Generated at 2025-12-10 05:03:22
We have 181 news from different sources.
2paper¶
2.1Astra: General Interactive World Model with Autoregressive Denoising¶
2025/12/10 05:02 GTM
Recent advances in diffusion transformers have empowered video generation models to generate high-quality video clips from texts or images. However, world models with the ability to predict long-horizon futures from past observations and actions remain underexplored, especially for general-purpose scenarios and various forms of actions. To bridge this gap, we introduce Astra, an interactive general world model that generates real-world futures for diverse scenarios (e.g., autonomous driving, robot grasping) with precise action interactions (e.g., camera motion, robot action). We propose an autoregressive denoising architecture and use temporal causal attention to aggregate past observations and support streaming outputs. We use a noise-augmented history memory to avoid over-reliance on past frames to balance responsiveness with temporal coherence. For precise action control, we introduce an action-aware adapter that directly injects action signals into the denoising process. We further develop a mixture of action experts that dynamically route heterogeneous action modalities, enhancing versatility across diverse real-world tasks such as exploration, manipulation, and camera control. Astra achieves interactive, consistent, and general long-term video prediction and supports various forms of interactions. Experiments across multiple datasets demonstrate the improvements of Astra in fidelity, long-range prediction, and action alignment over existing state-of-the-art world models.
2.2MatteViT: High-Frequency-Aware Document Shadow Removal with Shadow Matte Guidance¶
2025/12/10 05:02 GTM
Document shadow removal is essential for enhancing the clarity of digitized documents. Preserving high-frequency details (e.g., text edges and lines) is critical in this process because shadows often obscure or distort fine structures. This paper proposes a matte vision transformer (MatteViT), a novel shadow removal framework that applies spatial and frequency-domain information to eliminate shadows while preserving fine-grained structural details. To effectively retain these details, we employ two preservation strategies. First, our method introduces a lightweight high-frequency amplification module (HFAM) that decomposes and adaptively amplifies high-frequency components. Second, we present a continuous luminance-based shadow matte, generated using a custom-built matte dataset and shadow matte generator, which provides precise spatial guidance from the earliest processing stage. These strategies enable the model to accurately identify fine-grained regions and restore them with high fidelity. Extensive experiments on public benchmarks (RDD and Kligler) demonstrate that MatteViT achieves state-of-the-art performance, providing a robust and practical solution for real-world document shadow removal. Furthermore, the proposed method better preserves text-level details in downstream tasks, such as optical character recognition, improving recognition performance over prior methods.
2.3LoFA: Learning to Predict Personalized Priors for Fast Adaptation of Visual Generative Models¶
2025/12/10 05:02 GTM
Personalizing visual generative models to meet specific user needs has gained increasing attention, yet current methods like Low-Rank Adaptation (LoRA) remain impractical due to their demand for task-specific data and lengthy optimization. While a few hypernetwork-based approaches attempt to predict adaptation weights directly, they struggle to map fine-grained user prompts to complex LoRA distributions, limiting their practical applicability. To bridge this gap, we propose LoFA, a general framework that efficiently predicts personalized priors for fast model adaptation. We first identify a key property of LoRA: structured distribution patterns emerge in the relative changes between LoRA and base model parameters. Building on this, we design a two-stage hypernetwork: first predicting relative distribution patterns that capture key adaptation regions, then using these to guide final LoRA weight prediction. Extensive experiments demonstrate that our method consistently predicts high-quality personalized priors within seconds, across multiple tasks and user prompts, even outperforming conventional LoRA that requires hours of processing. Project page: https://
2.4Refining Visual Artifacts in Diffusion Models via Explainable AI-based Flaw Activation Maps¶
2025/12/10 05:02 GTM
Diffusion models have achieved remarkable success in image synthesis. However, addressing artifacts and unrealistic regions remains a critical challenge. We propose self-refining diffusion, a novel framework that enhances image generation quality by detecting these flaws. The framework employs an explainable artificial intelligence (XAI)-based flaw highlighter to produce flaw activation maps (FAMs) that identify artifacts and unrealistic regions. These FAMs improve reconstruction quality by amplifying noise in flawed regions during the forward process and by focusing on these regions during the reverse process. The proposed approach achieves up to a 27.3% improvement in Fréchet inception distance across various diffusion-based models, demonstrating consistently strong performance on diverse datasets. It also shows robust effectiveness across different tasks, including image generation, text-to-image generation, and inpainting. These results demonstrate that explainable AI techniques can extend beyond interpretability to actively contribute to image refinement. The proposed framework offers a versatile and effective approach applicable to various diffusion models and tasks, significantly advancing the field of image synthesis.
2.5Wan-Move: Motion-controllable Video Generation via Latent Trajectory Guidance¶
2025/12/10 05:02 GTM
We present Wan-Move, a simple and scalable framework that brings motion control to video generative models. Existing motion-controllable methods typically suffer from coarse control granularity and limited scalability, leaving their outputs insufficient for practical use. We narrow this gap by achieving precise and high-quality motion control. Our core idea is to directly make the original condition features motion-aware for guiding video synthesis. To this end, we first represent object motions with dense point trajectories, allowing fine-grained control over the scene. We then project these trajectories into latent space and propagate the first frame’s features along each trajectory, producing an aligned spatiotemporal feature map that tells how each scene element should move. This feature map serves as the updated latent condition, which is naturally integrated into the off-the-shelf image-to-video model, e.g., Wan-I2V-14B, as motion guidance without any architecture change. It removes the need for auxiliary motion encoders and makes fine-tuning base models easily scalable. Through scaled training, Wan-Move generates 5-second, 480p videos whose motion controllability rivals Kling 1.5 Pro’s commercial Motion Brush, as indicated by user studies. To support comprehensive evaluation, we further design MoveBench, a rigorously curated benchmark featuring diverse content categories and hybrid-verified annotations. It is distinguished by larger data volume, longer video durations, and high-quality motion annotations. Extensive experiments on MoveBench and the public dataset consistently show Wan-Move’s superior motion quality. Code, models, and benchmark data are made publicly available.
2.6Skewness-Guided Pruning of Multimodal Swin Transformers for Federated Skin Lesion Classification on Edge Devices¶
2025/12/10 05:02 GTM
In recent years, high-performance computer vision models have achieved remarkable success in medical imaging, with some skin lesion classification systems even surpassing dermatology specialists in diagnostic accuracy. However, such models are computationally intensive and large in size, making them unsuitable for deployment on edge devices. In addition, strict privacy constraints hinder centralized data management, motivating the adoption of Federated Learning (FL). To address these challenges, this study proposes a skewness-guided pruning method that selectively prunes the Multi-Head Self-Attention and Multi-Layer Perceptron layers of a multimodal Swin Transformer based on the statistical skewness of their output distributions. The proposed method was validated in a horizontal FL environment and shown to maintain performance while substantially reducing model complexity. Experiments on the compact Swin Transformer demonstrate approximately 36% model size reduction with no loss in accuracy. These findings highlight the feasibility of achieving efficient model compression and privacy-preserving distributed learning for multimodal medical AI on edge devices.
2.7A Scalable Pipeline Combining Procedural 3D Graphics and Guided Diffusion for Photorealistic Synthetic Training Data Generation in White Button Mushro...¶
2025/12/10 05:02 GTM
Industrial mushroom cultivation increasingly relies on computer vision for monitoring and automated harvesting. However, developing accurate detection and segmentation models requires large, precisely annotated datasets that are costly to produce. Synthetic data provides a scalable alternative, yet often lacks sufficient realism to generalize to real-world scenarios. This paper presents a novel workflow that integrates 3D rendering in Blender with a constrained diffusion model to automatically generate high-quality annotated, photorealistic synthetic images of Agaricus Bisporus mushrooms. This approach preserves full control over 3D scene configuration and annotations while achieving photorealism without the need for specialized computer graphics expertise. We release two synthetic datasets (each containing 6,000 images depicting over 250k mushroom instances) and evaluate Mask R-CNN models trained on them in a zero-shot setting. When tested on two independent real-world datasets (including a newly collected benchmark), our method achieves state-of-the-art segmentation performance (F1 = 0.859 on M18K), despite using only synthetic training data. Although the approach is demonstrated on Agaricus Bisporus mushrooms, the proposed pipeline can be readily adapted to other mushroom species or to other agricultural domains, such as fruit and leaf detection.
2.8Pose-Based Sign Language Spotting via an End-to-End Encoder Architecture¶
2025/12/10 05:02 GTM
Automatic Sign Language Recognition (ASLR) has emerged as a vital field for bridging the gap between deaf and hearing communities. However, the problem of sign-to-sign retrieval or detecting a specific sign within a sequence of continuous signs remains largely unexplored. We define this novel task as Sign Language Spotting. In this paper, we present a first step toward sign language retrieval by addressing the challenge of detecting the presence or absence of a query sign video within a sentence-level gloss or sign video. Unlike conventional approaches that rely on intermediate gloss recognition or text-based matching, we propose an end-to-end model that directly operates on pose keypoints extracted from sign videos. Our architecture employs an encoder-only backbone with a binary classification head to determine whether the query sign appears within the target sequence. By focusing on pose representations instead of raw RGB frames, our method significantly reduces computational cost and mitigates visual noise. We evaluate our approach on the Word Presence Prediction dataset from the WSLP 2025 shared task, achieving 61.88% accuracy and 60.00% F1-score. These results demonstrate the effectiveness of our pose-based framework for Sign Language Spotting, establishing a strong foundation for future research in automatic sign language retrieval and verification. Code is available at https://
2.9Mitigating Individual Skin Tone Bias in Skin Lesion Classification through Distribution-Aware Reweighting¶
2025/12/10 05:02 GTM
Skin color has historically been a focal point of discrimination, yet fairness research in machine learning for medical imaging often relies on coarse subgroup categories, overlooking individual-level variations. Such group-based approaches risk obscuring biases faced by outliers within subgroups. This study introduces a distribution-based framework for evaluating and mitigating individual fairness in skin lesion classification. We treat skin tone as a continuous attribute rather than a categorical label, and employ kernel density estimation (KDE) to model its distribution. We further compare twelve statistical distance metrics to quantify disparities between skin tone distributions and propose a distance-based reweighting (DRW) loss function to correct underrepresentation in minority tones. Experiments across CNN and Transformer models demonstrate: (i) the limitations of categorical reweighting in capturing individual-level disparities, and (ii) the superior performance of distribution-based reweighting, particularly with Fidelity Similarity (FS), Wasserstein Distance (WD), Hellinger Metric (HM), and Harmonic Mean Similarity (HS). These findings establish a robust methodology for advancing fairness at individual level in dermatological AI systems, and highlight broader implications for sensitive continuous attributes in medical image analysis.
2.10SegEarth-OV3: Exploring SAM 3 for Open-Vocabulary Semantic Segmentation in Remote Sensing Images¶
2025/12/10 05:02 GTM
Most existing methods for training-free Open-Vocabulary Semantic Segmentation (OVSS) are based on CLIP. While these approaches have made progress, they often face challenges in precise localization or require complex pipelines to combine separate modules, especially in remote sensing scenarios where numerous dense and small targets are present. Recently, Segment Anything Model 3 (SAM 3) was proposed, unifying segmentation and recognition in a promptable framework. In this paper, we present a preliminary exploration of applying SAM 3 to the remote sensing OVSS task without any training. First, we implement a mask fusion strategy that combines the outputs from SAM 3’s semantic segmentation head and the Transformer decoder (instance head). This allows us to leverage the strengths of both heads for better land coverage. Second, we utilize the presence score from the presence head to filter out categories that do not exist in the scene, reducing false positives caused by the vast vocabulary sizes and patch-level processing in geospatial scenes. We evaluate our method on extensive remote sensing datasets. Experiments show that this simple adaptation achieves promising performance, demonstrating the potential of SAM 3 for remote sensing OVSS. Our code is released at https://
2.11Multi-domain performance analysis with scores tailored to user preferences¶
2025/12/10 05:02 GTM
The performance of algorithms, methods, and models tends to depend heavily on the distribution of cases on which they are applied, this distribution being specific to the applicative domain. After performing an evaluation in several domains, it is highly informative to compute a (weighted) mean performance and, as shown in this paper, to scrutinize what happens during this averaging. To achieve this goal, we adopt a probabilistic framework and consider a performance as a probability measure (e.g., a normalized confusion matrix for a classification task). It appears that the corresponding weighted mean is known to be the summarization, and that only some remarkable scores assign to the summarized performance a value equal to a weighted arithmetic mean of the values assigned to the domain-specific performances. These scores include the family of ranking scores, a continuum parameterized by user preferences, and that the weights to consider in the arithmetic mean depend on the user preferences. Based on this, we rigorously define four domains, named easiest, most difficult, preponderant, and bottleneck domains, as functions of user preferences. After establishing the theory in a general setting, regardless of the task, we develop new visual tools for two-class classification.
2.12Scale-invariant and View-relational Representation Learning for Full Surround Monocular Depth¶
2025/12/10 05:02 GTM
Recent foundation models demonstrate strong generalization capabilities in monocular depth estimation. However, directly applying these models to Full Surround Monocular Depth Estimation (FSMDE) presents two major challenges: (1) high computational cost, which limits real-time performance, and (2) difficulty in estimating metric-scale depth, as these models are typically trained to predict only relative depth. To address these limitations, we propose a novel knowledge distillation strategy that transfers robust depth knowledge from a foundation model to a lightweight FSMDE network. Our approach leverages a hybrid regression framework combining the knowledge distillation scheme--traditionally used in classification--with a depth binning module to enhance scale consistency. Specifically, we introduce a cross-interaction knowledge distillation scheme that distills the scale-invariant depth bin probabilities of a foundation model into the student network while guiding it to infer metric-scale depth bin centers from ground-truth depth. Furthermore, we propose view-relational knowledge distillation, which encodes structural relationships among adjacent camera views and transfers them to enhance cross-view depth consistency. Experiments on DDAD and nuScenes demonstrate the effectiveness of our method compared to conventional supervised methods and existing knowledge distillation approaches. Moreover, our method achieves a favorable trade-off between performance and efficiency, meeting real-time requirements.
2.13What really matters for person re-identification? A Mixture-of-Experts Framework for Semantic Attribute Importance¶
2025/12/10 05:02 GTM
State-of-the-art person re-identification methods achieve impressive accuracy but remain largely opaque, leaving open the question: which high-level semantic attributes do these models actually rely on? We propose MoSAIC-ReID, a Mixture-of-Experts framework that systematically quantifies the importance of pedestrian attributes for re-identification. Our approach uses LoRA-based experts, each linked to a single attribute, and an oracle router that enables controlled attribution analysis. While MoSAIC-ReID achieves competitive performance on Market-1501 and DukeMTMC under the assumption that attribute annotations are available at test time, its primary value lies in providing a large-scale, quantitative study of attribute importance across intrinsic and extrinsic cues. Using generalized linear models, statistical tests, and feature-importance analyses, we reveal which attributes, such as clothing colors and intrinsic characteristics, contribute most strongly, while infrequent cues (e.g. accessories) have limited effect. This work offers a principled framework for interpretable ReID and highlights the requirements for integrating explicit semantic knowledge in practice. Code is available at https://
2.14Dual-Branch Center-Surrounding Contrast: Rethinking Contrastive Learning for 3D Point Clouds¶
2025/12/10 05:02 GTM
Most existing self-supervised learning (SSL) approaches for 3D point clouds are dominated by generative methods based on Masked Autoencoders (MAE). However, these generative methods have been proven to struggle to capture high-level discriminative features effectively, leading to poor performance on linear probing and other downstream tasks. In contrast, contrastive methods excel in discriminative feature representation and generalization ability on image data. Despite this, contrastive learning (CL) in 3D data remains scarce. Besides, simply applying CL methods designed for 2D data to 3D fails to effectively learn 3D local details. To address these challenges, we propose a novel Dual-Branch \textbf{C}enter-\textbf{S}urrounding \textbf{Con}trast (CSCon) framework. Specifically, we apply masking to the center and surrounding parts separately, constructing dual-branch inputs with center-biased and surrounding-biased representations to better capture rich geometric information. Meanwhile, we introduce a patch-level contrastive loss to further enhance both high-level information and local sensitivity. Under the FULL and ALL protocols, CSCon achieves performance comparable to generative methods; under the MLP-LINEAR, MLP-3, and ONLY-NEW protocols, our method attains state-of-the-art results, even surpassing cross-modal approaches. In particular, under the MLP-LINEAR protocol, our method outperforms the baseline (Point-MAE) by \textbf{7.9%}, \textbf{6.7%}, and \textbf{10.3%} on the three variants of ScanObjectNN, respectively. The code will be made publicly available.
2.15Repulsor: Accelerating Generative Modeling with a Contrastive Memory Bank¶
2025/12/10 05:02 GTM
The dominance of denoising generative models (e.g., diffusion, flow-matching) in visual synthesis is tempered by their substantial training costs and inefficiencies in representation learning. While injecting discriminative representations via auxiliary alignment has proven effective, this approach still faces key limitations: the reliance on external, pre-trained encoders introduces overhead and domain shift. A dispersed-based strategy that encourages strong separation among in-batch latent representations alleviates this specific dependency. To assess the effect of the number of negative samples in generative modeling, we propose {\mname}, a plug-and-play training framework that requires no external encoders. Our method integrates a memory bank mechanism that maintains a large, dynamically updated queue of negative samples across training iterations. This decouples the number of negatives from the mini-batch size, providing abundant and high-quality negatives for a contrastive objective without a multiplicative increase in computational cost. A low-dimensional projection head is used to further minimize memory and bandwidth overhead. {\mname} offers three principal advantages: (1) it is self-contained, eliminating dependency on pretrained vision foundation models and their associated forward-pass overhead; (2) it introduces no additional parameters or computational cost during inference; and (3) it enables substantially faster convergence, achieving superior generative quality more efficiently. On ImageNet-256, {\mname} achieves a state-of-the-art FID of \textbf{2.40} within 400k steps, significantly outperforming comparable methods.
2.16C-DIRA: Computationally Efficient Dynamic ROI Routing and Domain-Invariant Adversarial Learning for Lightweight Driver Behavior Recognition¶
2025/12/10 05:02 GTM
Driver distraction behavior recognition using in-vehicle cameras demands real-time inference on edge devices. However, lightweight models often fail to capture fine-grained behavioral cues, resulting in reduced performance on unseen drivers or under varying conditions. ROI-based methods also increase computational cost, making it difficult to balance efficiency and accuracy. This work addresses the need for a lightweight architecture that overcomes these constraints. We propose Computationally efficient Dynamic region of Interest Routing and domain-invariant Adversarial learning for lightweight driver behavior recognition (C-DIRA). The framework combines saliency-driven Top-K ROI pooling and fused classification for local feature extraction and integration. Dynamic ROI routing enables selective computation by applying ROI inference only to high difficulty data samples. Moreover, pseudo-domain labeling and adversarial learning are used to learn domain-invariant features robust to driver and background variation. Experiments on the State Farm Distracted Driver Detection Dataset show that C-DIRA maintains high accuracy with significantly fewer FLOPs and lower latency than prior lightweight models. It also demonstrates robustness under visual degradation such as blur and low-light, and stable performance across unseen domains. These results confirm C-DIRA’s effectiveness in achieving compactness, efficiency, and generalization.
2.17Chain-of-Image Generation: Toward Monitorable and Controllable Image Generation¶
2025/12/10 05:02 GTM
While state-of-the-art image generation models achieve remarkable visual quality, their internal generative processes remain a “black box.” This opacity limits human observation and intervention, and poses a barrier to ensuring model reliability, safety, and control. Furthermore, their non-human-like workflows make them difficult for human observers to interpret. To address this, we introduce the Chain-of-Image Generation (CoIG) framework, which reframes image generation as a sequential, semantic process analogous to how humans create art. Similar to the advantages in monitorability and performance that Chain-of-Thought (CoT) brought to large language models (LLMs), CoIG can produce equivalent benefits in text-to-image generation. CoIG utilizes an LLM to decompose a complex prompt into a sequence of simple, step-by-step instructions. The image generation model then executes this plan by progressively generating and editing the image. Each step focuses on a single semantic entity, enabling direct monitoring. We formally assess this property using two novel metrics: CoIG Readability, which evaluates the clarity of each intermediate step via its corresponding output; and Causal Relevance, which quantifies the impact of each procedural step on the final generated image. We further show that our framework mitigates entity collapse by decomposing the complex generation task into simple subproblems, analogous to the procedural reasoning employed by CoT. Our experimental results indicate that CoIG substantially enhances quantitative monitorability while achieving competitive compositional robustness compared to established baseline models. The framework is model-agnostic and can be integrated with any image generation model.
2.18Aerial Vision-Language Navigation with a Unified Framework for Spatial, Temporal and Embodied Reasoning¶
2025/12/10 05:02 GTM
Aerial Vision-and-Language Navigation (VLN) aims to enable unmanned aerial vehicles (UAVs) to interpret natural language instructions and navigate complex urban environments using onboard visual observation. This task holds promise for real-world applications such as low-altitude inspection, search-and-rescue, and autonomous aerial delivery. Existing methods often rely on panoramic images, depth inputs, or odometry to support spatial reasoning and action planning. These requirements increase system cost and integration complexity, thus hindering practical deployment for lightweight UAVs. We present a unified aerial VLN framework that operates solely on egocentric monocular RGB observations and natural language instructions. The model formulates navigation as a next-token prediction problem, jointly optimizing spatial perception, trajectory reasoning, and action prediction through prompt-guided multi-task learning. Moreover, we propose a keyframe selection strategy to reduce visual redundancy by retaining semantically informative frames, along with an action merging and label reweighting mechanism that mitigates long-tailed supervision imbalance and facilitates stable multi-task co-training. Extensive experiments on the Aerial VLN benchmark validate the effectiveness of our method. Under the challenging monocular RGB-only setting, our model achieves strong results across both seen and unseen environments. It significantly outperforms existing RGB-only baselines and narrows the performance gap with state-of-the-art panoramic RGB-D counterparts. Comprehensive ablation studies further demonstrate the contribution of our task design and architectural choices.
2.19See-Control: A Multimodal Agent Framework for Smartphone Interaction with a Robotic Arm¶
2025/12/10 05:02 GTM
Recent advances in Multimodal Large Language Models (MLLMs) have enabled their use as intelligent agents for smartphone operation. However, existing methods depend on the Android Debug Bridge (ADB) for data transmission and action execution, limiting their applicability to Android devices. In this work, we introduce the novel Embodied Smartphone Operation (ESO) task and present See-Control, a framework that enables smartphone operation via direct physical interaction with a low-DoF robotic arm, offering a platform-agnostic solution. See-Control comprises three key components: (1) an ESO benchmark with 155 tasks and corresponding evaluation metrics; (2) an MLLM-based embodied agent that generates robotic control commands without requiring ADB or system back-end access; and (3) a richly annotated dataset of operation episodes, offering valuable resources for future research. By bridging the gap between digital agents and the physical world, See-Control provides a concrete step toward enabling home robots to perform smartphone-dependent tasks in realistic environments.
2.20Trajectory Densification and Depth from Perspective-based Blur¶
2025/12/10 05:02 GTM
In the absence of a mechanical stabilizer, the camera undergoes inevitable rotational dynamics during capturing, which induces perspective-based blur especially under long-exposure scenarios. From an optical standpoint, perspective-based blur is depth-position-dependent: objects residing at distinct spatial locations incur different blur levels even under the same imaging settings. Inspired by this, we propose a novel method that estimate metric depth by examining the blur pattern of a video stream and dense trajectory via joint optical design algorithm. Specifically, we employ off-the-shelf vision encoder and point tracker to extract video information. Then, we estimate depth map via windowed embedding and multi-window aggregation, and densify the sparse trajectory from the optical algorithm using a vision-language model. Evaluations on multiple depth datasets demonstrate that our method attains strong performance over large depth range, while maintaining favorable generalization. Relative to the real trajectory in handheld shooting settings, our optical algorithm achieves superior precision and the dense reconstruction maintains strong accuracy.
2.21OpenMonoGS-SLAM: Monocular Gaussian Splatting SLAM with Open-set Semantics¶
2025/12/10 05:02 GTM
Simultaneous Localization and Mapping (SLAM) is a foundational component in robotics, AR/VR, and autonomous systems. With the rising focus on spatial AI in recent years, combining SLAM with semantic understanding has become increasingly important for enabling intelligent perception and interaction. Recent efforts have explored this integration, but they often rely on depth sensors or closed-set semantic models, limiting their scalability and adaptability in open-world environments. In this work, we present OpenMonoGS-SLAM, the first monocular SLAM framework that unifies 3D Gaussian Splatting (3DGS) with open-set semantic understanding. To achieve our goal, we leverage recent advances in Visual Foundation Models (VFMs), including MASt3R for visual geometry and SAM and CLIP for open-vocabulary semantics. These models provide robust generalization across diverse tasks, enabling accurate monocular camera tracking and mapping, as well as a rich understanding of semantics in open-world environments. Our method operates without any depth input or 3D semantic ground truth, relying solely on self-supervised learning objectives. Furthermore, we propose a memory mechanism specifically designed to manage high-dimensional semantic features, which effectively constructs Gaussian semantic feature maps, leading to strong overall performance. Experimental results demonstrate that our approach achieves performance comparable to or surpassing existing baselines in both closed-set and open-set segmentation tasks, all without relying on supplementary sensors such as depth maps or semantic annotations.
