokens produced by the image encoder through downstream temporal reasoning modules, regardless of their relevance to the target object, resulting in reduced scalability due to quadratic memory attention overhead. In this work, we introduce a text-guided token pruning framework that improves inference efficiency by selectively reducing token density prior to temporal propagation, without modifying the underlying segmentation architecture. Operating after visual encoding and before memory based propagation, our method ranks tokens using a lightweight routing mechanism that integrates local visual context, semantic relevance derived from object-centric textual descriptions (either user-provided or automatically generated), and uncertainty cues that help preserve ambiguous or boundary critical regions. By retaining only the most informative tokens for downstream processing, the proposed approach reduces redundant computation while maintaining segmentation fidelity. Extensive experiments across multiple challenging video segmentation benchmarks demonstrate that post-encoder token pruning provides a practical and effective pathway to efficient, prompt-aware video segmentation, achieving up to 42.50 percent faster inference and 37.41 percent lower GPU memory usage compared to the unpruned baseline SAM2, while preserving competitive J and F performance. These results highlight the potential of early token selection to improve the scalability of transformer-based video segmentation systems for real-time and resource-constrained applications.
3.5TICON: A Slide-Level Tile Contextualizer for Histopathology Representation Learning¶
2025/12/26 05:02 GTM
The interpretation of small tiles in large whole slide images (WSI) often needs a larger image context. We introduce TICON, a transformer-based tile representation contextualizer that produces rich, contextualized embeddings for ‘‘any’’ application in computational pathology. Standard tile encoder-based pipelines, which extract embeddings of tiles stripped from their context, fail to model the rich slide-level information essential for both local and global tasks. Furthermore, different tile-encoders excel at different downstream tasks. Therefore, a unified model is needed to contextualize embeddings derived from ‘‘any’’ tile-level foundation model. TICON addresses this need with a single, shared encoder, pretrained using a masked modeling objective to simultaneously unify and contextualize representations from diverse tile-level pathology foundation models. Our experiments demonstrate that TICON-contextualized embeddings significantly improve performance across many different tasks, establishing new state-of-the-art results on tile-level benchmarks (i.e., HEST-Bench, THUNDER, CATCH) and slide-level benchmarks (i.e., Patho-Bench). Finally, we pretrain an aggregator on TICON to form a slide-level foundation model, using only 11K WSIs, outperforming SoTA slide-level foundation models pretrained with up to 350K WSIs.
3.6Does the Data Processing Inequality Reflect Practice? On the Utility of Low-Level Tasks¶
2025/12/26 05:02 GTM
The data processing inequality is an information-theoretic principle stating that the information content of a signal cannot be increased by processing the observations. In particular, it suggests that there is no benefit in enhancing the signal or encoding it before addressing a classification problem. This assertion can be proven to be true for the case of the optimal Bayes classifier. However, in practice, it is common to perform “low-level” tasks before “high-level” downstream tasks despite the overwhelming capabilities of modern deep neural networks. In this paper, we aim to understand when and why low-level processing can be beneficial for classification. We present a comprehensive theoretical study of a binary classification setup, where we consider a classifier that is tightly connected to the optimal Bayes classifier and converges to it as the number of training samples increases. We prove that for any finite number of training samples, there exists a pre-classification processing that improves the classification accuracy. We also explore the effect of class separation, training set size, and class balance on the relative gain from this procedure. We support our theory with an empirical investigation of the theoretical setup. Finally, we conduct an empirical study where we investigate the effect of denoising and encoding on the performance of practical deep classifiers on benchmark datasets. Specifically, we vary the size and class distribution of the training set, and the noise level, and demonstrate trends that are consistent with our theoretical results.
3.7AndroidLens: Long-latency Evaluation with Nested Sub-targets for Android GUI Agents¶
2025/12/26 05:02 GTM
Graphical user interface (GUI) agents can substantially improve productivity by automating frequently executed long-latency tasks on mobile devices. However, existing evaluation benchmarks are still constrained to limited applications, simple tasks, and coarse-grained metrics. To address this, we introduce AndroidLens, a challenging evaluation framework for mobile GUI agents, comprising 571 long-latency tasks in both Chinese and English environments, each requiring an average of more than 26 steps to complete. The framework features: (1) tasks derived from real-world user scenarios across 38 domains, covering complex types such as multi-constraint, multi-goal, and domain-specific tasks; (2) static evaluation that preserves real-world anomalies and allows multiple valid paths to reduce bias; and (3) dynamic evaluation that employs a milestone-based scheme for fine-grained progress measurement via Average Task Progress (ATP). Our evaluation indicates that even the best models reach only a 12.7% task success rate and 50.47% ATP. We also underscore key challenges in real-world environments, including environmental anomalies, adaptive exploration, and long-term memory retention.
3.8Post-Processing Mask-Based Table Segmentation for Structural Coordinate Extraction¶
2025/12/26 05:02 GTM
Structured data extraction from tables plays a crucial role in document image analysis for scanned documents and digital archives. Although many methods have been proposed to detect table structures and extract cell contents, accurately identifying table segment boundaries (rows and columns) remains challenging, particularly in low-resolution or noisy images. In many real-world scenarios, table data are incomplete or degraded, limiting the adaptability of transformer-based methods to noisy inputs. Mask-based edge detection techniques have shown greater robustness under such conditions, as their sensitivity can be adjusted through threshold tuning; however, existing approaches typically apply masks directly to images, leading to noise sensitivity, resolution loss, or high computational cost. This paper proposes a novel multi-scale signal-processing method for detecting table edges from table masks. Row and column transitions are modeled as one-dimensional signals and processed using Gaussian convolution with progressively increasing variances, followed by statistical thresholding to suppress noise while preserving stable structural edges. Detected signal peaks are mapped back to image coordinates to obtain accurate segment boundaries. Experimental results show that applying the proposed approach to column edge detection improves Cell-Aware Segmentation Accuracy (CASA) a layout-aware metric evaluating both textual correctness and correct cell placement from 67% to 76% on the PubLayNet-1M benchmark when using TableNet with PyTesseract OCR. The method is robust to resolution variations through zero-padding and scaling strategies and produces optimized structured tabular outputs suitable for downstream analysis.
3.9Surgical Scene Segmentation using a Spike-Driven Video Transformer with Real-Time Potential¶
2025/12/26 05:02 GTM
Modern surgical systems increasingly rely on intelligent scene understanding to provide timely situational awareness for enhanced intra-operative safety. Within this pipeline, surgical scene segmentation plays a central role in accurately perceiving operative events. Although recent deep learning models, particularly large-scale foundation models, achieve remarkable segmentation accuracy, their substantial computational demands and power consumption hinder real-time deployment in resource-constrained surgical environments. To address this limitation, we explore the emerging SNN as a promising paradigm for highly efficient surgical intelligence. However, their performance is still constrained by the scarcity of labeled surgical data and the inherently sparse nature of surgical video representations. To this end, we propose \textit{SpikeSurgSeg}, the first spike-driven video Transformer framework tailored for surgical scene segmentation with real-time potential on non-GPU platforms. To address the limited availability of surgical annotations, we introduce a surgical-scene masked autoencoding pretraining strategy for SNNs that enables robust spatiotemporal representation learning via layer-wise tube masking. Building on this pretrained backbone, we further adopt a lightweight spike-driven segmentation head that produces temporally consistent predictions while preserving the low-latency characteristics of SNNs. Extensive experiments on EndoVis18 and our in-house SurgBleed dataset demonstrate that SpikeSurgSeg achieves mIoU comparable to SOTA ANN-based models while reducing inference latency by at least . Notably, it delivers over acceleration relative to most foundation-model baselines, underscoring its potential for time-critical surgical scene segmentation.
3.10GriDiT: Factorized Grid-Based Diffusion for Efficient Long Image Sequence Generation¶
2025/12/26 05:02 GTM
Modern deep learning methods typically treat image sequences as large tensors of sequentially stacked frames. However, is this straightforward representation ideal given the current state-of-the-art (SoTA)? In this work, we address this question in the context of generative models and aim to devise a more effective way of modeling image sequence data. Observing the inefficiencies and bottlenecks of current SoTA image sequence generation methods, we showcase that rather than working with large tensors, we can improve the generation process by factorizing it into first generating the coarse sequence at low resolution and then refining the individual frames at high resolution. We train a generative model solely on grid images comprising subsampled frames. Yet, we learn to generate image sequences, using the strong self-attention mechanism of the Diffusion Transformer (DiT) to capture correlations between frames. In effect, our formulation extends a 2D image generator to operate as a low-resolution 3D image-sequence generator without introducing any architectural modifications. Subsequently, we super-resolve each frame individually to add the sequence-independent high-resolution details. This approach offers several advantages and can overcome key limitations of the SoTA in this domain. Compared to existing image sequence generation models, our method achieves superior synthesis quality and improved coherence across sequences. It also delivers high-fidelity generation of arbitrary-length sequences and increased efficiency in inference time and training data usage. Furthermore, our straightforward formulation enables our method to generalize effectively across diverse data domains, which typically require additional priors and supervision to model in a generative context. Our method consistently outperforms SoTA in quality and inference speed (at least twice-as-fast) across datasets.
3.11ACD: Direct Conditional Control for Video Diffusion Models via Attention Supervision¶
2025/12/26 05:02 GTM
Controllability is a fundamental requirement in video synthesis, where accurate alignment with conditioning signals is essential. Existing classifier-free guidance methods typically achieve conditioning indirectly by modeling the joint distribution of data and conditions, which often results in limited controllability over the specified conditions. Classifier-based guidance enforces conditions through an external classifier, but the model may exploit this mechanism to raise the classifier score without genuinely satisfying the intended condition, resulting in adversarial artifacts and limited effective controllability. In this paper, we propose Attention-Conditional Diffusion (ACD), a novel framework for direct conditional control in video diffusion models via attention supervision. By aligning the model’s attention maps with external control signals, ACD achieves better controllability. To support this, we introduce a sparse 3D-aware object layout as an efficient conditioning signal, along with a dedicated Layout ControlNet and an automated annotation pipeline for scalable layout integration. Extensive experiments on benchmark video generation datasets demonstrate that ACD delivers superior alignment with conditioning inputs while preserving temporal coherence and visual fidelity, establishing an effective paradigm for conditional video synthesis.
3.12AnyAD: Unified Any-Modality Anomaly Detection in Incomplete Multi-Sequence MRI¶
2025/12/26 05:02 GTM
Reliable anomaly detection in brain MRI remains challenging due to the scarcity of annotated abnormal cases and the frequent absence of key imaging modalities in real clinical workflows. Existing single-class or multi-class anomaly detection (AD) models typically rely on fixed modality configurations, require repetitive training, or fail to generalize to unseen modality combinations, limiting their clinical scalability. In this work, we present a unified Any-Modality AD framework that performs robust anomaly detection and localization under arbitrary MRI modality availability. The framework integrates a dual-pathway DINOv2 encoder with a feature distribution alignment mechanism that statistically aligns incomplete-modality features with full-modality representations, enabling stable inference even with severe modality dropout. To further enhance semantic consistency, we introduce an Intrinsic Normal Prototypes (INPs) extractor and an INP-guided decoder that reconstruct only normal anatomical patterns while naturally amplifying abnormal deviations. Through randomized modality masking and indirect feature completion during training, the model learns to adapt to all modality configurations without re-training. Extensive experiments on BraTS2018, MU-Glioma-Post, and Pretreat-MetsToBrain-Masks demonstrate that our approach consistently surpasses state-of-the-art industrial and medical AD baselines across 7 modality combinations, achieving superior generalization. This study establishes a scalable paradigm for multimodal medical AD under real-world, imperfect modality conditions. Our source code is available at https://
3.13DreaMontage: Arbitrary Frame-Guided One-Shot Video Generation¶
2025/12/26 05:02 GTM
The “one-shot” technique represents a distinct and sophisticated aesthetic in filmmaking. However, its practical realization is often hindered by prohibitive costs and complex real-world constraints. Although emerging video generation models offer a virtual alternative, existing approaches typically rely on naive clip concatenation, which frequently fails to maintain visual smoothness and temporal coherence. In this paper, we introduce DreaMontage, a comprehensive framework designed for arbitrary frame-guided generation, capable of synthesizing seamless, expressive, and long-duration one-shot videos from diverse user-provided inputs. To achieve this, we address the challenge through three primary dimensions. (i) We integrate a lightweight intermediate-conditioning mechanism into the DiT architecture. By employing an Adaptive Tuning strategy that effectively leverages base training data, we unlock robust arbitrary-frame control capabilities. (ii) To enhance visual fidelity and cinematic expressiveness, we curate a high-quality dataset and implement a Visual Expression SFT stage. In addressing critical issues such as subject motion rationality and transition smoothness, we apply a Tailored DPO scheme, which significantly improves the success rate and usability of the generated content. (iii) To facilitate the production of extended sequences, we design a Segment-wise Auto-Regressive (SAR) inference strategy that operates in a memory-efficient manner. Extensive experiments demonstrate that our approach achieves visually striking and seamlessly coherent one-shot effects while maintaining computational efficiency, empowering users to transform fragmented visual materials into vivid, cohesive one-shot cinematic experiences.
3.14Improving the Convergence Rate of Ray Search Optimization for Query-Efficient Hard-Label Attacks¶
2025/12/26 05:02 GTM
In hard-label black-box adversarial attacks, where only the top-1 predicted label is accessible, the prohibitive query complexity poses a major obstacle to practical deployment. In this paper, we focus on optimizing a representative class of attacks that search for the optimal ray direction yielding the minimum -norm perturbation required to move a benign image into the adversarial region. Inspired by Nesterov’s Accelerated Gradient (NAG), we propose a momentum-based algorithm, ARS-OPT, which proactively estimates the gradient with respect to a future ray direction inferred from accumulated momentum. We provide a theoretical analysis of its convergence behavior, showing that ARS-OPT enables more accurate directional updates and achieves faster, more stable optimization. To further accelerate convergence, we incorporate surrogate-model priors into ARS-OPT’s gradient estimation, resulting in PARS-OPT with enhanced performance. The superiority of our approach is supported by theoretical guarantees under standard assumptions. Extensive experiments on ImageNet and CIFAR-10 demonstrate that our method surpasses 13 state-of-the-art approaches in query efficiency.
3.15SegMo: Segment-aligned Text to 3D Human Motion Generation¶
2025/12/26 05:02 GTM
Generating 3D human motions from textual descriptions is an important research problem with broad applications in video games, virtual reality, and augmented reality. Recent methods align the textual description with human motion at the sequence level, neglecting the internal semantic structure of modalities. However, both motion descriptions and motion sequences can be naturally decomposed into smaller and semantically coherent segments, which can serve as atomic alignment units to achieve finer-grained correspondence. Motivated by this, we propose SegMo, a novel Segment-aligned text-conditioned human Motion generation framework to achieve fine-grained text-motion alignment. Our framework consists of three modules: (1) Text Segment Extraction, which decomposes complex textual descriptions into temporally ordered phrases, each representing a simple atomic action; (2) Motion Segment Extraction, which partitions complete motion sequences into corresponding motion segments; and (3) Fine-grained Text-Motion Alignment, which aligns text and motion segments with contrastive learning. Extensive experiments demonstrate that SegMo improves the strong baseline on two widely used datasets, achieving an improved TOP 1 score of 0.553 on the HumanML3D test set. Moreover, thanks to the learned shared embedding space for text and motion segments, SegMo can also be applied to retrieval-style tasks such as motion grounding and motion-to-text retrieval.
3.16Leveraging Lightweight Entity Extraction for Scalable Event-Based Image Retrieval¶
2025/12/26 05:02 GTM
Retrieving images from natural language descriptions is a core task at the intersection of computer vision and natural language processing, with wide-ranging applications in search engines, media archiving, and digital content management. However, real-world image-text retrieval remains challenging due to vague or context-dependent queries, linguistic variability, and the need for scalable solutions. In this work, we propose a lightweight two-stage retrieval pipeline that leverages event-centric entity extraction to incorporate temporal and contextual signals from real-world captions. The first stage performs efficient candidate filtering using BM25 based on salient entities, while the second stage applies BEiT-3 models to capture deep multimodal semantics and rerank the results. Evaluated on the OpenEvents v1 benchmark, our method achieves a mean average precision of 0.559, substantially outperforming prior baselines. These results highlight the effectiveness of combining event-guided filtering with long-text vision-language modeling for accurate and efficient retrieval in complex, real-world scenarios. Our code is available at https://
3.17RoboSafe: Safeguarding Embodied Agents via Executable Safety Logic¶
2025/12/26 05:02 GTM
Embodied agents powered by vision-language models (VLMs) are increasingly capable of executing complex real-world tasks, yet they remain vulnerable to hazardous instructions that may trigger unsafe behaviors. Runtime safety guardrails, which intercept hazardous actions during task execution, offer a promising solution due to their flexibility. However, existing defenses often rely on static rule filters or prompt-level control, which struggle to address implicit risks arising in dynamic, temporally dependent, and context-rich environments. To address this, we propose RoboSafe, a hybrid reasoning runtime safeguard for embodied agents through executable predicate-based safety logic. RoboSafe integrates two complementary reasoning processes on a Hybrid Long-Short Safety Memory. We first propose a Backward Reflective Reasoning module that continuously revisits recent trajectories in short-term memory to infer temporal safety predicates and proactively triggers replanning when violations are detected. We then propose a Forward Predictive Reasoning module that anticipates upcoming risks by generating context-aware safety predicates from the long-term safety memory and the agent’s multimodal observations. Together, these components form an adaptive, verifiable safety logic that is both interpretable and executable as code. Extensive experiments across multiple agents demonstrate that RoboSafe substantially reduces hazardous actions (-36.8% risk occurrence) compared with leading baselines, while maintaining near-original task performance. Real-world evaluations on physical robotic arms further confirm its practicality. Code will be released upon acceptance.
3.18Latent Implicit Visual Reasoning¶
2025/12/26 05:02 GTM
While Large Multimodal Models (LMMs) have made significant progress, they remain largely text-centric, relying on language as their core reasoning modality. As a result, they are limited in their ability to handle reasoning tasks that are predominantly visual. Recent approaches have sought to address this by supervising intermediate visual steps with helper images, depth maps, or image crops. However, these strategies impose restrictive priors on what “useful” visual abstractions look like, add heavy annotation costs, and struggle to generalize across tasks. To address this critical limitation, we propose a task-agnostic mechanism that trains LMMs to discover and use visual reasoning tokens without explicit supervision. These tokens attend globally and re-encode the image in a task-adaptive way, enabling the model to extract relevant visual information without hand-crafted supervision. Our approach outperforms direct fine-tuning and achieves state-of-the-art results on a diverse range of vision-centric tasks -- including those where intermediate abstractions are hard to specify -- while also generalizing to multi-task instruction tuning.
3.19Human Motion Estimation with Everyday Wearables¶
2025/12/26 05:02 GTM
While on-body device-based human motion estimation is crucial for applications such as XR interaction, existing methods often suffer from poor wearability, expensive hardware, and cumbersome calibration, which hinder their adoption in daily life. To address these challenges, we present EveryWear, a lightweight and practical human motion capture approach based entirely on everyday wearables: a smartphone, smartwatch, earbuds, and smart glasses equipped with one forward-facing and two downward-facing cameras, requiring no explicit calibration before use. We introduce Ego-Elec, a 9-hour real-world dataset covering 56 daily activities across 17 diverse indoor and outdoor environments, with ground-truth 3D annotations provided by the motion capture (MoCap), to facilitate robust research and benchmarking in this direction. Our approach employs a multimodal teacher-student framework that integrates visual cues from egocentric cameras with inertial signals from consumer devices. By training directly on real-world data rather than synthetic data, our model effectively eliminates the sim-to-real gap that constrains prior work. Experiments demonstrate that our method outperforms baseline models, validating its effectiveness for practical full-body motion estimation.
3.20Schrödinger’s Navigator: Imagining an Ensemble of Futures for Zero-Shot Object Navigation¶
2025/12/26 05:02 GTM
Zero-shot object navigation (ZSON) requires a robot to locate a target object in a previously unseen environment without relying on pre-built maps or task-specific training. However, existing ZSON methods often struggle in realistic and cluttered environments, particularly when the scene contains heavy occlusions, unknown risks, or dynamically moving target objects. To address these challenges, we propose \textbf{Schrödinger’s Navigator}, a navigation framework inspired by Schrödinger’s thought experiment on uncertainty. The framework treats unobserved space as a set of plausible future worlds and reasons over them before acting. Conditioned on egocentric visual inputs and three candidate trajectories, a trajectory-conditioned 3D world model imagines future observations along each path. This enables the agent to see beyond occlusions and anticipate risks in unseen regions without requiring extra detours or dense global mapping. The imagined 3D observations are fused into the navigation map and used to update a value map. These updates guide the policy toward trajectories that avoid occlusions, reduce exposure to uncertain space, and better track moving targets. Experiments on a Go2 quadruped robot across three challenging scenarios, including severe static occlusions, unknown risks, and dynamically moving targets, show that Schrödinger’s Navigator consistently outperforms strong ZSON baselines in self-localization, object localization, and overall Success Rate in occlusion-heavy environments. These results demonstrate the effectiveness of trajectory-conditioned 3D imagination in enabling robust zero-shot object navigation.