2.22Decoupling Template Bias in CLIP: Harnessing Empty Prompts for Enhanced Few-Shot Learning¶
2025/12/10 05:02 GTM
The Contrastive Language-Image Pre-Training (CLIP) model excels in few-shot learning by aligning visual and textual representations. Our study shows that template-sample similarity (TSS), defined as the resemblance between a text template and an image sample, introduces bias. This bias leads the model to rely on template proximity rather than true sample-to-category alignment, reducing both accuracy and robustness in classification. We present a framework that uses empty prompts, textual inputs that convey the idea of “emptiness” without category information. These prompts capture unbiased template features and offset TSS bias. The framework employs two stages. During pre-training, empty prompts reveal and reduce template-induced bias within the CLIP encoder. During few-shot fine-tuning, a bias calibration loss enforces correct alignment between images and their categories, ensuring the model focuses on relevant visual cues. Experiments across multiple benchmarks demonstrate that our template correction method significantly reduces performance fluctuations caused by TSS, yielding higher classification accuracy and stronger robustness. The repository of this project is available at https://
2.23Automated Pollen Recognition in Optical and Holographic Microscopy Images¶
2025/12/10 05:02 GTM
This study explores the application of deep learning to improve and automate pollen grain detection and classification in both optical and holographic microscopy images, with a particular focus on veterinary cytology use cases. We used YOLOv8s for object detection and MobileNetV3L for the classification task, evaluating their performance across imaging modalities. The models achieved 91.3% mAP50 for detection and 97% overall accuracy for classification on optical images, whereas the initial performance on greyscale holographic images was substantially lower. We addressed the performance gap issue through dataset expansion using automated labeling and bounding box area enlargement. These techniques, applied to holographic images, improved detection performance from 2.49% to 13.3% mAP50 and classification performance from 42% to 54%. Our work demonstrates that, at least for image classification tasks, it is possible to pair deep learning techniques with cost-effective lensless digital holographic microscopy devices.
2.24Disturbance-Free Surgical Video Generation from Multi-Camera Shadowless Lamps for Open Surgery¶
2025/12/10 05:02 GTM
Video recordings of open surgeries are greatly required for education and research purposes. However, capturing unobstructed videos is challenging since surgeons frequently block the camera field of view. To avoid occlusion, the positions and angles of the camera must be frequently adjusted, which is highly labor-intensive. Prior work has addressed this issue by installing multiple cameras on a shadowless lamp and arranging them to fully surround the surgical area. This setup increases the chances of some cameras capturing an unobstructed view. However, manual image alignment is needed in post-processing since camera configurations change every time surgeons move the lamp for optimal lighting. This paper aims to fully automate this alignment task. The proposed method identifies frames in which the lighting system moves, realigns them, and selects the camera with the least occlusion to generate a video that consistently presents the surgical field from a fixed perspective. A user study involving surgeons demonstrated that videos generated by our method were superior to those produced by conventional methods in terms of the ease of confirming the surgical area and the comfort during video viewing. Additionally, our approach showed improvements in video quality over existing techniques. Furthermore, we implemented several synthesis options for the proposed view-synthesis method and conducted a user study to assess surgeons’ preferences for each option.
2.25From Cells to Survival: Hierarchical Analysis of Cell Inter-Relations in Multiplex Microscopy for Lung Cancer Prognosis¶
2025/12/10 05:02 GTM
The tumor microenvironment (TME) has emerged as a promising source of prognostic biomarkers. To fully leverage its potential, analysis methods must capture complex interactions between different cell types. We propose HiGINE -- a hierarchical graph-based approach to predict patient survival (short vs. long) from TME characterization in multiplex immunofluorescence (mIF) images and enhance risk stratification in lung cancer. Our model encodes both local and global inter-relations in cell neighborhoods, incorporating information about cell types and morphology. Multimodal fusion, aggregating cancer stage with mIF-derived features, further boosts performance. We validate HiGINE on two public datasets, demonstrating improved risk stratification, robustness, and generalizability.
2.26Instance-Aware Test-Time Segmentation for Continual Domain Shifts¶
2025/12/10 05:02 GTM
Continual Test-Time Adaptation (CTTA) enables pre-trained models to adapt to continuously evolving domains. Existing methods have improved robustness but typically rely on fixed or batch-level thresholds, which cannot account for varying difficulty across classes and instances. This limitation is especially problematic in semantic segmentation, where each image requires dense, multi-class predictions. We propose an approach that adaptively adjusts pseudo labels to reflect the confidence distribution within each image and dynamically balances learning toward classes most affected by domain shifts. This fine-grained, class- and instance-aware adaptation produces more reliable supervision and mitigates error accumulation throughout continual adaptation. Extensive experiments across eight CTTA and TTA scenarios, including synthetic-to-real and long-term shifts, show that our method consistently outperforms state-of-the-art techniques, setting a new standard for semantic segmentation under evolving conditions.
2.27Modular Neural Image Signal Processing¶
2025/12/10 05:02 GTM
This paper presents a modular neural image signal processing (ISP) framework that processes raw inputs and renders high-quality display-referred images. Unlike prior neural ISP designs, our method introduces a high degree of modularity, providing full control over multiple intermediate stages of the rendering process.~This modular design not only achieves high rendering accuracy but also improves scalability, debuggability, generalization to unseen cameras, and flexibility to match different user-preference styles. To demonstrate the advantages of this design, we built a user-interactive photo-editing tool that leverages our neural ISP to support diverse editing operations and picture styles. The tool is carefully engineered to take advantage of the high-quality rendering of our neural ISP and to enable unlimited post-editable re-rendering. Our method is a fully learning-based framework with variants of different capacities, all of moderate size (ranging from ~0.5 M to ~3.9 M parameters for the entire pipeline), and consistently delivers competitive qualitative and quantitative results across multiple test sets. Watch the supplemental video at: https://
2.28BrainExplore: Large-Scale Discovery of Interpretable Visual Representations in the Human Brain¶
2025/12/10 05:02 GTM
Understanding how the human brain represents visual concepts, and in which brain regions these representations are encoded, remains a long-standing challenge. Decades of work have advanced our understanding of visual representations, yet brain signals remain large and complex, and the space of possible visual concepts is vast. As a result, most studies remain small-scale, rely on manual inspection, focus on specific regions and properties, and rarely include systematic validation. We present a large-scale, automated framework for discovering and explaining visual representations across the human cortex. Our method comprises two main stages. First, we discover candidate interpretable patterns in fMRI activity through unsupervised, data-driven decomposition methods. Next, we explain each pattern by identifying the set of natural images that most strongly elicit it and generating a natural-language description of their shared visual meaning. To scale this process, we introduce an automated pipeline that tests multiple candidate explanations, assigns quantitative reliability scores, and selects the most consistent description for each voxel pattern. Our framework reveals thousands of interpretable patterns spanning many distinct visual concepts, including fine-grained representations previously unreported.
2.29SSCATeR: Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling for Real-Time 3D Object Detection in LiDAR Point Clouds¶
2025/12/10 05:02 GTM
This work leverages the continuous sweeping motion of LiDAR scanning to concentrate object detection efforts on specific regions that receive a change in point data from one frame to another. We achieve this by using a sliding time window with short strides and consider the temporal dimension by storing convolution results between passes. This allows us to ignore unchanged regions, significantly reducing the number of convolution operations per forward pass without sacrificing accuracy. This data reuse scheme introduces extreme sparsity to detection data. To exploit this sparsity, we extend our previous work on scatter-based convolutions to allow for data reuse, and as such propose Sparse Scatter-Based Convolution Algorithm with Temporal Data Recycling (SSCATeR). This operation treats incoming LiDAR data as a continuous stream and acts only on the changing parts of the point cloud. By doing so, we achieve the same results with as much as a 6.61-fold reduction in processing time. Our test results show that the feature maps output by our method are identical to those produced by traditional sparse convolution techniques, whilst greatly increasing the computational efficiency of the network.
2.30An Iteration-Free Fixed-Point Estimator for Diffusion Inversion¶
2025/12/10 05:02 GTM
Diffusion inversion aims to recover the initial noise corresponding to a given image such that this noise can reconstruct the original image through the denoising diffusion process. The key component of diffusion inversion is to minimize errors at each inversion step, thereby mitigating cumulative inaccuracies. Recently, fixed-point iteration has emerged as a widely adopted approach to minimize reconstruction errors at each inversion step. However, it suffers from high computational costs due to its iterative nature and the complexity of hyperparameter selection. To address these issues, we propose an iteration-free fixed-point estimator for diffusion inversion. First, we derive an explicit expression of the fixed point from an ideal inversion step. Unfortunately, it inherently contains an unknown data prediction error. Building upon this, we introduce the error approximation, which uses the calculable error from the previous inversion step to approximate the unknown error at the current inversion step. This yields a calculable, approximate expression for the fixed point, which is an unbiased estimator characterized by low variance, as shown by our theoretical analysis. We evaluate reconstruction performance on two text-image datasets, NOCAPS and MS-COCO. Compared to DDIM inversion and other inversion methods based on the fixed-point iteration, our method achieves consistent and superior performance in reconstruction tasks without additional iterations or training.
2.31Curriculum Guided Massive Multi Agent System Solving For Robust Long Horizon Tasks¶
2025/12/10 05:02 GTM
Large Language Models and multi-agent systems have shown promise in decomposing complex tasks, yet they struggle with long-horizon reasoning tasks and escalating computation cost. This work introduces a hierarchical multi-agent architecture that distributes reasoning across a 64*64 grid of lightweight agents, supported by a selective oracle. A spatial curriculum progressively expands the operational region of the grid, ensuring that agents master easier central tasks before tackling harder peripheral ones. To improve reliability, the system integrates Negative Log-Likelihood as a measure of confidence, allowing the curriculum to prioritize regions where agents are both accurate and well calibrated. A Thompson Sampling curriculum manager adaptively chooses training zones based on competence and NLL-driven reward signals. We evaluate the approach on a spatially grounded Tower of Hanoi benchmark, which mirrors the long-horizon structure of many robotic manipulation and planning tasks. Results demonstrate improved stability, reduced oracle usage, and stronger long-range reasoning from distributed agent cooperation.
2.32A Novel Wasserstein Quaternion Generative Adversarial Network for Color Image Generation¶
2025/12/10 05:02 GTM
Color image generation has a wide range of applications, but the existing generation models ignore the correlation among color channels, which may lead to chromatic aberration problems. In addition, the data distribution problem of color images has not been systematically elaborated and explained, so that there is still the lack of the theory about measuring different color images datasets. In this paper, we define a new quaternion Wasserstein distance and develop its dual theory. To deal with the quaternion linear programming problem, we derive the strong duality form with helps of quaternion convex set separation theorem and quaternion Farkas lemma. With using quaternion Wasserstein distance, we propose a novel Wasserstein quaternion generative adversarial network. Experiments demonstrate that this novel model surpasses both the (quaternion) generative adversarial networks and the Wasserstein generative adversarial network in terms of generation efficiency and image quality.
2.33Fast-ARDiff: An Entropy-informed Acceleration Framework for Continuous Space Autoregressive Generation¶
2025/12/10 05:02 GTM
Autoregressive(AR)-diffusion hybrid paradigms combine AR’s structured modeling with diffusion’s photorealistic synthesis, yet suffer from high latency due to sequential AR generation and iterative denoising. In this work, we tackle this bottleneck and propose a unified AR-diffusion framework Fast-ARDiff that jointly optimizes both components, accelerating AR speculative decoding while simultaneously facilitating faster diffusion decoding. Specifically: (1) The entropy-informed speculative strategy encourages draft model to produce higher-entropy representations aligned with target model’s entropy characteristics, mitigating entropy mismatch and high rejection rates caused by draft overconfidence. (2) For diffusion decoding, rather than treating it as an independent module, we integrate it into the same end-to-end framework using a dynamic scheduler that prioritizes AR optimization to guide the diffusion part in further steps. The diffusion part is optimized through a joint distillation framework combining trajectory and distribution matching, ensuring stable training and high-quality synthesis with extremely few steps. During inference, shallow feature entropy from AR module is used to pre-filter low-entropy drafts, avoiding redundant computation and improving latency. Fast-ARDiff achieves state-of-the-art acceleration across diverse models: on ImageNet 256256, TransDiff attains 4.3 lossless speedup, and NextStep-1 achieves 3 acceleration on text-conditioned generation. Code will be available at https://
2.34Photo3D: Advancing Photorealistic 3D Generation through Structure-Aligned Detail Enhancement¶
2025/12/10 05:02 GTM
Although recent 3D-native generators have made great progress in synthesizing reliable geometry, they still fall short in achieving realistic appearances. A key obstacle lies in the lack of diverse and high-quality real-world 3D assets with rich texture details, since capturing such data is intrinsically difficult due to the diverse scales of scenes, non-rigid motions of objects, and the limited precision of 3D scanners. We introduce Photo3D, a framework for advancing photorealistic 3D generation, which is driven by the image data generated by the GPT-4o-Image model. Considering that the generated images can distort 3D structures due to their lack of multi-view consistency, we design a structure-aligned multi-view synthesis pipeline and construct a detail-enhanced multi-view dataset paired with 3D geometry. Building on it, we present a realistic detail enhancement scheme that leverages perceptual feature adaptation and semantic structure matching to enforce appearance consistency with realistic details while preserving the structural consistency with the 3D-native geometry. Our scheme is general to different 3D-native generators, and we present dedicated training strategies to facilitate the optimization of geometry-texture coupled and decoupled 3D-native generation paradigms. Experiments demonstrate that Photo3D generalizes well across diverse 3D-native generation paradigms and achieves state-of-the-art photorealistic 3D generation performance.
2.35PaintFlow: A Unified Framework for Interactive Oil Paintings Editing and Generation¶
2025/12/10 05:02 GTM
Oil painting, as a high-level medium that blends human abstract thinking with artistic expression, poses substantial challenges for digital generation and editing due to its intricate brushstroke dynamics and stylized characteristics. Existing generation and editing techniques are often constrained by the distribution of training data and primarily focus on modifying real photographs. In this work, we introduce a unified multimodal framework for oil painting generation and editing. The proposed system allows users to incorporate reference images for precise semantic control, hand-drawn sketches for spatial structure alignment, and natural language prompts for high-level semantic guidance, while consistently maintaining a unified painting style across all outputs. Our method achieves interactive oil painting creation through three crucial technical advancements. First, we enhance the training stage with spatial alignment and semantic enhancement conditioning strategy, which map masks and sketches into spatial constraints, and encode contextual embedding from reference images and text into feature constraints, enabling object-level semantic alignment. Second, to overcome data scarcity, we propose a self-supervised style transfer pipeline based on Stroke-Based Rendering (SBR), which simulates the inpainting dynamics of oil painting restoration, converting real images into stylized oil paintings with preserved brushstroke textures to construct a large-scale paired training dataset. Finally, during inference, we integrate features using the AdaIN operator to ensure stylistic consistency. Extensive experiments demonstrate that our interactive system enables fine-grained editing while preserving the artistic qualities of oil paintings, achieving an unprecedented level of imagination realization in stylized oil paintings generation and editing.
2.36MVP: Multiple View Prediction Improves GUI Grounding¶
2025/12/10 05:02 GTM
GUI grounding, which translates natural language instructions into precise pixel coordinates, is essential for developing practical GUI agents. However, we observe that existing grounding models exhibit significant coordinate prediction instability, minor visual perturbations (e.g. cropping a few pixels) can drastically alter predictions, flipping results between correct and incorrect. This instability severely undermines model performance, especially for samples with high-resolution and small UI elements. To address this issue, we propose Multi-View Prediction (MVP), a training-free framework that enhances grounding performance through multi-view inference. Our key insight is that while single-view predictions may be unstable, aggregating predictions from multiple carefully cropped views can effectively distinguish correct coordinates from outliers. MVP comprises two components: (1) Attention-Guided View Proposal, which derives diverse views guided by instruction-to-image attention scores, and (2) Multi-Coordinates Clustering, which ensembles predictions by selecting the centroid of the densest spatial cluster. Extensive experiments demonstrate MVP’s effectiveness across various models and benchmarks. Notably, on ScreenSpot-Pro, MVP boosts UI-TARS-1.5-7B to 56.1%, GTA1-7B to 61.7%, Qwen3VL-8B-Instruct to 65.3%, and Qwen3VL-32B-Instruct to 74.0%. The code is available at https://
2.37Beyond Real Weights: Hypercomplex Representations for Stable Quantization¶
2025/12/10 05:02 GTM
Multimodal language models (MLLMs) require large parameter capacity to align high-dimensional visual features with linguistic representations, making them computationally heavy and difficult to deploy efficiently. We introduce a progressive reparameterization strategy that compresses these models by gradually replacing dense feed-forward network blocks with compact Parameterized Hypercomplex Multiplication (PHM) layers. A residual interpolation schedule, together with lightweight reconstruction and knowledge distillation losses, ensures that the PHM modules inherit the functional behavior of their dense counterparts during training. This transition yields substantial parameter and FLOP reductions while preserving strong multimodal alignment, enabling faster inference without degrading output quality. We evaluate the approach on multiple vision-language models (VLMs). Our method maintains performance comparable to the base models while delivering significant reductions in model size and inference latency. Progressive PHM substitution thus offers an architecture-compatible path toward more efficient multimodal reasoning and complements existing low-bit quantization techniques.
2.38Thinking with Images via Self-Calling Agent¶
2025/12/10 05:02 GTM
Thinking-with-images paradigms have showcased remarkable visual reasoning capability by integrating visual information as dynamic elements into the Chain-of-Thought (CoT). However, optimizing interleaved multimodal CoT (iMCoT) through reinforcement learning remains challenging, as it relies on scarce high-quality reasoning data. In this study, we propose Self-Calling Chain-of-Thought (sCoT), a novel visual reasoning paradigm that reformulates iMCoT as a language-only CoT with self-calling. Specifically, a main agent decomposes the complex visual reasoning task to atomic subtasks and invokes its virtual replicas, i.e. parameter-sharing subagents, to solve them in isolated context. sCoT enjoys substantial training effectiveness and efficiency, as it requires no explicit interleaving between modalities. sCoT employs group-relative policy optimization to reinforce effective reasoning behavior to enhance optimization. Experiments on HR-Bench 4K show that sCoT improves the overall reasoning performance by up to with fewer GPU hours compared to strong baseline approaches. Code is available at https://
2.39OCCDiff: Occupancy Diffusion Model for High-Fidelity 3D Building Reconstruction from Noisy Point Clouds¶
2025/12/10 05:02 GTM
A major challenge in reconstructing buildings from LiDAR point clouds lies in accurately capturing building surfaces under varying point densities and noise interference. To flexibly gather high-quality 3D profiles of the building in diverse resolution, we propose OCCDiff applying latent diffusion in the occupancy function space. Our OCCDiff combines a latent diffusion process with a function autoencoder architecture to generate continuous occupancy functions evaluable at arbitrary locations. Moreover, a point encoder is proposed to provide condition features to diffusion learning, constraint the final occupancy prediction for occupancy decoder, and insert multi-modal features for latent generation to latent encoder. To further enhance the model performance, a multi-task training strategy is employed, ensuring that the point encoder learns diverse and robust feature representations. Empirical results show that our method generates physically consistent samples with high fidelity to the target distribution and exhibits robustness to noisy data.
2.40Beyond the Noise: Aligning Prompts with Latent Representations in Diffusion Models¶
2025/12/10 05:02 GTM
Conditional diffusion models rely on language-to-image alignment methods to steer the generation towards semantically accurate outputs. Despite the success of this architecture, misalignment and hallucinations remain common issues and require automatic misalignment detection tools to improve quality, for example by applying them in a Best-of-N (BoN) post-generation setting. Unfortunately, measuring the alignment after the generation is an expensive step since we need to wait for the overall generation to finish to determine prompt adherence. In contrast, this work hypothesizes that text/image misalignments can be detected early in the denoising process, enabling real-time alignment assessment without waiting for the complete generation. In particular, we propose NoisyCLIP a method that measures semantic alignment in the noisy latent space. This work is the first to explore and benchmark prompt-to-latent misalignment detection during image generation using dual encoders in the reverse diffusion process. We evaluate NoisyCLIP qualitatively and quantitatively and find it reduces computational cost by 50% while achieving 98% of CLIP alignment performance in BoN settings. This approach enables real-time alignment assessment during generation, reducing costs without sacrificing semantic fidelity.
2.41Disrupting Hierarchical Reasoning: Adversarial Protection for Geographic Privacy in Multimodal Reasoning Models¶
2025/12/10 05:02 GTM
Multi-modal large reasoning models (MLRMs) pose significant privacy risks by inferring precise geographic locations from personal images through hierarchical chain-of-thought reasoning. Existing privacy protection techniques, primarily designed for perception-based models, prove ineffective against MLRMs’ sophisticated multi-step reasoning processes that analyze environmental cues. We introduce \textbf{ReasonBreak}, a novel adversarial framework specifically designed to disrupt hierarchical reasoning in MLRMs through concept-aware perturbations. Our approach is founded on the key insight that effective disruption of geographic reasoning requires perturbations aligned with conceptual hierarchies rather than uniform noise. ReasonBreak strategically targets critical conceptual dependencies within reasoning chains, generating perturbations that invalidate specific inference steps and cascade through subsequent reasoning stages. To facilitate this approach, we contribute \textbf{GeoPrivacy-6K}, a comprehensive dataset comprising 6,341 ultra-high-resolution images (2K) with hierarchical concept annotations. Extensive evaluation across seven state-of-the-art MLRMs (including GPT-o3, GPT-5, Gemini 2.5 Pro) demonstrates ReasonBreak’s superior effectiveness, achieving a 14.4% improvement in tract-level protection (33.8% vs 19.4%) and nearly doubling block-level protection (33.5% vs 16.8%). This work establishes a new paradigm for privacy protection against reasoning-based threats.
2.42Learning to Control Physically-simulated 3D Characters via Generating and Mimicking 2D Motions¶
2025/12/10 05:02 GTM
Video data is more cost-effective than motion capture data for learning 3D character motion controllers, yet synthesizing realistic and diverse behaviors directly from videos remains challenging. Previous approaches typically rely on off-the-shelf motion reconstruction techniques to obtain 3D trajectories for physics-based imitation. These reconstruction methods struggle with generalizability, as they either require 3D training data (potentially scarce) or fail to produce physically plausible poses, hindering their application to challenging scenarios like human-object interaction (HOI) or non-human characters. We tackle this challenge by introducing Mimic2DM, a novel motion imitation framework that learns the control policy directly and solely from widely available 2D keypoint trajectories extracted from videos. By minimizing the reprojection error, we train a general single-view 2D motion tracking policy capable of following arbitrary 2D reference motions in physics simulation, using only 2D motion data. The policy, when trained on diverse 2D motions captured from different or slightly different viewpoints, can further acquire 3D motion tracking capabilities by aggregating multiple views. Moreover, we develop a transformer-based autoregressive 2D motion generator and integrate it into a hierarchical control framework, where the generator produces high-quality 2D reference trajectories to guide the tracking policy. We show that the proposed approach is versatile and can effectively learn to synthesize physically plausible and diverse motions across a range of domains, including dancing, soccer dribbling, and animal movements, without any reliance on explicit 3D motion data. Project Website: https://
2.43On-the-fly Large-scale 3D Reconstruction from Multi-Camera Rigs¶
2025/12/10 05:02 GTM
Recent advances in 3D Gaussian Splatting (3DGS) have enabled efficient free-viewpoint rendering and photorealistic scene reconstruction. While on-the-fly extensions of 3DGS have shown promise for real-time reconstruction from monocular RGB streams, they often fail to achieve complete 3D coverage due to the limited field of view (FOV). Employing a multi-camera rig fundamentally addresses this limitation. In this paper, we present the first on-the-fly 3D reconstruction framework for multi-camera rigs. Our method incrementally fuses dense RGB streams from multiple overlapping cameras into a unified Gaussian representation, achieving drift-free trajectory estimation and efficient online reconstruction. We propose a hierarchical camera initialization scheme that enables coarse inter-camera alignment without calibration, followed by a lightweight multi-camera bundle adjustment that stabilizes trajectories while maintaining real-time performance. Furthermore, we introduce a redundancy-free Gaussian sampling strategy and a frequency-aware optimization scheduler to reduce the number of Gaussian primitives and the required optimization iterations, thereby maintaining both efficiency and reconstruction fidelity. Our method reconstructs hundreds of meters of 3D scenes within just 2 minutes using only raw multi-camera video streams, demonstrating unprecedented speed, robustness, and Fidelity for on-the-fly 3D scene reconstruction.
2.44Temporal Concept Dynamics in Diffusion Models via Prompt-Conditioned Interventions¶
2025/12/10 05:02 GTM
Diffusion models are usually evaluated by their final outputs, gradually denoising random noise into meaningful images. Yet, generation unfolds along a trajectory, and analyzing this dynamic process is crucial for understanding how controllable, reliable, and predictable these models are in terms of their success/failure modes. In this work, we ask the question: when does noise turn into a specific concept (e.g., age) and lock in the denoising trajectory? We propose PCI (Prompt-Conditioned Intervention) to study this question. PCI is a training-free and model-agnostic framework for analyzing concept dynamics through diffusion time. The central idea is the analysis of Concept Insertion Success (CIS), defined as the probability that a concept inserted at a given timestep is preserved and reflected in the final image, offering a way to characterize the temporal dynamics of concept formation. Applied to several state-of-the-art text-to-image diffusion models and a broad taxonomy of concepts, PCI reveals diverse temporal behaviors across diffusion models, in which certain phases of the trajectory are more favorable to specific concepts even within the same concept type. These findings also provide actionable insights for text-driven image editing, highlighting when interventions are most effective without requiring access to model internals or training, and yielding quantitatively stronger edits that achieve a balance of semantic accuracy and content preservation than strong baselines. Code is available at: https://
2.45Visionary: The World Model Carrier Built on WebGPU-Powered Gaussian Splatting Platform¶
2025/12/10 05:02 GTM
Neural rendering, particularly 3D Gaussian Splatting (3DGS), has evolved rapidly and become a key component for building world models. However, existing viewer solutions remain fragmented, heavy, or constrained by legacy pipelines, resulting in high deployment friction and limited support for dynamic content and generative models. In this work, we present Visionary, an open, web-native platform for real-time various Gaussian Splatting and meshes rendering. Built on an efficient WebGPU renderer with per-frame ONNX inference, Visionary enables dynamic neural processing while maintaining a lightweight, “click-to-run” browser experience. It introduces a standardized Gaussian Generator contract, which not only supports standard 3DGS rendering but also allows plug-and-play algorithms to generate or update Gaussians each frame. Such inference also enables us to apply feedforward generative post-processing. The platform further offers a plug in three.js library with a concise TypeScript API for seamless integration into existing web applications. Experiments show that, under identical 3DGS assets, Visionary achieves superior rendering efficiency compared to current Web viewers due to GPU-based primitive sorting. It already supports multiple variants, including MLP-based 3DGS, 4DGS, neural avatars, and style transformation or enhancement networks. By unifying inference and rendering directly in the browser, Visionary significantly lowers the barrier to reproduction, comparison, and deployment of 3DGS-family methods, serving as a unified World Model Carrier for both reconstructive and generative paradigms.
2.46ContextDrag: Precise Drag-Based Image Editing via Context-Preserving Token Injection and Position-Consistent Attention¶
2025/12/10 05:02 GTM
Drag-based image editing aims to modify visual content followed by user-specified drag operations. Despite existing methods having made notable progress, they still fail to fully exploit the contextual information in the reference image, including fine-grained texture details, leading to edits with limited coherence and fidelity. To address this challenge, we introduce ContextDrag, a new paradigm for drag-based editing that leverages the strong contextual modeling capability of editing models, such as FLUX-Kontext. By incorporating VAE-encoded features from the reference image, ContextDrag can leverage rich contextual cues and preserve fine-grained details, without the need for finetuning or inversion. Specifically, ContextDrag introduced a novel Context-preserving Token Injection (CTI) that injects noise-free reference features into their correct destination locations via a Latent-space Reverse Mapping (LRM) algorithm. This strategy enables precise drag control while preserving consistency in both semantics and texture details. Second, ContextDrag adopts a novel Position-Consistent Attention (PCA), which positional re-encodes the reference tokens and applies overlap-aware masking to eliminate interference from irrelevant reference features. Extensive experiments on DragBench-SR and DragBench-DR demonstrate that our approach surpasses all existing SOTA methods. Code will be publicly available.
2.47Team-Aware Football Player Tracking with SAM: An Appearance-Based Approach to Occlusion Recovery¶
2025/12/10 05:02 GTM
Football player tracking is challenged by frequent occlusions, similar appearances, and rapid motion in crowded scenes. This paper presents a lightweight SAM-based tracking method combining the Segment Anything Model (SAM) with CSRT trackers and jersey color-based appearance models. We propose a team-aware tracking system that uses SAM for precise initialization and HSV histogram-based re-identification to improve occlusion recovery. Our evaluation measures three dimensions: processing speed (FPS and memory), tracking accuracy (success rate and box stability), and robustness (occlusion recovery and identity consistency). Experiments on football video sequences show that the approach achieves 7.6-7.7 FPS with stable memory usage (~1880 MB), maintaining 100 percent tracking success in light occlusions and 90 percent in crowded penalty-box scenarios with 5 or more players. Appearance-based re-identification recovers 50 percent of heavy occlusions, demonstrating the value of domain-specific cues. Analysis reveals key trade-offs: the SAM + CSRT combination provides consistent performance across crowd densities but struggles with long-term occlusions where players leave the frame, achieving only 8.66 percent re-acquisition success. These results offer practical guidelines for deploying football tracking systems under resource constraints, showing that classical tracker-based methods work well with continuous visibility but require stronger re-identification mechanisms for extended absences.
2.48Uncertainty-Aware Subset Selection for Robust Visual Explainability under Distribution Shifts¶
2025/12/10 05:02 GTM
Subset selection-based methods are widely used to explain deep vision models: they attribute predictions by highlighting the most influential image regions and support object-level explanations. While these methods perform well in in-distribution (ID) settings, their behavior under out-of-distribution (OOD) conditions remains poorly understood. Through extensive experiments across multiple ID-OOD sets, we find that reliability of the existing subset based methods degrades markedly, yielding redundant, unstable, and uncertainty-sensitive explanations. To address these shortcomings, we introduce a framework that combines submodular subset selection with layer-wise, gradient-based uncertainty estimation to improve robustness and fidelity without requiring additional training or auxiliary models. Our approach estimates uncertainty via adaptive weight perturbations and uses these estimates to guide submodular optimization, ensuring diverse and informative subset selection. Empirical evaluations show that, beyond mitigating the weaknesses of existing methods under OOD scenarios, our framework also yields improvements in ID settings. These findings highlight limitations of current subset-based approaches and demonstrate how uncertainty-driven optimization can enhance attribution and object-level interpretability, paving the way for more transparent and trustworthy AI in real-world vision applications.
2.49Leveraging Multispectral Sensors for Color Correction in Mobile Cameras¶
2025/12/10 05:02 GTM
Recent advances in snapshot multispectral (MS) imaging have enabled compact, low-cost spectral sensors for consumer and mobile devices. By capturing richer spectral information than conventional RGB sensors, these systems can enhance key imaging tasks, including color correction. However, most existing methods treat the color correction pipeline in separate stages, often discarding MS data early in the process. We propose a unified, learning-based framework that (i) performs end-to-end color correction and (ii) jointly leverages data from a high-resolution RGB sensor and an auxiliary low-resolution MS sensor. Our approach integrates the full pipeline within a single model, producing coherent and color-accurate outputs. We demonstrate the flexibility and generality of our framework by refactoring two different state-of-the-art image-to-image architectures. To support training and evaluation, we construct a dedicated dataset by aggregating and repurposing publicly available spectral datasets, rendering under multiple RGB camera sensitivities. Extensive experiments show that our approach improves color accuracy and stability, reducing error by up to 50% compared to RGB-only and MS-driven baselines. Datasets, code, and models will be made available upon acceptance.
2.50LapFM: A Laparoscopic Segmentation Foundation Model via Hierarchical Concept Evolving Pre-training¶
2025/12/10 05:02 GTM
Surgical segmentation is pivotal for scene understanding yet remains hindered by annotation scarcity and semantic inconsistency across diverse procedures. Existing approaches typically fine-tune natural foundation models (e.g., SAM) with limited supervision, functioning merely as domain adapters rather than surgical foundation models. Consequently, they struggle to generalize across the vast variability of surgical targets. To bridge this gap, we present LapFM, a foundation model designed to evolve robust segmentation capabilities from massive unlabeled surgical images. Distinct from medical foundation models relying on inefficient self-supervised proxy tasks, LapFM leverages a Hierarchical Concept Evolving Pre-training paradigm. First, we establish a Laparoscopic Concept Hierarchy (LCH) via a hierarchical mask decoder with parent-child query embeddings, unifying diverse entities (i.e., Anatomy, Tissue, and Instrument) into a scalable knowledge structure with cross-granularity semantic consistency. Second, we propose a Confidence-driven Evolving Labeling that iteratively generates and filters pseudo-labels based on hierarchical consistency, progressively incorporating reliable samples from unlabeled images into training. This process yields LapBench-114K, a large-scale benchmark comprising 114K image-mask pairs. Extensive experiments demonstrate that LapFM significantly outperforms state-of-the-art methods, establishing new standards for granularity-adaptive generalization in universal laparoscopic segmentation. The source code is available at https://
2.51SDT-6D: Fully Sparse Depth-Transformer for Staged End-to-End 6D Pose Estimation in Industrial Multi-View Bin Picking¶
2025/12/10 05:02 GTM
Accurately recovering 6D poses in densely packed industrial bin-picking environments remain a serious challenge, owing to occlusions, reflections, and textureless parts. We introduce a holistic depth-only 6D pose estimation approach that fuses multi-view depth maps into either a fine-grained 3D point cloud in its vanilla version, or a sparse Truncated Signed Distance Field (TSDF). At the core of our framework lies a staged heatmap mechanism that yields scene-adaptive attention priors across different resolutions, steering computation toward foreground regions, thus keeping memory requirements at high resolutions feasible. Along, we propose a density-aware sparse transformer block that dynamically attends to (self-) occlusions and the non-uniform distribution of 3D data. While sparse 3D approaches has proven effective for long-range perception, its potential in close-range robotic applications remains underexplored. Our framework operates fully sparse, enabling high-resolution volumetric representations to capture fine geometric details crucial for accurate pose estimation in clutter. Our method processes the entire scene integrally, predicting the 6D pose via a novel per-voxel voting strategy, allowing simultaneous pose predictions for an arbitrary number of target objects. We validate our method on the recently published IPD and MV-YCB multi-view datasets, demonstrating competitive performance in heavily cluttered industrial and household bin picking scenarios.
2.52Towards Effective and Efficient Long Video Understanding of Multimodal Large Language Models via One-shot Clip Retrieval¶
2025/12/10 05:02 GTM
Due to excessive memory overhead, most Multimodal Large Language Models (MLLMs) can only process videos of limited frames. In this paper, we propose an effective and efficient paradigm to remedy this shortcoming, termed One-shot video-Clip based Retrieval AuGmentation (OneClip-RAG). Compared with existing video RAG methods, OneClip-RAG makes full use of the merits of video clips for augmented video understanding in terms of both knowledge integrity and semantic coherence. Besides, it is also equipped with a novel query-guided video chunking algorithm that can unify clip chunking and cross-modal retrieval in one processing step, avoiding redundant computations. To improve instruction following, we further propose a new dataset called SynLongVideo and design a progressive training regime for OneClip-RAG. OneClip-RAG is plugged into five recent MLLMs and validated on a set of long-video benchmarks. Experimental results not only show the obvious performance gains by OneClip-RAG over MLLMs, e.g., boosting InternLV2 8B and Qwen2-VL 7B to the level of GPT-4o on MLVU, but also show its superior efficiency in handling long videos. e.g., enabling LLaVA-Video understand up to an hour of videos in less than 2.2 minutes on a single 4090 GPU.
2.53SAM-Body4D: Training-Free 4D Human Body Mesh Recovery from Videos¶
2025/12/10 05:02 GTM
Human Mesh Recovery (HMR) aims to reconstruct 3D human pose and shape from 2D observations and is fundamental to human-centric understanding in real-world scenarios. While recent image-based HMR methods such as SAM 3D Body achieve strong robustness on in-the-wild images, they rely on per-frame inference when applied to videos, leading to temporal inconsistency and degraded performance under occlusions. We address these issues without extra training by leveraging the inherent human continuity in videos. We propose SAM-Body4D, a training-free framework for temporally consistent and occlusion-robust HMR from videos. We first generate identity-consistent masklets using a promptable video segmentation model, then refine them with an Occlusion-Aware module to recover missing regions. The refined masklets guide SAM 3D Body to produce consistent full-body mesh trajectories, while a padding-based parallel strategy enables efficient multi-human inference. Experimental results demonstrate that SAM-Body4D achieves improved temporal stability and robustness in challenging in-the-wild videos, without any retraining. Our code and demo are available at: https://
2.54Towards Visual Re-Identification of Fish using Fine-Grained Classification for Electronic Monitoring in Fisheries¶
2025/12/10 05:02 GTM
Accurate fisheries data are crucial for effective and sustainable marine resource management. With the recent adoption of Electronic Monitoring (EM) systems, more video data is now being collected than can be feasibly reviewed manually. This paper addresses this challenge by developing an optimized deep learning pipeline for automated fish re-identification (Re-ID) using the novel AutoFish dataset, which simulates EM systems with conveyor belts with six similarly looking fish species. We demonstrate that key Re-ID metrics (R1 and mAP@k) are substantially improved by using hard triplet mining in conjunction with a custom image transformation pipeline that includes dataset-specific normalization. By employing these strategies, we demonstrate that the Vision Transformer-based Swin-T architecture consistently outperforms the Convolutional Neural Network-based ResNet-50, achieving peak performance of 41.65% mAP@k and 90.43% Rank-1 accuracy. An in-depth analysis reveals that the primary challenge is distinguishing visually similar individuals of the same species (Intra-species errors), where viewpoint inconsistency proves significantly more detrimental than partial occlusion. The source code and documentation are available at: https://
2.55Detection of Digital Facial Retouching utilizing Face Beauty Information¶
2025/12/10 05:02 GTM
Facial retouching to beautify images is widely spread in social media, advertisements, and it is even applied in professional photo studios to let individuals appear younger, remove wrinkles and skin impurities. Generally speaking, this is done to enhance beauty. This is not a problem itself, but when retouched images are used as biometric samples and enrolled in a biometric system, it is one. Since previous work has proven facial retouching to be a challenge for face recognition systems,the detection of facial retouching becomes increasingly necessary. This work proposes to study and analyze changes in beauty assessment algorithms of retouched images, assesses different feature extraction methods based on artificial intelligence in order to improve retouching detection, and evaluates whether face beauty can be exploited to enhance the detection rate. In a scenario where the attacking retouching algorithm is unknown, this work achieved 1.1% D-EER on single image detection.
2.56Simultaneous Enhancement and Noise Suppression under Complex Illumination Conditions¶
2025/12/10 05:02 GTM
Under challenging light conditions, captured images often suffer from various degradations, leading to a decline in the performance of vision-based applications. Although numerous methods have been proposed to enhance image quality, they either significantly amplify inherent noise or are only effective under specific illumination conditions. To address these issues, we propose a novel framework for simultaneous enhancement and noise suppression under complex illumination conditions. Firstly, a gradient-domain weighted guided filter (GDWGIF) is employed to accurately estimate illumination and improve image quality. Next, the Retinex model is applied to decompose the captured image into separate illumination and reflection layers. These layers undergo parallel processing, with the illumination layer being corrected to optimize lighting conditions and the reflection layer enhanced to improve image quality. Finally, the dynamic range of the image is optimized through multi-exposure fusion and a linear stretching strategy. The proposed method is evaluated on real-world datasets obtained from practical applications. Experimental results demonstrate that our proposed method achieves better performance compared to state-of-the-art methods in both contrast enhancement and noise suppression.
2.57The Unseen Bias: How Norm Discrepancy in Pre-Norm MLLMs Leads to Visual Information Loss¶
2025/12/10 05:02 GTM
Multimodal Large Language Models (MLLMs), which couple pre-trained vision encoders and language models, have shown remarkable capabilities. However, their reliance on the ubiquitous Pre-Norm architecture introduces a subtle yet critical flaw: a severe norm disparity between the high-norm visual tokens and the low-norm text tokens. In this work, we present a formal theoretical analysis demonstrating that this imbalance is not a static issue. Instead, it induces an asymmetric update dynamic,'' where high-norm visual tokens exhibit a representational inertia,‘’ causing them to transform semantically much slower than their textual counterparts. This fundamentally impairs effective cross-modal feature fusion. Our empirical validation across a range of mainstream MLLMs confirms that this theoretical dynamic -- the persistence of norm disparity and the resulting asymmetric update rates -- is a prevalent phenomenon. Based on this insight, we propose a remarkably simple yet effective solution: inserting a single, carefully initialized LayerNorm layer after the visual projector to enforce norm alignment. Experiments conducted on the LLaVA-1.5 architecture show that this intervention yields significant performance gains not only on a wide suite of multimodal benchmarks but also, notably, on text-only evaluations such as MMLU, suggesting that resolving the architectural imbalance leads to a more holistically capable model.
2.58SCU-CGAN: Enhancing Fire Detection through Synthetic Fire Image Generation and Dataset Augmentation¶
2025/12/10 05:02 GTM
Fire has long been linked to human life, causing severe disasters and losses. Early detection is crucial, and with the rise of home IoT technologies, household fire detection systems have emerged. However, the lack of sufficient fire datasets limits the performance of detection models. We propose the SCU-CGAN model, which integrates U-Net, CBAM, and an additional discriminator to generate realistic fire images from nonfire images. We evaluate the image quality and confirm that SCU-CGAN outperforms existing models. Specifically, SCU-CGAN achieved a 41.5% improvement in KID score compared to CycleGAN, demonstrating the superior quality of the generated fire images. Furthermore, experiments demonstrate that the augmented dataset significantly improves the accuracy of fire detection models without altering their structure. For the YOLOv5 nano model, the most notable improvement was observed in the mAP@0.5:0.95 metric, which increased by 56.5%, highlighting the effectiveness of the proposed approach.
2.59Conditional Morphogenesis: Emergent Generation of Structural Digits via Neural Cellular Automata¶
2025/12/10 05:02 GTM
Biological systems exhibit remarkable morphogenetic plasticity, where a single genome can encode various specialized cellular structures triggered by local chemical signals. In the domain of Deep Learning, Differentiable Neural Cellular Automata (NCA) have emerged as a paradigm to mimic this self-organization. However, existing NCA research has predominantly focused on continuous texture synthesis or single-target object recovery, leaving the challenge of class-conditional structural generation largely unexplored. In this work, we propose a novel Conditional Neural Cellular Automata (c-NCA) architecture capable of growing distinct topological structures - specifically MNIST digits - from a single generic seed, guided solely by a spatially broadcasted class vector. Unlike traditional generative models (e.g., GANs, VAEs) that rely on global reception fields, our model enforces strict locality and translation equivariance. We demonstrate that by injecting a one-hot condition into the cellular perception field, a single set of local rules can learn to break symmetry and self-assemble into ten distinct geometric attractors. Experimental results show that our c-NCA achieves stable convergence, correctly forming digit topologies from a single pixel, and exhibits robustness characteristic of biological systems. This work bridges the gap between texture-based NCAs and structural pattern formation, offering a lightweight, biologically plausible alternative for conditional generation.
2.60TrackingWorld: World-centric Monocular 3D Tracking of Almost All Pixels¶
2025/12/10 05:02 GTM
Monocular 3D tracking aims to capture the long-term motion of pixels in 3D space from a single monocular video and has witnessed rapid progress in recent years. However, we argue that the existing monocular 3D tracking methods still fall short in separating the camera motion from foreground dynamic motion and cannot densely track newly emerging dynamic subjects in the videos. To address these two limitations, we propose TrackingWorld, a novel pipeline for dense 3D tracking of almost all pixels within a world-centric 3D coordinate system. First, we introduce a tracking upsampler that efficiently lifts the arbitrary sparse 2D tracks into dense 2D tracks. Then, to generalize the current tracking methods to newly emerging objects, we apply the upsampler to all frames and reduce the redundancy of 2D tracks by eliminating the tracks in overlapped regions. Finally, we present an efficient optimization-based framework to back-project dense 2D tracks into world-centric 3D trajectories by estimating the camera poses and the 3D coordinates of these 2D tracks. Extensive evaluations on both synthetic and real-world datasets demonstrate that our system achieves accurate and dense 3D tracking in a world-centric coordinate frame.
2.61DINO-BOLDNet: A DINOv3-Guided Multi-Slice Attention Network for T1-to-BOLD Generation¶
2025/12/10 05:02 GTM
Generating BOLD images from T1w images offers a promising solution for recovering missing BOLD information and enabling downstream tasks when BOLD images are corrupted or unavailable. Motivated by this, we propose DINO-BOLDNet, a DINOv3-guided multi-slice attention framework that integrates a frozen self-supervised DINOv3 encoder with a lightweight trainable decoder. The model uses DINOv3 to extract within-slice structural representations, and a separate slice-attention module to fuse contextual information across neighboring slices. A multi-scale generation decoder then restores fine-grained functional contrast, while a DINO-based perceptual loss encourages structural and textural consistency between predictions and ground-truth BOLD in the transformer feature space. Experiments on a clinical dataset of 248 subjects show that DINO-BOLDNet surpasses a conditional GAN baseline in both PSNR and MS-SSIM. To our knowledge, this is the first framework capable of generating mean BOLD images directly from T1w images, highlighting the potential of self-supervised transformer guidance for structural-to-functional mapping.
2.62HybridSplat: Fast Reflection-baked Gaussian Tracing using Hybrid Splatting¶
2025/12/10 05:02 GTM
Rendering complex reflection of real-world scenes using 3D Gaussian splatting has been a quite promising solution for photorealistic novel view synthesis, but still faces bottlenecks especially in rendering speed and memory storage. This paper proposes a new Hybrid Splatting(HybridSplat) mechanism for Gaussian primitives. Our key idea is a new reflection-baked Gaussian tracing, which bakes the view-dependent reflection within each Gaussian primitive while rendering the reflection using tile-based Gaussian splatting. Then we integrate the reflective Gaussian primitives with base Gaussian primitives using a unified hybrid splatting framework for high-fidelity scene reconstruction. Moreover, we further introduce a pipeline-level acceleration for the hybrid splatting, and reflection-sensitive Gaussian pruning to reduce the model size, thus achieving much faster rendering speed and lower memory storage while preserving the reflection rendering quality. By extensive evaluation, our HybridSplat accelerates about 7x rendering speed across complex reflective scenes from Ref-NeRF, NeRF-Casting with 4x fewer Gaussian primitives than similar ray-tracing based Gaussian splatting baselines, serving as a new state-of-the-art method especially for complex reflective scenes.
2.63Bi^2MAC: Bimodal Bi-Adaptive Mask-Aware Convolution for Remote Sensing Pansharpening¶
2025/12/10 05:02 GTM
Pansharpening aims to fuse a high-resolution panchromatic (PAN) image with a low-resolution multispectral (LRMS) image to generate a high-resolution multispectral image (HRMS). Conventional deep learning-based methods are inherently limited in their ability to adapt to regional heterogeneity within feature representations. Although various adaptive convolution methods have been proposed to address this limitation, they often suffer from excessive computational costs and a limited ability to capture heterogeneous regions in remote sensing images effectively. To overcome these challenges, we propose Bimodal Bi-Adaptive Mask-Aware Convolution (Bi^2MAC), which effectively exploits information from different types of regions while intelligently allocating computational resources. Specifically, we design a lightweight module to generate both soft and hard masks, which are used to modulate the input features preliminarily and to guide different types of regions into separate processing branches, respectively. Redundant features are directed to a compact branch for low-cost global processing. In contrast, heterogeneous features are routed to a focused branch that invests more computational resources for fine-grained modeling. Extensive experiments on multiple benchmark datasets demonstrate that Bi^2MAC achieves state-of-the-art (SOTA) performance while requiring substantially lower training time and parameter counts, and the minimal computational cost among adaptive convolution models.
2.64PointDico: Contrastive 3D Representation Learning Guided by Diffusion Models¶
2025/12/10 05:02 GTM
Self-supervised representation learning has shown significant improvement in Natural Language Processing and 2D Computer Vision. However, existing methods face difficulties in representing 3D data because of its unordered and uneven density. Through an in-depth analysis of mainstream contrastive and generative approaches, we find that contrastive models tend to suffer from overfitting, while 3D Mask Autoencoders struggle to handle unordered point clouds. This motivates us to learn 3D representations by sharing the merits of diffusion and contrast models, which is non-trivial due to the pattern difference between the two paradigms. In this paper, we propose \textit{PointDico}, a novel model that seamlessly integrates these methods. \textit{PointDico} learns from both denoising generative modeling and cross-modal contrastive learning through knowledge distillation, where the diffusion model serves as a guide for the contrastive model. We introduce a hierarchical pyramid conditional generator for multi-scale geometric feature extraction and employ a dual-channel design to effectively integrate local and global contextual information. \textit{PointDico} achieves a new state-of-the-art in 3D representation learning, \textit{e.g.}, \textbf{94.32%} accuracy on ScanObjectNN, \textbf{86.5%} Inst. mIoU on ShapeNetPart.