3.21VisRes Bench: On Evaluating the Visual Reasoning Capabilities of VLMs¶
2025/12/26 05:02 GTM
Vision-Language Models (VLMs) have achieved remarkable progress across tasks such as visual question answering and image captioning. Yet, the extent to which these models perform visual reasoning as opposed to relying on linguistic priors remains unclear. To address this, we introduce VisRes Bench, a benchmark designed to study visual reasoning in naturalistic settings without contextual language supervision. Analyzing model behavior across three levels of complexity, we uncover clear limitations in perceptual and relational visual reasoning capacities. VisRes isolates distinct reasoning abilities across its levels. Level 1 probes perceptual completion and global image matching under perturbations such as blur, texture changes, occlusion, and rotation; Level 2 tests rule-based inference over a single attribute (e.g., color, count, orientation); and Level 3 targets compositional reasoning that requires integrating multiple visual attributes. Across more than 19,000 controlled task images, we find that state-of-the-art VLMs perform near random under subtle perceptual perturbations, revealing limited abstraction beyond pattern recognition. We conclude by discussing how VisRes provides a unified framework for advancing abstract visual reasoning in multimodal research.
3.22UltraShape 1.0: High-Fidelity 3D Shape Generation via Scalable Geometric Refinement¶
2025/12/26 05:02 GTM
In this report, we introduce UltraShape 1.0, a scalable 3D diffusion framework for high-fidelity 3D geometry generation. The proposed approach adopts a two-stage generation pipeline: a coarse global structure is first synthesized and then refined to produce detailed, high-quality geometry. To support reliable 3D generation, we develop a comprehensive data processing pipeline that includes a novel watertight processing method and high-quality data filtering. This pipeline improves the geometric quality of publicly available 3D datasets by removing low-quality samples, filling holes, and thickening thin structures, while preserving fine-grained geometric details. To enable fine-grained geometry refinement, we decouple spatial localization from geometric detail synthesis in the diffusion process. We achieve this by performing voxel-based refinement at fixed spatial locations, where voxel queries derived from coarse geometry provide explicit positional anchors encoded via RoPE, allowing the diffusion model to focus on synthesizing local geometric details within a reduced, structured solution space. Our model is trained exclusively on publicly available 3D datasets, achieving strong geometric quality despite limited training resources. Extensive evaluations demonstrate that UltraShape 1.0 performs competitively with existing open-source methods in both data processing quality and geometry generation. All code and trained models will be released to support future research.
3.23Towards Arbitrary Motion Completing via Hierarchical Continuous Representation¶
2025/12/26 05:02 GTM
Physical motions are inherently continuous, and higher camera frame rates typically contribute to improved smoothness and temporal coherence. For the first time, we explore continuous representations of human motion sequences, featuring the ability to interpolate, inbetween, and even extrapolate any input motion sequences at arbitrary frame rates. To achieve this, we propose a novel parametric activation-induced hierarchical implicit representation framework, referred to as NAME, based on Implicit Neural Representations (INRs). Our method introduces a hierarchical temporal encoding mechanism that extracts features from motion sequences at multiple temporal scales, enabling effective capture of intricate temporal patterns. Additionally, we integrate a custom parametric activation function, powered by Fourier transformations, into the MLP-based decoder to enhance the expressiveness of the continuous representation. This parametric formulation significantly augments the model’s ability to represent complex motion behaviors with high accuracy. Extensive evaluations across several benchmark datasets demonstrate the effectiveness and robustness of our proposed approach.
3.24Equivariant Multiscale Learned Invertible Reconstruction for Cone Beam CT: From Simulated to Real Data¶
2025/12/26 05:02 GTM
Cone Beam CT (CBCT) is an important imaging modality nowadays, however lower image quality of CBCT compared to more conventional Computed Tomography (CT) remains a limiting factor in CBCT applications. Deep learning reconstruction methods are a promising alternative to classical analytical and iterative reconstruction methods, but applying such methods to CBCT is often difficult due to the lack of ground truth data, memory limitations and the need for fast inference at clinically-relevant resolutions. In this work we propose LIRE++, an end-to-end rotationally-equivariant multiscale learned invertible primal-dual scheme for fast and memory-efficient CBCT reconstruction. Memory optimizations and multiscale reconstruction allow for fast training and inference, while rotational equivariance improves parameter efficiency. LIRE++ was trained on simulated projection data from a fast quasi-Monte Carlo CBCT projection simulator that we developed as well. Evaluated on synthetic data, LIRE++ gave an average improvement of 1 dB in Peak Signal-to-Noise Ratio over alternative deep learning baselines. On real clinical data, LIRE++ improved the average Mean Absolute Error between the reconstruction and the corresponding planning CT by 10 Hounsfield Units with respect to current proprietary state-of-the-art hybrid deep-learning/iterative method.
3.25A Turn Toward Better Alignment: Few-Shot Generative Adaptation with Equivariant Feature Rotation¶
2025/12/26 05:02 GTM
Few-shot image generation aims to effectively adapt a source generative model to a target domain using very few training images. Most existing approaches introduce consistency constraints-typically through instance-level or distribution-level loss functions-to directly align the distribution patterns of source and target domains within their respective latent spaces. However, these strategies often fall short: overly strict constraints can amplify the negative effects of the domain gap, leading to distorted or uninformative content, while overly relaxed constraints may fail to leverage the source domain effectively. This limitation primarily stems from the inherent discrepancy in the underlying distribution structures of the source and target domains. The scarcity of target samples further compounds this issue by hindering accurate estimation of the target domain’s distribution. To overcome these limitations, we propose Equivariant Feature Rotation (EFR), a novel adaptation strategy that aligns source and target domains at two complementary levels within a self-rotated proxy feature space. Specifically, we perform adaptive rotations within a parameterized Lie Group to transform both source and target features into an equivariant proxy space, where alignment is conducted. These learnable rotation matrices serve to bridge the domain gap by preserving intra-domain structural information without distortion, while the alignment optimization facilitates effective knowledge transfer from the source to the target domain. Comprehensive experiments on a variety of commonly used datasets demonstrate that our method significantly enhances the generative performance within the targeted domain.
3.26ORCA: Object Recognition and Comprehension for Archiving Marine Species¶
2025/12/26 05:02 GTM
Marine visual understanding is essential for monitoring and protecting marine ecosystems, enabling automatic and scalable biological surveys. However, progress is hindered by limited training data and the lack of a systematic task formulation that aligns domain-specific marine challenges with well-defined computer vision tasks, thereby limiting effective model application. To address this gap, we present ORCA, a multi-modal benchmark for marine research comprising 14,647 images from 478 species, with 42,217 bounding box annotations and 22,321 expert-verified instance captions. The dataset provides fine-grained visual and textual annotations that capture morphology-oriented attributes across diverse marine species. To catalyze methodological advances, we evaluate 18 state-of-the-art models on three tasks: object detection (closed-set and open-vocabulary), instance captioning, and visual grounding. Results highlight key challenges, including species diversity, morphological overlap, and specialized domain demands, underscoring the difficulty of marine understanding. ORCA thus establishes a comprehensive benchmark to advance research in marine domain. Project Page: http://
3.27TGC-Net: A Structure-Aware and Semantically-Aligned Framework for Text-Guided Medical Image Segmentation¶
2025/12/26 05:02 GTM
Text-guided medical segmentation enhances segmentation accuracy by utilizing clinical reports as auxiliary information. However, existing methods typically rely on unaligned image and text encoders, which necessitate complex interaction modules for multimodal fusion. While CLIP provides a pre-aligned multimodal feature space, its direct application to medical imaging is limited by three main issues: insufficient preservation of fine-grained anatomical structures, inadequate modeling of complex clinical descriptions, and domain-specific semantic misalignment. To tackle these challenges, we propose TGC-Net, a CLIP-based framework focusing on parameter-efficient, task-specific adaptations. Specifically, it incorporates a Semantic-Structural Synergy Encoder (SSE) that augments CLIP’s ViT with a CNN branch for multi-scale structural refinement, a Domain-Augmented Text Encoder (DATE) that injects large-language-model-derived medical knowledge, and a Vision-Language Calibration Module (VLCM) that refines cross-modal correspondence in a unified feature space. Experiments on five datasets across chest X-ray and thoracic CT modalities demonstrate that TGC-Net achieves state-of-the-art performance with substantially fewer trainable parameters, including notable Dice gains on challenging benchmarks.
3.28MarineEval: Assessing the Marine Intelligence of Vision-Language Models¶
2025/12/26 05:02 GTM
We have witnessed promising progress led by large language models (LLMs) and further vision language models (VLMs) in handling various queries as a general-purpose assistant. VLMs, as a bridge to connect the visual world and language corpus, receive both visual content and various text-only user instructions to generate corresponding responses. Though great success has been achieved by VLMs in various fields, in this work, we ask whether the existing VLMs can act as domain experts, accurately answering marine questions, which require significant domain expertise and address special domain challenges/requirements. To comprehensively evaluate the effectiveness and explore the boundary of existing VLMs, we construct the first large-scale marine VLM dataset and benchmark called MarineEval, with 2,000 image-based question-answering pairs. During our dataset construction, we ensure the diversity and coverage of the constructed data: 7 task dimensions and 20 capacity dimensions. The domain requirements are specially integrated into the data construction and further verified by the corresponding marine domain experts. We comprehensively benchmark 17 existing VLMs on our MarineEval and also investigate the limitations of existing models in answering marine research questions. The experimental results reveal that existing VLMs cannot effectively answer the domain-specific questions, and there is still a large room for further performance improvements. We hope our new benchmark and observations will facilitate future research. Project Page: http://
3.29STLDM: Spatio-Temporal Latent Diffusion Model for Precipitation Nowcasting¶
2025/12/26 05:02 GTM
Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent severe damage owing to extreme weather events. Despite the advances in this field, the complex and stochastic nature of this task still poses challenges to existing approaches. Specifically, deterministic models tend to produce blurry predictions while generative models often struggle with poor accuracy. In this paper, we present a simple yet effective model architecture termed STLDM, a diffusion-based model that learns the latent representation from end to end alongside both the Variational Autoencoder and the conditioning network. STLDM decomposes this task into two stages: a deterministic forecasting stage handled by the conditioning network, and an enhancement stage performed by the latent diffusion model. Experimental results on multiple radar datasets demonstrate that STLDM achieves superior performance compared to the state of the art, while also improving inference efficiency. The code is available in https://
3.30FreeInpaint: Tuning-free Prompt Alignment and Visual Rationality Enhancement in Image Inpainting¶
2025/12/26 05:02 GTM
Text-guided image inpainting endeavors to generate new content within specified regions of images using textual prompts from users. The primary challenge is to accurately align the inpainted areas with the user-provided prompts while maintaining a high degree of visual fidelity. While existing inpainting methods have produced visually convincing results by leveraging the pre-trained text-to-image diffusion models, they still struggle to uphold both prompt alignment and visual rationality simultaneously. In this work, we introduce FreeInpaint, a plug-and-play tuning-free approach that directly optimizes the diffusion latents on the fly during inference to improve the faithfulness of the generated images. Technically, we introduce a prior-guided noise optimization method that steers model attention towards valid inpainting regions by optimizing the initial noise. Furthermore, we meticulously design a composite guidance objective tailored specifically for the inpainting task. This objective efficiently directs the denoising process, enhancing prompt alignment and visual rationality by optimizing intermediate latents at each step. Through extensive experiments involving various inpainting diffusion models and evaluation metrics, we demonstrate the effectiveness and robustness of our proposed FreeInpaint.
3.31TexAvatars : Hybrid Texel-3D Representations for Stable Rigging of Photorealistic Gaussian Head Avatars¶
2025/12/26 05:02 GTM
Constructing drivable and photorealistic 3D head avatars has become a central task in AR/XR, enabling immersive and expressive user experiences. With the emergence of high-fidelity and efficient representations such as 3D Gaussians, recent works have pushed toward ultra-detailed head avatars. Existing approaches typically fall into two categories: rule-based analytic rigging or neural network-based deformation fields. While effective in constrained settings, both approaches often fail to generalize to unseen expressions and poses, particularly in extreme reenactment scenarios. Other methods constrain Gaussians to the global texel space of 3DMMs to reduce rendering complexity. However, these texel-based avatars tend to underutilize the underlying mesh structure. They apply minimal analytic deformation and rely heavily on neural regressors and heuristic regularization in UV space, which weakens geometric consistency and limits extrapolation to complex, out-of-distribution deformations. To address these limitations, we introduce TexAvatars, a hybrid avatar representation that combines the explicit geometric grounding of analytic rigging with the spatial continuity of texel space. Our approach predicts local geometric attributes in UV space via CNNs, but drives 3D deformation through mesh-aware Jacobians, enabling smooth and semantically meaningful transitions across triangle boundaries. This hybrid design separates semantic modeling from geometric control, resulting in improved generalization, interpretability, and stability. Furthermore, TexAvatars captures fine-grained expression effects, including muscle-induced wrinkles, glabellar lines, and realistic mouth cavity geometry, with high fidelity. Our method achieves state-of-the-art performance under extreme pose and expression variations, demonstrating strong generalization in challenging head reenactment settings.
3.32UniRec-0.1B: Unified Text and Formula Recognition with 0.1B Parameters¶
2025/12/26 05:02 GTM
Text and formulas constitute the core informational components of many documents. Accurately and efficiently recognizing both is crucial for developing robust and generalizable document parsing systems. Recently, vision-language models (VLMs) have achieved impressive unified recognition of text and formulas. However, they are large-sized and computationally demanding, restricting their usage in many applications. In this paper, we propose UniRec-0.1B, a unified recognition model with only 0.1B parameters. It is capable of performing text and formula recognition at multiple levels, including characters, words, lines, paragraphs, and documents. To implement this task, we first establish UniRec40M, a large-scale dataset comprises 40 million text, formula and their mix samples, enabling the training of a powerful yet lightweight model. Secondly, we identify two challenges when building such a lightweight but unified expert model. They are: structural variability across hierarchies and semantic entanglement between textual and formulaic content. To tackle these, we introduce a hierarchical supervision training that explicitly guides structural comprehension, and a semantic-decoupled tokenizer that separates text and formula representations. Finally, we develop a comprehensive evaluation benchmark covering Chinese and English documents from multiple domains and with multiple levels. Experimental results on this and public benchmarks demonstrate that UniRec-0.1B outperforms both general-purpose VLMs and leading document parsing expert models, while achieving a 2-9 speedup, validating its effectiveness and efficiency. Codebase and Dataset: https://
3.33T2AV-Compass: Towards Unified Evaluation for Text-to-Audio-Video Generation¶
2025/12/26 05:02 GTM
Text-to-Audio-Video (T2AV) generation aims to synthesize temporally coherent video and semantically synchronized audio from natural language, yet its evaluation remains fragmented, often relying on unimodal metrics or narrowly scoped benchmarks that fail to capture cross-modal alignment, instruction following, and perceptual realism under complex prompts. To address this limitation, we present T2AV-Compass, a unified benchmark for comprehensive evaluation of T2AV systems, consisting of 500 diverse and complex prompts constructed via a taxonomy-driven pipeline to ensure semantic richness and physical plausibility. Besides, T2AV-Compass introduces a dual-level evaluation framework that integrates objective signal-level metrics for video quality, audio quality, and cross-modal alignment with a subjective MLLM-as-a-Judge protocol for instruction following and realism assessment. Extensive evaluation of 11 representative T2AVsystems reveals that even the strongest models fall substantially short of human-level realism and cross-modal consistency, with persistent failures in audio realism, fine-grained synchronization, instruction following, etc. These results indicate significant improvement room for future models and highlight the value of T2AV-Compass as a challenging and diagnostic testbed for advancing text-to-audio-video generation.
3.34Hierarchical Modeling Approach to Fast and Accurate Table Recognition¶
2025/12/26 05:02 GTM
The extraction and use of diverse knowledge from numerous documents is a pressing challenge in intelligent information retrieval. Documents contain elements that require different recognition methods. Table recognition typically consists of three subtasks, namely table structure, cell position and cell content recognition. Recent models have achieved excellent recognition with a combination of multi-task learning, local attention, and mutual learning. However, their effectiveness has not been fully explained, and they require a long period of time for inference. This paper presents a novel multi-task model that utilizes non-causal attention to capture the entire table structure, and a parallel inference algorithm for faster cell content inference. The superiority is demonstrated both visually and statistically on two large public datasets.
3.35UniPR-3D: Towards Universal Visual Place Recognition with Visual Geometry Grounded Transformer¶
2025/12/26 05:02 GTM
Visual Place Recognition (VPR) has been traditionally formulated as a single-image retrieval task. Using multiple views offers clear advantages, yet this setting remains relatively underexplored and existing methods often struggle to generalize across diverse environments. In this work we introduce UniPR-3D, the first VPR architecture that effectively integrates information from multiple views. UniPR-3D builds on a VGGT backbone capable of encoding multi-view 3D representations, which we adapt by designing feature aggregators and fine-tune for the place recognition task. To construct our descriptor, we jointly leverage the 3D tokens and intermediate 2D tokens produced by VGGT. Based on their distinct characteristics, we design dedicated aggregation modules for 2D and 3D features, allowing our descriptor to capture fine-grained texture cues while also reasoning across viewpoints. To further enhance generalization, we incorporate both single- and multi-frame aggregation schemes, along with a variable-length sequence retrieval strategy. Our experiments show that UniPR-3D sets a new state of the art, outperforming both single- and multi-view baselines and highlighting the effectiveness of geometry-grounded tokens for VPR. Our code and models will be made publicly available on Github https://
3.36Language-Guided Grasp Detection with Coarse-to-Fine Learning for Robotic Manipulation¶
2025/12/26 05:02 GTM
Grasping is one of the most fundamental challenging capabilities in robotic manipulation, especially in unstructured, cluttered, and semantically diverse environments. Recent researches have increasingly explored language-guided manipulation, where robots not only perceive the scene but also interpret task-relevant natural language instructions. However, existing language-conditioned grasping methods typically rely on shallow fusion strategies, leading to limited semantic grounding and weak alignment between linguistic intent and visual grasp reasoning.In this work, we propose Language-Guided Grasp Detection (LGGD) with a coarse-to-fine learning paradigm for robotic manipulation. LGGD leverages CLIP-based visual and textual embeddings within a hierarchical cross-modal fusion pipeline, progressively injecting linguistic cues into the visual feature reconstruction process. This design enables fine-grained visual-semantic alignment and improves the feasibility of the predicted grasps with respect to task instructions. In addition, we introduce a language-conditioned dynamic convolution head (LDCH) that mixes multiple convolution experts based on sentence-level features, enabling instruction-adaptive coarse mask and grasp predictions. A final refinement module further enhances grasp consistency and robustness in complex scenes.Experiments on the OCID-VLG and Grasp-Anything++ datasets show that LGGD surpasses existing language-guided grasping methods, exhibiting strong generalization to unseen objects and diverse language queries. Moreover, deployment on a real robotic platform demonstrates the practical effectiveness of our approach in executing accurate, instruction-conditioned grasp actions. The code will be released publicly upon acceptance.
3.37Multimodal Skeleton-Based Action Representation Learning via Decomposition and Composition¶
2025/12/26 05:02 GTM
Multimodal human action understanding is a significant problem in computer vision, with the central challenge being the effective utilization of the complementarity among diverse modalities while maintaining model efficiency. However, most existing methods rely on simple late fusion to enhance performance, which results in substantial computational overhead. Although early fusion with a shared backbone for all modalities is efficient, it struggles to achieve excellent performance. To address the dilemma of balancing efficiency and effectiveness, we introduce a self-supervised multimodal skeleton-based action representation learning framework, named Decomposition and Composition. The Decomposition strategy meticulously decomposes the fused multimodal features into distinct unimodal features, subsequently aligning them with their respective ground truth unimodal counterparts. On the other hand, the Composition strategy integrates multiple unimodal features, leveraging them as self-supervised guidance to enhance the learning of multimodal representations. Extensive experiments on the NTU RGB+D 60, NTU RGB+D 120, and PKU-MMD II datasets demonstrate that the proposed method strikes an excellent balance between computational cost and model performance.