2.65Interpreting Structured Perturbations in Image Protection Methods for Diffusion Models¶
2025/12/10 05:02 GTM
Recent image protection mechanisms such as Glaze and Nightshade introduce imperceptible, adversarially designed perturbations intended to disrupt downstream text-to-image generative models. While their empirical effectiveness is known, the internal structure, detectability, and representational behavior of these perturbations remain poorly understood. This study provides a systematic, explainable AI analysis using a unified framework that integrates white-box feature-space inspection and black-box signal-level probing. Through latent-space clustering, feature-channel activation analysis, occlusion-based spatial sensitivity mapping, and frequency-domain characterization, we show that protection mechanisms operate as structured, low-entropy perturbations tightly coupled to underlying image content across representational, spatial, and spectral domains. Protected images preserve content-driven feature organization with protection-specific substructure rather than inducing global representational drift. Detectability is governed by interacting effects of perturbation entropy, spatial deployment, and frequency alignment, with sequential protection amplifying detectable structure rather than suppressing it. Frequency-domain analysis shows that Glaze and Nightshade redistribute energy along dominant image-aligned frequency axes rather than introducing diffuse noise. These findings indicate that contemporary image protection operates through structured feature-level deformation rather than semantic dislocation, explaining why protection signals remain visually subtle yet consistently detectable. This work advances the interpretability of adversarial image protection and informs the design of future defenses and detection strategies for generative AI systems.
2.66Low Rank Support Quaternion Matrix Machine¶
2025/12/10 05:02 GTM
Input features are conventionally represented as vectors, matrices, or third order tensors in the real field, for color image classification. Inspired by the success of quaternion data modeling for color images in image recovery and denoising tasks, we propose a novel classification method for color image classification, named as the Low-rank Support Quaternion Matrix Machine (LSQMM), in which the RGB channels are treated as pure quaternions to effectively preserve the intrinsic coupling relationships among channels via the quaternion algebra. For the purpose of promoting low-rank structures resulting from strongly correlated color channels, a quaternion nuclear norm regularization term, serving as a natural extension of the conventional matrix nuclear norm to the quaternion domain, is added to the hinge loss in our LSQMM model. An Alternating Direction Method of Multipliers (ADMM)-based iterative algorithm is designed to effectively resolve the proposed quaternion optimization model. Experimental results on multiple color image classification datasets demonstrate that our proposed classification approach exhibits advantages in classification accuracy, robustness and computational efficiency, compared to several state-of-the-art methods using support vector machines, support matrix machines, and support tensor machines.
2.67GeoDiffMM: Geometry-Guided Conditional Diffusion for Motion Magnification¶
2025/12/10 05:02 GTM
Video Motion Magnification (VMM) amplifies subtle macroscopic motions to a perceptible level. Recently, existing mainstream Eulerian approaches address amplification-induced noise via decoupling representation learning such as texture, shape and frequancey schemes, but they still struggle to separate photon noise from true micro-motion when motion displacements are very small. We propose GeoDiffMM, a novel diffusion-based Lagrangian VMM framework conditioned on optical flow as a geometric cue, enabling structurally consistent motion magnification. Specifically, we design a Noise-free Optical Flow Augmentation strategy that synthesizes diverse nonrigid motion fields without photon noise as supervision, helping the model learn more accurate geometry-aware optial flow and generalize better. Next, we develop a Diffusion Motion Magnifier that conditions the denoising process on (i) optical flow as a geometry prior and (ii) a learnable magnification factor controlling magnitude, thereby selectively amplifying motion components consistent with scene semantics and structure while suppressing content-irrelevant perturbations. Finally, we perform Flow-based Video Synthesis to map the amplified motion back to the image domain with high fidelity. Extensive experiments on real and synthetic datasets show that GeoDiffMM outperforms state-of-the-art methods and significantly improves motion magnification.
2.68Detecting Dental Landmarks from Intraoral 3D Scans: the 3DTeethLand challenge¶
2025/12/10 05:02 GTM
Teeth landmark detection is a critical task in modern clinical orthodontics. Their precise identification enables advanced diagnostics, facilitates personalized treatment strategies, and supports more effective monitoring of treatment progress in clinical dentistry. However, several significant challenges may arise due to the intricate geometry of individual teeth and the substantial variations observed across different individuals. To address these complexities, the development of advanced techniques, especially through the application of deep learning, is essential for the precise and reliable detection of 3D tooth landmarks. In this context, the 3DTeethLand challenge was held in collaboration with the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2024, calling for algorithms focused on teeth landmark detection from intraoral 3D scans. This challenge introduced the first publicly available dataset for 3D teeth landmark detection, offering a valuable resource to assess the state-of-the-art methods in this task and encourage the community to provide methodological contributions towards the resolution of their problem with significant clinical implications.
2.69GeoDM: Geometry-aware Distribution Matching for Dataset Distillation¶
2025/12/10 05:02 GTM
Dataset distillation aims to synthesize a compact subset of the original data, enabling models trained on it to achieve performance comparable to those trained on the original large dataset. Existing distribution-matching methods are confined to Euclidean spaces, making them only capture linear structures and overlook the intrinsic geometry of real data, e.g., curvature. However, high-dimensional data often lie on low-dimensional manifolds, suggesting that dataset distillation should have the distilled data manifold aligned with the original data manifold. In this work, we propose a geometry-aware distribution-matching framework, called \textbf{GeoDM}, which operates in the Cartesian product of Euclidean, hyperbolic, and spherical manifolds, with flat, hierarchical, and cyclical structures all captured by a unified representation. To adapt to the underlying data geometry, we introduce learnable curvature and weight parameters for three kinds of geometries. At the same time, we design an optimal transport loss to enhance the distribution fidelity. Our theoretical analysis shows that the geometry-aware distribution matching in a product space yields a smaller generalization error bound than the Euclidean counterparts. Extensive experiments conducted on standard benchmarks demonstrate that our algorithm outperforms state-of-the-art data distillation methods and remains effective across various distribution-matching strategies for the single geometries.
2.70Terrain Diffusion: A Diffusion-Based Successor to Perlin Noise in Infinite, Real-Time Terrain Generation¶
2025/12/10 05:02 GTM
For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, an AI-era successor to Perlin noise that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation, enabling seamless, real-time synthesis of boundless landscapes. A hierarchical stack of diffusion models couples planetary context with local detail, while a compact Laplacian encoding stabilizes outputs across Earth-scale dynamic ranges. An open-source infinite-tensor framework supports constant-memory manipulation of unbounded tensors, and few-step consistency distillation enables efficient generation. Together, these components establish diffusion models as a practical foundation for procedural world generation, capable of synthesizing entire planets coherently, controllably, and without limits.
2.71OpenSubject: Leveraging Video-Derived Identity and Diversity Priors for Subject-driven Image Generation and Manipulation¶
2025/12/10 05:02 GTM
Despite the promising progress in subject-driven image generation, current models often deviate from the reference identities and struggle in complex scenes with multiple subjects. To address this challenge, we introduce OpenSubject, a video-derived large-scale corpus with 2.5M samples and 4.35M images for subject-driven generation and manipulation. The dataset is built with a four-stage pipeline that exploits cross-frame identity priors. (i) Video Curation. We apply resolution and aesthetic filtering to obtain high-quality clips. (ii) Cross-Frame Subject Mining and Pairing. We utilize vision-language model (VLM)-based category consensus, local grounding, and diversity-aware pairing to select image pairs. (iii) Identity-Preserving Reference Image Synthesis. We introduce segmentation map-guided outpainting to synthesize the input images for subject-driven generation and box-guided inpainting to generate input images for subject-driven manipulation, together with geometry-aware augmentations and irregular boundary erosion. (iv) Verification and Captioning. We utilize a VLM to validate synthesized samples, re-synthesize failed samples based on stage (iii), and then construct short and long captions. In addition, we introduce a benchmark covering subject-driven generation and manipulation, and then evaluate identity fidelity, prompt adherence, manipulation consistency, and background consistency with a VLM judge. Extensive experiments show that training with OpenSubject improves generation and manipulation performance, particularly in complex scenes.
2.72Self-Reinforced Deep Priors for Reparameterized Full Waveform Inversion¶
2025/12/10 05:02 GTM
Full waveform inversion (FWI) has become a widely adopted technique for high-resolution subsurface imaging. However, its inherent strong nonlinearity often results in convergence toward local minima. Recently, deep image prior-based reparameterized FWI (DIP-FWI) has been proposed to alleviate the dependence on massive training data. By exploiting the spectral bias and implicit regularization in the neural network architecture, DIP-FWI can effectively avoid local minima and reconstruct more geologically plausible velocity models. Nevertheless, existing DIP-FWI typically use a fixed random input throughout the inversion process, which fails to utilize the mapping and correlation between the input and output of the network. Moreover, under complex geological conditions, the lack of informative prior in the input can exacerbate the ill-posedness of the inverse problem, leading to artifacts and unstable reconstructions. To address these limitations, we propose a self-reinforced DIP-FWI (SRDIP-FWI) framework, in which a steering algorithm alternately updates both the network parameters and the input at each iteration using feedback from the current network output. This design allows adaptive structural enhancement and improved regularization, thereby effectively mitigating the ill-posedness in FWI. Additionally, we analyze the spectral bias of the network in SRDIP-FWI and quantify its role in multiscale velocity model building. Synthetic tests and field land data application demonstrate that SRDIP-FWI achieves superior resolution, improved accuracy and greater depth penetration compared to multiscale FWI. More importantly, SRDIP-FWI eliminates the need for manual frequency-band selection and time-window picking, substantially simplifying the inversion workflow. Overall, the proposed method provides a novel, adaptive and robust framework for accurate subsurface velocity model reconstruction.
2.73PAVAS: Physics-Aware Video-to-Audio Synthesis¶
2025/12/10 05:02 GTM
Recent advances in Video-to-Audio (V2A) generation have achieved impressive perceptual quality and temporal synchronization, yet most models remain appearance-driven, capturing visual-acoustic correlations without considering the physical factors that shape real-world sounds. We present Physics-Aware Video-to-Audio Synthesis (PAVAS), a method that incorporates physical reasoning into a latent diffusion-based V2A generation through the Physics-Driven Audio Adapter (Phy-Adapter). The adapter receives object-level physical parameters estimated by the Physical Parameter Estimator (PPE), which uses a Vision-Language Model (VLM) to infer the moving-object mass and a segmentation-based dynamic 3D reconstruction module to recover its motion trajectory for velocity computation. These physical cues enable the model to synthesize sounds that reflect underlying physical factors. To assess physical realism, we curate VGG-Impact, a benchmark focusing on object-object interactions, and introduce Audio-Physics Correlation Coefficient (APCC), an evaluation metric that measures consistency between physical and auditory attributes. Comprehensive experiments show that PAVAS produces physically plausible and perceptually coherent audio, outperforming existing V2A models in both quantitative and qualitative evaluations. Visit https://
2.74Zero-Splat TeleAssist: A Zero-Shot Pose Estimation Framework for Semantic Teleoperation¶
2025/12/10 05:02 GTM
We introduce Zero-Splat TeleAssist, a zero-shot sensor-fusion pipeline that transforms commodity CCTV streams into a shared, 6-DoF world model for multilateral teleoperation. By integrating vision-language segmentation, monocular depth, weighted-PCA pose extraction, and 3D Gaussian Splatting (3DGS), TeleAssist provides every operator with real-time global positions and orientations of multiple robots without fiducials or depth sensors in an interaction-centric teleoperation setup.
2.75EgoX: Egocentric Video Generation from a Single Exocentric Video¶
2025/12/10 05:02 GTM
Egocentric perception enables humans to experience and understand the world directly from their own point of view. Translating exocentric (third-person) videos into egocentric (first-person) videos opens up new possibilities for immersive understanding but remains highly challenging due to extreme camera pose variations and minimal view overlap. This task requires faithfully preserving visible content while synthesizing unseen regions in a geometrically consistent manner. To achieve this, we present EgoX, a novel framework for generating egocentric videos from a single exocentric input. EgoX leverages the pretrained spatio temporal knowledge of large-scale video diffusion models through lightweight LoRA adaptation and introduces a unified conditioning strategy that combines exocentric and egocentric priors via width and channel wise concatenation. Additionally, a geometry-guided self-attention mechanism selectively attends to spatially relevant regions, ensuring geometric coherence and high visual fidelity. Our approach achieves coherent and realistic egocentric video generation while demonstrating strong scalability and robustness across unseen and in-the-wild videos.
2.76RLCNet: An end-to-end deep learning framework for simultaneous online calibration of LiDAR, RADAR, and Camera¶
2025/12/10 05:02 GTM
Accurate extrinsic calibration of LiDAR, RADAR, and camera sensors is essential for reliable perception in autonomous vehicles. Still, it remains challenging due to factors such as mechanical vibrations and cumulative sensor drift in dynamic environments. This paper presents RLCNet, a novel end-to-end trainable deep learning framework for the simultaneous online calibration of these multimodal sensors. Validated on real-world datasets, RLCNet is designed for practical deployment and demonstrates robust performance under diverse conditions. To support real-time operation, an online calibration framework is introduced that incorporates a weighted moving average and outlier rejection, enabling dynamic adjustment of calibration parameters with reduced prediction noise and improved resilience to drift. An ablation study highlights the significance of architectural choices, while comparisons with existing methods demonstrate the superior accuracy and robustness of the proposed approach.
2.77SFP: Real-World Scene Recovery Using Spatial and Frequency Priors¶
2025/12/10 05:02 GTM
Scene recovery serves as a critical task for various computer vision applications. Existing methods typically rely on a single prior, which is inherently insufficient to handle multiple degradations, or employ complex network architectures trained on synthetic data, which suffer from poor generalization for diverse real-world scenarios. In this paper, we propose Spatial and Frequency Priors (SFP) for real-world scene recovery. In the spatial domain, we observe that the inverse of the degraded image exhibits a projection along its spectral direction that resembles the scene transmission. Leveraging this spatial prior, the transmission map is estimated to recover the scene from scattering degradation. In the frequency domain, a mask is constructed for adaptive frequency enhancement, with two parameters estimated using our proposed novel priors. Specifically, one prior assumes that the mean intensity of the degraded image’s direct current (DC) components across three channels in the frequency domain closely approximates that of each channel in the clear image. The second prior is based on the observation that, for clear images, the magnitude of low radial frequencies below 0.001 constitutes approximately 1% of the total spectrum. Finally, we design a weighted fusion strategy to integrate spatial-domain restoration, frequency-domain enhancement, and salient features from the input image, yielding the final recovered result. Extensive evaluations demonstrate the effectiveness and superiority of our proposed SFP for scene recovery under various degradation conditions.
2.78Query-aware Hub Prototype Learning for Few-Shot 3D Point Cloud Semantic Segmentation¶
2025/12/10 05:02 GTM
Few-shot 3D point cloud semantic segmentation (FS-3DSeg) aims to segment novel classes with only a few labeled samples. However, existing metric-based prototype learning methods generate prototypes solely from the support set, without considering their relevance to query data. This often results in prototype bias, where prototypes overfit support-specific characteristics and fail to generalize to the query distribution, especially in the presence of distribution shifts, which leads to degraded segmentation performance. To address this issue, we propose a novel Query-aware Hub Prototype (QHP) learning method that explicitly models semantic correlations between support and query sets. Specifically, we propose a Hub Prototype Generation (HPG) module that constructs a bipartite graph connecting query and support points, identifies frequently linked support hubs, and generates query-relevant prototypes that better capture cross-set semantics. To further mitigate the influence of bad hubs and ambiguous prototypes near class boundaries, we introduce a Prototype Distribution Optimization (PDO) module, which employs a purity-reweighted contrastive loss to refine prototype representations by pulling bad hubs and outlier prototypes closer to their corresponding class centers. Extensive experiments on S3DIS and ScanNet demonstrate that QHP achieves substantial performance gains over state-of-the-art methods, effectively narrowing the semantic gap between prototypes and query sets in FS-3DSeg.
2.79Distilling Future Temporal Knowledge with Masked Feature Reconstruction for 3D Object Detection¶
2025/12/10 05:02 GTM
Camera-based temporal 3D object detection has shown impressive results in autonomous driving, with offline models improving accuracy by using future frames. Knowledge distillation (KD) can be an appealing framework for transferring rich information from offline models to online models. However, existing KD methods overlook future frames, as they mainly focus on spatial feature distillation under strict frame alignment or on temporal relational distillation, thereby making it challenging for online models to effectively learn future knowledge. To this end, we propose a sparse query-based approach, Future Temporal Knowledge Distillation (FTKD), which effectively transfers future frame knowledge from an offline teacher model to an online student model. Specifically, we present a future-aware feature reconstruction strategy to encourage the student model to capture future features without strict frame alignment. In addition, we further introduce future-guided logit distillation to leverage the teacher’s stable foreground and background context. FTKD is applied to two high-performing 3D object detection baselines, achieving up to 1.3 mAP and 1.3 NDS gains on the nuScenes dataset, as well as the most accurate velocity estimation, without increasing inference cost.
2.80Residual-SwinCA-Net: A Channel-Aware Integrated Residual CNN-Swin Transformer for Malignant Lesion Segmentation in BUSI¶
2025/12/10 05:02 GTM
A novel deep hybrid Residual-SwinCA-Net segmentation framework is proposed in the study for addressing such challenges by extracting locally correlated and robust features, incorporating residual CNN modules. Furthermore, for learning global dependencies, Swin Transformer blocks are customized using internal residual pathways, which reinforce gradient stability, refine local patterns, and facilitate global feature fusion. Formerly, for enhancing tissue continuity, ultrasound noise suppressions, and accentuating fine structural transitions Laplacian-of-Gaussian regional operator is applied, and for maintaining the morphological integrity of malignant lesion contours, a boundary-oriented operator has been incorporated. Subsequently, a contraction strategy was applied stage-wise by progressively reducing features-map progressively for capturing scale invariance and enhancing the robustness of structural variability. In addition, each decoder level prior augmentation integrates a new Multi-Scale Channel Attention and Squeezing (MSCAS) module. The MSCAS selectively emphasizes encoder salient maps, retains discriminative global context, and complementary local structures with minimal computational cost while suppressing redundant activations. Finally, the Pixel-Attention module encodes class-relevant spatial cues by adaptively weighing malignant lesion pixels while suppressing background interference. The Residual-SwinCA-Net and existing CNNs/ViTs techniques have been implemented on the publicly available BUSI dataset. The proposed Residual-SwinCA-Net framework outperformed and achieved 99.29% mean accuracy, 98.74% IoU, and 0.9041 Dice for breast lesion segmentation. The proposed Residual-SwinCA-Net framework improves the BUSI lesion diagnostic performance and strengthens timely clinical decision-making.
2.81HybridToken-VLM: Hybrid Token Compression for Vision-Language Models¶
2025/12/10 05:02 GTM
Vision-language models (VLMs) have transformed multimodal reasoning, but feeding hundreds of visual patch tokens into LLMs incurs quadratic computational costs, straining memory and context windows. Traditional approaches face a trade-off: continuous compression dilutes high-level semantics such as object identities, while discrete quantization loses fine-grained details such as textures. We introduce HTC-VLM, a hybrid framework that disentangles semantics and appearance through dual channels, i.e., a continuous pathway for fine-grained details via ViT patches and a discrete pathway for symbolic anchors using MGVQ quantization projected to four tokens. These are fused into a 580-token hybrid sequence and compressed into a single voco token via a disentanglement attention mask and bottleneck, ensuring efficient and grounded representations. HTC-VLM achieves an average performance retention of 87.2 percent across seven benchmarks (GQA, VQAv2, MMBench, MME, POPE, SEED-Bench, ScienceQA-Image), outperforming the leading continuous baseline at 81.0 percent with a 580-to-1 compression ratio. Attention analyses show that the compressed token prioritizes the discrete anchor, validating its semantic guidance. Our work demonstrates that a minimalist hybrid design can resolve the efficiency-fidelity dilemma and advance scalable VLMs.
2.82FastBEV++: Fast by Algorithm, Deployable by Design¶
2025/12/10 05:02 GTM
The advancement of camera-only Bird’s-Eye-View(BEV) perception is currently impeded by a fundamental tension between state-of-the-art performance and on-vehicle deployment tractability. This bottleneck stems from a deep-rooted dependency on computationally prohibitive view transformations and bespoke, platform-specific kernels. This paper introduces FastBEV++, a framework engineered to reconcile this tension, demonstrating that high performance and deployment efficiency can be achieved in unison via two guiding principles: Fast by Algorithm and Deployable by Design. We realize the “Deployable by Design” principle through a novel view transformation paradigm that decomposes the monolithic projection into a standard Index-Gather-Reshape pipeline. Enabled by a deterministic pre-sorting strategy, this transformation is executed entirely with elementary, operator native primitives (e.g Gather, Matrix Multiplication), which eliminates the need for specialized CUDA kernels and ensures fully TensorRT-native portability. Concurrently, our framework is “Fast by Algorithm”, leveraging this decomposed structure to seamlessly integrate an end-to-end, depth-aware fusion mechanism. This jointly learned depth modulation, further bolstered by temporal aggregation and robust data augmentation, significantly enhances the geometric fidelity of the BEV representation.Empirical validation on the nuScenes benchmark corroborates the efficacy of our approach. FastBEV++ establishes a new state-of-the-art 0.359 NDS while maintaining exceptional real-time performance, exceeding 134 FPS on automotive-grade hardware (e.g Tesla T4). By offering a solution that is free of custom plugins yet highly accurate, FastBEV++ presents a mature and scalable design philosophy for production autonomous systems. The code is released at: https://
2.83Geometry-Aware Sparse Depth Sampling for High-Fidelity RGB-D Depth Completion in Robotic Systems¶
2025/12/10 05:02 GTM
Accurate three-dimensional perception is essential for modern industrial robotic systems that perform manipulation, inspection, and navigation tasks. RGB-D and stereo vision sensors are widely used for this purpose, but the depth maps they produce are often noisy, incomplete, or biased due to sensor limitations and environmental conditions. Depth completion methods aim to generate dense, reliable depth maps from RGB images and sparse depth input. However, a key limitation in current depth completion pipelines is the unrealistic generation of sparse depth: sparse pixels are typically selected uniformly at random from dense ground-truth depth, ignoring the fact that real sensors exhibit geometry-dependent and spatially nonuniform reliability. In this work, we propose a normal-guided sparse depth sampling strategy that leverages PCA-based surface normal estimation on the RGB-D point cloud to compute a per-pixel depth reliability measure. The sparse depth samples are then drawn according to this reliability distribution. We integrate this sampling method with the Marigold-DC diffusion-based depth completion model and evaluate it on NYU Depth v2 using the standard metrics. Experiments show that our geometry-aware sparse depth improves accuracy, reduces artifacts near edges and discontinuities, and produces more realistic training conditions that better reflect real sensor behavior.
2.84MM-CoT:A Benchmark for Probing Visual Chain-of-Thought Reasoning in Multimodal Models¶
2025/12/10 05:02 GTM
The ability to perform Chain-of-Thought (CoT) reasoning marks a major milestone for multimodal models (MMs), enabling them to solve complex visual reasoning problems. Yet a critical question remains: is such reasoning genuinely grounded in visual evidence and logically coherent? Existing benchmarks emphasize generation but neglect verification, i.e., the capacity to assess whether a reasoning chain is both visually consistent and logically valid. To fill this gap, we introduce MM-CoT, a diagnostic benchmark specifically designed to probe the visual grounding and logical coherence of CoT reasoning in MMs. Instead of generating free-form explanations, models must select the sole event chain that satisfies two orthogonal constraints: (i) visual consistency, ensuring all steps are anchored in observable evidence, and (ii) logical coherence, ensuring causal and commonsense validity. Adversarial distractors are engineered to violate one of these constraints, exposing distinct reasoning failures. We evaluate leading vision-language models on MM-CoT and find that even the most advanced systems struggle, revealing a sharp discrepancy between generative fluency and true reasoning fidelity. MM-CoT shows low correlation with existing benchmarks, confirming that it measures a unique combination of visual grounding and logical reasoning. This benchmark provides a foundation for developing future models that reason not just plausibly, but faithfully and coherently within the visual world.
2.85New VVC profiles targeting Feature Coding for Machines¶
2025/12/10 05:02 GTM
Modern video codecs have been extensively optimized to preserve perceptual quality, leveraging models of the human visual system. However, in split inference systems-where intermediate features from neural network are transmitted instead of pixel data-these assumptions no longer apply. Intermediate features are abstract, sparse, and task-specific, making perceptual fidelity irrelevant. In this paper, we investigate the use of Versatile Video Coding (VVC) for compressing such features under the MPEG-AI Feature Coding for Machines (FCM) standard. We perform a tool-level analysis to understand the impact of individual coding components on compression efficiency and downstream vision task accuracy. Based on these insights, we propose three lightweight essential VVC profiles-Fast, Faster, and Fastest. The Fast profile provides 2.96% BD-Rate gain while reducing encoding time by 21.8%. Faster achieves a 1.85% BD-Rate gain with a 51.5% speedup. Fastest reduces encoding time by 95.6% with only a 1.71% loss in BD-Rate.
2.86SOP^2: Transfer Learning with Scene-Oriented Prompt Pool on 3D Object Detection¶
2025/12/10 05:02 GTM
With the rise of Large Language Models (LLMs) such as GPT-3, these models exhibit strong generalization capabilities. Through transfer learning techniques such as fine-tuning and prompt tuning, they can be adapted to various downstream tasks with minimal parameter adjustments. This approach is particularly common in the field of Natural Language Processing (NLP). This paper aims to explore the effectiveness of common prompt tuning methods in 3D object detection. We investigate whether a model trained on the large-scale Waymo dataset can serve as a foundation model and adapt to other scenarios within the 3D object detection field. This paper sequentially examines the impact of prompt tokens and prompt generators, and further proposes a Scene-Oriented Prompt Pool (\textbf{SOP}). We demonstrate the effectiveness of prompt pools in 3D object detection, with the goal of inspiring future researchers to delve deeper into the potential of prompts in the 3D field.