3.38Beyond Pixel Simulation: Pathology Image Generation via Diagnostic Semantic Tokens and Prototype Control¶
2025/12/26 05:02 GTM
In computational pathology, understanding and generation have evolved along disparate paths: advanced understanding models already exhibit diagnostic-level competence, whereas generative models largely simulate pixels. Progress remains hindered by three coupled factors: the scarcity of large, high-quality image-text corpora; the lack of precise, fine-grained semantic control, which forces reliance on non-semantic cues; and terminological heterogeneity, where diverse phrasings for the same diagnostic concept impede reliable text conditioning. We introduce UniPath, a semantics-driven pathology image generation framework that leverages mature diagnostic understanding to enable controllable generation. UniPath implements Multi-Stream Control: a Raw-Text stream; a High-Level Semantics stream that uses learnable queries to a frozen pathology MLLM to distill paraphrase-robust Diagnostic Semantic Tokens and to expand prompts into diagnosis-aware attribute bundles; and a Prototype stream that affords component-level morphological control via a prototype bank. On the data front, we curate a 2.65M image-text corpus and a finely annotated, high-quality 68K subset to alleviate data scarcity. For a comprehensive assessment, we establish a four-tier evaluation hierarchy tailored to pathology. Extensive experiments demonstrate UniPath’s SOTA performance, including a Patho-FID of 80.9 (51% better than the second-best) and fine-grained semantic control achieving 98.7% of the real-image. The meticulously curated datasets, complete source code, and pre-trained model weights developed in this study will be made openly accessible to the public.
3.39DexAvatar: 3D Sign Language Reconstruction with Hand and Body Pose Priors¶
2025/12/26 05:02 GTM
The trend in sign language generation is centered around data-driven generative methods that require vast amounts of precise 2D and 3D human pose data to achieve an acceptable generation quality. However, currently, most sign language datasets are video-based and limited to automatically reconstructed 2D human poses (i.e., keypoints) and lack accurate 3D information. Furthermore, existing state-of-the-art for automatic 3D human pose estimation from sign language videos is prone to self-occlusion, noise, and motion blur effects, resulting in poor reconstruction quality. In response to this, we introduce DexAvatar, a novel framework to reconstruct bio-mechanically accurate fine-grained hand articulations and body movements from in-the-wild monocular sign language videos, guided by learned 3D hand and body priors. DexAvatar achieves strong performance in the SGNify motion capture dataset, the only benchmark available for this task, reaching an improvement of 35.11% in the estimation of body and hand poses compared to the state-of-the-art. The official website of this work is: https://
3.40Optical Flow-Guided 6DoF Object Pose Tracking with an Event Camera¶
2025/12/26 05:02 GTM
Object pose tracking is one of the pivotal technologies in multimedia, attracting ever-growing attention in recent years. Existing methods employing traditional cameras encounter numerous challenges such as motion blur, sensor noise, partial occlusion, and changing lighting conditions. The emerging bio-inspired sensors, particularly event cameras, possess advantages such as high dynamic range and low latency, which hold the potential to address the aforementioned challenges. In this work, we present an optical flow-guided 6DoF object pose tracking method with an event camera. A 2D-3D hybrid feature extraction strategy is firstly utilized to detect corners and edges from events and object models, which characterizes object motion precisely. Then, we search for the optical flow of corners by maximizing the event-associated probability within a spatio-temporal window, and establish the correlation between corners and edges guided by optical flow. Furthermore, by minimizing the distances between corners and edges, the 6DoF object pose is iteratively optimized to achieve continuous pose tracking. Experimental results of both simulated and real events demonstrate that our methods outperform event-based state-of-the-art methods in terms of both accuracy and robustness.
3.41Matrix Completion Via Reweighted Logarithmic Norm Minimization¶
2025/12/26 05:02 GTM
Low-rank matrix completion (LRMC) has demonstrated remarkable success in a wide range of applications. To address the NP-hard nature of the rank minimization problem, the nuclear norm is commonly used as a convex and computationally tractable surrogate for the rank function. However, this approach often yields suboptimal solutions due to the excessive shrinkage of singular values. In this letter, we propose a novel reweighted logarithmic norm as a more effective nonconvex surrogate, which provides a closer approximation than many existing alternatives. We efficiently solve the resulting optimization problem by employing the alternating direction method of multipliers (ADMM). Experimental results on image inpainting demonstrate that the proposed method achieves superior performance compared to state-of-the-art LRMC approaches, both in terms of visual quality and quantitative metrics.
3.42A Large-Depth-Range Layer-Based Hologram Dataset for Machine Learning-Based 3D Computer-Generated Holography¶
2025/12/26 05:02 GTM
Machine learning-based computer-generated holography (ML-CGH) has advanced rapidly in recent years, yet progress is constrained by the limited availability of high-quality, large-scale hologram datasets. To address this, we present KOREATECH-CGH, a publicly available dataset comprising 6,000 pairs of RGB-D images and complex holograms across resolutions ranging from 256256 to 20482048, with depth ranges extending to the theoretical limits of the angular spectrum method for wide 3D scene coverage. To improve hologram quality at large depth ranges, we introduce amplitude projection, a post-processing technique that replaces amplitude components of hologram wavefields at each depth layer while preserving phase. This approach enhances reconstruction fidelity, achieving 27.01 dB PSNR and 0.87 SSIM, surpassing a recent optimized silhouette-masking layer-based method by 2.03 dB and 0.04 SSIM, respectively. We further validate the utility of KOREATECH-CGH through experiments on hologram generation and super-resolution using state-of-the-art ML models, confirming its applicability for training and evaluating next-generation ML-CGH systems.
3.43Next-Scale Prediction: A Self-Supervised Approach for Real-World Image Denoising¶
2025/12/26 05:02 GTM
Self-supervised real-world image denoising remains a fundamental challenge, arising from the antagonistic trade-off between decorrelating spatially structured noise and preserving high-frequency details. Existing blind-spot network (BSN) methods rely on pixel-shuffle downsampling (PD) to decorrelate noise, but aggressive downsampling fragments fine structures, while milder downsampling fails to remove correlated noise. To address this, we introduce Next-Scale Prediction (NSP), a novel self-supervised paradigm that decouples noise decorrelation from detail preservation. NSP constructs cross-scale training pairs, where BSN takes low-resolution, fully decorrelated sub-images as input to predict high-resolution targets that retain fine details. As a by-product, NSP naturally supports super-resolution of noisy images without retraining or modification. Extensive experiments demonstrate that NSP achieves state-of-the-art self-supervised denoising performance on real-world benchmarks, significantly alleviating the long-standing conflict between noise decorrelation and detail preservation.
3.44Multi-Attribute guided Thermal Face Image Translation based on Latent Diffusion Model¶
2025/12/26 05:02 GTM
Modern surveillance systems increasingly rely on multi-wavelength sensors and deep neural networks to recognize faces in infrared images captured at night. However, most facial recognition models are trained on visible light datasets, leading to substantial performance degradation on infrared inputs due to significant domain shifts. Early feature-based methods for infrared face recognition proved ineffective, prompting researchers to adopt generative approaches that convert infrared images into visible light images for improved recognition. This paradigm, known as Heterogeneous Face Recognition (HFR), faces challenges such as model and modality discrepancies, leading to distortion and feature loss in generated images. To address these limitations, this paper introduces a novel latent diffusion-based model designed to generate high-quality visible face images from thermal inputs while preserving critical identity features. A multi-attribute classifier is incorporated to extract key facial attributes from visible images, mitigating feature loss during infrared-to-visible image restoration. Additionally, we propose the Self-attn Mamba module, which enhances global modeling of cross-modal features and significantly improves inference speed. Experimental results on two benchmark datasets demonstrate the superiority of our approach, achieving state-of-the-art performance in both image quality and identity preservation.
3.45Efficient and Robust Video Defense Framework against 3D-field Personalized Talking Face¶
2025/12/26 05:02 GTM
State-of-the-art 3D-field video-referenced Talking Face Generation (TFG) methods synthesize high-fidelity personalized talking-face videos in real time by modeling 3D geometry and appearance from reference portrait video. This capability raises significant privacy concerns regarding malicious misuse of personal portraits. However, no efficient defense framework exists to protect such videos against 3D-field TFG methods. While image-based defenses could apply per-frame 2D perturbations, they incur prohibitive computational costs, severe video quality degradation, failing to disrupt 3D information for video protection. To address this, we propose a novel and efficient video defense framework against 3D-field TFG methods, which protects portrait video by perturbing the 3D information acquisition process while maintain high-fidelity video quality. Specifically, our method introduces: (1) a similarity-guided parameter sharing mechanism for computational efficiency, and (2) a multi-scale dual-domain attention module to jointly optimize spatial-frequency perturbations. Extensive experiments demonstrate that our proposed framework exhibits strong defense capability and achieves a 47x acceleration over the fastest baseline while maintaining high fidelity. Moreover, it remains robust against scaling operations and state-of-the-art purification attacks, and the effectiveness of our design choices is further validated through ablation studies. Our project is available at https://
3.46FluencyVE: Marrying Temporal-Aware Mamba with Bypass Attention for Video Editing¶
2025/12/26 05:02 GTM
Large-scale text-to-image diffusion models have achieved unprecedented success in image generation and editing. However, extending this success to video editing remains challenging. Recent video editing efforts have adapted pretrained text-to-image models by adding temporal attention mechanisms to handle video tasks. Unfortunately, these methods continue to suffer from temporal inconsistency issues and high computational overheads. In this study, we propose FluencyVE, which is a simple yet effective one-shot video editing approach. FluencyVE integrates the linear time-series module, Mamba, into a video editing model based on pretrained Stable Diffusion models, replacing the temporal attention layer. This enables global frame-level attention while reducing the computational costs. In addition, we employ low-rank approximation matrices to replace the query and key weight matrices in the causal attention, and use a weighted averaging technique during training to update the attention scores. This approach significantly preserves the generative power of the text-to-image model while effectively reducing the computational burden. Experiments and analyses demonstrate promising results in editing various attributes, subjects, and locations in real-world videos.
3.47Granular-ball Guided Masking: Structure-aware Data Augmentation¶
2025/12/26 05:02 GTM
Deep learning models have achieved remarkable success in computer vision, but they still rely heavily on large-scale labeled data and tend to overfit when data are limited or distributions shift. Data augmentation, particularly mask-based information dropping, can enhance robustness by forcing models to explore complementary cues; however, existing approaches often lack structural awareness and may discard essential semantics. We propose Granular-ball Guided Masking (GBGM), a structure-aware augmentation strategy guided by Granular-ball Computing (GBC). GBGM adaptively preserves semantically rich, structurally important regions while suppressing redundant areas through a coarse-to-fine hierarchical masking process, producing augmentations that are both representative and discriminative. Extensive experiments on multiple benchmarks demonstrate consistent improvements in classification accuracy and masked image reconstruction, confirming the effectiveness and broad applicability of the proposed method. Simple and model-agnostic, it integrates seamlessly into CNNs and Vision Transformers and provides a new paradigm for structure-aware data augmentation.
3.48Learning from Next-Frame Prediction: Autoregressive Video Modeling Encodes Effective Representations¶
2025/12/26 05:02 GTM
Recent advances in pretraining general foundation models have significantly improved performance across diverse downstream tasks. While autoregressive (AR) generative models like GPT have revolutionized NLP, most visual generative pretraining methods still rely on BERT-style masked modeling, which often disregards the temporal information essential for video analysis. The few existing autoregressive visual pretraining methods suffer from issues such as inaccurate semantic localization and poor generation quality, leading to poor semantics. In this work, we propose NExT-Vid, a novel autoregressive visual generative pretraining framework that utilizes masked next-frame prediction to jointly model images and videos. NExT-Vid introduces a context-isolated autoregressive predictor to decouple semantic representation from target decoding, and a conditioned flow-matching decoder to enhance generation quality and diversity. Through context-isolated flow-matching pretraining, our approach achieves strong representations. Extensive experiments on large-scale pretrained models demonstrate that our proposed method consistently outperforms previous generative pretraining methods for visual representation learning via attentive probing in downstream classification.
3.49MVInverse: Feed-forward Multi-view Inverse Rendering in Seconds¶
2025/12/26 05:02 GTM
Multi-view inverse rendering aims to recover geometry, materials, and illumination consistently across multiple viewpoints. When applied to multi-view images, existing single-view approaches often ignore cross-view relationships, leading to inconsistent results. In contrast, multi-view optimization methods rely on slow differentiable rendering and per-scene refinement, making them computationally expensive and hard to scale. To address these limitations, we introduce a feed-forward multi-view inverse rendering framework that directly predicts spatially varying albedo, metallic, roughness, diffuse shading, and surface normals from sequences of RGB images. By alternating attention across views, our model captures both intra-view long-range lighting interactions and inter-view material consistency, enabling coherent scene-level reasoning within a single forward pass. Due to the scarcity of real-world training data, models trained on existing synthetic datasets often struggle to generalize to real-world scenes. To overcome this limitation, we propose a consistency-based finetuning strategy that leverages unlabeled real-world videos to enhance both multi-view coherence and robustness under in-the-wild conditions. Extensive experiments on benchmark datasets demonstrate that our method achieves state-of-the-art performance in terms of multi-view consistency, material and normal estimation quality, and generalization to real-world imagery.
3.50PUFM++: Point Cloud Upsampling via Enhanced Flow Matching¶
2025/12/26 05:02 GTM
Recent advances in generative modeling have demonstrated strong promise for high-quality point cloud upsampling. In this work, we present PUFM++, an enhanced flow-matching framework for reconstructing dense and accurate point clouds from sparse, noisy, and partial observations. PUFM++ improves flow matching along three key axes: (i) geometric fidelity, (ii) robustness to imperfect input, and (iii) consistency with downstream surface-based tasks. We introduce a two-stage flow-matching strategy that first learns a direct, straight-path flow from sparse inputs to dense targets, and then refines it using noise-perturbed samples to approximate the terminal marginal distribution better. To accelerate and stabilize inference, we propose a data-driven adaptive time scheduler that improves sampling efficiency based on interpolation behavior. We further impose on-manifold constraints during sampling to ensure that generated points remain aligned with the underlying surface. Finally, we incorporate a recurrent interface network~(RIN) to strengthen hierarchical feature interactions and boost reconstruction quality. Extensive experiments on synthetic benchmarks and real-world scans show that PUFM++ sets a new state of the art in point cloud upsampling, delivering superior visual fidelity and quantitative accuracy across a wide range of tasks. Code and pretrained models are publicly available at https://
3.51X-ray Insights Unleashed: Pioneering the Enhancement of Multi-Label Long-Tail Data¶
2025/12/26 05:02 GTM
Long-tailed pulmonary anomalies in chest radiography present formidable diagnostic challenges. Despite the recent strides in diffusion-based methods for enhancing the representation of tailed lesions, the paucity of rare lesion exemplars curtails the generative capabilities of these approaches, thereby leaving the diagnostic precision less than optimal. In this paper, we propose a novel data synthesis pipeline designed to augment tail lesions utilizing a copious supply of conventional normal X-rays. Specifically, a sufficient quantity of normal samples is amassed to train a diffusion model capable of generating normal X-ray images. This pre-trained diffusion model is subsequently utilized to inpaint the head lesions present in the diseased X-rays, thereby preserving the tail classes as augmented training data. Additionally, we propose the integration of a Large Language Model Knowledge Guidance (LKG) module alongside a Progressive Incremental Learning (PIL) strategy to stabilize the inpainting fine-tuning process. Comprehensive evaluations conducted on the public lung datasets MIMIC and CheXpert demonstrate that the proposed method sets a new benchmark in performance.
3.52XGrid-Mapping: Explicit Implicit Hybrid Grid Submaps for Efficient Incremental Neural LiDAR Mapping¶
2025/12/26 05:02 GTM
Large-scale incremental mapping is fundamental to the development of robust and reliable autonomous systems, as it underpins incremental environmental understanding with sequential inputs for navigation and decision-making. LiDAR is widely used for this purpose due to its accuracy and robustness. Recently, neural LiDAR mapping has shown impressive performance; however, most approaches rely on dense implicit representations and underutilize geometric structure, while existing voxel-guided methods struggle to achieve real-time performance. To address these challenges, we propose XGrid-Mapping, a hybrid grid framework that jointly exploits explicit and implicit representations for efficient neural LiDAR mapping. Specifically, the strategy combines a sparse grid, providing geometric priors and structural guidance, with an implicit dense grid that enriches scene representation. By coupling the VDB structure with a submap-based organization, the framework reduces computational load and enables efficient incremental mapping on a large scale. To mitigate discontinuities across submaps, we introduce a distillation-based overlap alignment strategy, in which preceding submaps supervise subsequent ones to ensure consistency in overlapping regions. To further enhance robustness and sampling efficiency, we incorporate a dynamic removal module. Extensive experiments show that our approach delivers superior mapping quality while overcoming the efficiency limitations of voxel-guided methods, thereby outperforming existing state-of-the-art mapping methods.
3.53SPOT!: Map-Guided LLM Agent for Unsupervised Multi-CCTV Dynamic Object Tracking¶
2025/12/26 05:02 GTM
CCTV-based vehicle tracking systems face structural limitations in continuously connecting the trajectories of the same vehicle across multiple camera environments. In particular, blind spots occur due to the intervals between CCTVs and limited Fields of View (FOV), which leads to object ID switching and trajectory loss, thereby reducing the reliability of real-time path prediction. This paper proposes SPOT (Spatial Prediction Over Trajectories), a map-guided LLM agent capable of tracking vehicles even in blind spots of multi-CCTV environments without prior training. The proposed method represents road structures (Waypoints) and CCTV placement information as documents based on 2D spatial coordinates and organizes them through chunking techniques to enable real-time querying and inference. Furthermore, it transforms the vehicle’s position into the actual world coordinate system using the relative position and FOV information of objects observed in CCTV images. By combining map spatial information with the vehicle’s moving direction, speed, and driving patterns, a beam search is performed at the intersection level to derive candidate CCTV locations where the vehicle is most likely to enter after the blind spot. Experimental results based on the CARLA simulator in a virtual city environment confirmed that the proposed method accurately predicts the next appearing CCTV even in blind spot sections, maintaining continuous vehicle trajectories more effectively than existing techniques.
3.54Generalization of Diffusion Models Arises with a Balanced Representation Space¶
2025/12/26 05:02 GTM
Diffusion models excel at generating high-quality, diverse samples, yet they risk memorizing training data when overfit to the training objective. We analyze the distinctions between memorization and generalization in diffusion models through the lens of representation learning. By investigating a two-layer ReLU denoising autoencoder (DAE), we prove that (i) memorization corresponds to the model storing raw training samples in the learned weights for encoding and decoding, yielding localized “spiky” representations, whereas (ii) generalization arises when the model captures local data statistics, producing “balanced” representations. Furthermore, we validate these theoretical findings on real-world unconditional and text-to-image diffusion models, demonstrating that the same representation structures emerge in deep generative models with significant practical implications. Building on these insights, we propose a representation-based method for detecting memorization and a training-free editing technique that allows precise control via representation steering. Together, our results highlight that learning good representations is central to novel and meaningful generative modeling.
3.55Beyond Artifacts: Real-Centric Envelope Modeling for Reliable AI-Generated Image Detection¶
2025/12/26 05:02 GTM
The rapid progress of generative models has intensified the need for reliable and robust detection under real-world conditions. However, existing detectors often overfit to generator-specific artifacts and remain highly sensitive to real-world degradations. As generative architectures evolve and images undergo multi-round cross-platform sharing and post-processing (chain degradations), these artifact cues become obsolete and harder to detect. To address this, we propose Real-centric Envelope Modeling (REM), a new paradigm that shifts detection from learning generator artifacts to modeling the robust distribution of real images. REM introduces feature-level perturbations in self-reconstruction to generate near-real samples, and employs an envelope estimator with cross-domain consistency to learn a boundary enclosing the real image manifold. We further build RealChain, a comprehensive benchmark covering both open-source and commercial generators with simulated real-world degradation. Across eight benchmark evaluations, REM achieves an average improvement of 7.5% over state-of-the-art methods, and notably maintains exceptional generalization on the severely degraded RealChain benchmark, establishing a solid foundation for synthetic image detection under real-world conditions. The code and the RealChain benchmark will be made publicly available upon acceptance of the paper.
3.56Reasoning-Driven Amodal Completion: Collaborative Agents and Perceptual Evaluation¶
2025/12/26 05:02 GTM
Amodal completion, the task of inferring invisible object parts, faces significant challenges in maintaining semantic consistency and structural integrity. Prior progressive approaches are inherently limited by inference instability and error accumulation. To tackle these limitations, we present a Collaborative Multi-Agent Reasoning Framework that explicitly decouples Semantic Planning from Visual Synthesis. By employing specialized agents for upfront reasoning, our method generates a structured, explicit plan before pixel generation, enabling visually and semantically coherent single-pass synthesis. We integrate this framework with two critical mechanisms: (1) a self-correcting Verification Agent that employs Chain-of-Thought reasoning to rectify visible region segmentation and identify residual occluders strictly within the Semantic Planning phase, and (2) a Diverse Hypothesis Generator that addresses the ambiguity of invisible regions by offering diverse, plausible semantic interpretations, surpassing the limited pixel-level variations of standard random seed sampling. Furthermore, addressing the limitations of traditional metrics in assessing inferred invisible content, we introduce the MAC-Score (MLLM Amodal Completion Score), a novel human-aligned evaluation metric. Validated against human judgment and ground truth, these metrics establish a robust standard for assessing structural completeness and semantic consistency with visible context. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods across multiple datasets. Our project is available at: https://
3.57Transductive Visual Programming: Evolving Tool Libraries from Experience for Spatial Reasoning¶
2025/12/26 05:02 GTM
Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://
3.58Quantile Rendering: Efficiently Embedding High-dimensional Feature on 3D Gaussian Splatting¶
2025/12/26 05:02 GTM
Recent advancements in computer vision have successfully extended Open-vocabulary segmentation (OVS) to the 3D domain by leveraging 3D Gaussian Splatting (3D-GS). Despite this progress, efficiently rendering the high-dimensional features required for open-vocabulary queries poses a significant challenge. Existing methods employ codebooks or feature compression, causing information loss, thereby degrading segmentation quality. To address this limitation, we introduce Quantile Rendering (Q-Render), a novel rendering strategy for 3D Gaussians that efficiently handles high-dimensional features while maintaining high fidelity. Unlike conventional volume rendering, which densely samples all 3D Gaussians intersecting each ray, Q-Render sparsely samples only those with dominant influence along the ray. By integrating Q-Render into a generalizable 3D neural network, we also propose Gaussian Splatting Network (GS-Net), which predicts Gaussian features in a generalizable manner. Extensive experiments on ScanNet and LeRF demonstrate that our framework outperforms state-of-the-art methods, while enabling real-time rendering with an approximate ~43.7x speedup on 512-D feature maps. Code will be made publicly available.
3.59Self-supervised Multiplex Consensus Mamba for General Image Fusion¶
2025/12/26 05:02 GTM
Image fusion integrates complementary information from different modalities to generate high-quality fused images, thereby enhancing downstream tasks such as object detection and semantic segmentation. Unlike task-specific techniques that primarily focus on consolidating inter-modal information, general image fusion needs to address a wide range of tasks while improving performance without increasing complexity. To achieve this, we propose SMC-Mamba, a Self-supervised Multiplex Consensus Mamba framework for general image fusion. Specifically, the Modality-Agnostic Feature Enhancement (MAFE) module preserves fine details through adaptive gating and enhances global representations via spatial-channel and frequency-rotational scanning. The Multiplex Consensus Cross-modal Mamba (MCCM) module enables dynamic collaboration among experts, reaching a consensus to efficiently integrate complementary information from multiple modalities. The cross-modal scanning within MCCM further strengthens feature interactions across modalities, facilitating seamless integration of critical information from both sources. Additionally, we introduce a Bi-level Self-supervised Contrastive Learning Loss (BSCL), which preserves high-frequency information without increasing computational overhead while simultaneously boosting performance in downstream tasks. Extensive experiments demonstrate that our approach outperforms state-of-the-art (SOTA) image fusion algorithms in tasks such as infrared-visible, medical, multi-focus, and multi-exposure fusion, as well as downstream visual tasks.
3.60PanoGrounder: Bridging 2D and 3D with Panoramic Scene Representations for VLM-based 3D Visual Grounding¶
2025/12/26 05:02 GTM
3D Visual Grounding (3DVG) is a critical bridge from vision-language perception to robotics, requiring both language understanding and 3D scene reasoning. Traditional supervised models leverage explicit 3D geometry but exhibit limited generalization, owing to the scarcity of 3D vision-language datasets and the limited reasoning capabilities compared to modern vision-language models (VLMs). We propose PanoGrounder, a generalizable 3DVG framework that couples multi-modal panoramic representation with pretrained 2D VLMs for strong vision-language reasoning. Panoramic renderings, augmented with 3D semantic and geometric features, serve as an intermediate representation between 2D and 3D, and offer two major benefits: (i) they can be directly fed to VLMs with minimal adaptation and (ii) they retain long-range object-to-object relations thanks to their 360-degree field of view. We devise a three-stage pipeline that places a compact set of panoramic viewpoints considering the scene layout and geometry, grounds a text query on each panoramic rendering with a VLM, and fuses per-view predictions into a single 3D bounding box via lifting. Our approach achieves state-of-the-art results on ScanRefer and Nr3D, and demonstrates superior generalization to unseen 3D datasets and text rephrasings.
3.61Benchmarking and Enhancing VLM for Compressed Image Understanding¶
2025/12/26 05:02 GTM
With the rapid development of Vision-Language Models (VLMs) and the growing demand for their applications, efficient compression of the image inputs has become increasingly important. Existing VLMs predominantly digest and understand high-bitrate compressed images, while their ability to interpret low-bitrate compressed images has yet to be explored by far. In this paper, we introduce the first comprehensive benchmark to evaluate the ability of VLM against compressed images, varying existing widely used image codecs and diverse set of tasks, encompassing over one million compressed images in our benchmark. Next, we analyse the source of performance gap, by categorising the gap from a) the information loss during compression and b) generalisation failure of VLM. We visualize these gaps with concrete examples and identify that for compressed images, only the generalization gap can be mitigated. Finally, we propose a universal VLM adaptor to enhance model performance on images compressed by existing codecs. Consequently, we demonstrate that a single adaptor can improve VLM performance across images with varying codecs and bitrates by 10%-30%. We believe that our benchmark and enhancement method provide valuable insights and contribute toward bridging the gap between VLMs and compressed images.
3.62DGSAN: Dual-Graph Spatiotemporal Attention Network for Pulmonary Nodule Malignancy Prediction¶
2025/12/26 05:02 GTM
Lung cancer continues to be the leading cause of cancer-related deaths globally. Early detection and diagnosis of pulmonary nodules are essential for improving patient survival rates. Although previous research has integrated multimodal and multi-temporal information, outperforming single modality and single time point, the fusion methods are limited to inefficient vector concatenation and simple mutual attention, highlighting the need for more effective multimodal information fusion. To address these challenges, we introduce a Dual-Graph Spatiotemporal Attention Network, which leverages temporal variations and multimodal data to enhance the accuracy of predictions. Our methodology involves developing a Global-Local Feature Encoder to better capture the local, global, and fused characteristics of pulmonary nodules. Additionally, a Dual-Graph Construction method organizes multimodal features into inter-modal and intra-modal graphs. Furthermore, a Hierarchical Cross-Modal Graph Fusion Module is introduced to refine feature integration. We also compiled a novel multimodal dataset named the NLST-cmst dataset as a comprehensive source of support for related research. Our extensive experiments, conducted on both the NLST-cmst and curated CSTL-derived datasets, demonstrate that our DGSAN significantly outperforms state-of-the-art methods in classifying pulmonary nodules with exceptional computational efficiency.
3.63Beyond Weight Adaptation: Feature-Space Domain Injection for Cross-Modal Ship Re-Identification¶
2025/12/26 05:02 GTM
Cross-Modality Ship Re-Identification (CMS Re-ID) is critical for achieving all-day and all-weather maritime target tracking, yet it is fundamentally challenged by significant modality discrepancies. Mainstream solutions typically rely on explicit modality alignment strategies; however, this paradigm heavily depends on constructing large-scale paired datasets for pre-training. To address this, grounded in the Platonic Representation Hypothesis, we explore the potential of Vision Foundation Models (VFMs) in bridging modality gaps. Recognizing the suboptimal performance of existing generic Parameter-Efficient Fine-Tuning (PEFT) methods that operate within the weight space, particularly on limited-capacity models, we shift the optimization perspective to the feature space and propose a novel PEFT strategy termed Domain Representation Injection (DRI). Specifically, while keeping the VFM fully frozen to maximize the preservation of general knowledge, we design a lightweight, learnable Offset Encoder to extract domain-specific representations rich in modality and identity attributes from raw inputs. Guided by the contextual information of intermediate features at different layers, a Modulator adaptively transforms these representations. Subsequently, they are injected into the intermediate layers via additive fusion, dynamically reshaping the feature distribution to adapt to the downstream task without altering the VFM’s pre-trained weights. Extensive experimental results demonstrate the superiority of our method, achieving State-of-the-Art (SOTA) performance with minimal trainable parameters. For instance, on the HOSS-ReID dataset, we attain 57.9% and 60.5% mAP using only 1.54M and 7.05M parameters, respectively. The code is available at https://
3.64NeRV360: Neural Representation for 360-Degree Videos with a Viewport Decoder¶
2025/12/26 05:02 GTM
Implicit neural representations for videos (NeRV) have shown strong potential for video compression. However, applying NeRV to high-resolution 360-degree videos causes high memory usage and slow decoding, making real-time applications impractical. We propose NeRV360, an end-to-end framework that decodes only the user-selected viewport instead of reconstructing the entire panoramic frame. Unlike conventional pipelines, NeRV360 integrates viewport extraction into decoding and introduces a spatial-temporal affine transform module for conditional decoding based on viewpoint and time. Experiments on 6K-resolution videos show that NeRV360 achieves a 7-fold reduction in memory consumption and a 2.5-fold increase in decoding speed compared to HNeRV, a representative prior work, while delivering better image quality in terms of objective metrics.
3.65Lightweight framework for underground pipeline recognition and spatial localization based on multi-view 2D GPR images¶
2025/12/26 05:02 GTM
To address the issues of weak correlation between multi-view features, low recognition accuracy of small-scale targets, and insufficient robustness in complex scenarios in underground pipeline detection using 3D GPR, this paper proposes a 3D pipeline intelligent detection framework. First, based on a B/C/D-Scan three-view joint analysis strategy, a three-dimensional pipeline three-view feature evaluation method is established by cross-validating forward simulation results obtained using FDTD methods with actual measurement data. Second, the DCO-YOLO framework is proposed, which integrates DySample, CGLU, and OutlookAttention cross-dimensional correlation mechanisms into the original YOLOv11 algorithm, significantly improving the small-scale pipeline edge feature extraction capability. Furthermore, a 3D-DIoU spatial feature matching algorithm is proposed, which integrates three-dimensional geometric constraints and center distance penalty terms to achieve automated association of multi-view annotations. The three-view fusion strategy resolves inherent ambiguities in single-view detection. Experiments based on real urban underground pipeline data show that the proposed method achieves accuracy, recall, and mean average precision of 96.2%, 93.3%, and 96.7%, respectively, in complex multi-pipeline scenarios, which are 2.0%, 2.1%, and 0.9% higher than the baseline model. Ablation experiments validated the synergistic optimization effect of the dynamic feature enhancement module and Grad-CAM++ heatmap visualization demonstrated that the improved model significantly enhanced its ability to focus on pipeline geometric features. This study integrates deep learning optimization strategies with the physical characteristics of 3D GPR, offering an efficient and reliable novel technical framework for the intelligent recognition and localization of underground pipelines.
3.66ALIVE: An Avatar-Lecture Interactive Video Engine with Content-Aware Retrieval for Real-Time Interaction¶
2025/12/26 05:02 GTM
Traditional lecture videos offer flexibility but lack mechanisms for real-time clarification, forcing learners to search externally when confusion arises. Recent advances in large language models and neural avatars provide new opportunities for interactive learning, yet existing systems typically lack lecture awareness, rely on cloud-based services, or fail to integrate retrieval and avatar-delivered explanations in a unified, privacy-preserving pipeline. We present ALIVE, an Avatar-Lecture Interactive Video Engine that transforms passive lecture viewing into a dynamic, real-time learning experience. ALIVE operates fully on local hardware and integrates (1) Avatar-delivered lecture generated through ASR transcription, LLM refinement, and neural talking-head synthesis; (2) A content-aware retrieval mechanism that combines semantic similarity with timestamp alignment to surface contextually relevant lecture segments; and (3) Real-time multimodal interaction, enabling students to pause the lecture, ask questions through text or voice, and receive grounded explanations either as text or as avatar-delivered responses. To maintain responsiveness, ALIVE employs lightweight embedding models, FAISS-based retrieval, and segmented avatar synthesis with progressive preloading. We demonstrate the system on a complete medical imaging course, evaluate its retrieval accuracy, latency characteristics, and user experience, and show that ALIVE provides accurate, content-aware, and engaging real-time support. ALIVE illustrates how multimodal AI-when combined with content-aware retrieval and local deployment-can significantly enhance the pedagogical value of recorded lectures, offering an extensible pathway toward next-generation interactive learning environments.
3.67Input-Adaptive Visual Preprocessing for Efficient Fast Vision-Language Model Inference¶
2025/12/26 05:02 GTM
Vision-Language Models (VLMs) have demonstrated strong performance on multimodal reasoning tasks, but their deployment remains challenging due to high inference latency and computational cost, particularly when processing high-resolution visual inputs. While recent architectures such as FastVLM improve efficiency through optimized vision encoders, existing pipelines still rely on static visual preprocessing, leading to redundant computation for visually simple inputs. In this work, we propose an adaptive visual preprocessing method that dynamically adjusts input resolution and spatial coverage based on image content characteristics. The proposed approach combines content-aware image analysis, adaptive resolution selection, and content-aware cropping to reduce visual redundancy prior to vision encoding. Importantly, the method is integrated with FastVLM without modifying its architecture or requiring retraining. We evaluate the proposed method on a subset of the DocVQA dataset in an inference-only setting, focusing on efficiency-oriented metrics. Experimental results show that adaptive preprocessing reduces per-image inference time by over 50%, lowers mean full generation time, and achieves a consistent reduction of more than 55% in visual token count compared to the baseline pipeline. These findings demonstrate that input-aware preprocessing is an effective and lightweight strategy for improving deployment-oriented efficiency of vision-language models. To facilitate reproducibility, our implementation is provided as a fork of the FastVLM repository, incorporating the files for the proposed method, and is available at https://
3.68CHAMMI-75: pre-training multi-channel models with heterogeneous microscopy images¶
2025/12/26 05:02 GTM
Quantifying cell morphology using images and machine learning has proven to be a powerful tool to study the response of cells to treatments. However, models used to quantify cellular morphology are typically trained with a single microscopy imaging type. This results in specialized models that cannot be reused across biological studies because the technical specifications do not match (e.g., different number of channels), or because the target experimental conditions are out of distribution. Here, we present CHAMMI-75, an open access dataset of heterogeneous, multi-channel microscopy images from 75 diverse biological studies. We curated this resource from publicly available sources to investigate cellular morphology models that are channel-adaptive and can process any microscopy image type. Our experiments show that training with CHAMMI-75 can improve performance in multi-channel bioimaging tasks primarily because of its high diversity in microscopy modalities. This work paves the way to create the next generation of cellular morphology models for biological studies.
3.69Learning to Sense for Driving: Joint Optics-Sensor-Model Co-Design for Semantic Segmentation¶
2025/12/26 05:02 GTM
Traditional autonomous driving pipelines decouple camera design from downstream perception, relying on fixed optics and handcrafted ISPs that prioritize human viewable imagery rather than machine semantics. This separation discards information during demosaicing, denoising, or quantization, while forcing models to adapt to sensor artifacts. We present a task-driven co-design framework that unifies optics, sensor modeling, and lightweight semantic segmentation networks into a single end-to-end RAW-to-task pipeline. Building on DeepLens[19], our system integrates realistic cellphone-scale lens models, learnable color filter arrays, Poisson-Gaussian noise processes, and quantization, all optimized directly for segmentation objectives. Evaluations on KITTI-360 show consistent mIoU improvements over fixed pipelines, with optics modeling and CFA learning providing the largest gains, especially for thin or low-light-sensitive classes. Importantly, these robustness gains are achieved with a compact ~1M-parameter model running at ~28 FPS, demonstrating edge deployability. Visual and quantitative analyses further highlight how co-designed sensors adapt acquisition to semantic structure, sharpening boundaries and maintaining accuracy under blur, noise, and low bit-depth. Together, these findings establish full-stack co-optimization of optics, sensors, and networks as a principled path toward efficient, reliable, and deployable perception in autonomous systems.
3.70NULLBUS: Multimodal Mixed-Supervision for Breast Ultrasound Segmentation via Nullable Global-Local Prompts¶
2025/12/26 05:02 GTM
Breast ultrasound (BUS) segmentation provides lesion boundaries essential for computer-aided diagnosis and treatment planning. While promptable methods can improve segmentation performance and tumor delineation when text or spatial prompts are available, many public BUS datasets lack reliable metadata or reports, constraining training to small multimodal subsets and reducing robustness. We propose NullBUS, a multimodal mixed-supervision framework that learns from images with and without prompts in a single model. To handle missing text, we introduce nullable prompts, implemented as learnable null embeddings with presence masks, enabling fallback to image-only evidence when metadata are absent and the use of text when present. Evaluated on a unified pool of three public BUS datasets, NullBUS achieves a mean IoU of 0.8568 and a mean Dice of 0.9103, demonstrating state-of-the-art performance under mixed prompt availability.
3.71OccuFly: A 3D Vision Benchmark for Semantic Scene Completion from the Aerial Perspective¶
2025/12/26 05:02 GTM
Semantic Scene Completion (SSC) is crucial for 3D perception in mobile robotics, as it enables holistic scene understanding by jointly estimating dense volumetric occupancy and per-voxel semantics. Although SSC has been widely studied in terrestrial domains such as autonomous driving, aerial scenarios like autonomous flying remain largely unexplored, thereby limiting progress on downstream applications. Furthermore, LiDAR sensors represent the primary modality for SSC data generation, which poses challenges for most uncrewed aerial vehicles (UAVs) due to flight regulations, mass and energy constraints, and the sparsity of LiDAR-based point clouds from elevated viewpoints. To address these limitations, we introduce OccuFly, the first real-world, camera-based aerial SSC benchmark, captured at altitudes of 50m, 40m, and 30m during spring, summer, fall, and winter. OccuFly covers urban, industrial, and rural scenarios, provides 22 semantic classes, and the data format adheres to established conventions to facilitate seamless integration with existing research. Crucially, we propose a LiDAR-free data generation framework based on camera modality, which is ubiquitous on modern UAVs. By utilizing traditional 3D reconstruction, our framework automates label transfer by lifting a subset of annotated 2D masks into the reconstructed point cloud, thereby substantially minimizing manual 3D annotation effort. Finally, we benchmark the state-of-the-art on OccuFly and highlight challenges specific to elevated viewpoints, yielding a comprehensive vision benchmark for holistic aerial 3D scene understanding.
3.72TrashDet: Iterative Neural Architecture Search for Efficient Waste Detection¶
2025/12/26 05:02 GTM
This paper addresses trash detection on the TACO dataset under strict TinyML constraints using an iterative hardware-aware neural architecture search framework targeting edge and IoT devices. The proposed method constructs a Once-for-All-style ResDets supernet and performs iterative evolutionary search that alternates between backbone and neck/head optimization, supported by a population passthrough mechanism and an accuracy predictor to reduce search cost and improve stability. This framework yields a family of deployment-ready detectors, termed TrashDets. On a five-class TACO subset (paper, plastic, bottle, can, cigarette), the strongest variant, TrashDet-l, achieves 19.5 mAP50 with 30.5M parameters, improving accuracy by up to 3.6 mAP50 over prior detectors while using substantially fewer parameters. The TrashDet family spans 1.2M to 30.5M parameters with mAP50 values between 11.4 and 19.5, providing scalable detector options for diverse TinyML deployment budgets on resource-constrained hardware. On the MAX78002 microcontroller with the TrashNet dataset, two specialized variants, TrashDet-ResNet and TrashDet-MBNet, jointly dominate the ai87-fpndetector baseline, with TrashDet-ResNet achieving 7525~J energy per inference at 26.7 ms latency and 37.45 FPS, and TrashDet-MBNet improving mAP50 by 10.2%; together they reduce energy consumption by up to 88%, latency by up to 78%, and average power by up to 53% compared to existing TinyML detectors.
3.73VL4Gaze: Unleashing Vision-Language Models for Gaze Following¶
2025/12/26 05:02 GTM
Human gaze provides essential cues for interpreting attention, intention, and social interaction in visual scenes, yet gaze understanding remains largely unexplored in current vision-language models (VLMs). While recent VLMs achieve strong scene-level reasoning across a range of visual tasks, there exists no benchmark that systematically evaluates or trains them for gaze interpretation, leaving open the question of whether gaze understanding can emerge from general-purpose vision-language pre-training. To address this gap, we introduce VL4Gaze, the first large-scale benchmark designed to investigate, evaluate, and unlock the potential of VLMs for gaze understanding. VL4Gaze contains 489K automatically generated question-answer pairs across 124K images and formulates gaze understanding as a unified VQA problem through four complementary tasks: (1) gaze object description, (2) gaze direction description, (3) gaze point location, and (4) ambiguous question recognition. We comprehensively evaluate both commercial and open-source VLMs under in-context learning and fine-tuning settings. The results show that even large-scale VLMs struggle to reliably infer gaze semantics and spatial localization without task-specific supervision. In contrast, training on VL4Gaze brings substantial and consistent improvements across all tasks, highlighting the importance of targeted multi-task supervision for developing gaze understanding capabilities in VLMs. We will release the dataset and code to support further research and development in this direction.