2.87VisKnow: Constructing Visual Knowledge Base for Object Understanding¶
2025/12/10 05:02 GTM
Understanding objects is fundamental to computer vision. Beyond object recognition that provides only a category label as typical output, in-depth object understanding represents a comprehensive perception of an object category, involving its components, appearance characteristics, inter-category relationships, contextual background knowledge, etc. Developing such capability requires sufficient multi-modal data, including visual annotations such as parts, attributes, and co-occurrences for specific tasks, as well as textual knowledge to support high-level tasks like reasoning and question answering. However, these data are generally task-oriented and not systematically organized enough to achieve the expected understanding of object categories. In response, we propose the Visual Knowledge Base that structures multi-modal object knowledge as graphs, and present a construction framework named VisKnow that extracts multi-modal, object-level knowledge for object understanding. This framework integrates enriched aligned text and image-source knowledge with region annotations at both object and part levels through a combination of expert design and large-scale model application. As a specific case study, we construct AnimalKB, a structured animal knowledge base covering 406 animal categories, which contains 22K textual knowledge triplets extracted from encyclopedic documents, 420K images, and corresponding region annotations. A series of experiments showcase how AnimalKB enhances object-level visual tasks such as zero-shot recognition and fine-grained VQA, and serves as challenging benchmarks for knowledge graph completion and part segmentation. Our findings highlight the potential of automatically constructing visual knowledge bases to advance visual understanding and its practical applications. The project page is available at https://
2.88Tumor-anchored deep feature random forests for out-of-distribution detection in lung cancer segmentation¶
2025/12/10 05:02 GTM
Accurate segmentation of cancerous lesions from 3D computed tomography (CT) scans is essential for automated treatment planning and response assessment. However, even state-of-the-art models combining self-supervised learning (SSL) pretrained transformers with convolutional decoders are susceptible to out-of-distribution (OOD) inputs, generating confidently incorrect tumor segmentations, posing risks for safe clinical deployment. Existing logit-based methods suffer from task-specific model biases, while architectural enhancements to explicitly detect OOD increase parameters and computational costs. Hence, we introduce a plug-and-play and lightweight post-hoc random forests-based OOD detection framework called RF-Deep that leverages deep features with limited outlier exposure. RF-Deep enhances generalization to imaging variations by repurposing the hierarchical features from the pretrained-then-finetuned backbone encoder, providing task-relevant OOD detection by extracting the features from multiple regions of interest anchored to the predicted tumor segmentations. Hence, it scales to images of varying fields-of-view. We compared RF-Deep against existing OOD detection methods using 1,916 CT scans across near-OOD (pulmonary embolism, negative COVID-19) and far-OOD (kidney cancer, healthy pancreas) datasets. RF-Deep achieved AUROC > 93.50 for the challenging near-OOD datasets and near-perfect detection (AUROC > 99.00) for the far-OOD datasets, substantially outperforming logit-based and radiomics approaches. RF-Deep maintained similar performance consistency across networks of different depths and pretraining strategies, demonstrating its effectiveness as a lightweight, architecture-agnostic approach to enhance the reliability of tumor segmentation from CT volumes.
2.89Blur2Sharp: Human Novel Pose and View Synthesis with Generative Prior Refinement¶
2025/12/10 05:02 GTM
The creation of lifelike human avatars capable of realistic pose variation and viewpoint flexibility remains a fundamental challenge in computer vision and graphics. Current approaches typically yield either geometrically inconsistent multi-view images or sacrifice photorealism, resulting in blurry outputs under diverse viewing angles and complex motions. To address these issues, we propose Blur2Sharp, a novel framework integrating 3D-aware neural rendering and diffusion models to generate sharp, geometrically consistent novel-view images from only a single reference view. Our method employs a dual-conditioning architecture: initially, a Human NeRF model generates geometrically coherent multi-view renderings for target poses, explicitly encoding 3D structural guidance. Subsequently, a diffusion model conditioned on these renderings refines the generated images, preserving fine-grained details and structural fidelity. We further enhance visual quality through hierarchical feature fusion, incorporating texture, normal, and semantic priors extracted from parametric SMPL models to simultaneously improve global coherence and local detail accuracy. Extensive experiments demonstrate that Blur2Sharp consistently surpasses state-of-the-art techniques in both novel pose and view generation tasks, particularly excelling under challenging scenarios involving loose clothing and occlusions.
2.90Animal Re-Identification on Microcontrollers¶
2025/12/10 05:02 GTM
Camera-based animal re-identification (Animal Re-ID) can support wildlife monitoring and precision livestock management in large outdoor environments with limited wireless connectivity. In these settings, inference must run directly on collar tags or low-power edge nodes built around microcontrollers (MCUs), yet most Animal Re-ID models are designed for workstations or servers and are too large for devices with small memory and low-resolution inputs. We propose an on-device framework. First, we characterise the gap between state-of-the-art Animal Re-ID models and MCU-class hardware, showing that straightforward knowledge distillation from large teachers offers limited benefit once memory and input resolution are constrained. Second, guided by this analysis, we design a high-accuracy Animal Re-ID architecture by systematically scaling a CNN-based MobileNetV2 backbone for low-resolution inputs. Third, we evaluate the framework with a real-world dataset and introduce a data-efficient fine-tuning strategy to enable fast adaptation with just three images per animal identity at a new site. Across six public Animal Re-ID datasets, our compact model achieves competitive retrieval accuracy while reducing model size by over two orders of magnitude. On a self-collected cattle dataset, the deployed model performs fully on-device inference with only a small accuracy drop and unchanged Top-1 accuracy relative to its cluster version. We demonstrate that practical, adaptable Animal Re-ID is achievable on MCU-class devices, paving the way for scalable deployment in real field environments.
2.91Embodied Tree of Thoughts: Deliberate Manipulation Planning with Embodied World Model¶
2025/12/10 05:02 GTM
World models have emerged as a pivotal component in robot manipulation planning, enabling agents to predict future environmental states and reason about the consequences of actions before execution. While video-generation models are increasingly adopted, they often lack rigorous physical grounding, leading to hallucinations and a failure to maintain consistency in long-horizon physical constraints. To address these limitations, we propose Embodied Tree of Thoughts (EToT), a novel Real2Sim2Real planning framework that leverages a physics-based interactive digital twin as an embodied world model. EToT formulates manipulation planning as a tree search expanded through two synergistic mechanisms: (1) Priori Branching, which generates diverse candidate execution paths based on semantic and spatial analysis; and (2) Reflective Branching, which utilizes VLMs to diagnose execution failures within the simulator and iteratively refine the planning tree with corrective actions. By grounding high-level reasoning in a physics simulator, our framework ensures that generated plans adhere to rigid-body dynamics and collision constraints. We validate EToT on a suite of short- and long-horizon manipulation tasks, where it consistently outperforms baselines by effectively predicting physical dynamics and adapting to potential failures. Website at https://
2.92GeoLoom: High-quality Geometric Diagram Generation from Textual Input¶
2025/12/10 05:02 GTM
High-quality geometric diagram generation presents both a challenge and an opportunity: it demands strict spatial accuracy while offering well-defined constraints to guide generation. Inspired by recent advances in geometry problem solving that employ formal languages and symbolic solvers for enhanced correctness and interpretability, we propose GeoLoom, a novel framework for text-to-diagram generation in geometric domains. GeoLoom comprises two core components: an autoformalization module that translates natural language into a specifically designed generation-oriented formal language GeoLingua, and a coordinate solver that maps formal constraints to precise coordinates using the efficient Monte Carlo optimization. To support this framework, we introduce GeoNF, a dataset aligning natural language geometric descriptions with formal GeoLingua descriptions. We further propose a constraint-based evaluation metric that quantifies structural deviation, offering mathematically grounded supervision for iterative refinement. Empirical results demonstrate that GeoLoom significantly outperforms state-of-the-art baselines in structural fidelity, providing a principled foundation for interpretable and scalable diagram generation.
2.93RAVES-Calib: Robust, Accurate and Versatile Extrinsic Self Calibration Using Optimal Geometric Features¶
2025/12/10 05:02 GTM
In this paper, we present a user-friendly LiDAR-camera calibration toolkit that is compatible with various LiDAR and camera sensors and requires only a single pair of laser points and a camera image in targetless environments. Our approach eliminates the need for an initial transform and remains robust even with large positional and rotational LiDAR-camera extrinsic parameters. We employ the Gluestick pipeline to establish 2D-3D point and line feature correspondences for a robust and automatic initial guess. To enhance accuracy, we quantitatively analyze the impact of feature distribution on calibration results and adaptively weight the cost of each feature based on these metrics. As a result, extrinsic parameters are optimized by filtering out the adverse effects of inferior features. We validated our method through extensive experiments across various LiDAR-camera sensors in both indoor and outdoor settings. The results demonstrate that our method provides superior robustness and accuracy compared to SOTA techniques. Our code is open-sourced on GitHub to benefit the community.
2.94Accuracy Does Not Guarantee Human-Likeness in Monocular Depth Estimators¶
2025/12/10 05:02 GTM
Monocular depth estimation is a fundamental capability for real-world applications such as autonomous driving and robotics. Although deep neural networks (DNNs) have achieved superhuman accuracy on physical-based benchmarks, a key challenge remains: aligning model representations with human perception, a promising strategy for enhancing model robustness and interpretability. Research in object recognition has revealed a complex trade-off between model accuracy and human-like behavior, raising a question whether a similar divergence exist in depth estimation, particularly for natural outdoor scenes where benchmarks rely on sensor-based ground truth rather than human perceptual estimates. In this study, we systematically investigated the relationship between model accuracy and human similarity across 69 monocular depth estimators using the KITTI dataset. To dissect the structure of error patterns on a factor-by-factor basis, we applied affine fitting to decompose prediction errors into interpretable components. Intriguingly, our results reveal while humans and DNNs share certain estimation biases (positive error correlations), we observed distinct trade-off relationships between model accuracy and human similarity. This finding indicates that improving accuracy does not necessarily lead to more human-like behavior, underscoring the necessity of developing multifaceted, human-centric evaluations beyond traditional accuracy.
2.95Fourier-RWKV: A Multi-State Perception Network for Efficient Image Dehazing¶
2025/12/10 05:02 GTM
Image dehazing is crucial for reliable visual perception, yet it remains highly challenging under real-world non-uniform haze conditions. Although Transformer-based methods excel at capturing global context, their quadratic computational complexity hinders real-time deployment. To address this, we propose Fourier Receptance Weighted Key Value (Fourier-RWKV), a novel dehazing framework based on a Multi-State Perception paradigm. The model achieves comprehensive haze degradation modeling with linear complexity by synergistically integrating three distinct perceptual states: (1) Spatial-form Perception, realized through the Deformable Quad-directional Token Shift (DQ-Shift) operation, which dynamically adjusts receptive fields to accommodate local haze variations; (2) Frequency-domain Perception, implemented within the Fourier Mix block, which extends the core WKV attention mechanism of RWKV from the spatial domain to the Fourier domain, preserving the long-range dependencies essential for global haze estimation while mitigating spatial attenuation; (3) Semantic-relation Perception, facilitated by the Semantic Bridge Module (SBM), which utilizes Dynamic Semantic Kernel Fusion (DSK-Fusion) to precisely align encoder-decoder features and suppress artifacts. Extensive experiments on multiple benchmarks demonstrate that Fourier-RWKV delivers state-of-the-art performance across diverse haze scenarios while significantly reducing computational overhead, establishing a favorable trade-off between restoration quality and practical efficiency. Code is available at: https://
2.96TreeGRPO: Tree-Advantage GRPO for Online RL Post-Training of Diffusion Models¶
2025/12/10 05:02 GTM
Reinforcement learning (RL) post-training is crucial for aligning generative models with human preferences, but its prohibitive computational cost remains a major barrier to widespread adoption. We introduce \textbf{TreeGRPO}, a novel RL framework that dramatically improves training efficiency by recasting the denoising process as a search tree. From shared initial noise samples, TreeGRPO strategically branches to generate multiple candidate trajectories while efficiently reusing their common prefixes. This tree-structured approach delivers three key advantages: (1) \emph{High sample efficiency}, achieving better performance under same training samples (2) \emph{Fine-grained credit assignment} via reward backpropagation that computes step-specific advantages, overcoming the uniform credit assignment limitation of trajectory-based methods, and (3) \emph{Amortized computation} where multi-child branching enables multiple policy updates per forward pass. Extensive experiments on both diffusion and flow-based models demonstrate that TreeGRPO achieves \textbf{2.4 faster training} while establishing a superior Pareto frontier in the efficiency-reward trade-off space. Our method consistently outperforms GRPO baselines across multiple benchmarks and reward models, providing a scalable and effective pathway for RL-based visual generative model alignment. The project website is available at treegrpo.github.io.
2.97CVP: Central-Peripheral Vision-Inspired Multimodal Model for Spatial Reasoning¶
2025/12/10 05:02 GTM
We present a central-peripheral vision-inspired framework (CVP), a simple yet effective multimodal model for spatial reasoning that draws inspiration from the two types of human visual fields -- central vision and peripheral vision. Existing approaches primarily rely on unstructured representations, such as point clouds, voxels, or patch features, and inject scene context implicitly via coordinate embeddings. However, this often results in limited spatial reasoning capabilities due to the lack of explicit, high-level structural understanding. To address this limitation, we introduce two complementary components into a Large Multimodal Model-based architecture: target-affinity token, analogous to central vision, that guides the model’s attention toward query-relevant objects; and allocentric grid, akin to peripheral vision, that captures global scene context and spatial arrangements. These components work in tandem to enable structured, context-aware understanding of complex 3D environments. Experiments show that CVP achieves state-of-the-art performance across a range of 3D scene understanding benchmarks.
2.98FlowSteer: Conditioning Flow Field for Consistent Image Restoration¶
2025/12/10 05:02 GTM
Flow-based text-to-image (T2I) models excel at prompt-driven image generation, but falter on Image Restoration (IR), often “drifting away” from being faithful to the measurement. Prior work mitigate this drift with data-specific flows or task-specific adapters that are computationally heavy and not scalable across tasks. This raises the question “Can’t we efficiently manipulate the existing generative capabilities of a flow model?” To this end, we introduce FlowSteer (FS), an operator-aware conditioning scheme that injects measurement priors along the sampling path,coupling a frozed flow’s implicit guidance with explicit measurement constraints. Across super-resolution, deblurring, denoising, and colorization, FS improves measurement consistency and identity preservation in a strictly zero-shot setting-no retrained models, no adapters. We show how the nature of flow models and their sensitivities to noise inform the design of such a scheduler. FlowSteer, although simple, achieves a higher fidelity of reconstructed images, while leveraging the rich generative priors of flow models.
2.99Generalizations of the Normalized Radon Cumulative Distribution Transform for Limited Data Recognition¶
2025/12/10 05:02 GTM
The Radon cumulative distribution transform (R-CDT) exploits one-dimensional Wasserstein transport and the Radon transform to represent prominent features in images. It is closely related to the sliced Wasserstein distance and facilitates classification tasks, especially in the small data regime, like the recognition of watermarks in filigranology. Here, a typical issue is that the given data may be subject to affine transformations caused by the measuring process. To make the R-CDT invariant under arbitrary affine transformations, a two-step normalization of the R-CDT has been proposed in our earlier works. The aim of this paper is twofold. First, we propose a family of generalized normalizations to enhance flexibility for applications. Second, we study multi-dimensional and non-Euclidean settings by making use of generalized Radon transforms. We prove that our novel feature representations are invariant under certain transformations and allow for linear separation in feature space. Our theoretical results are supported by numerical experiments based on 2d images, 3d shapes and 3d rotation matrices, showing near perfect classification accuracies and clustering results.
2.100Identification of Deforestation Areas in the Amazon Rainforest Using Change Detection Models¶
2025/12/10 05:02 GTM
The preservation of the Amazon Rainforest is one of the global priorities in combating climate change, protecting biodiversity, and safeguarding indigenous cultures. The Satellite-based Monitoring Project of Deforestation in the Brazilian Legal Amazon (PRODES), a project of the National Institute for Space Research (INPE), stands out as a fundamental initiative in this effort, annually monitoring deforested areas not only in the Amazon but also in other Brazilian biomes. Recently, machine learning models have been developed using PRODES data to support this effort through the comparative analysis of multitemporal satellite images, treating deforestation detection as a change detection problem. However, existing approaches present significant limitations: models evaluated in the literature still show unsatisfactory effectiveness, many do not incorporate modern architectures, such as those based on self-attention mechanisms, and there is a lack of methodological standardization that allows direct comparisons between different studies. In this work, we address these gaps by evaluating various change detection models in a unified dataset, including fully convolutional models and networks incorporating self-attention mechanisms based on Transformers. We investigate the impact of different pre- and post-processing techniques, such as filtering deforested areas predicted by the models based on the size of connected components, texture replacement, and image enhancements; we demonstrate that such approaches can significantly improve individual model effectiveness. Additionally, we test different strategies for combining the evaluated models to achieve results superior to those obtained individually, reaching an F1-score of 80.41%, a value comparable to other recent works in the literature.
2.101Mask to Adapt: Simple Random Masking Enables Robust Continual Test-Time Learning¶
2025/12/10 05:02 GTM
Distribution shifts at test time degrade image classifiers. Recent continual test-time adaptation (CTTA) methods use masking to regulate learning, but often depend on calibrated uncertainty or stable attention scores and introduce added complexity. We ask: do we need custom-made masking designs, or can a simple random masking schedule suffice under strong corruption? We introduce Mask to Adapt (M2A), a simple CTTA approach that generates a short sequence of masked views (spatial or frequency) and adapts with two objectives: a mask consistency loss that aligns predictions across different views and an entropy minimization loss that encourages confident outputs. Motivated by masked image modeling, we study two common masking families -- spatial masking and frequency masking -- and further compare subtypes within each (spatial: patch vs.\ pixel; frequency: all vs.\ low vs.\ high). On CIFAR10C/CIFAR100C/ImageNetC (severity~5), M2A (Spatial) attains 8.3%/19.8%/39.2% mean error, outperforming or matching strong CTTA baselines, while M2A (Frequency) lags behind. Ablations further show that simple random masking is effective and robust. These results indicate that a simple random masking schedule, coupled with consistency and entropy objectives, is sufficient to drive effective test-time adaptation without relying on uncertainty or attention signals.
2.102Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking¶
2025/12/10 05:02 GTM
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at: https://
2.103Lost in Translation, Found in Embeddings: Sign Language Translation and Alignment¶
2025/12/10 05:02 GTM
Our aim is to develop a unified model for sign language understanding, that performs sign language translation (SLT) and sign-subtitle alignment (SSA). Together, these two tasks enable the conversion of continuous signing videos into spoken language text and also the temporal alignment of signing with subtitles -- both essential for practical communication, large-scale corpus construction, and educational applications. To achieve this, our approach is built upon three components: (i) a lightweight visual backbone that captures manual and non-manual cues from human keypoints and lip-region images while preserving signer privacy; (ii) a Sliding Perceiver mapping network that aggregates consecutive visual features into word-level embeddings to bridge the vision-text gap; and (iii) a multi-task scalable training strategy that jointly optimises SLT and SSA, reinforcing both linguistic and temporal alignment. To promote cross-linguistic generalisation, we pretrain our model on large-scale sign-text corpora covering British Sign Language (BSL) and American Sign Language (ASL) from the BOBSL and YouTube-SL-25 datasets. With this multilingual pretraining and strong model design, we achieve state-of-the-art results on the challenging BOBSL (BSL) dataset for both SLT and SSA. Our model also demonstrates robust zero-shot generalisation and finetuned SLT performance on How2Sign (ASL), highlighting the potential of scalable translation across different sign languages.
2.104SSplain: Sparse and Smooth Explainer for Retinopathy of Prematurity Classification¶
2025/12/10 05:02 GTM
Neural networks are frequently used in medical diagnosis. However, due to their black-box nature, model explainers are used to help clinicians understand better and trust model outputs. This paper introduces an explainer method for classifying Retinopathy of Prematurity (ROP) from fundus images. Previous methods fail to generate explanations that preserve input image structures such as smoothness and sparsity. We introduce Sparse and Smooth Explainer (SSplain), a method that generates pixel-wise explanations while preserving image structures by enforcing smoothness and sparsity. This results in realistic explanations to enhance the understanding of the given black-box model. To achieve this goal, we define an optimization problem with combinatorial constraints and solve it using the Alternating Direction Method of Multipliers (ADMM). Experimental results show that SSplain outperforms commonly used explainers in terms of both post-hoc accuracy and smoothness analyses. Additionally, SSplain identifies features that are consistent with domain-understandable features that clinicians consider as discriminative factors for ROP. We also show SSplain’s generalization by applying it to additional publicly available datasets. Code is available at https://
2.105CLARITY: Medical World Model for Guiding Treatment Decisions by Modeling Context-Aware Disease Trajectories in Latent Space¶
2025/12/10 05:02 GTM
Clinical decision-making in oncology requires predicting dynamic disease evolution, a task current static AI predictors cannot perform. While world models (WMs) offer a paradigm for generative prediction, existing medical applications remain limited. Existing methods often rely on stochastic diffusion models, focusing on visual reconstruction rather than causal, physiological transitions. Furthermore, in medical domain, models like MeWM typically ignore patient-specific temporal and clinical contexts and lack a feedback mechanism to link predictions to treatment decisions. To address these gaps, we introduce CLARITY, a medical world model that forecasts disease evolution directly within a structured latent space. It explicitly integrates time intervals (temporal context) and patient-specific data (clinical context) to model treatment-conditioned progression as a smooth, interpretable trajectory, and thus generate physiologically faithful, individualized treatment plans. Finally, CLARITY introduces a novel prediction-to-decision framework, translating latent rollouts into transparent, actionable recommendations. CLARITY demonstrates state-of-the-art performance in treatment planning. On the MU-Glioma-Post dataset, our approach outperforms recent MeWM by 12%, and significantly surpasses all other medical-specific large language models.
2.106FRIEDA: Benchmarking Multi-Step Cartographic Reasoning in Vision-Language Models¶
2025/12/10 05:02 GTM
Cartographic reasoning is the skill of interpreting geographic relationships by aligning legends, map scales, compass directions, map texts, and geometries across one or more map images. Although essential as a concrete cognitive capability and for critical tasks such as disaster response and urban planning, it remains largely unevaluated. Building on progress in chart and infographic understanding, recent large vision language model studies on map visual question-answering often treat maps as a special case of charts. In contrast, map VQA demands comprehension of layered symbology (e.g., symbols, geometries, and text labels) as well as spatial relations tied to orientation and distance that often span multiple maps and are not captured by chart-style evaluations. To address this gap, we introduce FRIEDA, a benchmark for testing complex open-ended cartographic reasoning in LVLMs. FRIEDA sources real map images from documents and reports in various domains and geographical areas. Following classifications in Geographic Information System (GIS) literature, FRIEDA targets all three categories of spatial relations: topological (border, equal, intersect, within), metric (distance), and directional (orientation). All questions require multi-step inference, and many require cross-map grounding and reasoning. We evaluate eleven state-of-the-art LVLMs under two settings: (1) the direct setting, where we provide the maps relevant to the question, and (2) the contextual setting, where the model may have to identify the maps relevant to the question before reasoning. Even the strongest models, Gemini-2.5-Pro and GPT-5-Think, achieve only 38.20% and 37.20% accuracy, respectively, far below human performance of 84.87%. These results reveal a persistent gap in multi-step cartographic reasoning, positioning FRIEDA as a rigorous benchmark to drive progress on spatial intelligence in LVLMs.
2.107DIJIT: A Robotic Head for an Active Observer¶
2025/12/10 05:02 GTM
We present DIJIT, a novel binocular robotic head expressly designed for mobile agents that behave as active observers. DIJIT’s unique breadth of functionality enables active vision research and the study of human-like eye and head-neck motions, their interrelationships, and how each contributes to visual ability. DIJIT is also being used to explore the differences between how human vision employs eye/head movements to solve visual tasks and current computer vision methods. DIJIT’s design features nine mechanical degrees of freedom, while the cameras and lenses provide an additional four optical degrees of freedom. The ranges and speeds of the mechanical design are comparable to human performance. Our design includes the ranges of motion required for convergent stereo, namely, vergence, version, and cyclotorsion. The exploration of the utility of these to both human and machine vision is ongoing. Here, we present the design of DIJIT and evaluate aspects of its performance. We present a new method for saccadic camera movements. In this method, a direct relationship between camera orientation and motor values is developed. The resulting saccadic camera movements are close to human movements in terms of their accuracy.