3.74HyDRA: Hierarchical and Dynamic Rank Adaptation for Mobile Vision Language Model¶
2025/12/26 05:02 GTM
Vision Language Models (VLMs) have undergone significant advancements, particularly with the emergence of mobile-oriented VLMs, which offer a wide range of application scenarios. However, the substantial computational requirements for training these models present a significant obstacle to their practical application. To address this issue, Low-Rank Adaptation (LoRA) has been proposed. Nevertheless, the standard LoRA with a fixed rank lacks sufficient capability for training mobile VLMs that process both text and image modalities. In this work, we introduce HyDRA, a parameter-efficient fine-tuning framework designed to implement hierarchical and dynamic rank scheduling for mobile VLMs. This framework incorporates two essential optimization strategies: (1) hierarchical optimization, which involves a coarse-grained approach that assigns different ranks to various layers, as well as a fine-grained method that adjusts ranks within individual layers, and (2) dynamic adjustment, which employs an end-to-end automatic optimization using a lightweight performance model to determine and adjust ranks during the fine-tuning process. Comprehensive experiments conducted on popular benchmarks demonstrate that HyDRA consistently outperforms the baseline, achieving a 4.7% improvement across various model sizes without increasing the number of trainable parameters. In some tasks, it even surpasses full-parameter fine-tuning.
3.75MaskOpt: A Large-Scale Mask Optimization Dataset to Advance AI in Integrated Circuit Manufacturing¶
2025/12/26 05:02 GTM
As integrated circuit (IC) dimensions shrink below the lithographic wavelength, optical lithography faces growing challenges from diffraction and process variability. Model-based optical proximity correction (OPC) and inverse lithography technique (ILT) remain indispensable but computationally expensive, requiring repeated simulations that limit scalability. Although deep learning has been applied to mask optimization, existing datasets often rely on synthetic layouts, disregard standard-cell hierarchy, and neglect the surrounding contexts around the mask optimization targets, thereby constraining their applicability to practical mask optimization. To advance deep learning for cell- and context-aware mask optimization, we present MaskOpt, a large-scale benchmark dataset constructed from real IC designs at the 45 node. MaskOpt includes 104,714 metal-layer tiles and 121,952 via-layer tiles. Each tile is clipped at a standard-cell placement to preserve cell information, exploiting repeated logic gate occurrences. Different context window sizes are supported in MaskOpt to capture the influence of neighboring shapes from optical proximity effects. We evaluate state-of-the-art deep learning models for IC mask optimization to build up benchmarks, and the evaluation results expose distinct trade-offs across baseline models. Further context size analysis and input ablation studies confirm the importance of both surrounding geometries and cell-aware inputs in achieving accurate mask generation.
3.76Flow Gym¶
2025/12/26 05:02 GTM
Flow Gym is a toolkit for research and deployment of flow-field quantification methods inspired by OpenAI Gym and Stable-Baselines3. It uses SynthPix as synthetic image generation engine and provides a unified interface for the testing, deployment and training of (learning-based) algorithms for flow-field quantification from a number of consecutive images of tracer particles. It also contains a growing number of integrations of existing algorithms and stable (re-)implementations in JAX.
3.77MegaRAG: Multimodal Knowledge Graph-Based Retrieval Augmented Generation¶
2025/12/26 05:02 GTM
Retrieval-augmented generation (RAG) enables large language models (LLMs) to dynamically access external information, which is powerful for answering questions over previously unseen documents. Nonetheless, they struggle with high-level conceptual understanding and holistic comprehension due to limited context windows, which constrain their ability to perform deep reasoning over long-form, domain-specific content such as full-length books. To solve this problem, knowledge graphs (KGs) have been leveraged to provide entity-centric structure and hierarchical summaries, offering more structured support for reasoning. However, existing KG-based RAG solutions remain restricted to text-only inputs and fail to leverage the complementary insights provided by other modalities such as vision. On the other hand, reasoning from visual documents requires textual, visual, and spatial cues into structured, hierarchical concepts. To address this issue, we introduce a multimodal knowledge graph-based RAG that enables cross-modal reasoning for better content understanding. Our method incorporates visual cues into the construction of knowledge graphs, the retrieval phase, and the answer generation process. Experimental results across both global and fine-grained question answering tasks show that our approach consistently outperforms existing RAG-based approaches on both textual and multimodal corpora.
3.78Optimizing Decoding Paths in Masked Diffusion Models by Quantifying Uncertainty¶
2025/12/26 05:02 GTM
Masked Diffusion Models (MDMs) offer flexible, non-autoregressive generation, but this freedom introduces a challenge: final output quality is highly sensitive to the decoding order. We are the first to formalize this issue, attributing the variability in output quality to the cumulative predictive uncertainty along a generative path. To quantify this uncertainty, we introduce Denoising Entropy, a computable metric that serves as an internal signal for evaluating generative process. Leveraging this metric, we propose two algorithms designed to optimize the decoding path: a post-hoc selection method and a real-time guidance strategy. Experiments demonstrate that our entropy-guided methods significantly improve generation quality, consistently boosting accuracy on challenging reasoning, planning, and code benchmarks. Our work establishes Denoising Entropy as a principled tool for understanding and controlling generation, effectively turning the uncertainty in MDMs from a liability into a key advantage for discovering high-quality solutions.
3.79C2LLM Technical Report: A New Frontier in Code Retrieval via Adaptive Cross-Attention Pooling¶
2025/12/26 05:02 GTM
We present C2LLM - Contrastive Code Large Language Models, a family of code embedding models in both 0.5B and 7B sizes. Building upon Qwen-2.5-Coder backbones, C2LLM adopts a Pooling by Multihead Attention (PMA) module for generating sequence embedding from token embeddings, effectively 1) utilizing the LLM’s causal representations acquired during pretraining, while also 2) being able to aggregate information from all tokens in the sequence, breaking the information bottleneck in EOS-based sequence embeddings, and 3) supporting flexible adaptation of embedding dimension, serving as an alternative to MRL. Trained on three million publicly available data, C2LLM models set new records on MTEB-Code among models of similar sizes, with C2LLM-7B ranking 1st on the overall leaderboard.
3.80Your Reasoning Benchmark May Not Test Reasoning: Revealing Perception Bottleneck in Abstract Reasoning Benchmarks¶
2025/12/26 05:02 GTM
Reasoning benchmarks such as the Abstraction and Reasoning Corpus (ARC) and ARC-AGI are widely used to assess progress in artificial intelligence and are often interpreted as probes of core, so-called ``fluid’’ reasoning abilities. Despite their apparent simplicity for humans, these tasks remain challenging for frontier vision-language models (VLMs), a gap commonly attributed to deficiencies in machine reasoning. We challenge this interpretation and hypothesize that the gap arises primarily from limitations in visual perception rather than from shortcomings in inductive reasoning. To verify this hypothesis, we introduce a two-stage experimental pipeline that explicitly separates perception and reasoning. In the perception stage, each image is independently converted into a natural-language description, while in the reasoning stage a model induces and applies rules using these descriptions. This design prevents leakage of cross-image inductive signals and isolates reasoning from perception bottlenecks. Across three ARC-style datasets, Mini-ARC, ACRE, and Bongard-LOGO, we show that the perception capability is the dominant factor underlying the observed performance gap by comparing the two-stage pipeline with against standard end-to-end one-stage evaluation. Manual inspection of reasoning traces in the VLM outputs further reveals that approximately 80 percent of model failures stem from perception errors. Together, these results demonstrate that ARC-style benchmarks conflate perceptual and reasoning challenges and that observed performance gaps may overstate deficiencies in machine reasoning. Our findings underscore the need for evaluation protocols that disentangle perception from reasoning when assessing progress in machine intelligence.
3.81Measuring all the noises of LLM Evals¶
2025/12/26 05:02 GTM
Separating signal from noise is central to experimental science. Applying well-established statistical method effectively to LLM evals requires consideration of their unique noise characteristics. We clearly define and measure three types of noise: prediction noise from generating different answers on a given question, data noise from sampling questions, and their combined total noise following the law of total variance. To emphasize relative comparisons and gain statistical power, we propose the all-pairs paired method, which applies the paired analysis to all pairs of LLMs and measures all the noise components based on millions of question-level predictions across many evals and settings. These measurements revealed clear patterns. First, each eval exhibits a characteristic and highly predictable total noise level across all model pairs. Second, paired prediction noise typically exceeds paired data noise, which means reducing prediction noise by averaging can significantly increase statistical power. These findings enable practitioners to assess significance without custom testing and to detect much smaller effects in controlled experiments.
3.82Parallel Token Prediction for Language Models¶
2025/12/26 05:02 GTM
We propose Parallel Token Prediction (PTP), a universal framework for parallel sequence generation in language models. PTP jointly predicts multiple dependent tokens in a single transformer call by incorporating the sampling procedure into the model. This reduces the latency bottleneck of autoregressive decoding, and avoids the restrictive independence assumptions common in existing multi-token prediction methods. We prove that PTP can represent arbitrary autoregressive sequence distributions. PTP is trained either by distilling an existing model or through inverse autoregressive training without a teacher. Experimentally, we achieve state-of-the-art speculative decoding performance on Vicuna-7B by accepting over four tokens per step on Spec-Bench. The universality of our framework indicates that parallel generation of long sequences is feasible without loss of modeling power.
3.83SMART SLM: Structured Memory and Reasoning Transformer, A Small Language Model for Accurate Document Assistance¶
2025/12/26 05:02 GTM
The user of Engineering Manuals (EM) finds it difficult to read EM s because they are long, have a dense format which includes written documents, step by step procedures, and standard parameter lists for engineering equipment. Off the shelf transformers, especially compact ones, treat this material as a flat stream of tokens. This approach leads to confident but incorrect numeric answers and forces the models to memorize separate facts inefficiently. SMART (Structured Memory and Reasoning Transformer) offers a different and practical solution to the above problem. SMART structures its processing by using a hierarchical approach, and is based upon three main job categories (1) A syntax-aware Fact Extractor (Grammarian) Tree LSTM which extracts facts as subject relation object relations from EM sentences (2) A compact indexed memory MANN (Memory Augmented Neural Network) that indexes these Rational Subject Relation Objects as 384 dimensional vectors that are associated with the source of the information, and (3) A 6 layer Transformer that learns to fuse the previously retrieved facts into its generated response. The entire SMART model utilizes 45.51M parameters, which is 64% less than GPT-2 (124M) and 69% less than BERT (133M), and it achieves a 21.3% higher accuracy than GPT-2, indicating that SMART fits the data better with the least amount of processing requirements. SMART employs dual modes of inference an indexed fast path for known documents (sub-second answer times) and an indexed dynamic path assisted by RAGs for new uploads (FAISS Top 20 results with memory severed at 64 slots). In real world deployment, this framework leads to more well supported results with reduced hallucinations than comparable small transformer models.
3.84ReaSeq: Unleashing World Knowledge via Reasoning for Sequential Modeling¶
2025/12/26 05:02 GTM
Industrial recommender systems face two fundamental limitations under the log-driven paradigm: (1) knowledge poverty in ID-based item representations that causes brittle interest modeling under data sparsity, and (2) systemic blindness to beyond-log user interests that constrains model performance within platform boundaries. These limitations stem from an over-reliance on shallow interaction statistics and close-looped feedback while neglecting the rich world knowledge about product semantics and cross-domain behavioral patterns that Large Language Models have learned from vast corpora. To address these challenges, we introduce ReaSeq, a reasoning-enhanced framework that leverages world knowledge in Large Language Models to address both limitations through explicit and implicit reasoning. Specifically, ReaSeq employs explicit Chain-of-Thought reasoning via multi-agent collaboration to distill structured product knowledge into semantically enriched item representations, and latent reasoning via Diffusion Large Language Models to infer plausible beyond-log behaviors. Deployed on Taobao’s ranking system serving hundreds of millions of users, ReaSeq achieves substantial gains: >6.0% in IPV and CTR, >2.9% in Orders, and >2.5% in GMV, validating the effectiveness of world-knowledge-enhanced reasoning over purely log-driven approaches.
3.85SpidR-Adapt: A Universal Speech Representation Model for Few-Shot Adaptation¶
2025/12/26 05:02 GTM
Human infants, with only a few hundred hours of speech exposure, acquire basic units of new languages, highlighting a striking efficiency gap compared to the data-hungry self-supervised speech models. To address this gap, this paper introduces SpidR-Adapt for rapid adaptation to new languages using minimal unlabeled data. We cast such low-resource speech representation learning as a meta-learning problem and construct a multi-task adaptive pre-training (MAdaPT) protocol which formulates the adaptation process as a bi-level optimization framework. To enable scalable meta-training under this framework, we propose a novel heuristic solution, first-order bi-level optimization (FOBLO), avoiding heavy computation costs. Finally, we stabilize meta-training by using a robust initialization through interleaved supervision which alternates self-supervised and supervised objectives. Empirically, SpidR-Adapt achieves rapid gains in phonemic discriminability (ABX) and spoken language modeling (sWUGGY, sBLIMP, tSC), improving over in-domain language models after training on less than 1h of target-language audio, over more data-efficient than standard training. These findings highlight a practical, architecture-agnostic path toward biologically inspired, data-efficient representations. We open-source the training code and model checkpoints at https://
3.86ClarifyMT-Bench: Benchmarking and Improving Multi-Turn Clarification for Conversational Large Language Models¶
2025/12/26 05:02 GTM
Large language models (LLMs) are increasingly deployed as conversational assistants in open-domain, multi-turn settings, where users often provide incomplete or ambiguous information. However, existing LLM-focused clarification benchmarks primarily assume single-turn interactions or cooperative users, limiting their ability to evaluate clarification behavior in realistic settings. We introduce \textbf{ClarifyMT-Bench}, a benchmark for multi-turn clarification grounded in a five-dimensional ambiguity taxonomy and a set of six behaviorally diverse simulated user personas. Through a hybrid LLM-human pipeline, we construct 6,120 multi-turn dialogues capturing diverse ambiguity sources and interaction patterns. Evaluating ten representative LLMs uncovers a consistent under-clarification bias: LLMs tend to answer prematurely, and performance degrades as dialogue depth increases. To mitigate this, we propose \textbf{ClarifyAgent}, an agentic approach that decomposes clarification into perception, forecasting, tracking, and planning, substantially improving robustness across ambiguity conditions. ClarifyMT-Bench establishes a reproducible foundation for studying when LLMs should ask, when they should answer, and how to navigate ambiguity in real-world human-LLM interactions.
3.87Beyond Context: Large Language Models Failure to Grasp Users Intent¶
2025/12/26 05:02 GTM
Current Large Language Models (LLMs) safety approaches focus on explicitly harmful content while overlooking a critical vulnerability: the inability to understand context and recognize user intent. This creates exploitable vulnerabilities that malicious users can systematically leverage to circumvent safety mechanisms. We empirically evaluate multiple state-of-the-art LLMs, including ChatGPT, Claude, Gemini, and DeepSeek. Our analysis demonstrates the circumvention of reliable safety mechanisms through emotional framing, progressive revelation, and academic justification techniques. Notably, reasoning-enabled configurations amplified rather than mitigated the effectiveness of exploitation, increasing factual precision while failing to interrogate the underlying intent. The exception was Claude Opus 4.1, which prioritized intent detection over information provision in some use cases. This pattern reveals that current architectural designs create systematic vulnerabilities. These limitations require paradigmatic shifts toward contextual understanding and intent recognition as core safety capabilities rather than post-hoc protective mechanisms.
3.88Semi-Supervised Learning for Large Language Models Safety and Content Moderation¶
2025/12/26 05:02 GTM
Safety for Large Language Models (LLMs) has been an ongoing research focus since their emergence and is even more relevant nowadays with the increasing capacity of those models. Currently, there are several guardrails in place for all public LLMs and multiple proposed datasets for training safety classifiers. However, training these safety classifiers relies on large quantities of labeled data, which can be problematic to acquire, prone to labeling errors, or often include synthetic data. To address these issues, we suggest a different approach: utilizing semi-supervised learning techniques, which leverage both labeled and unlabeled data, to improve the performance on the safety task. We analyze the improvements that these techniques can offer for both prompts given to Large Language Models and the responses to those requests. Moreover, since augmentation is the central part of semi-supervised algorithms, we demonstrate the importance of using task-specific augmentations, which significantly increase the performance when compared to general-purpose augmentation techniques.
3.89Semantic Refinement with LLMs for Graph Representations¶
2025/12/26 05:02 GTM
Graph-structured data exhibit substantial heterogeneity in where their predictive signals originate: in some domains, node-level semantics dominate, while in others, structural patterns play a central role. This structure-semantics heterogeneity implies that no graph learning model with a fixed inductive bias can generalize optimally across diverse graph domains. However, most existing methods address this challenge from the model side by incrementally injecting new inductive biases, which remains fundamentally limited given the open-ended diversity of real-world graphs. In this work, we take a data-centric perspective and treat node semantics as a task-adaptive variable. We propose a Data-Adaptive Semantic Refinement framework DAS for graph representation learning, which couples a fixed graph neural network (GNN) and a large language model (LLM) in a closed feedback loop. The GNN provides implicit supervisory signals to guide the semantic refinement of LLM, and the refined semantics are fed back to update the same graph learner. We evaluate our approach on both text-rich and text-free graphs. Results show consistent improvements on structure-dominated graphs while remaining competitive on semantics-rich graphs, demonstrating the effectiveness of data-centric semantic adaptation under structure-semantics heterogeneity.
3.90Rethinking Supervised Fine-Tuning: Emphasizing Key Answer Tokens for Improved LLM Accuracy¶
2025/12/26 05:02 GTM
With the rapid advancement of Large Language Models (LLMs), the Chain-of-Thought (CoT) component has become significant for complex reasoning tasks. However, in conventional Supervised Fine-Tuning (SFT), the model could allocate disproportionately more attention to CoT sequences with excessive length. This reduces focus on the much shorter but essential Key portion-the final answer, whose correctness directly determines task success and evaluation quality. To address this limitation, we propose SFTKey, a two-stage training scheme. In the first stage, conventional SFT is applied to ensure proper output format, while in the second stage, only the Key portion is fine-tuned to improve accuracy. Extensive experiments across multiple benchmarks and model families demonstrate that SFTKey achieves an average accuracy improvement exceeding 5% over conventional SFT, while preserving the ability to generate correct formats. Overall, this study advances LLM fine-tuning by explicitly balancing CoT learning with additional optimization on answer-relevant tokens.
3.91Distilling the Essence: Efficient Reasoning Distillation via Sequence Truncation¶
2025/12/26 05:02 GTM
Distilling the reasoning capabilities from a large language model (LLM) to a smaller student model often involves training on substantial amounts of reasoning data. However, distillation over lengthy sequences with prompt (P), chain-of-thought (CoT), and answer (A) segments makes the process computationally expensive. In this work, we investigate how the allocation of supervision across different segments (P, CoT, A) affects student performance. Our analysis shows that selective knowledge distillation over only the CoT tokens can be effective when the prompt and answer information is encompassed by it. Building on this insight, we establish a truncation protocol to quantify computation-quality tradeoffs as a function of sequence length. We observe that training on only the first of tokens of every training sequence can retain, on average, of full-sequence performance on math benchmarks while reducing training time, memory usage, and FLOPs by about each. These findings suggest that reasoning distillation benefits from prioritizing early reasoning tokens and provides a simple lever for computation-quality tradeoffs. Codes are available at https://
3.92Automatic Replication of LLM Mistakes in Medical Conversations¶
2025/12/26 05:02 GTM
Large language models (LLMs) are increasingly evaluated in clinical settings using multi-dimensional rubrics which quantify reasoning quality, safety, and patient-centeredness. Yet, replicating specific mistakes in other LLM models is not straightforward and often requires manual effort. We introduce MedMistake, an automatic pipeline that extracts mistakes LLMs make in patient-doctor conversations and converts them into a benchmark of single-shot QA pairs. Our pipeline (1) creates complex, conversational data between an LLM patient and LLM doctor, (2) runs an evaluation with a committee of 2 LLM judges across a variety of dimensions and (3) creates simplified single-shot QA scenarios from those mistakes. We release MedMistake-All, a dataset of 3,390 single-shot QA pairs where GPT-5 and Gemini 2.5 Pro are currently failing to answer correctly, as judged by two LLM judges. We used medical experts to validate a subset of 211/3390 questions (MedMistake-Bench), which we used to run a final evaluation of 12 frontier LLMs: Claude Opus 4.5, Claude Sonnet 4.5, DeepSeek-Chat, Gemini 2.5 Pro, Gemini 3 Pro, GPT-4o, GPT-5, GPT-5.1, GPT-5.2, Grok 4, Grok 4.1, Mistral Large. We found that GPT models, Claude and Grok obtained the best performance on MedMistake-Bench. We release both the doctor-validated benchmark (MedMistake-Bench), as well as the full dataset (MedMistake-All) at https://
3.93Reflection Pretraining Enables Token-Level Self-Correction in Biological Sequence Models¶
2025/12/26 05:02 GTM
Chain-of-Thought (CoT) prompting has significantly advanced task-solving capabilities in natural language processing with large language models. Unlike standard prompting, CoT encourages the model to generate intermediate reasoning steps, non-answer tokens, that help guide the model toward more accurate final outputs. These intermediate steps enable more complex reasoning processes such as error correction, memory management, future planning, and self-reflection. However, applying CoT to non-natural language domains, such as protein and RNA language models, is not yet possible, primarily due to the limited expressiveness of their token spaces (e.g., amino acid tokens). In this work, we propose and define the concept of language expressiveness: the ability of a given language, using its tokens and grammar, to encode information. We show that the limited expressiveness of protein language severely restricts the applicability of CoT-style reasoning. To overcome this, we introduce reflection pretraining, for the first time in a biological sequence model, which enables the model to engage in intermediate reasoning through the generation of auxiliary “thinking tokens” beyond simple answer tokens. Theoretically, we demonstrate that our augmented token set significantly enhances biological language expressiveness, thereby improving the overall reasoning capacity of the model. Experimentally, our pretraining approach teaches protein models to self-correct and leads to substantial performance gains compared to standard pretraining.
3.94MultiMind at SemEval-2025 Task 7: Crosslingual Fact-Checked Claim Retrieval via Multi-Source Alignment¶
2025/12/26 05:02 GTM
This paper presents our system for SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval. In an era where misinformation spreads rapidly, effective fact-checking is increasingly critical. We introduce TriAligner, a novel approach that leverages a dual-encoder architecture with contrastive learning and incorporates both native and English translations across different modalities. Our method effectively retrieves claims across multiple languages by learning the relative importance of different sources in alignment. To enhance robustness, we employ efficient data preprocessing and augmentation using large language models while incorporating hard negative sampling to improve representation learning. We evaluate our approach on monolingual and crosslingual benchmarks, demonstrating significant improvements in retrieval accuracy and fact-checking performance over baselines.
3.95Neural Probe-Based Hallucination Detection for Large Language Models¶
2025/12/26 05:02 GTM
Large language models(LLMs) excel at text generation and knowledge question-answering tasks, but they are prone to generating hallucinated content, severely limiting their application in high-risk domains. Current hallucination detection methods based on uncertainty estimation and external knowledge retrieval suffer from the limitation that they still produce erroneous content at high confidence levels and rely heavily on retrieval efficiency and knowledge coverage. In contrast, probe methods that leverage the model’s hidden-layer states offer real-time and lightweight advantages. However, traditional linear probes struggle to capture nonlinear structures in deep semantic spaces.To overcome these limitations, we propose a neural network-based framework for token-level hallucination detection. By freezing language model parameters, we employ lightweight MLP probes to perform nonlinear modeling of high-level hidden states. A multi-objective joint loss function is designed to enhance detection stability and semantic disambiguity. Additionally, we establish a layer position-probe performance response model, using Bayesian optimization to automatically search for optimal probe insertion layers and achieve superior training results.Experimental results on LongFact, HealthBench, and TriviaQA demonstrate that MLP probes significantly outperform state-of-the-art methods in accuracy, recall, and detection capability under low false-positive conditions.
3.96Foundation Model-based Evaluation of Neuropsychiatric Disorders: A Lifespan-Inclusive, Multi-Modal, and Multi-Lingual Study¶
2025/12/26 05:02 GTM
Neuropsychiatric disorders, such as Alzheimer’s disease (AD), depression, and autism spectrum disorder (ASD), are characterized by linguistic and acoustic abnormalities, offering potential biomarkers for early detection. Despite the promise of multi-modal approaches, challenges like multi-lingual generalization and the absence of a unified evaluation framework persist. To address these gaps, we propose FEND (Foundation model-based Evaluation of Neuropsychiatric Disorders), a comprehensive multi-modal framework integrating speech and text modalities for detecting AD, depression, and ASD across the lifespan. Leveraging 13 multi-lingual datasets spanning English, Chinese, Greek, French, and Dutch, we systematically evaluate multi-modal fusion performance. Our results show that multi-modal fusion excels in AD and depression detection but underperforms in ASD due to dataset heterogeneity. We also identify modality imbalance as a prevalent issue, where multi-modal fusion fails to surpass the best mono-modal models. Cross-corpus experiments reveal robust performance in task- and language-consistent scenarios but noticeable degradation in multi-lingual and task-heterogeneous settings. By providing extensive benchmarks and a detailed analysis of performance-influencing factors, FEND advances the field of automated, lifespan-inclusive, and multi-lingual neuropsychiatric disorder assessment. We encourage researchers to adopt the FEND framework for fair comparisons and reproducible research.
3.97Transductive Visual Programming: Evolving Tool Libraries from Experience for Spatial Reasoning¶
2025/12/26 05:02 GTM
Spatial reasoning in 3D scenes requires precise geometric calculations that challenge vision-language models. Visual programming addresses this by decomposing problems into steps calling specialized tools, yet existing methods rely on either fixed toolsets or speculative tool induction before solving problems, resulting in suboptimal programs and poor utilization of induced tools. We present Transductive Visual Programming (TVP), a novel framework that builds new tools from its own experience rather than speculation. TVP first solves problems using basic tools while accumulating experiential solutions into an Example Library, then abstracts recurring patterns from these programs into reusable higher-level tools for an evolving Tool Library. This allows TVP to tackle new problems with increasingly powerful tools learned from experience. On Omni3D-Bench, TVP achieves state-of-the-art performance, outperforming GPT-4o by 22% and the previous best visual programming system by 11%. Our transductively learned tools are used 5x more frequently as core program dependency than inductively created ones, demonstrating more effective tool discovery and reuse. The evolved tools also show strong generalization to unseen spatial tasks, achieving superior performance on benchmarks from SpatialScore-Hard collection without any testset-specific modification. Our work establishes experience-driven transductive tool creation as a powerful paradigm for building self-evolving visual programming agents that effectively tackle challenging spatial reasoning tasks. We release our code at https://
3.98Decoding Predictive Inference in Visual Language Processing via Spatiotemporal Neural Coherence¶
2025/12/26 05:02 GTM
Human language processing relies on the brain’s capacity for predictive inference. We present a machine learning framework for decoding neural (EEG) responses to dynamic visual language stimuli in Deaf signers. Using coherence between neural signals and optical flow-derived motion features, we construct spatiotemporal representations of predictive neural dynamics. Through entropy-based feature selection, we identify frequency-specific neural signatures that differentiate interpretable linguistic input from linguistically disrupted (time-reversed) stimuli. Our results reveal distributed left-hemispheric and frontal low-frequency coherence as key features in language comprehension, with experience-dependent neural signatures correlating with age. This work demonstrates a novel multimodal approach for probing experience-driven generative models of perception in the brain.
3.99Where Did This Sentence Come From? Tracing Provenance in LLM Reasoning Distillation¶
2025/12/26 05:02 GTM
Reasoning distillation has attracted increasing attention. It typically leverages a large teacher model to generate reasoning paths, which are then used to fine-tune a student model so that it mimics the teacher’s behavior in training contexts. However, previous approaches have lacked a detailed analysis of the origins of the distilled model’s capabilities. It remains unclear whether the student can maintain consistent behaviors with the teacher in novel test-time contexts, or whether it regresses to its original output patterns, raising concerns about the generalization of distillation models. To analyse this question, we introduce a cross-model Reasoning Distillation Provenance Tracing framework. For each action (e.g., a sentence) produced by the distilled model, we obtain the predictive probabilities assigned by the teacher, the original student, and the distilled model under the same context. By comparing these probabilities, we classify each action into different categories. By systematically disentangling the provenance of each action, we experimentally demonstrate that, in test-time contexts, the distilled model can indeed generate teacher-originated actions, which correlate with and plausibly explain observed performance on distilled model. Building on this analysis, we further propose a teacher-guided data selection method. Unlike prior approach that rely on heuristics, our method directly compares teacher-student divergences on the training data, providing a principled selection criterion. We validate the effectiveness of our approach across multiple representative teacher models and diverse student models. The results highlight the utility of our provenance-tracing framework and underscore its promise for reasoning distillation. We hope to share Reasoning Distillation Provenance Tracing and our insights into reasoning distillation with the community.
3.100Architectural Trade-offs in Small Language Models Under Compute Constraints¶
2025/12/26 05:02 GTM
We present a systematic empirical study of small language models under strict compute constraints, analyzing how architectural choices and training budget interact to determine performance. Starting from a linear next-token predictor, we progressively introduce nonlinearities, self-attention, and multi-layer transformer architectures, evaluating each on character-level modeling of Tiny Shakespeare and word-level modeling of Penn Treebank (PTB) and WikiText-2. We compare models using test negative log-likelihood (NLL), parameter count, and approximate training FLOPs to characterize accuracy-efficiency trade-offs. Our results show that attention-based models dominate MLPs in per-FLOP efficiency even at small scale, while increasing depth or context without sufficient optimization can degrade performance. We further examine rotary positional embeddings (RoPE), finding that architectural techniques successful in large language models do not necessarily transfer to small-model regimes.
3.101NVIDIA Nemotron 3: Efficient and Open Intelligence¶
2025/12/26 05:02 GTM
We introduce the Nemotron 3 family of models - Nano, Super, and Ultra. These models deliver strong agentic, reasoning, and conversational capabilities. The Nemotron 3 family uses a Mixture-of-Experts hybrid Mamba-Transformer architecture to provide best-in-class throughput and context lengths of up to 1M tokens. Super and Ultra models are trained with NVFP4 and incorporate LatentMoE, a novel approach that improves model quality. The two larger models also include MTP layers for faster text generation. All Nemotron 3 models are post-trained using multi-environment reinforcement learning enabling reasoning, multi-step tool use, and support granular reasoning budget control. Nano, the smallest model, outperforms comparable models in accuracy while remaining extremely cost-efficient for inference. Super is optimized for collaborative agents and high-volume workloads such as IT ticket automation. Ultra, the largest model, provides state-of-the-art accuracy and reasoning performance. Nano is released together with its technical report and this white paper, while Super and Ultra will follow in the coming months. We will openly release the model weights, pre- and post-training software, recipes, and all data for which we hold redistribution rights.
3.102How important is Recall for Measuring Retrieval Quality?¶
2025/12/26 05:02 GTM
In realistic retrieval settings with large and evolving knowledge bases, the total number of documents relevant to a query is typically unknown, and recall cannot be computed. In this paper, we evaluate several established strategies for handling this limitation by measuring the correlation between retrieval quality metrics and LLM-based judgments of response quality, where responses are generated from the retrieved documents. We conduct experiments across multiple datasets with a relatively low number of relevant documents (2-15). We also introduce a simple retrieval quality measure that performs well without requiring knowledge of the total number of relevant documents.
3.103Nemotron 3 Nano: Open, Efficient Mixture-of-Experts Hybrid Mamba-Transformer Model for Agentic Reasoning¶
2025/12/26 05:02 GTM
We present Nemotron 3 Nano 30B-A3B, a Mixture-of-Experts hybrid Mamba-Transformer language model. Nemotron 3 Nano was pretrained on 25 trillion text tokens, including more than 3 trillion new unique tokens over Nemotron 2, followed by supervised fine tuning and large-scale RL on diverse environments. Nemotron 3 Nano achieves better accuracy than our previous generation Nemotron 2 Nano while activating less than half of the parameters per forward pass. It achieves up to 3.3x higher inference throughput than similarly-sized open models like GPT-OSS-20B and Qwen3-30B-A3B-Thinking-2507, while also being more accurate on popular benchmarks. Nemotron 3 Nano demonstrates enhanced agentic, reasoning, and chat abilities and supports context lengths up to 1M tokens. We release both our pretrained Nemotron 3 Nano 30B-A3B Base and post-trained Nemotron 3 Nano 30B-A3B checkpoints on Hugging Face.
3.104MediEval: A Unified Medical Benchmark for Patient-Contextual and Knowledge-Grounded Reasoning in LLMs¶
2025/12/26 05:02 GTM
Large Language Models (LLMs) are increasingly applied to medicine, yet their adoption is limited by concerns over reliability and safety. Existing evaluations either test factual medical knowledge in isolation or assess patient-level reasoning without verifying correctness, leaving a critical gap. We introduce MediEval, a benchmark that links MIMIC-IV electronic health records (EHRs) to a unified knowledge base built from UMLS and other biomedical vocabularies. MediEval generates diverse factual and counterfactual medical statements within real patient contexts, enabling systematic evaluation across a 4-quadrant framework that jointly considers knowledge grounding and contextual consistency. Using this framework, we identify critical failure modes, including hallucinated support and truth inversion, that current proprietary, open-source, and domain-specific LLMs frequently exhibit. To address these risks, we propose Counterfactual Risk-Aware Fine-tuning (CoRFu), a DPO-based method with an asymmetric penalty targeting unsafe confusions. CoRFu improves by +16.4 macro-F1 points over the base model and eliminates truth inversion errors, demonstrating both higher accuracy and substantially greater safety.
3.105EssayCBM: Rubric-Aligned Concept Bottleneck Models for Transparent Essay Grading¶
2025/12/26 05:02 GTM
Understanding how automated grading systems evaluate essays remains a significant challenge for educators and students, especially when large language models function as black boxes. We introduce EssayCBM, a rubric-aligned framework that prioritizes interpretability in essay assessment. Instead of predicting grades directly from text, EssayCBM evaluates eight writing concepts, such as Thesis Clarity and Evidence Use, through dedicated prediction heads on an encoder. These concept scores form a transparent bottleneck, and a lightweight network computes the final grade using only concepts. Instructors can adjust concept predictions and instantly view the updated grade, enabling accountable human-in-the-loop evaluation. EssayCBM matches black-box performance while offering actionable, concept-level feedback through an intuitive web interface.
3.106Semantic Deception: When Reasoning Models Can’t Compute an Addition¶
2025/12/26 05:02 GTM
Large language models (LLMs) are increasingly used in situations where human values are at stake, such as decision-making tasks that involve reasoning when performed by humans. We investigate the so-called reasoning capabilities of LLMs over novel symbolic representations by introducing an experimental framework that tests their ability to process and manipulate unfamiliar symbols. We introduce semantic deceptions: situations in which symbols carry misleading semantic associations due to their form, such as being embedded in specific contexts, designed to probe whether LLMs can maintain symbolic abstraction or whether they default to exploiting learned semantic associations. We redefine standard digits and mathematical operators using novel symbols, and task LLMs with solving simple calculations expressed in this altered notation. The objective is: (1) to assess LLMs’ capacity for abstraction and manipulation of arbitrary symbol systems; (2) to evaluate their ability to resist misleading semantic cues that conflict with the task’s symbolic logic. Through experiments with four LLMs we show that semantic cues can significantly deteriorate reasoning models’ performance on very simple tasks. They reveal limitations in current LLMs’ ability for symbolic manipulations and highlight a tendency to over-rely on surface-level semantics, suggesting that chain-of-thoughts may amplify reliance on statistical correlations. Even in situations where LLMs seem to correctly follow instructions, semantic cues still impact basic capabilities. These limitations raise ethical and societal concerns, undermining the widespread and pernicious tendency to attribute reasoning abilities to LLMs and suggesting how LLMs might fail, in particular in decision-making contexts where robust symbolic reasoning is essential and should not be compromised by residual semantic associations inherited from the model’s training.
3.107Measuring Mechanistic Independence: Can Bias Be Removed Without Erasing Demographics?¶
2025/12/26 05:02 GTM
We investigate how independent demographic bias mechanisms are from general demographic recognition in language models. Using a multi-task evaluation setup where demographics are associated with names, professions, and education levels, we measure whether models can be debiased while preserving demographic detection capabilities. We compare attribution-based and correlation-based methods for locating bias features. We find that targeted sparse autoencoder feature ablations in Gemma-2-9B reduce bias without degrading recognition performance: attribution-based ablations mitigate race and gender profession stereotypes while preserving name recognition accuracy, whereas correlation-based ablations are more effective for education bias. Qualitative analysis further reveals that removing attribution features in education tasks induces ``prior collapse’', thus increasing overall bias. This highlights the need for dimension-specific interventions. Overall, our results show that demographic bias arises from task-specific mechanisms rather than absolute demographic markers, and that mechanistic inference-time interventions can enable surgical debiasing without compromising core model capabilities.
3.108Investigating Model Editing for Unlearning in Large Language Models¶
2025/12/26 05:02 GTM
Machine unlearning aims to remove unwanted information from a model, but many methods are inefficient for LLMs with large numbers of parameters or fail to fully remove the intended information without degrading performance on knowledge that should be retained. Model editing algorithms solve a similar problem of changing information in models, but they focus on redirecting inputs to a new target rather than removing that information altogether. In this work, we explore the editing algorithms ROME, IKE, and WISE and design new editing targets for an unlearning setting. Through this investigation, we show that model editing approaches can exceed baseline unlearning methods in terms of quality of forgetting depending on the setting. Like traditional unlearning techniques, they struggle to encapsulate the scope of what is to be unlearned without damage to the overall model performance.
3.109Large Language Models Approach Expert Pedagogical Quality in Math Tutoring but Differ in Instructional and Linguistic Profiles¶
2025/12/26 05:02 GTM
Recent work has explored the use of large language models for generating tutoring responses in mathematics, yet it remains unclear how closely their instructional behavior aligns with expert human practice. We examine this question using a controlled, turn-level comparison in which expert human tutors, novice human tutors, and multiple large language models respond to the same set of math remediation conversation turns. We examine both instructional strategies and linguistic characteristics of tutoring responses, including restating and revoicing, pressing for accuracy, lexical diversity, readability, politeness, and agency. We find that large language models approach expert levels of perceived pedagogical quality on average but exhibit systematic differences in their instructional and linguistic profiles. In particular, large language models tend to underuse restating and revoicing strategies characteristic of expert human tutors, while producing longer, more lexically diverse, and more polite responses. Statistical analyses show that restating and revoicing, lexical diversity, and pressing for accuracy are positively associated with perceived pedagogical quality, whereas higher levels of agentic and polite language are negatively associated. Overall, recent large language models exhibit levels of perceived pedagogical quality comparable to expert human tutors, while relying on different instructional and linguistic strategies. These findings underscore the value of analyzing instructional strategies and linguistic characteristics when evaluating tutoring responses across human tutors and intelligent tutoring systems.
3.110Adversarial Training for Failure-Sensitive User Simulation in Mental Health Dialogue Optimization¶
2025/12/26 05:02 GTM
Realistic user simulation is crucial for training and evaluating task-oriented dialogue (TOD) systems, yet creating simulators that accurately replicate human behavior remains challenging. A key property of effective simulators is their ability to expose failure modes of the systems they evaluate. We present an adversarial training framework that iteratively improves user simulator realism through a competitive dynamic between a generator (user simulator) and a discriminator. Applied to mental health support chatbots, our approach demonstrates that fine-tuned simulators dramatically outperform zero-shot base models at surfacing system issues, and adversarial training further enhances diversity, distributional alignment, and predictive validity. The resulting simulator achieves a strong correlation between simulated and real failure occurrence rates across diverse chatbot configurations while maintaining low distributional divergence of failure modes. Discriminator accuracy decreases drastically after three adversarial iterations, suggesting improved realism. These results provide evidence that adversarial training is a promising approach for creating realistic user simulators in mental health support TOD domains, enabling rapid, reliable, and cost-effective system evaluation before deployment.
3.111Generalization of RLVR Using Causal Reasoning as a Testbed¶
2025/12/26 05:02 GTM
Reinforcement learning with verifiable rewards (RLVR) has emerged as a promising paradigm for post-training large language models (LLMs) on complex reasoning tasks. Yet, the conditions under which RLVR yields robust generalization remain poorly understood. This paper provides an empirical study of RLVR generalization in the setting of probabilistic inference over causal graphical models. This setting offers two natural axes along which to examine generalization: (i) the level of the probabilistic query -- associational, interventional, or counterfactual -- and (ii) the structural complexity of the query, measured by the size of its relevant subgraph. We construct datasets of causal graphs and queries spanning these difficulty axes and fine-tune Qwen-2.5-Instruct models using RLVR or supervised fine-tuning (SFT). We vary both the model scale (3B-32B) and the query level included in training. We find that RLVR yields stronger within-level and across-level generalization than SFT, but only for specific combinations of model size and training query level. Further analysis shows that RLVR’s effectiveness depends on the model’s initial reasoning competence. With sufficient initial competence, RLVR improves an LLM’s marginalization strategy and reduces errors in intermediate probability calculations, producing substantial accuracy gains, particularly on more complex queries. These findings show that RLVR can improve specific causal reasoning subskills, with its benefits emerging only when the model has sufficient initial competence.
3.112TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior¶
2025/12/26 05:02 GTM
Tokenizers provide the fundamental basis through which text is represented and processed by language models (LMs). Despite the importance of tokenization, its role in LM performance and behavior is poorly understood due to the challenge of measuring the impact of tokenization in isolation. To address this need, we present TokSuite, a collection of models and a benchmark that supports research into tokenization’s influence on LMs. Specifically, we train fourteen models that use different tokenizers but are otherwise identical using the same architecture, dataset, training budget, and initialization. Additionally, we curate and release a new benchmark that specifically measures model performance subject to real-world perturbations that are likely to influence tokenization. Together, TokSuite allows robust decoupling of the influence of a model’s tokenizer, supporting a series of novel findings that elucidate the respective benefits and shortcomings of a wide range of popular tokenizers.