2.108Restrictive Hierarchical Semantic Segmentation for Stratified Tooth Layer Detection¶
2025/12/10 05:02 GTM
Accurate understanding of anatomical structures is essential for reliably staging certain dental diseases. A way of introducing this within semantic segmentation models is by utilising hierarchy-aware methodologies. However, existing hierarchy-aware segmentation methods largely encode anatomical structure through the loss functions, providing weak and indirect supervision. We introduce a general framework that embeds an explicit anatomical hierarchy into semantic segmentation by coupling a recurrent, level-wise prediction scheme with restrictive output heads and top-down feature conditioning. At each depth of the class tree, the backbone is re-run on the original image concatenated with logits from the previous level. Child class features are conditioned using Feature-wise Linear Modulation of their parent class probabilities, to modulate child feature spaces for fine grained detection. A probabilistic composition rule enforces consistency between parent and descendant classes. Hierarchical loss combines per-level class weighted Dice and cross entropy loss and a consistency term loss, ensuring parent predictions are the sum of their children. We validate our approach on our proposed dataset, TL-pano, containing 194 panoramic radiographs with dense instance and semantic segmentation annotations, of tooth layers and alveolar bone. Utilising UNet and HRNet as donor models across a 5-fold cross validation scheme, the hierarchical variants consistently increase IoU, Dice, and recall, particularly for fine-grained anatomies, and produce more anatomically coherent masks. However, hierarchical variants also demonstrated increased recall over precision, implying increased false positives. The results demonstrate that explicit hierarchical structuring improves both performance and clinical plausibility, especially in low data dental imaging regimes.
2.109CIP-Net: Continual Interpretable Prototype-based Network¶
2025/12/10 05:02 GTM
Continual learning constrains models to learn new tasks over time without forgetting what they have already learned. A key challenge in this setting is catastrophic forgetting, where learning new information causes the model to lose its performance on previous tasks. Recently, explainable AI has been proposed as a promising way to better understand and reduce forgetting. In particular, self-explainable models are useful because they generate explanations during prediction, which can help preserve knowledge. However, most existing explainable approaches use post-hoc explanations or require additional memory for each new task, resulting in limited scalability. In this work, we introduce CIP-Net, an exemplar-free self-explainable prototype-based model designed for continual learning. CIP-Net avoids storing past examples and maintains a simple architecture, while still providing useful explanations and strong performance. We demonstrate that CIPNet achieves state-of-the-art performances compared to previous exemplar-free and self-explainable methods in both task- and class-incremental settings, while bearing significantly lower memory-related overhead. This makes it a practical and interpretable solution for continual learning.
2.110VLD: Visual Language Goal Distance for Reinforcement Learning Navigation¶
2025/12/10 05:02 GTM
Training end-to-end policies from image data to directly predict navigation actions for robotic systems has proven inherently difficult. Existing approaches often suffer from either the sim-to-real gap during policy transfer or a limited amount of training data with action labels. To address this problem, we introduce Vision-Language Distance (VLD) learning, a scalable framework for goal-conditioned navigation that decouples perception learning from policy learning. Instead of relying on raw sensory inputs during policy training, we first train a self-supervised distance-to-goal predictor on internet-scale video data. This predictor generalizes across both image- and text-based goals, providing a distance signal that can be minimized by a reinforcement learning (RL) policy. The RL policy can be trained entirely in simulation using privileged geometric distance signals, with injected noise to mimic the uncertainty of the trained distance predictor. At deployment, the policy consumes VLD predictions, inheriting semantic goal information-“where to go”-from large-scale visual training while retaining the robust low-level navigation behaviors learned in simulation. We propose using ordinal consistency to assess distance functions directly and demonstrate that VLD outperforms prior temporal distance approaches, such as ViNT and VIP. Experiments show that our decoupled design achieves competitive navigation performance in simulation while supporting flexible goal modalities, providing an alternative and, most importantly, scalable path toward reliable, multimodal navigation policies.
2.111Sparse Variable Projection in Robotic Perception: Exploiting Separable Structure for Efficient Nonlinear Optimization¶
2025/12/10 05:02 GTM
Robotic perception often requires solving large nonlinear least-squares (NLS) problems. While sparsity has been well-exploited to scale solvers, a complementary and underexploited structure is \emph{separability} -- where some variables (e.g., visual landmarks) appear linearly in the residuals and, for any estimate of the remaining variables (e.g., poses), have a closed-form solution. Variable projection (VarPro) methods are a family of techniques that exploit this structure by analytically eliminating the linear variables and presenting a reduced problem in the remaining variables that has favorable properties. However, VarPro has seen limited use in robotic perception; a major challenge arises from gauge symmetries (e.g., cost invariance to global shifts and rotations), which are common in perception and induce specific computational challenges in standard VarPro approaches. We present a VarPro scheme designed for problems with gauge symmetries that jointly exploits separability and sparsity. Our method can be applied as a one-time preprocessing step to construct a \emph{matrix-free Schur complement operator}. This operator allows efficient evaluation of costs, gradients, and Hessian-vector products of the reduced problem and readily integrates with standard iterative NLS solvers. We provide precise conditions under which our method applies, and describe extensions when these conditions are only partially met. Across synthetic and real benchmarks in SLAM, SNL, and SfM, our approach achieves up to \textbf{2--35 faster runtimes} than state-of-the-art methods while maintaining accuracy. We release an open-source C++ implementation and all datasets from our experiments.
2.112Preserving Source Video Realism: High-Fidelity Face Swapping for Cinematic Quality¶
2025/12/10 05:02 GTM
Video face swapping is crucial in film and entertainment production, where achieving high fidelity and temporal consistency over long and complex video sequences remains a significant challenge. Inspired by recent advances in reference-guided image editing, we explore whether rich visual attributes from source videos can be similarly leveraged to enhance both fidelity and temporal coherence in video face swapping. Building on this insight, this work presents LivingSwap, the first video reference guided face swapping model. Our approach employs keyframes as conditioning signals to inject the target identity, enabling flexible and controllable editing. By combining keyframe conditioning with video reference guidance, the model performs temporal stitching to ensure stable identity preservation and high-fidelity reconstruction across long video sequences. To address the scarcity of data for reference-guided training, we construct a paired face-swapping dataset, Face2Face, and further reverse the data pairs to ensure reliable ground-truth supervision. Extensive experiments demonstrate that our method achieves state-of-the-art results, seamlessly integrating the target identity with the source video’s expressions, lighting, and motion, while significantly reducing manual effort in production workflows. Project webpage: https://
2.113Near-real time fires detection using satellite imagery in Sudan conflict¶
2025/12/10 05:02 GTM
The challenges of ongoing war in Sudan highlight the need for rapid moni- toring and analysis of such conflicts. Advances in deep learning and readily available satellite remote sensing imagery allow for near real-time monitor- ing. This paper uses 4-band imagery from Planet Labs with a deep learning model to show that fire damage in armed conflicts can be monitored with minimal delay. We demonstrate the effectiveness of our approach using five case studies in Sudan. We show that, compared to a baseline, the automated method captures the active fires and charred areas more accurately. Our re- sults indicate that using 8-band imagery or time series of such imagery only result in marginal gains.
2.114Fast and Robust Diffusion Posterior Sampling for MR Image Reconstruction Using the Preconditioned Unadjusted Langevin Algorithm¶
2025/12/10 05:02 GTM
Purpose: The Unadjusted Langevin Algorithm (ULA) in combination with diffusion models can generate high quality MRI reconstructions with uncertainty estimation from highly undersampled k-space data. However, sampling methods such as diffusion posterior sampling or likelihood annealing suffer from long reconstruction times and the need for parameter tuning. The purpose of this work is to develop a robust sampling algorithm with fast convergence. Theory and Methods: In the reverse diffusion process used for sampling the posterior, the exact likelihood is multiplied with the diffused prior at all noise scales. To overcome the issue of slow convergence, preconditioning is used. The method is trained on fastMRI data and tested on retrospectively undersampled brain data of a healthy volunteer. Results: For posterior sampling in Cartesian and non-Cartesian accelerated MRI the new approach outperforms annealed sampling in terms of reconstruction speed and sample quality. Conclusion: The proposed exact likelihood with preconditioning enables rapid and reliable posterior sampling across various MRI reconstruction tasks without the need for parameter tuning.
2.115GSPN-2: Efficient Parallel Sequence Modeling¶
2025/12/10 05:02 GTM
Efficient vision transformer remains a bottleneck for high-resolution images and long-video related real-world applications. Generalized Spatial Propagation Network (GSPN) addresses this by replacing quadratic self-attention with a line-scan propagation scheme, bringing the cost close to linear in the number of rows or columns, while retaining accuracy. Despite this advancement, the existing GSPN implementation still suffers from (i) heavy overhead due to repeatedly launching GPU kernels, (ii) excessive data transfers from global GPU memory, and (iii) redundant computations caused by maintaining separate propagation weights for each channel. We introduce GSPN-2, a joint algorithm-system redesign. In particular, we eliminate thousands of micro-launches from the previous implementation into one single 2D kernel, explicitly pin one warp to each channel slice, and stage the previous column’s activations in shared memory. On the model side, we introduce a compact channel propagation strategy that replaces per-channel matrices, trimming parameters, and align naturally with the affinity map used in transformer attention. Experiments demonstrate GSPN-2’s effectiveness across image classification and text-to-image synthesis tasks, matching transformer-level accuracy with significantly lower computational cost. GSPN-2 establishes a new efficiency frontier for modeling global spatial context in vision applications through its unique combination of structured matrix transformations and GPU-optimized implementation. Project page: https://
2.116LAPA: Log-Domain Prediction-Driven Dynamic Sparsity Accelerator for Transformer Model¶
2025/12/10 05:02 GTM
Attention-based Transformers have revolutionized natural language processing (NLP) and shown strong performance in computer vision (CV) tasks. However, as the input sequence varies, the computational bottlenecks in Transformer models exhibit dynamic behavior across stages, which calls for a cross-stage sparse acceleration strategy. Unfortunately, most existing sparse Transformer approaches are single-stage based, and their sparsity prediction mechanisms lead to significant power overhead when applied across multiple stages. To this end, this paper proposes a log-domain attention prediction algorithm-architecture co-design, named LAPA. First, an asymmetric leading one computing (ALOC) scheme is designed to eliminate expensive multiplications. Next, a mixed-precision multi-round shifting accumulation (MRSA) mechanism is further proposed to mitigate the accumulation overhead. A data-feature dependent filter (DDF) strategy is designed to work in concert with the MRSA process. Finally, an elaborate accelerator is designed to translate the theoretical enhancement into practical hardware improvement. Experimental results show that LAPA achieves 3.52x, 3.24x and 2.79x higher energy efficiency than the state-of-the-art (SOTA) works Spatten, Sanger and FACT, respectively.
2.117Detection of Cyberbullying in GIF using AI¶
2025/12/10 05:02 GTM
Cyberbullying is a well-known social issue, and it is escalating day by day. Due to the vigorous development of the internet, social media provide many different ways for the user to express their opinions and exchange information. Cyberbullying occurs on social media using text messages, comments, sharing images and GIFs or stickers, and audio and video. Much research has been done to detect cyberbullying on textual data; some are available for images. Very few studies are available to detect cyberbullying on GIFs/stickers. We collect a GIF dataset from Twitter and Applied a deep learning model to detect cyberbullying from the dataset. Firstly, we extracted hashtags related to cyberbullying using Twitter. We used these hashtags to download GIF file using publicly available API GIPHY. We collected over 4100 GIFs including cyberbullying and non cyberbullying. we applied deep learning pre-trained model VGG16 for the detection of the cyberbullying. The deep learning model achieved the accuracy of 97%. Our work provides the GIF dataset for researchers working in this area.
2.118Ask, Answer, and Detect: Role-Playing LLMs for Personality Detection with Question-Conditioned Mixture-of-Experts¶
2025/12/10 05:02 GTM
Understanding human personality is crucial for web applications such as personalized recommendation and mental health assessment. Existing studies on personality detection predominantly adopt a “posts -> user vector -> labels” modeling paradigm, which encodes social media posts into user representations for predicting personality labels (e.g., MBTI labels). While recent advances in large language models (LLMs) have improved text encoding capacities, these approaches remain constrained by limited supervision signals due to label scarcity, and under-specified semantic mappings between user language and abstract psychological constructs. We address these challenges by proposing ROME, a novel framework that explicitly injects psychological knowledge into personality detection. Inspired by standardized self-assessment tests, ROME leverages LLMs’ role-play capability to simulate user responses to validated psychometric questionnaires. These generated question-level answers transform free-form user posts into interpretable, questionnaire-grounded evidence linking linguistic cues to personality labels, thereby providing rich intermediate supervision to mitigate label scarcity while offering a semantic reasoning chain that guides and simplifies the text-to-personality mapping learning. A question-conditioned Mixture-of-Experts module then jointly routes over post and question representations, learning to answer questionnaire items under explicit supervision. The predicted answers are summarized into an interpretable answer vector and fused with the user representation for final prediction within a multi-task learning framework, where question answering serves as a powerful auxiliary task for personality detection. Extensive experiments on two real-world datasets demonstrate that ROME consistently outperforms state-of-the-art baselines, achieving improvements (15.41% on Kaggle dataset).
2.119A Systematic Evaluation of Preference Aggregation in Federated RLHF for Pluralistic Alignment of LLMs¶
2025/12/10 05:02 GTM
This paper addresses the challenge of aligning large language models (LLMs) with diverse human preferences within federated learning (FL) environments, where standard methods often fail to adequately represent diverse viewpoints. We introduce a comprehensive evaluation framework that systematically assesses the trade-off between alignment quality and fairness when using different aggregation strategies for human preferences. In our federated setting, each group locally evaluates rollouts and produces reward signals, and the server aggregates these group-level rewards without accessing any raw data. Specifically, we evaluate standard reward aggregation techniques (min, max, and average) and introduce a novel adaptive scheme that dynamically adjusts preference weights based on a group’s historical alignment performance. Our experiments on question-answering (Q/A) tasks using a PPO-based RLHF pipeline demonstrate that our adaptive approach consistently achieves superior fairness while maintaining competitive alignment scores. This work offers a robust methodology for evaluating LLM behavior across diverse populations and provides a practical solution for developing truly pluralistic and fairly aligned models.
2.120Fluent Alignment with Disfluent Judges: Post-training for Lower-resource Languages¶
2025/12/10 05:02 GTM
We propose a post-training method for lower-resource languages that preserves fluency of language models even when aligned by disfluent reward models. Preference-optimization is now a well-researched topic, but previous work has mostly addressed models for English and Chinese. Lower-resource languages lack both datasets written by native speakers and language models capable of generating fluent synthetic data. Thus, in this work, we focus on developing a fluent preference-aligned language model without any instruction-tuning data in the target language. Our approach uses an on-policy training method, which we compare with two common approaches: supervised finetuning on machine-translated data and multilingual finetuning. We conduct a case study on Norwegian Bokmål and evaluate fluency through native-speaker assessments. The results show that the on-policy aspect is crucial and outperforms the alternatives without relying on any hard-to-obtain data.
2.121Pose-Based Sign Language Spotting via an End-to-End Encoder Architecture¶
2025/12/10 05:02 GTM
Automatic Sign Language Recognition (ASLR) has emerged as a vital field for bridging the gap between deaf and hearing communities. However, the problem of sign-to-sign retrieval or detecting a specific sign within a sequence of continuous signs remains largely unexplored. We define this novel task as Sign Language Spotting. In this paper, we present a first step toward sign language retrieval by addressing the challenge of detecting the presence or absence of a query sign video within a sentence-level gloss or sign video. Unlike conventional approaches that rely on intermediate gloss recognition or text-based matching, we propose an end-to-end model that directly operates on pose keypoints extracted from sign videos. Our architecture employs an encoder-only backbone with a binary classification head to determine whether the query sign appears within the target sequence. By focusing on pose representations instead of raw RGB frames, our method significantly reduces computational cost and mitigates visual noise. We evaluate our approach on the Word Presence Prediction dataset from the WSLP 2025 shared task, achieving 61.88% accuracy and 60.00% F1-score. These results demonstrate the effectiveness of our pose-based framework for Sign Language Spotting, establishing a strong foundation for future research in automatic sign language retrieval and verification. Code is available at https://
2.122Automatic Essay Scoring and Feedback Generation in Basque Language Learning¶
2025/12/10 05:02 GTM
This paper introduces the first publicly available dataset for Automatic Essay Scoring (AES) and feedback generation in Basque, targeting the CEFR C1 proficiency level. The dataset comprises 3,200 essays from HABE, each annotated by expert evaluators with criterion specific scores covering correctness, richness, coherence, cohesion, and task alignment enriched with detailed feedback and error examples. We fine-tune open-source models, including RoBERTa-EusCrawl and Latxa 8B/70B, for both scoring and explanation generation. Our experiments show that encoder models remain highly reliable for AES, while supervised fine-tuning (SFT) of Latxa significantly enhances performance, surpassing state-of-the-art (SoTA) closed-source systems such as GPT-5 and Claude Sonnet 4.5 in scoring consistency and feedback quality. We also propose a novel evaluation methodology for assessing feedback generation, combining automatic consistency metrics with expert-based validation of extracted learner errors. Results demonstrate that the fine-tuned Latxa model produces criterion-aligned, pedagogically meaningful feedback and identifies a wider range of error types than proprietary models. This resource and benchmark establish a foundation for transparent, reproducible, and educationally grounded NLP research in low-resource languages such as Basque.
2.123An Agentic AI System for Multi-Framework Communication Coding¶
2025/12/10 05:02 GTM
Clinical communication is central to patient outcomes, yet large-scale human annotation of patient-provider conversation remains labor-intensive, inconsistent, and difficult to scale. Existing approaches based on large language models typically rely on single-task models that lack adaptability, interpretability, and reliability, especially when applied across various communication frameworks and clinical domains. In this study, we developed a Multi-framework Structured Agentic AI system for Clinical Communication (MOSAIC), built on a LangGraph-based architecture that orchestrates four core agents, including a Plan Agent for codebook selection and workflow planning, an Update Agent for maintaining up-to-date retrieval databases, a set of Annotation Agents that applies codebook-guided retrieval-augmented generation (RAG) with dynamic few-shot prompting, and a Verification Agent that provides consistency checks and feedback. To evaluate performance, we compared MOSAIC outputs against gold-standard annotations created by trained human coders. We developed and evaluated MOSAIC using 26 gold standard annotated transcripts for training and 50 transcripts for testing, spanning rheumatology and OB/GYN domains. On the test set, MOSAIC achieved an overall F1 score of 0.928. Performance was highest in the Rheumatology subset (F1 = 0.962) and strongest for Patient Behavior (e.g., patients asking questions, expressing preferences, or showing assertiveness). Ablations revealed that MOSAIC outperforms baseline benchmarking.
2.124QSTN: A Modular Framework for Robust Questionnaire Inference with Large Language Models¶
2025/12/10 05:02 GTM
We introduce QSTN, an open-source Python framework for systematically generating responses from questionnaire-style prompts to support in-silico surveys and annotation tasks with large language models (LLMs). QSTN enables robust evaluation of questionnaire presentation, prompt perturbations, and response generation methods. Our extensive evaluation ( million survey responses) shows that question structure and response generation methods have a significant impact on the alignment of generated survey responses with human answers, and can be obtained for a fraction of the compute cost. In addition, we offer a no-code user interface that allows researchers to set up robust experiments with LLMs without coding knowledge. We hope that QSTN will support the reproducibility and reliability of LLM-based research in the future.
2.125HealthcareNLP: where are we and what is next?¶
2025/12/10 05:02 GTM
This proposed tutorial focuses on Healthcare Domain Applications of NLP, what we have achieved around HealthcareNLP, and the challenges that lie ahead for the future. Existing reviews in this domain either overlook some important tasks, such as synthetic data generation for addressing privacy concerns, or explainable clinical NLP for improved integration and implementation, or fail to mention important methodologies, including retrieval augmented generation and the neural symbolic integration of LLMs and KGs. In light of this, the goal of this tutorial is to provide an introductory overview of the most important sub-areas of a patient- and resource-oriented HealthcareNLP, with three layers of hierarchy: data/resource layer: annotation guidelines, ethical approvals, governance, synthetic data; NLP-Eval layer: NLP tasks such as NER, RE, sentiment analysis, and linking/coding with categorised methods, leading to explainable HealthAI; patients layer: Patient Public Involvement and Engagement (PPIE), health literacy, translation, simplification, and summarisation (also NLP tasks), and shared decision-making support. A hands-on session will be included in the tutorial for the audience to use HealthcareNLP applications. The target audience includes NLP practitioners in the healthcare application domain, NLP researchers who are interested in domain applications, healthcare researchers, and students from NLP fields. The type of tutorial is “Introductory to CL/NLP topics (HealthcareNLP)” and the audience does not need prior knowledge to attend this. Tutorial materials: https://
2.126Curriculum Guided Massive Multi Agent System Solving For Robust Long Horizon Tasks¶
2025/12/10 05:02 GTM
Large Language Models and multi-agent systems have shown promise in decomposing complex tasks, yet they struggle with long-horizon reasoning tasks and escalating computation cost. This work introduces a hierarchical multi-agent architecture that distributes reasoning across a 64*64 grid of lightweight agents, supported by a selective oracle. A spatial curriculum progressively expands the operational region of the grid, ensuring that agents master easier central tasks before tackling harder peripheral ones. To improve reliability, the system integrates Negative Log-Likelihood as a measure of confidence, allowing the curriculum to prioritize regions where agents are both accurate and well calibrated. A Thompson Sampling curriculum manager adaptively chooses training zones based on competence and NLL-driven reward signals. We evaluate the approach on a spatially grounded Tower of Hanoi benchmark, which mirrors the long-horizon structure of many robotic manipulation and planning tasks. Results demonstrate improved stability, reduced oracle usage, and stronger long-range reasoning from distributed agent cooperation.
2.127Beyond Real Weights: Hypercomplex Representations for Stable Quantization¶
2025/12/10 05:02 GTM
Multimodal language models (MLLMs) require large parameter capacity to align high-dimensional visual features with linguistic representations, making them computationally heavy and difficult to deploy efficiently. We introduce a progressive reparameterization strategy that compresses these models by gradually replacing dense feed-forward network blocks with compact Parameterized Hypercomplex Multiplication (PHM) layers. A residual interpolation schedule, together with lightweight reconstruction and knowledge distillation losses, ensures that the PHM modules inherit the functional behavior of their dense counterparts during training. This transition yields substantial parameter and FLOP reductions while preserving strong multimodal alignment, enabling faster inference without degrading output quality. We evaluate the approach on multiple vision-language models (VLMs). Our method maintains performance comparable to the base models while delivering significant reductions in model size and inference latency. Progressive PHM substitution thus offers an architecture-compatible path toward more efficient multimodal reasoning and complements existing low-bit quantization techniques.
2.128Soft Inductive Bias Approach via Explicit Reasoning Perspectives in Inappropriate Utterance Detection Using Large Language Models¶
2025/12/10 05:02 GTM
Recent incidents in certain online games and communities, where anonymity is guaranteed, show that unchecked inappropriate remarks frequently escalate into verbal abuse and even criminal behavior, raising significant social concerns. Consequently, there is a growing need for research on techniques that can detect inappropriate utterances within conversational texts to help build a safer communication environment. Although large-scale language models trained on Korean corpora and chain-of-thought reasoning have recently gained attention, research applying these approaches to inappropriate utterance detection remains limited. In this study, we propose a soft inductive bias approach that explicitly defines reasoning perspectives to guide the inference process, thereby promoting rational decision-making and preventing errors that may arise during reasoning. We fine-tune a Korean large language model using the proposed method and conduct both quantitative performance comparisons and qualitative evaluations across different training strategies. Experimental results show that the Kanana-1.5 model achieves an average accuracy of 87.0046, improving by approximately 3.89 percent over standard supervised learning. These findings indicate that the proposed method goes beyond simple knowledge imitation by large language models and enables more precise and consistent judgments through constrained reasoning perspectives, demonstrating its effectiveness for inappropriate utterance detection.
2.129What Triggers my Model? Contrastive Explanations Inform Gender Choices by Translation Models¶
2025/12/10 05:02 GTM
Interpretability can be implemented as a means to understand decisions taken by (black box) models, such as machine translation (MT) or large language models (LLMs). Yet, research in this area has been limited in relation to a manifested problem in these models: gender bias. With this research, we aim to move away from simply measuring bias to exploring its origins. Working with gender-ambiguous natural source data, this study examines which context, in the form of input tokens in the source sentence, influences (or triggers) the translation model choice of a certain gender inflection in the target language. To analyse this, we use contrastive explanations and compute saliency attribution. We first address the challenge of a lacking scoring threshold and specifically examine different attribution levels of source words on the model gender decisions in the translation. We compare salient source words with human perceptions of gender and demonstrate a noticeable overlap between human perceptions and model attribution. Additionally, we provide a linguistic analysis of salient words. Our work showcases the relevance of understanding model translation decisions in terms of gender, how this compares to human decisions and that this information should be leveraged to mitigate gender bias.
2.130Are generative AI text annotations systematically biased?¶
2025/12/10 05:02 GTM
This paper investigates bias in GLLM annotations by conceptually replicating manual annotations of Boukes (2024). Using various GLLMs (Llama3.1:8b, Llama3.3:70b, GPT4o, Qwen2.5:72b) in combination with five different prompts for five concepts (political content, interactivity, rationality, incivility, and ideology). We find GLLMs perform adequate in terms of F1 scores, but differ from manual annotations in terms of prevalence, yield substantively different downstream results, and display systematic bias in that they overlap more with each other than with manual annotations. Differences in F1 scores fail to account for the degree of bias.
2.131Ontology-Based Knowledge Graph Framework for Industrial Standard Documents via Hierarchical and Propositional Structuring¶
2025/12/10 05:02 GTM
Ontology-based knowledge graph (KG) construction is a core technology that enables multidimensional understanding and advanced reasoning over domain knowledge. Industrial standards, in particular, contain extensive technical information and complex rules presented in highly structured formats that combine tables, scopes of application, constraints, exceptions, and numerical calculations, making KG construction especially challenging. In this study, we propose a method that organizes such documents into a hierarchical semantic structure, decomposes sentences and tables into atomic propositions derived from conditional and numerical rules, and integrates them into an ontology-knowledge graph through LLM-based triple extraction. Our approach captures both the hierarchical and logical structures of documents, effectively representing domain-specific semantics that conventional methods fail to reflect. To verify its effectiveness, we constructed rule, table, and multi-hop QA datasets, as well as a toxic clause detection dataset, from industrial standards, and implemented an ontology-aware KG-RAG framework for comparative evaluation. Experimental results show that our method achieves significant performance improvements across all QA types compared to existing KG-RAG approaches. This study demonstrates that reliable and scalable knowledge representation is feasible even for industrial documents with intertwined conditions, constraints, and scopes, contributing to future domain-specific RAG development and intelligent document management.
2.132The High Cost of Incivility: Quantifying Interaction Inefficiency via Multi-Agent Monte Carlo Simulations¶
2025/12/10 05:02 GTM
Workplace toxicity is widely recognized as detrimental to organizational culture, yet quantifying its direct impact on operational efficiency remains methodologically challenging due to the ethical and practical difficulties of reproducing conflict in human subjects. This study leverages Large Language Model (LLM) based Multi-Agent Systems to simulate 1-on-1 adversarial debates, creating a controlled “sociological sandbox”. We employ a Monte Carlo method to simulate hundrets of discussions, measuring the convergence time (defined as the number of arguments required to reach a conclusion) between a baseline control group and treatment groups involving agents with “toxic” system prompts. Our results demonstrate a statistically significant increase of approximately 25% in the duration of conversations involving toxic participants. We propose that this “latency of toxicity” serves as a proxy for financial damage in corporate and academic settings. Furthermore, we demonstrate that agent-based modeling provides a reproducible, ethical alternative to human-subject research for measuring the mechanics of social friction.
2.133Reasoning Models Ace the CFA Exams¶
2025/12/10 05:02 GTM
Previous research has reported that large language models (LLMs) demonstrate poor performance on the Chartered Financial Analyst (CFA) exams. However, recent reasoning models have achieved strong results on graduate-level academic and professional examinations across various disciplines. In this paper, we evaluate state-of-the-art reasoning models on a set of mock CFA exams consisting of 980 questions across three Level I exams, two Level II exams, and three Level III exams. Using the same pass/fail criteria from prior studies, we find that most models clear all three levels. The models that pass, ordered by overall performance, are Gemini 3.0 Pro, Gemini 2.5 Pro, GPT-5, Grok 4, Claude Opus 4.1, and DeepSeek-V3.1. Specifically, Gemini 3.0 Pro achieves a record score of 97.6% on Level I. Performance is also strong on Level II, led by GPT-5 at 94.3%. On Level III, Gemini 2.5 Pro attains the highest score with 86.4% on multiple-choice questions while Gemini 3.0 Pro achieves 92.0% on constructed-response questions.
2.134ClinicalTrialsHub: Bridging Registries and Literature for Comprehensive Clinical Trial Access¶
2025/12/10 05:02 GTM
We present ClinicalTrialsHub, an interactive search-focused platform that consolidates all data from ClinicalTrials.gov and augments it by automatically extracting and structuring trial-relevant information from PubMed research articles. Our system effectively increases access to structured clinical trial data by 83.8% compared to relying on ClinicalTrials.gov alone, with potential to make access easier for patients, clinicians, researchers, and policymakers, advancing evidence-based medicine. ClinicalTrialsHub uses large language models such as GPT-5.1 and Gemini-3-Pro to enhance accessibility. The platform automatically parses full-text research articles to extract structured trial information, translates user queries into structured database searches, and provides an attributed question-answering system that generates evidence-grounded answers linked to specific source sentences. We demonstrate its utility through a user study involving clinicians, clinical researchers, and PhD students of pharmaceutical sciences and nursing, and a systematic automatic evaluation of its information extraction and question answering capabilities.
2.135Universal Adversarial Suffixes for Language Models Using Reinforcement Learning with Calibrated Reward¶
2025/12/10 05:02 GTM
Language models are vulnerable to short adversarial suffixes that can reliably alter predictions. Previous works usually find such suffixes with gradient search or rule-based methods, but these are brittle and often tied to a single task or model. In this paper, a reinforcement learning framework is used where the suffix is treated as a policy and trained with Proximal Policy Optimization against a frozen model as a reward oracle. Rewards are shaped using calibrated cross-entropy, removing label bias and aggregating across surface forms to improve transferability. The proposed method is evaluated on five diverse NLP benchmark datasets, covering sentiment, natural language inference, paraphrase, and commonsense reasoning, using three distinct language models: Qwen2-1.5B Instruct, TinyLlama-1.1B Chat, and Phi-1.5. Results show that RL-trained suffixes consistently degrade accuracy and transfer more effectively across tasks and models than previous adversarial triggers of similar genres.
2.136Universal Adversarial Suffixes Using Calibrated Gumbel-Softmax Relaxation¶
2025/12/10 05:02 GTM
Language models (LMs) are often used as zero-shot or few-shot classifiers by scoring label words, but they remain fragile to adversarial prompts. Prior work typically optimizes task- or model-specific triggers, making results difficult to compare and limiting transferability. We study universal adversarial suffixes: short token sequences (4-10 tokens) that, when appended to any input, broadly reduce accuracy across tasks and models. Our approach learns the suffix in a differentiable “soft” form using Gumbel-Softmax relaxation and then discretizes it for inference. Training maximizes calibrated cross-entropy on the label region while masking gold tokens to prevent trivial leakage, with entropy regularization to avoid collapse. A single suffix trained on one model transfers effectively to others, consistently lowering both accuracy and calibrated confidence. Experiments on sentiment analysis, natural language inference, paraphrase detection, commonsense QA, and physical reasoning with Qwen2-1.5B, Phi-1.5, and TinyLlama-1.1B demonstrate consistent attack effectiveness and transfer across tasks and model families.
2.137Balanced Accuracy: The Right Metric for Evaluating LLM Judges - Explained through Youden’s J statistic¶
2025/12/10 05:02 GTM
Rigorous evaluation of large language models (LLMs) relies on comparing models by the prevalence of desirable or undesirable behaviors, such as task pass rates or policy violations. These prevalence estimates are produced by a classifier, either an LLM-as-a-judge or human annotators, making the choice of classifier central to trustworthy evaluation. Common metrics used for this choice, such as Accuracy, Precision, and F1, are sensitive to class imbalance and to arbitrary choices of positive class, and can favor judges that distort prevalence estimates. We show that Youden’s statistic is theoretically aligned with choosing the best judge to compare models, and that Balanced Accuracy is an equivalent linear transformation of . Through both analytical arguments and empirical examples and simulations, we demonstrate how selecting judges using Balanced Accuracy leads to better, more robust classifier selection.
2.138Segment, Embed, and Align: A Universal Recipe for Aligning Subtitles to Signing¶
2025/12/10 05:02 GTM
The goal of this work is to develop a universal approach for aligning subtitles (i.e., spoken language text with corresponding timestamps) to continuous sign language videos. Prior approaches typically rely on end-to-end training tied to a specific language or dataset, which limits their generality. In contrast, our method Segment, Embed, and Align (SEA) provides a single framework that works across multiple languages and domains. SEA leverages two pretrained models: the first to segment a video frame sequence into individual signs and the second to embed the video clip of each sign into a shared latent space with text. Alignment is subsequently performed with a lightweight dynamic programming procedure that runs efficiently on CPUs within a minute, even for hour-long episodes. SEA is flexible and can adapt to a wide range of scenarios, utilizing resources from small lexicons to large continuous corpora. Experiments on four sign language datasets demonstrate state-of-the-art alignment performance, highlighting the potential of SEA to generate high-quality parallel data for advancing sign language processing. SEA’s code and models are openly available.
2.139Adaptation of Embedding Models to Financial Filings via LLM Distillation¶
2025/12/10 05:02 GTM
Despite advances in generative large language models (LLMs), practical application of specialized conversational AI agents remains constrained by computation costs, latency requirements, and the need for precise domain-specific relevance measures. While existing embedding models address the first two constraints, they underperform on information retrieval in specialized domains like finance. This paper introduces a scalable pipeline that trains specialized models from an unlabeled corpus using a general purpose retrieval embedding model as foundation. Our method yields an average of 27.7% improvement in MRR5, 44.6% improvement in mean DCG5 across 14 financial filing types measured over 21,800 query-document pairs, and improved NDCG on 3 of 4 document classes in FinanceBench. We adapt retrieval embeddings (bi-encoder) for RAG, not LLM generators, using LLM-judged relevance to distill domain knowledge into a compact retriever. There are prior works which pair synthetically generated queries with real passages to directly fine-tune the retrieval model. Our pipeline differs from these by introducing interaction between student and teacher models that interleaves retrieval-based mining of hard positive/negative examples from the unlabeled corpus with iterative retraining of the student model’s weights using these examples. Each retrieval iteration uses the refined student model to mine the corpus for progressively harder training examples for the subsequent training iteration. The methodology provides a cost-effective solution to bridging the gap between general-purpose models and specialized domains without requiring labor-intensive human annotation.
2.140Short-Context Dominance: How Much Local Context Natural Language Actually Needs?¶
2025/12/10 05:02 GTM
We investigate the short-context dominance hypothesis: that for most sequences, a small local prefix suffices to predict their next tokens. Using large language models as statistical oracles, we measure the minimum context length (MCL) needed to reproduce accurate full-context predictions across datasets with sequences of varying lengths. For sequences with 1-7k tokens from long-context documents, we consistently find that 75-80% require only the last 96 tokens at most. Given the dominance of short-context tokens, we then ask whether it is possible to detect challenging long-context sequences for which a short local prefix does not suffice for prediction. We introduce a practical proxy to MCL, called Distributionally Aware MCL (DaMCL), that does not require knowledge of the actual next-token and is compatible with sampling strategies beyond greedy decoding. Our experiments validate that simple thresholding of the metric defining DaMCL achieves high performance in detecting long vs. short context sequences. Finally, to counter the bias that short-context dominance induces in LLM output distributions, we develop an intuitive decoding algorithm that leverages our detector to identify and boost tokens that are long-range-relevant. Across Q&A tasks and model architectures, we confirm that mitigating the bias improves performance.
2.141Beyond Unified Models: A Service-Oriented Approach to Low Latency, Context Aware Phonemization for Real Time TTS¶
2025/12/10 05:02 GTM
Lightweight, real-time text-to-speech systems are crucial for accessibility. However, the most efficient TTS models often rely on lightweight phonemizers that struggle with context-dependent challenges. In contrast, more advanced phonemizers with a deeper linguistic understanding typically incur high computational costs, which prevents real-time performance. This paper examines the trade-off between phonemization quality and inference speed in G2P-aided TTS systems, introducing a practical framework to bridge this gap. We propose lightweight strategies for context-aware phonemization and a service-oriented TTS architecture that executes these modules as independent services. This design decouples heavy context-aware components from the core TTS engine, effectively breaking the latency barrier and enabling real-time use of high-quality phonemization models. Experimental results confirm that the proposed system improves pronunciation soundness and linguistic accuracy while maintaining real-time responsiveness, making it well-suited for offline and end-device TTS applications.
2.142Accelerating Urban Science Research with AI Urban Scientist¶
2025/12/10 05:02 GTM
Cities are complex, adaptive systems whose underlying principles remain difficult to disentangle despite unprecedented data abundance. Urban science therefore faces a fundamental challenge: converting vast, fragmented and interdisciplinary information into coherent explanations of how cities function and evolve. The emergence of AI scientists, i.e., agents capable of autonomous reasoning, hypothesis formation and data-driven experimentation, offers a new pathway toward accelerating this transformation, yet general-purpose systems fall short of the domain knowledge and methodological depth required for urban science research. Here we introduce a knowledge-driven AI Urban Scientist, built from hypotheses, peer-review signals, datasets and analytical patterns distilled from thousands of high-quality studies, and implemented as a coordinated multi-agent framework for end-to-end inquiry. The system generates structured hypotheses, retrieves and harmonizes heterogeneous datasets, conducts automated empirical analysis and simulation, and synthesizes insights in forms compatible with urban scientific reasoning. By providing reusable analytical tools and supporting community-driven extensions, the AI Urban Scientist lowers barriers to advanced urban analytics and acts not merely as an assistant but as an active collaborator in revealing the mechanisms that shape urban systems and in guiding the design of more resilient and equitable cities.
2.143MixLM: High-Throughput and Effective LLM Ranking via Text-Embedding Mix-Interaction¶
2025/12/10 05:02 GTM
Large language models (LLMs) excel at capturing semantic nuances and therefore show impressive relevance ranking performance in modern recommendation and search systems. However, they suffer from high computational overhead under industrial latency and throughput requirements. In particular, cross-encoder ranking systems often create long context prefill-heavy workloads, as the model has to be presented with the user, query and item information. To this end, we propose MixLM, a novel LLM-based ranking framework, which significantly improves the system throughput via reducing the input context length, while preserving the semantic strength of cross-encoder rankers. In contrast to a standard ranking system where the context is presented to the model as pure text, we propose to use mix-interaction, a mixture of text and embedding tokens to represent the input. Specifically, MixLM encodes all items in the catalog into a few embedding tokens and stores in a nearline cache. The encoded item descriptions are used during online inference, effectively reducing the item length from a few thousand text tokens to a few embedding tokens. We share insights from deploying our MixLM framework to a real-world search application at LinkedIn, including a detailed discussion of our training pipelines, as well as a thorough analysis of our online serving infrastructure optimization. Comparing with strong baselines, MixLM increased throughput by 10.0x under the same latency budget, while maintaining relevance metrics. The efficiency gains delivered by MixLM enabled full-traffic deployment of LLM-powered search, which resulted in a significant 0.47% increase in Daily Active Users (DAU) in online A/B tests.
2.144ThreadWeaver: Adaptive Threading for Efficient Parallel Reasoning in Language Models¶
2025/12/10 05:02 GTM
Scaling inference-time computation has enabled Large Language Models (LLMs) to achieve strong reasoning performance, but inherently sequential decoding leads to substantial latency, especially on complex tasks. Recent work on adaptive parallel reasoning aims to improve inference efficiency by decomposing the problem-solving process into concurrent reasoning threads when beneficial. However, existing methods on realistic tasks are either limited to supervised behavior cloning or exhibit significant accuracy drops compared to widely-used sequential long chain-of-thought (CoT) baselines. Moreover, many require customized inference engines, complicating deployment. We introduce ThreadWeaver, a framework for adaptive parallel reasoning that achieves accuracy on par with popular sequential reasoning models of comparable size while significantly reducing inference latency. ThreadWeaver’s performance stems from three key innovations: 1) a two-stage parallel trajectory generator that produces large-scale, high-quality CoT data with parallel annotations for supervised fine-tuning; 2) a trie-based training-inference co-design that enables parallel reasoning on any off-the-shelf autoregressive inference engine without modifying position embeddings or KV caches; and 3) a parallelization-aware reinforcement learning framework that teaches the model to balance accuracy with effective parallelization. Across six challenging mathematical reasoning benchmarks, ThreadWeaver trained atop Qwen3-8B achieves accuracy comparable to cutting-edge sequential reasoning models (71.9% on average and 79.9% on AIME24) while delivering up to 1.53x average speedup in token latency, establishing a new Pareto frontier between accuracy and efficiency.
2.145Data-Driven Dynamic Parameter Learning of manipulator robots¶
2025/12/10 05:02 GTM
Bridging the sim-to-real gap remains a fundamental challenge in robotics, as accurate dynamic parameter estimation is essential for reliable model-based control, realistic simulation, and safe deployment of manipulators. Traditional analytical approaches often fall short when faced with complex robot structures and interactions. Data-driven methods offer a promising alternative, yet conventional neural networks such as recurrent models struggle to capture long-range dependencies critical for accurate estimation. In this study, we propose a Transformer-based approach for dynamic parameter estimation, supported by an automated pipeline that generates diverse robot models and enriched trajectory data using Jacobian-derived features. The dataset consists of 8,192 robots with varied inertial and frictional properties. Leveraging attention mechanisms, our model effectively captures both temporal and spatial dependencies. Experimental results highlight the influence of sequence length, sampling rate, and architecture, with the best configuration (sequence length 64, 64 Hz, four layers, 32 heads) achieving a validation R2 of 0.8633. Mass and inertia are estimated with near-perfect accuracy, Coulomb friction with moderate-to-high accuracy, while viscous friction and distal link center-of-mass remain more challenging. These results demonstrate that combining Transformers with automated dataset generation and kinematic enrichment enables scalable, accurate dynamic parameter estimation, contributing to improved sim-to-real transfer in robotic systems
2.146A Multi-Robot Platform for Robotic Triage Combining Onboard Sensing and Foundation Models¶
2025/12/10 05:02 GTM
This report presents a heterogeneous robotic system designed for remote primary triage in mass-casualty incidents (MCIs). The system employs a coordinated air-ground team of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) to locate victims, assess their injuries, and prioritize medical assistance without risking the lives of first responders. The UAV identify and provide overhead views of casualties, while UGVs equipped with specialized sensors measure vital signs and detect and localize physical injuries. Unlike previous work that focused on exploration or limited medical evaluation, this system addresses the complete triage process: victim localization, vital sign measurement, injury severity classification, mental status assessment, and data consolidation for first responders. Developed as part of the DARPA Triage Challenge, this approach demonstrates how multi-robot systems can augment human capabilities in disaster response scenarios to maximize lives saved.
2.147Non Normalized Shared-Constraint Dynamic Games for Human-Robot Collaboration with Asymmetric Responsibility¶
2025/12/10 05:02 GTM
This paper proposes a dynamic game formulation for cooperative human-robot navigation in shared workspaces with obstacles, where the human and robot jointly satisfy shared safety constraints while pursuing a common task. A key contribution is the introduction of a non-normalized equilibrium structure for the shared constraints. This structure allows the two agents to contribute different levels of effort towards enforcing safety requirements such as collision avoidance and inter-players spacing. We embed this non-normalized equilibrium into a receding-horizon optimal control scheme.
2.148Ergodic Trajectory Planning with Dynamic Sensor Footprints¶
2025/12/10 05:02 GTM
This paper addresses the problem of trajectory planning for information gathering with a dynamic and resolution-varying sensor footprint. Ergodic planning offers a principled framework that balances exploration (visiting all areas) and exploitation (focusing on high-information regions) by planning trajectories such that the time spent in a region is proportional to the amount of information in that region. Existing ergodic planning often oversimplifies the sensing model by assuming a point sensor or a footprint with constant shape and resolution. In practice, the sensor footprint can drastically change over time as the robot moves, such as aerial robots equipped with downward-facing cameras, whose field of view depends on the orientation and altitude. To overcome this limitation, we propose a new metric that accounts for dynamic sensor footprints, analyze the theoretic local optimality conditions, and propose numerical trajectory optimization algorithms. Experimental results show that the proposed approach can simultaneously optimize both the trajectories and sensor footprints, with up to an order of magnitude better ergodicity than conventional methods. We also deploy our approach in a multi-drone system to ergodically cover an object in 3D space.
2.149Sim2Swim: Zero-Shot Velocity Control for Agile AUV Maneuvering in 3 Minutes¶
2025/12/10 05:02 GTM
Holonomic autonomous underwater vehicles (AUVs) have the hardware ability for agile maneuvering in both translational and rotational degrees of freedom (DOFs). However, due to challenges inherent to underwater vehicles, such as complex hydrostatics and hydrodynamics, parametric uncertainties, and frequent changes in dynamics due to payload changes, control is challenging. Performance typically relies on carefully tuned controllers targeting unique platform configurations, and a need for re-tuning for deployment under varying payloads and hydrodynamic conditions. As a consequence, agile maneuvering with simultaneous tracking of time-varying references in both translational and rotational DOFs is rarely utilized in practice. To the best of our knowledge, this paper presents the first general zero-shot sim2real deep reinforcement learning-based (DRL) velocity controller enabling path following and agile 6DOF maneuvering with a training duration of just 3 minutes. Sim2Swim, the proposed approach, inspired by state-of-the-art DRL-based position control, leverages domain randomization and massively parallelized training to converge to field-deployable control policies for AUVs of variable characteristics without post-processing or tuning. Sim2Swim is extensively validated in pool trials for a variety of configurations, showcasing robust control for highly agile motions.
2.150A Sensor-Aware Phenomenological Framework for Lidar Degradation Simulation and SLAM Robustness Evaluation¶
2025/12/10 05:02 GTM
Lidar-based SLAM systems are highly sensitive to adverse conditions such as occlusion, noise, and field-of-view (FoV) degradation, yet existing robustness evaluation methods either lack physical grounding or do not capture sensor-specific behavior. This paper presents a sensor-aware, phenomenological framework for simulating interpretable lidar degradations directly on real point clouds, enabling controlled and reproducible SLAM stress testing. Unlike image-derived corruption benchmarks (e.g., SemanticKITTI-C) or simulation-only approaches (e.g., lidarsim), the proposed system preserves per-point geometry, intensity, and temporal structure while applying structured dropout, FoV reduction, Gaussian noise, occlusion masking, sparsification, and motion distortion. The framework features autonomous topic and sensor detection, modular configuration with four severity tiers (light--extreme), and real-time performance (less than 20 ms per frame) compatible with ROS workflows. Experimental validation across three lidar architectures and five state-of-the-art SLAM systems reveals distinct robustness patterns shaped by sensor design and environmental context. The open-source implementation provides a practical foundation for benchmarking lidar-based SLAM under physically meaningful degradation scenarios.
2.151Multi-Task Bayesian Optimization for Tuning Decentralized Trajectory Generation in Multi-UAV Systems¶
2025/12/10 05:02 GTM
This paper investigates the use of Multi-Task Bayesian Optimization for tuning decentralized trajectory generation algorithms in multi-drone systems. We treat each task as a trajectory generation scenario defined by a specific number of drone-to-drone interactions. To model relationships across scenarios, we employ Multi-Task Gaussian Processes, which capture shared structure across tasks and enable efficient information transfer during optimization. We compare two strategies: optimizing the average mission time across all tasks and optimizing each task individually. Through a comprehensive simulation campaign, we show that single-task optimization leads to progressively shorter mission times as swarm size grows, but requires significantly more optimization time than the average-task approach.
2.152Decoupled Design of Time-Varying Control Barrier Functions via Equivariances¶
2025/12/10 05:02 GTM
This article presents a systematic method for designing time-varying Control Barrier Functions (CBF) composed of a time-invariant component and multiple time-dependent components, leveraging structural properties of the system dynamics. The method involves the construction of a specific class of time-invariant CBFs that encode the system’s dynamic capabilities with respect to a given constraint, and augments them subsequently with appropriately designed time-dependent transformations. While transformations uniformly varying the time-invariant CBF can be applied to arbitrary systems, transformations exploiting structural properties in the dynamics - equivariances in particular - enable the handling of a broader and more expressive class of time-varying constraints. The article shows how to leverage such properties in the design of time-varying CBFs. The proposed method decouples the design of time variations from the computationally expensive construction of the underlying CBFs, thereby providing a computationally attractive method to the design of time-varying CBFs. The method accounts for input constraints and under-actuation, and requires only qualitative knowledge on the time-variation of the constraints making it suitable to the application in uncertain environments.
2.153Mind to Hand: Purposeful Robotic Control via Embodied Reasoning¶
2025/12/10 05:02 GTM
Humans act with context and intention, with reasoning playing a central role. While internet-scale data has enabled broad reasoning capabilities in AI systems, grounding these abilities in physical action remains a major challenge. We introduce Lumo-1, a generalist vision-language-action (VLA) model that unifies robot reasoning (“mind”) with robot action (“hand”). Our approach builds upon the general multi-modal reasoning capabilities of pre-trained vision-language models (VLMs), progressively extending them to embodied reasoning and action prediction, and ultimately towards structured reasoning and reasoning-action alignment. This results in a three-stage pre-training pipeline: (1) Continued VLM pre-training on curated vision-language data to enhance embodied reasoning skills such as planning, spatial understanding, and trajectory prediction; (2) Co-training on cross-embodiment robot data alongside vision-language data; and (3) Action training with reasoning process on trajectories collected on Astribot S1, a bimanual mobile manipulator with human-like dexterity and agility. Finally, we integrate reinforcement learning to further refine reasoning-action consistency and close the loop between semantic inference and motor control. Extensive experiments demonstrate that Lumo-1 achieves significant performance improvements in embodied vision-language reasoning, a critical component for generalist robotic control. Real-world evaluations further show that Lumo-1 surpasses strong baselines across a wide range of challenging robotic tasks, with strong generalization to novel objects and environments, excelling particularly in long-horizon tasks and responding to human-natural instructions that require reasoning over strategy, concepts and space.