3.113AgentMath: Empowering Mathematical Reasoning for Large Language Models via Tool-Augmented Agent¶
2025/12/26 05:02 GTM
Large Reasoning Models (LRMs) like o3 and DeepSeek-R1 have achieved remarkable progress in natural language reasoning with long chain-of-thought. However, they remain computationally inefficient and struggle with accuracy when solving problems requiring complex mathematical operations. In this work, we present AgentMath, an agent framework that seamlessly integrates language models’ reasoning capabilities with code interpreters’ computational precision to efficiently tackle complex mathematical problems. Our approach introduces three key innovations: (1) An automated method that converts natural language chain-of-thought into structured tool-augmented trajectories, generating high-quality supervised fine-tuning (SFT) data to alleviate data scarcity; (2) A novel agentic reinforcement learning (RL) paradigm that dynamically interleaves natural language generation with real-time code execution. This enables models to autonomously learn optimal tool-use strategies through multi-round interactive feedback, while fostering emergent capabilities in code refinement and error correction; (3) An efficient training system incorporating innovative techniques, including request-level asynchronous rollout scheduling, agentic partial rollout, and prefix-aware weighted load balancing, achieving 4-5x speedup and making efficient RL training feasible on ultra-long sequences with scenarios with massive tool calls.Extensive evaluations show that AgentMath achieves state-of-the-art performance on challenging mathematical competition benchmarks including AIME24, AIME25, and HMMT25. Specifically, AgentMath-30B-A3B attains 90.6%, 86.4%, and 73.8% accuracy respectively, achieving advanced capabilities.These results validate the effectiveness of our approach and pave the way for building more sophisticated and scalable mathematical reasoning agents.
3.114SA-DiffuSeq: Addressing Computational and Scalability Challenges in Long-Document Generation with Sparse Attention¶
2025/12/26 05:02 GTM
Diffusion based approaches to long form text generation suffer from prohibitive computational cost and memory overhead as sequence length increases. We introduce SA-DiffuSeq, a diffusion framework that integrates sparse attention to fundamentally improve scalability for long document modeling. By selectively allocating attention within the diffusion process, SA-DiffuSeq significantly reduces computational complexity while maintaining semantic coherence and generation quality. A key component of our method is a soft absorbing state tailored to sparse attention dynamics, which stabilizes diffusion trajectories and accelerates sequence reconstruction. This design improves sampling efficiency and enhances precision in long range dependency modeling. Extensive experiments demonstrate that SA-DiffuSeq consistently surpasses state of the art diffusion baselines in both training efficiency and sampling speed, with especially strong gains on extended sequences. These properties make SA-DiffuSeq well suited for demanding long form applications such as scientific writing, large scale code generation, and multi turn long context dialogue. Overall, our results indicate that incorporating structured sparsity into diffusion models is a promising direction for efficient and expressive long text generation.
3.115PHOTON: Hierarchical Autoregressive Modeling for Lightspeed and Memory-Efficient Language Generation¶
2025/12/26 05:02 GTM
Transformers operate as horizontal token-by-token scanners; at each generation step, the model attends to an ever-growing sequence of token-level states. This access pattern increases prefill latency and makes long-context decoding increasingly memory-bound, as KV-cache reads and writes dominate inference throughput rather than arithmetic computation. We propose Parallel Hierarchical Operation for Top-down Networks (PHOTON), a hierarchical autoregressive model that replaces flat scanning with vertical, multi-resolution context access. PHOTON maintains a hierarchy of latent streams: a bottom-up encoder progressively compresses tokens into low-rate contextual states, while lightweight top-down decoders reconstruct fine-grained token representations. Experimental results show that PHOTON is superior to competitive Transformer-based language models regarding the throughput-quality trade-off, offering significant advantages in long-context and multi-query tasks. This reduces decode-time KV-cache traffic, yielding up to higher throughput per unit memory.
3.116Automated Red-Teaming Framework for Large Language Model Security Assessment: A Comprehensive Attack Generation and Detection System¶
2025/12/26 05:02 GTM
As large language models (LLMs) are increasingly deployed in high-stakes domains, ensuring their security and alignment has become a critical challenge. Existing red-teaming practices depend heavily on manual testing, which limits scalability and fails to comprehensively cover the vast space of potential adversarial behaviors. This paper introduces an automated red-teaming framework that systematically generates, executes, and evaluates adversarial prompts to uncover security vulnerabilities in LLMs. Our framework integrates meta-prompting-based attack synthesis, multi-modal vulnerability detection, and standardized evaluation protocols spanning six major threat categories -- reward hacking, deceptive alignment, data exfiltration, sandbagging, inappropriate tool use, and chain-of-thought manipulation. Experiments on the GPT-OSS-20B model reveal 47 distinct vulnerabilities, including 21 high-severity and 12 novel attack patterns, achieving a improvement in vulnerability discovery rate over manual expert testing while maintaining 89% detection accuracy. These results demonstrate the framework’s effectiveness in enabling scalable, systematic, and reproducible AI safety evaluations. By providing actionable insights for improving alignment robustness, this work advances the state of automated LLM red-teaming and contributes to the broader goal of building secure and trustworthy AI systems.
3.117Uncovering Competency Gaps in Large Language Models and Their Benchmarks¶
2025/12/26 05:02 GTM
The evaluation of large language models (LLMs) relies heavily on standardized benchmarks. These benchmarks provide useful aggregated metrics for a given capability, but those aggregated metrics can obscure (i) particular sub-areas where the LLMs are weak (“model gaps”) and (ii) imbalanced coverage in the benchmarks themselves (“benchmark gaps”). We propose a new method that uses sparse autoencoders (SAEs) to automatically uncover both types of gaps. By extracting SAE concept activations and computing saliency-weighted performance scores across benchmark data, the method grounds evaluation in the model’s internal representations and enables comparison across benchmarks. As examples demonstrating our approach, we applied the method to two popular open-source models and ten benchmarks. We found that these models consistently underperformed on concepts that stand in contrast to sycophantic behaviors (e.g., politely refusing a request or asserting boundaries) and concepts connected to safety discussions. These model gaps align with observations previously surfaced in the literature; our automated, unsupervised method was able to recover them without manual supervision. We also observed benchmark gaps: many of the evaluated benchmarks over-represented concepts related to obedience, authority, or instruction-following, while missing core concepts that should fall within their intended scope. In sum, our method offers a representation-grounded approach to evaluation, enabling concept-level decomposition of benchmark scores. Rather than replacing conventional aggregated metrics, CG complements them by providing a concept-level decomposition that can reveal why a model scored as it did and how benchmarks could evolve to better reflect their intended scope. Code is available at https://
3.118Real Time Detection and Quantitative Analysis of Spurious Forgetting in Continual Learning¶
2025/12/26 05:02 GTM
Catastrophic forgetting remains a fundamental challenge in continual learning for large language models. Recent work revealed that performance degradation may stem from spurious forgetting caused by task alignment disruption rather than true knowledge loss. However, this work only qualitatively describes alignment, relies on post-hoc analysis, and lacks automatic distinction mechanisms. We introduce the shallow versus deep alignment framework, providing the first quantitative characterization of alignment depth. We identify that current task alignment approaches suffer from shallow alignment - maintained only over the first few output tokens (approximately 3-5) - making models vulnerable to forgetting. This explains why spurious forgetting occurs, why it is reversible, and why fine-tuning attacks are effective. We propose a comprehensive framework addressing all gaps: (1) quantitative metrics (0-1 scale) to measure alignment depth across token positions; (2) real-time detection methods for identifying shallow alignment during training; (3) specialized analysis tools for visualization and recovery prediction; and (4) adaptive mitigation strategies that automatically distinguish forgetting types and promote deep alignment. Extensive experiments on multiple datasets and model architectures (Qwen2.5-3B to Qwen2.5-32B) demonstrate 86.2-90.6% identification accuracy and show that promoting deep alignment improves robustness against forgetting by 3.3-7.1% over baselines.
3.119Zero-Training Temporal Drift Detection for Transformer Sentiment Models: A Comprehensive Analysis on Authentic Social Media Streams¶
2025/12/26 05:02 GTM
We present a comprehensive zero-training temporal drift analysis of transformer-based sentiment models validated on authentic social media data from major real-world events. Through systematic evaluation across three transformer architectures and rigorous statistical validation on 12,279 authentic social media posts, we demonstrate significant model instability with accuracy drops reaching 23.4% during event-driven periods. Our analysis reveals maximum confidence drops of 13.0% (Bootstrap 95% CI: [9.1%, 16.5%]) with strong correlation to actual performance degradation. We introduce four novel drift metrics that outperform embedding-based baselines while maintaining computational efficiency suitable for production deployment. Statistical validation across multiple events confirms robust detection capabilities with practical significance exceeding industry monitoring thresholds. This zero-training methodology enables immediate deployment for real-time sentiment monitoring systems and provides new insights into transformer model behavior during dynamic content periods.
3.120MegaRAG: Multimodal Knowledge Graph-Based Retrieval Augmented Generation¶
2025/12/26 05:02 GTM
Retrieval-augmented generation (RAG) enables large language models (LLMs) to dynamically access external information, which is powerful for answering questions over previously unseen documents. Nonetheless, they struggle with high-level conceptual understanding and holistic comprehension due to limited context windows, which constrain their ability to perform deep reasoning over long-form, domain-specific content such as full-length books. To solve this problem, knowledge graphs (KGs) have been leveraged to provide entity-centric structure and hierarchical summaries, offering more structured support for reasoning. However, existing KG-based RAG solutions remain restricted to text-only inputs and fail to leverage the complementary insights provided by other modalities such as vision. On the other hand, reasoning from visual documents requires textual, visual, and spatial cues into structured, hierarchical concepts. To address this issue, we introduce a multimodal knowledge graph-based RAG that enables cross-modal reasoning for better content understanding. Our method incorporates visual cues into the construction of knowledge graphs, the retrieval phase, and the answer generation process. Experimental results across both global and fine-grained question answering tasks show that our approach consistently outperforms existing RAG-based approaches on both textual and multimodal corpora.
3.121Quadrupped-Legged Robot Movement Plan Generation using Large Language Model¶
2025/12/26 05:02 GTM
Traditional control interfaces for quadruped robots often impose a high barrier to entry, requiring specialized technical knowledge for effective operation. To address this, this paper presents a novel control framework that integrates Large Language Models (LLMs) to enable intuitive, natural language-based navigation. We propose a distributed architecture where high-level instruction processing is offloaded to an external server to overcome the onboard computational constraints of the DeepRobotics Jueying Lite 3 platform. The system grounds LLM-generated plans into executable ROS navigation commands using real-time sensor fusion (LiDAR, IMU, and Odometry). Experimental validation was conducted in a structured indoor environment across four distinct scenarios, ranging from single-room tasks to complex cross-zone navigation. The results demonstrate the system’s robustness, achieving an aggregate success rate of over 90% across all scenarios, validating the feasibility of offloaded LLM-based planning for autonomous quadruped deployment in real-world settings.
3.122LookPlanGraph: Embodied Instruction Following Method with VLM Graph Augmentation¶
2025/12/26 05:02 GTM
Methods that use Large Language Models (LLM) as planners for embodied instruction following tasks have become widespread. To successfully complete tasks, the LLM must be grounded in the environment in which the robot operates. One solution is to use a scene graph that contains all the necessary information. Modern methods rely on prebuilt scene graphs and assume that all task-relevant information is available at the start of planning. However, these approaches do not account for changes in the environment that may occur between the graph construction and the task execution. We propose LookPlanGraph - a method that leverages a scene graph composed of static assets and object priors. During plan execution, LookPlanGraph continuously updates the graph with relevant objects, either by verifying existing priors or discovering new entities. This is achieved by processing the agents egocentric camera view using a Vision Language Model. We conducted experiments with changed object positions VirtualHome and OmniGibson simulated environments, demonstrating that LookPlanGraph outperforms methods based on predefined static scene graphs. To demonstrate the practical applicability of our approach, we also conducted experiments in a real-world setting. Additionally, we introduce the GraSIF (Graph Scenes for Instruction Following) dataset with automated validation framework, comprising 514 tasks drawn from SayPlan Office, BEHAVIOR-1K, and VirtualHome RobotHow. Project page available at https://
3.123RoboCade: Gamifying Robot Data Collection¶
2025/12/26 05:02 GTM
Imitation learning from human demonstrations has become a dominant approach for training autonomous robot policies. However, collecting demonstration datasets is costly: it often requires access to robots and needs sustained effort in a tedious, long process. These factors limit the scale of data available for training policies. We aim to address this scalability challenge by involving a broader audience in a gamified data collection experience that is both accessible and motivating. Specifically, we develop a gamified remote teleoperation platform, RoboCade, to engage general users in collecting data that is beneficial for downstream policy training. To do this, we embed gamification strategies into the design of the system interface and data collection tasks. In the system interface, we include components such as visual feedback, sound effects, goal visualizations, progress bars, leaderboards, and badges. We additionally propose principles for constructing gamified tasks that have overlapping structure with useful downstream target tasks. We instantiate RoboCade on three manipulation tasks -- including spatial arrangement, scanning, and insertion. To illustrate the viability of gamified robot data collection, we collect a demonstration dataset through our platform, and show that co-training robot policies with this data can improve success rate on non-gamified target tasks (+16-56%). Further, we conduct a user study to validate that novice users find the gamified platform significantly more enjoyable than a standard non-gamified platform (+24%). These results highlight the promise of gamified data collection as a scalable, accessible, and engaging method for collecting demonstration data.
3.124UniTacHand: Unified Spatio-Tactile Representation for Human to Robotic Hand Skill Transfer¶
2025/12/26 05:02 GTM
Tactile sensing is crucial for robotic hands to achieve human-level dexterous manipulation, especially in scenarios with visual occlusion. However, its application is often hindered by the difficulty of collecting large-scale real-world robotic tactile data. In this study, we propose to collect low-cost human manipulation data using haptic gloves for tactile-based robotic policy learning. The misalignment between human and robotic tactile data makes it challenging to transfer policies learned from human data to robots. To bridge this gap, we propose UniTacHand, a unified representation to align robotic tactile information captured by dexterous hands with human hand touch obtained from gloves. First, we project tactile signals from both human hands and robotic hands onto a morphologically consistent 2D surface space of the MANO hand model. This unification standardizes the heterogeneous data structures and inherently embeds the tactile signals with spatial context. Then, we introduce a contrastive learning method to align them into a unified latent space, trained on only 10 minutes of paired data from our data collection system. Our approach enables zero-shot tactile-based policy transfer from humans to a real robot, generalizing to objects unseen in the pre-training data. We also demonstrate that co-training on mixed data, including both human and robotic demonstrations via UniTacHand, yields better performance and data efficiency compared with using only robotic data. UniTacHand paves a path toward general, scalable, and data-efficient learning for tactile-based dexterous hands.
3.125Relative Localization System Design for SnailBot: A Modular Self-reconfigurable Robot¶
2025/12/26 05:02 GTM
This paper presents the design and implementation of a relative localization system for SnailBot, a modular self reconfigurable robot. The system integrates ArUco marker recognition, optical flow analysis, and IMU data processing into a unified fusion framework, enabling robust and accurate relative positioning for collaborative robotic tasks. Experimental validation demonstrates the effectiveness of the system in realtime operation, with a rule based fusion strategy ensuring reliability across dynamic scenarios. The results highlight the potential for scalable deployment in modular robotic systems.
3.126RoboSafe: Safeguarding Embodied Agents via Executable Safety Logic¶
2025/12/26 05:02 GTM
Embodied agents powered by vision-language models (VLMs) are increasingly capable of executing complex real-world tasks, yet they remain vulnerable to hazardous instructions that may trigger unsafe behaviors. Runtime safety guardrails, which intercept hazardous actions during task execution, offer a promising solution due to their flexibility. However, existing defenses often rely on static rule filters or prompt-level control, which struggle to address implicit risks arising in dynamic, temporally dependent, and context-rich environments. To address this, we propose RoboSafe, a hybrid reasoning runtime safeguard for embodied agents through executable predicate-based safety logic. RoboSafe integrates two complementary reasoning processes on a Hybrid Long-Short Safety Memory. We first propose a Backward Reflective Reasoning module that continuously revisits recent trajectories in short-term memory to infer temporal safety predicates and proactively triggers replanning when violations are detected. We then propose a Forward Predictive Reasoning module that anticipates upcoming risks by generating context-aware safety predicates from the long-term safety memory and the agent’s multimodal observations. Together, these components form an adaptive, verifiable safety logic that is both interpretable and executable as code. Extensive experiments across multiple agents demonstrate that RoboSafe substantially reduces hazardous actions (-36.8% risk occurrence) compared with leading baselines, while maintaining near-original task performance. Real-world evaluations on physical robotic arms further confirm its practicality. Code will be released upon acceptance.
3.127Wireless Center of Pressure Feedback System for Humanoid Robot Balance Control using ESP32-C3¶
2025/12/26 05:02 GTM
Maintaining stability during the single-support phase is a fundamental challenge in humanoid robotics, particularly in dance robots that require complex maneuvers and high mechanical freedom. Traditional tethered sensor configurations often restrict joint movement and introduce mechanical noises. This study proposes a wireless embedded balance system designed to maintain stability on uneven surfaces. The system utilizes a custom-designed foot unit integrated with four load cells and an ESP32-C3 microcontroller to estimate the Center of Pressure (CoP) in real time. The CoP data were transmitted wirelessly to the main controller to minimize the wiring complexity of the 29-DoF VI-ROSE humanoid robot. A PID control strategy is implemented to adjust the torso, hip, and ankle roll joints based on CoP feedback. Experimental characterization demonstrated high sensor precision with an average measurement error of 14.8 g. Furthermore, the proposed control system achieved a 100% success rate in maintaining balance during single-leg lifting tasks at a 3-degree inclination with optimized PID parameters (Kp=0.10, Kd=0.005). These results validate the efficacy of wireless CoP feedback in enhancing the postural stability of humanoid robots, without compromising their mechanical flexibility.
3.128Schrödinger’s Navigator: Imagining an Ensemble of Futures for Zero-Shot Object Navigation¶
2025/12/26 05:02 GTM
Zero-shot object navigation (ZSON) requires a robot to locate a target object in a previously unseen environment without relying on pre-built maps or task-specific training. However, existing ZSON methods often struggle in realistic and cluttered environments, particularly when the scene contains heavy occlusions, unknown risks, or dynamically moving target objects. To address these challenges, we propose \textbf{Schrödinger’s Navigator}, a navigation framework inspired by Schrödinger’s thought experiment on uncertainty. The framework treats unobserved space as a set of plausible future worlds and reasons over them before acting. Conditioned on egocentric visual inputs and three candidate trajectories, a trajectory-conditioned 3D world model imagines future observations along each path. This enables the agent to see beyond occlusions and anticipate risks in unseen regions without requiring extra detours or dense global mapping. The imagined 3D observations are fused into the navigation map and used to update a value map. These updates guide the policy toward trajectories that avoid occlusions, reduce exposure to uncertain space, and better track moving targets. Experiments on a Go2 quadruped robot across three challenging scenarios, including severe static occlusions, unknown risks, and dynamically moving targets, show that Schrödinger’s Navigator consistently outperforms strong ZSON baselines in self-localization, object localization, and overall Success Rate in occlusion-heavy environments. These results demonstrate the effectiveness of trajectory-conditioned 3D imagination in enabling robust zero-shot object navigation.
3.129Flocking phase transition and threat responses in bio-inspired autonomous drone swarms¶
2025/12/26 05:02 GTM
Collective motion inspired by animal groups offers powerful design principles for autonomous aerial swarms. We present a bio-inspired 3D flocking algorithm in which each drone interacts only with a minimal set of influential neighbors, relying solely on local alignment and attraction cues. By systematically tuning these two interaction gains, we map a phase diagram revealing sharp transitions between swarming and schooling, as well as a critical region where susceptibility, polarization fluctuations, and reorganization capacity peak. Outdoor experiments with a swarm of ten drones, combined with simulations using a calibrated flight-dynamics model, show that operating near this transition enhances responsiveness to external disturbances. When confronted with an intruder, the swarm performs rapid collective turns, transient expansions, and reliably recovers high alignment within seconds. These results demonstrate that minimal local-interaction rules are sufficient to generate multiple collective phases and that simple gain modulation offers an efficient mechanism to adjust stability, flexibility, and resilience in drone swarms.
3.130SparScene: Efficient Traffic Scene Representation via Sparse Graph Learning for Large-Scale Trajectory Generation¶
2025/12/26 05:02 GTM
Multi-agent trajectory generation is a core problem for autonomous driving and intelligent transportation systems. However, efficiently modeling the dynamic interactions between numerous road users and infrastructures in complex scenes remains an open problem. Existing methods typically employ distance-based or fully connected dense graph structures to capture interaction information, which not only introduces a large number of redundant edges but also requires complex and heavily parameterized networks for encoding, thereby resulting in low training and inference efficiency, limiting scalability to large and complex traffic scenes. To overcome the limitations of existing methods, we propose SparScene, a sparse graph learning framework designed for efficient and scalable traffic scene representation. Instead of relying on distance thresholds, SparScene leverages the lane graph topology to construct structure-aware sparse connections between agents and lanes, enabling efficient yet informative scene graph representation. SparScene adopts a lightweight graph encoder that efficiently aggregates agent-map and agent-agent interactions, yielding compact scene representations with substantially improved efficiency and scalability. On the motion prediction benchmark of the Waymo Open Motion Dataset (WOMD), SparScene achieves competitive performance with remarkable efficiency. It generates trajectories for more than 200 agents in a scene within 5 ms and scales to more than 5,000 agents and 17,000 lanes with merely 54 ms of inference time with a GPU memory of 2.9 GB, highlighting its superior scalability for large-scale traffic scenes.
3.131Robust and Efficient MuJoCo-based Model Predictive Control via Web of Affine Spaces Derivatives¶
2025/12/26 05:02 GTM
MuJoCo is a powerful and efficient physics simulator widely used in robotics. One common way it is applied in practice is through Model Predictive Control (MPC), which uses repeated rollouts of the simulator to optimize future actions and generate responsive control policies in real time. To make this process more accessible, the open source library MuJoCo MPC (MJPC) provides ready-to-use MPC algorithms and implementations built directly on top of the MuJoCo simulator. However, MJPC relies on finite differencing (FD) to compute derivatives through the underlying MuJoCo simulator, which is often a key bottleneck that can make it prohibitively costly for time-sensitive tasks, especially in high-DOF systems or complex scenes. In this paper, we introduce the use of Web of Affine Spaces (WASP) derivatives within MJPC as a drop-in replacement for FD. WASP is a recently developed approach for efficiently computing sequences of accurate derivative approximations. By reusing information from prior, related derivative calculations, WASP accelerates and stabilizes the computation of new derivatives, making it especially well suited for MPC’s iterative, fine-grained updates over time. We evaluate WASP across a diverse suite of MJPC tasks spanning multiple robot embodiments. Our results suggest that WASP derivatives are particularly effective in MJPC: it integrates seamlessly across tasks, delivers consistently robust performance, and achieves up to a 2 speedup compared to an FD backend when used with derivative-based planners, such as iLQG. In addition, WASP-based MPC outperforms MJPC’s stochastic sampling-based planners on our evaluation tasks, offering both greater efficiency and reliability. To support adoption and future research, we release an open-source implementation of MJPC with WASP derivatives fully integrated.
3.132Global End-Effector Pose Control of an Underactuated Aerial Manipulator via Reinforcement Learning¶
2025/12/26 05:02 GTM
Aerial manipulators, which combine robotic arms with multi-rotor drones, face strict constraints on arm weight and mechanical complexity. In this work, we study a lightweight 2-degree-of-freedom (DoF) arm mounted on a quadrotor via a differential mechanism, capable of full six-DoF end-effector pose control. While the minimal design enables simplicity and reduced payload, it also introduces challenges such as underactuation and sensitivity to external disturbances, including manipulation of heavy loads and pushing tasks. To address these, we employ reinforcement learning, training a Proximal Policy Optimization (PPO) agent in simulation to generate feedforward commands for quadrotor acceleration and body rates, along with joint angle targets. These commands are tracked by an incremental nonlinear dynamic inversion (INDI) attitude controller and a PID joint controller, respectively. Flight experiments demonstrate centimeter-level position accuracy and degree-level orientation precision, with robust performance under external force disturbances. The results highlight the potential of learning-based control strategies for enabling contact-rich aerial manipulation using simple, lightweight platforms.
3.133Language-Guided Grasp Detection with Coarse-to-Fine Learning for Robotic Manipulation¶
2025/12/26 05:02 GTM
Grasping is one of the most fundamental challenging capabilities in robotic manipulation, especially in unstructured, cluttered, and semantically diverse environments. Recent researches have increasingly explored language-guided manipulation, where robots not only perceive the scene but also interpret task-relevant natural language instructions. However, existing language-conditioned grasping methods typically rely on shallow fusion strategies, leading to limited semantic grounding and weak alignment between linguistic intent and visual grasp reasoning.In this work, we propose Language-Guided Grasp Detection (LGGD) with a coarse-to-fine learning paradigm for robotic manipulation. LGGD leverages CLIP-based visual and textual embeddings within a hierarchical cross-modal fusion pipeline, progressively injecting linguistic cues into the visual feature reconstruction process. This design enables fine-grained visual-semantic alignment and improves the feasibility of the predicted grasps with respect to task instructions. In addition, we introduce a language-conditioned dynamic convolution head (LDCH) that mixes multiple convolution experts based on sentence-level features, enabling instruction-adaptive coarse mask and grasp predictions. A final refinement module further enhances grasp consistency and robustness in complex scenes.Experiments on the OCID-VLG and Grasp-Anything++ datasets show that LGGD surpasses existing language-guided grasping methods, exhibiting strong generalization to unseen objects and diverse language queries. Moreover, deployment on a real robotic platform demonstrates the practical effectiveness of our approach in executing accurate, instruction-conditioned grasp actions. The code will be released publicly upon acceptance.
3.134Tracing Energy Flow: Learning Tactile-based Grasping Force Control to Prevent Slippage in Dynamic Object Interaction¶
2025/12/26 05:02 GTM
Regulating grasping force to reduce slippage during dynamic object interaction remains a fundamental challenge in robotic manipulation, especially when objects are manipulated by multiple rolling contacts, have unknown properties (such as mass or surface conditions), and when external sensing is unreliable. In contrast, humans can quickly regulate grasping force by touch, even without visual cues. Inspired by this ability, we aim to enable robotic hands to rapidly explore objects and learn tactile-driven grasping force control under motion and limited sensing. We propose a physics-informed energy abstraction that models the object as a virtual energy container. The inconsistency between the fingers’ applied power and the object’s retained energy provides a physically grounded signal for inferring slip-aware stability. Building on this abstraction, we employ model-based learning and planning to efficiently model energy dynamics from tactile sensing and perform real-time grasping force optimization. Experiments in both simulation and hardware demonstrate that our method can learn grasping force control from scratch within minutes, effectively reduce slippage, and extend grasp duration across diverse motion-object pairs, all without relying on external sensing or prior object knowledge.
3.135Multimodal Sensing for Robot-Assisted Sub-Tissue Feature Detection in Physiotherapy Palpation¶
2025/12/26 05:02 GTM
Robotic palpation relies on force sensing, but force signals in soft-tissue environments are variable and cannot reliably reveal subtle subsurface features. We present a compact multimodal sensor that integrates high-resolution vision-based tactile imaging with a 6-axis force-torque sensor. In experiments on silicone phantoms with diverse subsurface tendon geometries, force signals alone frequently produce ambiguous responses, while tactile images reveal clear structural differences in presence, diameter, depth, crossings, and multiplicity. Yet accurate force tracking remains essential for maintaining safe, consistent contact during physiotherapeutic interaction. Preliminary results show that combining tactile and force modalities enables robust subsurface feature detection and controlled robotic palpation.
3.136Generalised Linear Models in Deep Bayesian RL with Learnable Basis Functions¶
2025/12/26 05:02 GTM
Bayesian Reinforcement Learning (BRL) provides a framework for generalisation of Reinforcement Learning (RL) problems from its use of Bayesian task parameters in the transition and reward models. However, classical BRL methods assume known forms of transition and reward models, reducing their applicability in real-world problems. As a result, recent deep BRL methods have started to incorporate model learning, though the use of neural networks directly on the joint data and task parameters requires optimising the Evidence Lower Bound (ELBO). ELBOs are difficult to optimise and may result in indistinctive task parameters, hence compromised BRL policies. To this end, we introduce a novel deep BRL method, Generalised Linear Models in Deep Bayesian RL with Learnable Basis Functions (GLiBRL), that enables efficient and accurate learning of transition and reward models, with fully tractable marginal likelihood and Bayesian inference on task parameters and model noises. On challenging MetaWorld ML10/45 benchmarks, GLiBRL improves the success rate of one of the state-of-the-art deep BRL methods, VariBAD, by up to 2.7x. Comparing against representative or recent deep BRL / Meta-RL methods, such as MAML, RL2, SDVT, TrMRL and ECET, GLiBRL also demonstrates its low-variance and decent performance consistently.
3.137From Human Bias to Robot Choice: How Occupational Contexts and Racial Priming Shape Robot Selection¶
2025/12/26 05:02 GTM
As artificial agents increasingly integrate into professional environments, fundamental questions have emerged about how societal biases influence human-robot selection decisions. We conducted two comprehensive experiments (N = 1,038) examining how occupational contexts and stereotype activation shape robotic agent choices across construction, healthcare, educational, and athletic domains. Participants made selections from artificial agents that varied systematically in skin tone and anthropomorphic characteristics. Our study revealed distinct context-dependent patterns. Healthcare and educational scenarios demonstrated strong favoritism toward lighter-skinned artificial agents, while construction and athletic contexts showed greater acceptance of darker-toned alternatives. Participant race was associated with systematic differences in selection patterns across professional domains. The second experiment demonstrated that exposure to human professionals from specific racial backgrounds systematically shifted later robotic agent preferences in stereotype-consistent directions. These findings show that occupational biases and color-based discrimination transfer directly from human-human to human-robot evaluation contexts. The results highlight mechanisms through which robotic deployment may unintentionally perpetuate existing social inequalities.
3.138ETP-R1: Evolving Topological Planning with Reinforcement Fine-tuning for Vision-Language Navigation in Continuous Environments¶
2025/12/26 05:02 GTM
Vision-Language Navigation in Continuous Environments (VLN-CE) requires an embodied agent to navigate towards target in continuous environments, following natural language instructions. While current graph-based methods offer an efficient, structured approach by abstracting the environment into a topological map and simplifying the action space to waypoint selection, they lag behind methods based on Large Vision-Language Models (LVLMs) in leveraging large-scale data and advanced training paradigms. In this paper, we try to bridge this gap by introducing ETP-R1, a framework that applies the paradigm of scaling up data and Reinforcement Fine-Tuning (RFT) to a graph-based VLN-CE model. To build a strong foundation, we first construct a high-quality, large-scale pretraining dataset using the Gemini API. This dataset consists of diverse, low-hallucination instructions for topological trajectories, providing rich supervision for our graph-based policy to map language to topological paths. This foundation is further strengthened by unifying data from both R2R and RxR tasks for joint pretraining. Building on this, we introduce a three-stage training paradigm, which culminates in the first application of closed-loop, online RFT to a graph-based VLN-CE model, powered by the Group Relative Policy Optimization (GRPO) algorithm. Extensive experiments demonstrate that our approach is highly effective, establishing new state-of-the-art performance across all major metrics on both the R2R-CE and RxR-CE benchmarks. Our code is available at https://
3.139Certifiable Alignment of GNSS and Local Frames via Lagrangian Duality¶
2025/12/26 05:02 GTM
Estimating the absolute orientation of a local system relative to a global navigation satellite system (GNSS) reference often suffers from local minima and high dependency on satellite availability. Existing methods for this alignment task rely on abundant satellites unavailable in GNSS-degraded environments, or use local optimization methods which cannot guarantee the optimality of a solution. This work introduces a globally optimal solver that transforms raw pseudo-range or Doppler measurements into a convexly relaxed problem. The proposed method is certifiable, meaning it can numerically verify the correctness of the result, filling a gap where existing local optimizers fail. We first formulate the original frame alignment problem as a nonconvex quadratically constrained quadratic program (QCQP) problem and relax the QCQP problem to a concave Lagrangian dual problem that provides a lower cost bound for the original problem. Then we perform relaxation tightness and observability analysis to derive criteria for certifiable optimality of the solution. Finally, simulation and real world experiments are conducted to evaluate the proposed method. The experiments show that our method provides certifiably optimal solutions even with only 2 satellites with Doppler measurements and 2D vehicle motion, while the traditional velocity-based VOBA method and the advanced GVINS alignment technique may fail or converge to local optima without notice. To support the development of GNSS-based navigation techniques in robotics, all code and data are open-sourced at https://
3.140Stretchable and High-Precision Optical Tactile Sensor for Trajectory Tracking of Parallel Mechanisms¶
2025/12/26 05:02 GTM
Stretchable sensors indicate promising prospects for soft robotics, medical devices, and human-machine interactions due to the high compliance of soft materials. Discrete sensing strategies, including sensor arrays and distributed sensors, are broadly involved in tactile sensors across versatile applications. However, it remains a challenge to achieve high spatial resolution with self-decoupled capacity and insensitivity to other off-axis stimuli for stretchable tactile sensors. Herein, we develop a stretchable tactile sensor based on the proposed continuous spectral-filtering principle, allowing superhigh resolution for applied stimuli. This proposed sensor enables a high-linear spatial response (0.996) even during stretching and bending, and high continuous spatial (7 μm) and force (5 mN) resolutions with design scalability and interaction robustness to survive piercing and cutting. We further demonstrate the sensors’ performance by integrating them into a planar parallel mechanism for precise trajectory tracking (rotational resolution: 0.02°) in real time.
3.141Proprioception Enhances Vision Language Model in Generating Captions and Subtask Segmentations for Robot Task¶
2025/12/26 05:02 GTM
From the perspective of future developments in robotics, it is crucial to verify whether foundation models trained exclusively on offline data, such as images and language, can understand the robot motion. In particular, since Vision Language Models (VLMs) do not include low-level motion information from robots in their training datasets, video understanding including trajectory information remains a significant challenge. In this study, we assess two capabilities of VLMs through a video captioning task with low-level robot motion information: (1) automatic captioning of robot tasks and (2) segmentation of a series of tasks. Both capabilities are expected to enhance the efficiency of robot imitation learning by linking language and motion and serve as a measure of the foundation model’s performance. The proposed method generates multiple “scene” captions using image captions and trajectory data from robot tasks. The full task caption is then generated by summarizing these individual captions. Additionally, the method performs subtask segmentation by comparing the similarity between text embeddings of image captions. In both captioning tasks, the proposed method aims to improve performance by providing the robot’s motion data - joint and end-effector states - as input to the VLM. Simulator experiments were conducted to validate the effectiveness of the proposed method.
3.142Early warning signals for loss of control¶
2025/12/26 05:02 GTM
Maintaining stability in feedback systems, from aircraft and autonomous robots to biological and physiological systems, relies on monitoring their behavior and continuously adjusting their inputs. Incremental damage can make such control fragile. This tends to go unnoticed until a small perturbation induces instability (i.e. loss of control). Traditional methods in the field of engineering rely on accurate system models to compute a safe set of operating instructions, which become invalid when the, possibly damaged, system diverges from its model. Here we demonstrate that the approach of such a feedback system towards instability can nonetheless be monitored through dynamical indicators of resilience. This holistic system safety monitor does not rely on a system model and is based on the generic phenomenon of critical slowing down, shown to occur in the climate, biology and other complex nonlinear systems approaching criticality. Our findings for engineered devices opens up a wide range of applications involving real-time early warning systems as well as an empirical guidance of resilient system design exploration, or “tinkering”. While we demonstrate the validity using drones, the generic nature of the underlying principles suggest that these indicators could apply across a wider class of controlled systems including reactors, aircraft, and self-driving cars.
3.143YCB-Handovers Dataset: Analyzing Object Weight Impact on Human Handovers to Adapt Robotic Handover Motion¶
2025/12/26 05:02 GTM
This paper introduces the YCB-Handovers dataset, capturing motion data of 2771 human-human handovers with varying object weights. The dataset aims to bridge a gap in human-robot collaboration research, providing insights into the impact of object weight in human handovers and readiness cues for intuitive robotic motion planning. The underlying dataset for object recognition and tracking is the YCB (Yale-CMU-Berkeley) dataset, which is an established standard dataset used in algorithms for robotic manipulation, including grasping and carrying objects. The YCB-Handovers dataset incorporates human motion patterns in handovers, making it applicable for data-driven, human-inspired models aimed at weight-sensitive motion planning and adaptive robotic behaviors. This dataset covers an extensive range of weights, allowing for a more robust study of handover behavior and weight variation. Some objects also require careful handovers, highlighting contrasts with standard handovers. We also provide a detailed analysis of the object’s weight impact on the human reaching motion in these handovers.
3.144Towards Optimal Performance and Action Consistency Guarantees in Dec-POMDPs with Inconsistent Beliefs and Limited Communication¶
2025/12/26 05:02 GTM
Multi-agent decision-making under uncertainty is fundamental for effective and safe autonomous operation. In many real-world scenarios, each agent maintains its own belief over the environment and must plan actions accordingly. However, most existing approaches assume that all agents have identical beliefs at planning time, implying these beliefs are conditioned on the same data. Such an assumption is often impractical due to limited communication. In reality, agents frequently operate with inconsistent beliefs, which can lead to poor coordination and suboptimal, potentially unsafe, performance. In this paper, we address this critical challenge by introducing a novel decentralized framework for optimal joint action selection that explicitly accounts for belief inconsistencies. Our approach provides probabilistic guarantees for both action consistency and performance with respect to open-loop multi-agent POMDP (which assumes all data is always communicated), and selectively triggers communication only when needed. Furthermore, we address another key aspect of whether, given a chosen joint action, the agents should share data to improve expected performance in inference. Simulation results show our approach outperforms state-of-the-art algorithms.
3.145A General Purpose Method for Robotic Interception of Non-Cooperative Dynamic Targets¶
2025/12/26 05:02 GTM
This paper presents a general purpose framework for autonomous, vision-based interception of dynamic, non-cooperative targets, validated across three distinct mobility platforms: an unmanned aerial vehicle (UAV), a four-wheeled ground rover, and an air-thruster spacecraft testbed. The approach relies solely on a monocular camera with fiducials for target tracking and operates entirely in the local observer frame without the need for global information. The core contribution of this work is a streamlined and general approach to autonomous interception that can be adapted across robots with varying dynamics, as well as our comprehensive study of the robot interception problem across heterogenous mobility systems under limited observability and no global localization. Our method integrates (1) an Extended Kalman Filter for relative pose estimation amid intermittent measurements, (2) a history-conditioned motion predictor for dynamic target trajectory propagation, and (3) a receding-horizon planner solving a constrained convex program in real time to ensure time-efficient and kinematically feasible interception paths. Our operating regime assumes that observability is restricted by partial fields of view, sensor dropouts, and target occlusions. Experiments are performed in these conditions and include autonomous UAV landing on dynamic targets, rover rendezvous and leader-follower tasks, and spacecraft proximity operations. Results from simulated and physical experiments demonstrate robust performance with low interception errors (both during station-keeping and upon scenario completion), high success rates under deterministic and stochastic target motion profiles, and real-time execution on embedded processors such as the Jetson Orin, VOXL2, and Raspberry Pi 5. These results highlight the framework’s generalizability, robustness, and computational efficiency.
3.146Fixed-time control with prescribed performance for path following of underwater gliders¶
2025/12/26 05:02 GTM
Underwater gliders are increasingly deployed in challenging missions - such as hurricane-season observations and long-endurance environmental monitoring - where strong currents and turbulence pose significant risks to navigation safety. To address these practical challenges, this paper presents a fixed-time prescribed performance control scheme for the 3D path following of underwater gliders subject to model uncertainties and environmental disturbances. The primary contribution is the integration of a finite-time performance function within a fixed-time control framework. This synthesis ensures that the tracking errors are constrained within prescribed performance bounds and converge to a compact set within a fixed time, independent of initial conditions. A second key contribution is the development of a fixed-time sliding mode disturbance observer that provides accurate finite-time estimation of lumped disturbances, enhancing the system’s robustness. Integrated with an iLOS guidance law, the proposed controller enables precise and safe waypoint following. Numerical simulations demonstrate that the proposed method outperforms conventional sliding mode and prescribed performance controllers in tracking accuracy, convergence speed, and control effort smoothness, validating its efficacy for robust underwater navigation.
3.147Anytime Metaheuristic Framework for Global Route Optimization in Expected-Time Mobile Search¶
2025/12/26 05:02 GTM
Expected-time mobile search (ETS) is a fundamental robotics task where a mobile sensor navigates an environment to minimize the expected time required to locate a hidden object. Global route optimization for ETS in static 2D continuous environments remains largely underexplored due to the intractability of objective evaluation, stemming from the continuous nature of the environment and the interplay of motion and visibility constraints. Prior work has addressed this through partial discretization, leading to discrete-sensing formulations tackled via utility-greedy heuristics. Others have taken an indirect approach by heuristically approximating the objective using minimum latency problems on fixed graphs, enabling global route optimization via efficient metaheuristics. This paper builds on and significantly extends the latter by introducing Milaps (Minimum latency problems), a model-based solution framework for ETS. Milaps integrates novel auxiliary objectives and adapts a recent anytime metaheuristic for the traveling deliveryman problem, chosen for its strong performance under tight runtime constraints. Evaluations on a novel large-scale dataset demonstrate superior trade-offs between solution quality and runtime compared to state-of-the-art baselines. The best-performing strategy rapidly generates a preliminary solution, assigns static weights to sensing configurations, and optimizes global costs metaheuristically. Additionally, a qualitative study highlights the framework’s flexibility across diverse scenarios.