2.154Disturbance-Free Surgical Video Generation from Multi-Camera Shadowless Lamps for Open Surgery¶
2025/12/10 05:02 GTM
Video recordings of open surgeries are greatly required for education and research purposes. However, capturing unobstructed videos is challenging since surgeons frequently block the camera field of view. To avoid occlusion, the positions and angles of the camera must be frequently adjusted, which is highly labor-intensive. Prior work has addressed this issue by installing multiple cameras on a shadowless lamp and arranging them to fully surround the surgical area. This setup increases the chances of some cameras capturing an unobstructed view. However, manual image alignment is needed in post-processing since camera configurations change every time surgeons move the lamp for optimal lighting. This paper aims to fully automate this alignment task. The proposed method identifies frames in which the lighting system moves, realigns them, and selects the camera with the least occlusion to generate a video that consistently presents the surgical field from a fixed perspective. A user study involving surgeons demonstrated that videos generated by our method were superior to those produced by conventional methods in terms of the ease of confirming the surgical area and the comfort during video viewing. Additionally, our approach showed improvements in video quality over existing techniques. Furthermore, we implemented several synthesis options for the proposed view-synthesis method and conducted a user study to assess surgeons’ preferences for each option.
2.155RVC-NMPC: Nonlinear Model Predictive Control with Reciprocal Velocity Constraints for Mutual Collision Avoidance in Agile UAV Flight¶
2025/12/10 05:02 GTM
This paper presents an approach to mutual collision avoidance based on Nonlinear Model Predictive Control (NMPC) with time-dependent Reciprocal Velocity Constraints (RVCs). Unlike most existing methods, the proposed approach relies solely on observable information about other robots, eliminating the necessity of excessive communication use. The computationally efficient algorithm for computing RVCs, together with the direct integration of these constraints into NMPC problem formulation on a controller level, allows the whole pipeline to run at 100 Hz. This high processing rate, combined with modeled nonlinear dynamics of the controlled Uncrewed Aerial Vehicles (UAVs), is a key feature that facilitates the use of the proposed approach for an agile UAV flight. The proposed approach was evaluated through extensive simulations emulating real-world conditions in scenarios involving up to 10 UAVs and velocities of up to 25 m/s, and in real-world experiments with accelerations up to 30 m/s. Comparison with state of the art shows 31% improvement in terms of flight time reduction in challenging scenarios, while maintaining a collision-free navigation in all trials.
2.156Bridging Scale Discrepancies in Robotic Control via Language-Based Action Representations¶
2025/12/10 05:02 GTM
Recent end-to-end robotic manipulation research increasingly adopts architectures inspired by large language models to enable robust manipulation. However, a critical challenge arises from severe distribution shifts between robotic action data, primarily due to substantial numerical variations in action commands across diverse robotic platforms and tasks, hindering the effective transfer of pretrained knowledge. To address this limitation, we propose a semantically grounded linguistic representation to normalize actions for efficient pretraining. Unlike conventional discretized action representations that are sensitive to numerical scales, the motion representation specifically disregards numeric scale effects, emphasizing directionality instead. This abstraction mitigates distribution shifts, yielding a more generalizable pretraining representation. Moreover, using the motion representation narrows the feature distance between action tokens and standard vocabulary tokens, mitigating modality gaps. Multi-task experiments on two benchmarks demonstrate that the proposed method significantly improves generalization performance and transferability in robotic manipulation tasks.
2.157vEDGAR - Can CARLA Do HiL?¶
2025/12/10 05:02 GTM
Simulation offers advantages throughout the development process of automated driving functions, both in research and product development. Common open-source simulators like CARLA are extensively used in training, evaluation, and software-in-the-loop testing of new automated driving algorithms. However, the CARLA simulator lacks an evaluation where research and automated driving vehicles are simulated with their entire sensor and actuation stack in real time. The goal of this work is therefore to create a simulation framework for testing the automation software on its dedicated hardware and identifying its limits. Achieving this goal would greatly benefit the open-source development workflow of automated driving functions, designating CARLA as a consistent evaluation tool along the entire development process. To achieve this goal, in a first step, requirements are derived, and a simulation architecture is specified and implemented. Based on the formulated requirements, the proposed vEDGAR software is evaluated, resulting in a final conclusion on the applicability of CARLA for HiL testing of automated vehicles. The tool is available open source: Modified CARLA fork: https://
2.158SensHRPS: Sensing Comfortable Human-Robot Proxemics and Personal Space With Eye-Tracking¶
2025/12/10 05:02 GTM
Social robots must adjust to human proxemic norms to ensure user comfort and engagement. While prior research demonstrates that eye-tracking features reliably estimate comfort in human-human interactions, their applicability to interactions with humanoid robots remains unexplored. In this study, we investigate user comfort with the robot “Ameca” across four experimentally controlled distances (0.5 m to 2.0 m) using mobile eye-tracking and subjective reporting (N=19). We evaluate multiple machine learning and deep learning models to estimate comfort based on gaze features. Contrary to previous human-human studies where Transformer models excelled, a Decision Tree classifier achieved the highest performance (F1-score = 0.73), with minimum pupil diameter identified as the most critical predictor. These findings suggest that physiological comfort thresholds in human-robot interaction differ from human-human dynamics and can be effectively modeled using interpretable logic.
2.159Prospect Theory in Physical Human-Robot Interaction: A Pilot Study of Probability Perception¶
2025/12/10 05:02 GTM
Understanding how humans respond to uncertainty is critical for designing safe and effective physical human-robot interaction (pHRI), as physically working with robots introduces multiple sources of uncertainty, including trust, comfort, and perceived safety. Conventional pHRI control frameworks typically build on optimal control theory, which assumes that human actions minimize a cost function; however, human behavior under uncertainty often departs from such optimal patterns. To address this gap, additional understanding of human behavior under uncertainty is needed. This pilot study implemented a physically coupled target-reaching task in which the robot delivered assistance or disturbances with systematically varied probabilities (10% to 90%). Analysis of participants’ force inputs and decision-making strategies revealed two distinct behavioral clusters: a “trade-off” group that modulated their physical responses according to disturbance likelihood, and an “always-compensate” group characterized by strong risk aversion irrespective of probability. These findings provide empirical evidence that human decision-making in pHRI is highly individualized and that the perception of probability can differ to its true value. Accordingly, the study highlights the need for more interpretable behavioral models, such as cumulative prospect theory (CPT), to more accurately capture these behaviors and inform the design of future adaptive robot controllers.
2.160A Multi-Agent LLM Framework for Design Space Exploration in Autonomous Driving Systems¶
2025/12/10 05:02 GTM
Designing autonomous driving systems requires efficient exploration of large hardware/software configuration spaces under diverse environmental conditions, e.g., with varying traffic, weather, and road layouts. Traditional design space exploration (DSE) approaches struggle with multi-modal execution outputs and complex performance trade-offs, and often require human involvement to assess correctness based on execution outputs. This paper presents a multi-agent, large language model (LLM)-based DSE framework, which integrates multi-modal reasoning with 3D simulation and profiling tools to automate the interpretation of execution outputs and guide the exploration of system designs. Specialized LLM agents are leveraged to handle user input interpretation, design point generation, execution orchestration, and analysis of both visual and textual execution outputs, which enables identification of potential bottlenecks without human intervention. A prototype implementation is developed and evaluated on a robotaxi case study (an SAE Level 4 autonomous driving application). Compared with a genetic algorithm baseline, the proposed framework identifies more Pareto-optimal, cost-efficient solutions with reduced navigation time under the same exploration budget. Experimental results also demonstrate the efficiency of the adoption of the LLM-based approach for DSE. We believe that this framework paves the way to the design automation of autonomous driving systems.
2.161Using reinforcement learning to probe the role of feedback in skill acquisition¶
2025/12/10 05:02 GTM
Many high-performance human activities are executed with little or no external feedback: think of a figure skater landing a triple jump, a pitcher throwing a curveball for a strike, or a barista pouring latte art. To study the process of skill acquisition under fully controlled conditions, we bypass human subjects. Instead, we directly interface a generalist reinforcement learning agent with a spinning cylinder in a tabletop circulating water channel to maximize or minimize drag. This setup has several desirable properties. First, it is a physical system, with the rich interactions and complex dynamics that only the physical world has: the flow is highly chaotic and extremely difficult, if not impossible, to model or simulate accurately. Second, the objective -- drag minimization or maximization -- is easy to state and can be captured directly in the reward, yet good strategies are not obvious beforehand. Third, decades-old experimental studies provide recipes for simple, high-performance open-loop policies. Finally, the setup is inexpensive and far easier to reproduce than human studies. In our experiments we find that high-dimensional flow feedback lets the agent discover high-performance drag-control strategies with only minutes of real-world interaction. When we later replay the same action sequences without any feedback, we obtain almost identical performance. This shows that feedback, and in particular flow feedback, is not needed to execute the learned policy. Surprisingly, without flow feedback during training the agent fails to discover any well-performing policy in drag maximization, but still succeeds in drag minimization, albeit more slowly and less reliably. Our studies show that learning a high-performance skill can require richer information than executing it, and learning conditions can be kind or wicked depending solely on the goal, not on dynamics or policy complexity.
2.162SDT-6D: Fully Sparse Depth-Transformer for Staged End-to-End 6D Pose Estimation in Industrial Multi-View Bin Picking¶
2025/12/10 05:02 GTM
Accurately recovering 6D poses in densely packed industrial bin-picking environments remain a serious challenge, owing to occlusions, reflections, and textureless parts. We introduce a holistic depth-only 6D pose estimation approach that fuses multi-view depth maps into either a fine-grained 3D point cloud in its vanilla version, or a sparse Truncated Signed Distance Field (TSDF). At the core of our framework lies a staged heatmap mechanism that yields scene-adaptive attention priors across different resolutions, steering computation toward foreground regions, thus keeping memory requirements at high resolutions feasible. Along, we propose a density-aware sparse transformer block that dynamically attends to (self-) occlusions and the non-uniform distribution of 3D data. While sparse 3D approaches has proven effective for long-range perception, its potential in close-range robotic applications remains underexplored. Our framework operates fully sparse, enabling high-resolution volumetric representations to capture fine geometric details crucial for accurate pose estimation in clutter. Our method processes the entire scene integrally, predicting the 6D pose via a novel per-voxel voting strategy, allowing simultaneous pose predictions for an arbitrary number of target objects. We validate our method on the recently published IPD and MV-YCB multi-view datasets, demonstrating competitive performance in heavily cluttered industrial and household bin picking scenarios.
2.163Prismatic World Model: Learning Compositional Dynamics for Planning in Hybrid Systems¶
2025/12/10 05:02 GTM
Model-based planning in robotic domains is fundamentally challenged by the hybrid nature of physical dynamics, where continuous motion is punctuated by discrete events such as contacts and impacts. Conventional latent world models typically employ monolithic neural networks that enforce global continuity, inevitably over-smoothing the distinct dynamic modes (e.g., sticking vs. sliding, flight vs. stance). For a planner, this smoothing results in catastrophic compounding errors during long-horizon lookaheads, rendering the search process unreliable at physical boundaries. To address this, we introduce the Prismatic World Model (PRISM-WM), a structured architecture designed to decompose complex hybrid dynamics into composable primitives. PRISM-WM leverages a context-aware Mixture-of-Experts (MoE) framework where a gating mechanism implicitly identifies the current physical mode, and specialized experts predict the associated transition dynamics. We further introduce a latent orthogonalization objective to ensure expert diversity, effectively preventing mode collapse. By accurately modeling the sharp mode transitions in system dynamics, PRISM-WM significantly reduces rollout drift. Extensive experiments on challenging continuous control benchmarks, including high-dimensional humanoids and diverse multi-task settings, demonstrate that PRISM-WM provides a superior high-fidelity substrate for trajectory optimization algorithms (e.g., TD-MPC), proving its potential as a powerful foundational model for next-generation model-based agents.
2.164Learning Robot Manipulation from Audio World Models¶
2025/12/10 05:02 GTM
World models have demonstrated impressive performance on robotic learning tasks. Many such tasks inherently demand multimodal reasoning; for example, filling a bottle with water will lead to visual information alone being ambiguous or incomplete, thereby requiring reasoning over the temporal evolution of audio, accounting for its underlying physical properties and pitch patterns. In this paper, we propose a generative latent flow matching model to anticipate future audio observations, enabling the system to reason about long-term consequences when integrated into a robot policy. We demonstrate the superior capabilities of our system through two manipulation tasks that require perceiving in-the-wild audio or music signals, compared to methods without future lookahead. We further emphasize that successful robot action learning for these tasks relies not merely on multi-modal input, but critically on the accurate prediction of future audio states that embody intrinsic rhythmic patterns.
2.165Robust Finetuning of Vision-Language-Action Robot Policies via Parameter Merging¶
2025/12/10 05:02 GTM
Generalist robot policies, trained on large and diverse datasets, have demonstrated the ability to generalize across a wide spectrum of behaviors, enabling a single policy to act in varied real-world environments. However, they still fall short on new tasks not covered in the training data. When finetuned on limited demonstrations of a new task, these policies often overfit to the specific demonstrations--not only losing their prior abilities to solve a wide variety of generalist tasks but also failing to generalize within the new task itself. In this work, we aim to develop a method that preserves the generalization capabilities of the generalist policy during finetuning, allowing a single policy to robustly incorporate a new skill into its repertoire. Our goal is a single policy that both learns to generalize to variations of the new task and retains the broad competencies gained from pretraining. We show that this can be achieved through a simple yet effective strategy: interpolating the weights of a finetuned model with that of the pretrained model. We show, across extensive simulated and real-world experiments, that such model merging produces a single model that inherits the generalist abilities of the base model and learns to solve the new task robustly, outperforming both the pretrained and finetuned model on out-of-distribution variations of the new task. Moreover, we show that model merging enables continual acquisition of new skills in a lifelong learning setting, without sacrificing previously learned generalist abilities.
2.166Model-Based Diffusion Sampling for Predictive Control in Offline Decision Making¶
2025/12/10 05:02 GTM
Offline decision-making requires synthesizing reliable behaviors from fixed datasets without further interaction, yet existing generative approaches often yield trajectories that are dynamically infeasible. We propose Model Predictive Diffuser (MPDiffuser), a compositional model-based diffusion framework consisting of: (i) a planner that generates diverse, task-aligned trajectories; (ii) a dynamics model that enforces consistency with the underlying system dynamics; and (iii) a ranker module that selects behaviors aligned with the task objectives. MPDiffuser employs an alternating diffusion sampling scheme, where planner and dynamics updates are interleaved to progressively refine trajectories for both task alignment and feasibility during the sampling process. We also provide a theoretical rationale for this procedure, showing how it balances fidelity to data priors with dynamics consistency. Empirically, the compositional design improves sample efficiency, as it leverages even low-quality data for dynamics learning and adapts seamlessly to novel dynamics. We evaluate MPDiffuser on both unconstrained (D4RL) and constrained (DSRL) offline decision-making benchmarks, demonstrating consistent gains over existing approaches. Furthermore, we present a preliminary study extending MPDiffuser to vision-based control tasks, showing its potential to scale to high-dimensional sensory inputs. Finally, we deploy our method on a real quadrupedal robot, showcasing its practicality for real-world control.
2.167Zero-Splat TeleAssist: A Zero-Shot Pose Estimation Framework for Semantic Teleoperation¶
2025/12/10 05:02 GTM
We introduce Zero-Splat TeleAssist, a zero-shot sensor-fusion pipeline that transforms commodity CCTV streams into a shared, 6-DoF world model for multilateral teleoperation. By integrating vision-language segmentation, monocular depth, weighted-PCA pose extraction, and 3D Gaussian Splatting (3DGS), TeleAssist provides every operator with real-time global positions and orientations of multiple robots without fiducials or depth sensors in an interaction-centric teleoperation setup.
2.168RLCNet: An end-to-end deep learning framework for simultaneous online calibration of LiDAR, RADAR, and Camera¶
2025/12/10 05:02 GTM
Accurate extrinsic calibration of LiDAR, RADAR, and camera sensors is essential for reliable perception in autonomous vehicles. Still, it remains challenging due to factors such as mechanical vibrations and cumulative sensor drift in dynamic environments. This paper presents RLCNet, a novel end-to-end trainable deep learning framework for the simultaneous online calibration of these multimodal sensors. Validated on real-world datasets, RLCNet is designed for practical deployment and demonstrates robust performance under diverse conditions. To support real-time operation, an online calibration framework is introduced that incorporates a weighted moving average and outlier rejection, enabling dynamic adjustment of calibration parameters with reduced prediction noise and improved resilience to drift. An ablation study highlights the significance of architectural choices, while comparisons with existing methods demonstrate the superior accuracy and robustness of the proposed approach.
2.169Learning Spatiotemporal Tubes for Temporal Reach-Avoid-Stay Tasks using Physics-Informed Neural Networks¶
2025/12/10 05:02 GTM
This paper presents a Spatiotemporal Tube (STT)-based control framework for general control-affine MIMO nonlinear pure-feedback systems with unknown dynamics to satisfy prescribed time reach-avoid-stay tasks under external disturbances. The STT is defined as a time-varying ball, whose center and radius are jointly approximated by a Physics-Informed Neural Network (PINN). The constraints governing the STT are first formulated as loss functions of the PINN, and a training algorithm is proposed to minimize the overall violation. The PINN being trained on certain collocation points, we propose a Lipschitz-based validity condition to formally verify that the learned PINN satisfies the conditions over the continuous time horizon. Building on the learned STT representation, an approximation-free closed-form controller is defined to guarantee satisfaction of the T-RAS specification. Finally, the effectiveness and scalability of the framework are validated through two case studies involving a mobile robot and an aerial vehicle navigating through cluttered environments.
2.170Semantic-Metric Bayesian Risk Fields: Learning Robot Safety from Human Videos with a VLM Prior¶
2025/12/10 05:02 GTM
Humans interpret safety not as a binary signal but as a continuous, context- and spatially-dependent notion of risk. While risk is subjective, humans form rational mental models that guide action selection in dynamic environments. This work proposes a framework for extracting implicit human risk models by introducing a novel, semantically-conditioned and spatially-varying parametrization of risk, supervised directly from safe human demonstration videos and VLM common sense. Notably, we define risk through a Bayesian formulation. The prior is furnished by a pretrained vision-language model. In order to encourage the risk estimate to be more human aligned, a likelihood function modulates the prior to produce a relative metric of risk. Specifically, the likelihood is a learned ViT that maps pretrained features, to pixel-aligned risk values. Our pipeline ingests RGB images and a query object string, producing pixel-dense risk images. These images that can then be used as value-predictors in robot planning tasks or be projected into 3D for use in conventional trajectory optimization to produce human-like motion. This learned mapping enables generalization to novel objects and contexts, and has the potential to scale to much larger training datasets. In particular, the Bayesian framework that is introduced enables fast adaptation of our model to additional observations or common sense rules. We demonstrate that our proposed framework produces contextual risk that aligns with human preferences. Additionally, we illustrate several downstream applications of the model; as a value learner for visuomotor planners or in conjunction with a classical trajectory optimization algorithm. Our results suggest that our framework is a significant step toward enabling autonomous systems to internalize human-like risk. Code and results can be found at https://
2.171Geometry-Aware Sparse Depth Sampling for High-Fidelity RGB-D Depth Completion in Robotic Systems¶
2025/12/10 05:02 GTM
Accurate three-dimensional perception is essential for modern industrial robotic systems that perform manipulation, inspection, and navigation tasks. RGB-D and stereo vision sensors are widely used for this purpose, but the depth maps they produce are often noisy, incomplete, or biased due to sensor limitations and environmental conditions. Depth completion methods aim to generate dense, reliable depth maps from RGB images and sparse depth input. However, a key limitation in current depth completion pipelines is the unrealistic generation of sparse depth: sparse pixels are typically selected uniformly at random from dense ground-truth depth, ignoring the fact that real sensors exhibit geometry-dependent and spatially nonuniform reliability. In this work, we propose a normal-guided sparse depth sampling strategy that leverages PCA-based surface normal estimation on the RGB-D point cloud to compute a per-pixel depth reliability measure. The sparse depth samples are then drawn according to this reliability distribution. We integrate this sampling method with the Marigold-DC diffusion-based depth completion model and evaluate it on NYU Depth v2 using the standard metrics. Experiments show that our geometry-aware sparse depth improves accuracy, reduces artifacts near edges and discontinuities, and produces more realistic training conditions that better reflect real sensor behavior.
2.172High-Performance Dual-Arm Task and Motion Planning for Tabletop Rearrangement¶
2025/12/10 05:02 GTM
We propose Synchronous Dual-Arm Rearrange- ment Planner (SDAR), a task and motion planning (TAMP) framework for tabletop rearrangement, where two robot arms equipped with 2-finger grippers must work together in close proximity to rearrange objects whose start and goal config- urations are strongly entangled. To tackle such challenges, SDAR tightly knit together its dependency-driven task planner (SDAR-T) and synchronous dual-arm motion planner (SDAR- M), to intelligently sift through a large number of possible task and motion plans. Specifically, SDAR-T applies a simple yet effective strategy to decompose the global object dependency graph induced by the rearrangement task, to produce more optimal dual-arm task plans than solutions derived from optimal task plans for a single arm. Leveraging state-of-the-art GPU SIMD-based motion planning tools, SDAR-M employs a layered motion planning strategy to sift through many task plans for the best synchronous dual-arm motion plan while ensuring high levels of success rate. Comprehensive evaluation demonstrates that SDAR delivers a 100% success rate in solving complex, non-monotone, long-horizon tabletop rearrangement tasks with solution quality far exceeding the previous state- of-the-art. Experiments on two UR-5e arms further confirm SDAR directly and reliably transfers to robot hardware.
2.173Embodied Tree of Thoughts: Deliberate Manipulation Planning with Embodied World Model¶
2025/12/10 05:02 GTM
World models have emerged as a pivotal component in robot manipulation planning, enabling agents to predict future environmental states and reason about the consequences of actions before execution. While video-generation models are increasingly adopted, they often lack rigorous physical grounding, leading to hallucinations and a failure to maintain consistency in long-horizon physical constraints. To address these limitations, we propose Embodied Tree of Thoughts (EToT), a novel Real2Sim2Real planning framework that leverages a physics-based interactive digital twin as an embodied world model. EToT formulates manipulation planning as a tree search expanded through two synergistic mechanisms: (1) Priori Branching, which generates diverse candidate execution paths based on semantic and spatial analysis; and (2) Reflective Branching, which utilizes VLMs to diagnose execution failures within the simulator and iteratively refine the planning tree with corrective actions. By grounding high-level reasoning in a physics simulator, our framework ensures that generated plans adhere to rigid-body dynamics and collision constraints. We validate EToT on a suite of short- and long-horizon manipulation tasks, where it consistently outperforms baselines by effectively predicting physical dynamics and adapting to potential failures. Website at https://
2.174Ground Slow, Move Fast: A Dual-System Foundation Model for Generalizable Vision-and-Language Navigation¶
2025/12/10 05:02 GTM
While recent large vision-language models (VLMs) have improved generalization in vision-language navigation (VLN), existing methods typically rely on end-to-end pipelines that map vision-language inputs directly to short-horizon discrete actions. Such designs often produce fragmented motions, incur high latency, and struggle with real-world challenges like dynamic obstacle avoidance. We propose DualVLN, the first dual-system VLN foundation model that synergistically integrates high-level reasoning with low-level action execution. System 2, a VLM-based global planner, “grounds slowly” by predicting mid-term waypoint goals via image-grounded reasoning. System 1, a lightweight, multi-modal conditioning Diffusion Transformer policy, “moves fast” by leveraging both explicit pixel goals and latent features from System 2 to generate smooth and accurate trajectories. The dual-system design enables robust real-time control and adaptive local decision-making in complex, dynamic environments. By decoupling training, the VLM retains its generalization, while System 1 achieves interpretable and effective local navigation. DualVLN outperforms prior methods across all VLN benchmarks and real-world experiments demonstrate robust long-horizon planning and real-time adaptability in dynamic environments.
2.175RAVES-Calib: Robust, Accurate and Versatile Extrinsic Self Calibration Using Optimal Geometric Features¶
2025/12/10 05:02 GTM
In this paper, we present a user-friendly LiDAR-camera calibration toolkit that is compatible with various LiDAR and camera sensors and requires only a single pair of laser points and a camera image in targetless environments. Our approach eliminates the need for an initial transform and remains robust even with large positional and rotational LiDAR-camera extrinsic parameters. We employ the Gluestick pipeline to establish 2D-3D point and line feature correspondences for a robust and automatic initial guess. To enhance accuracy, we quantitatively analyze the impact of feature distribution on calibration results and adaptively weight the cost of each feature based on these metrics. As a result, extrinsic parameters are optimized by filtering out the adverse effects of inferior features. We validated our method through extensive experiments across various LiDAR-camera sensors in both indoor and outdoor settings. The results demonstrate that our method provides superior robustness and accuracy compared to SOTA techniques. Our code is open-sourced on GitHub to benefit the community.
2.176Chat with UAV -- Human-UAV Interaction Based on Large Language Models¶
2025/12/10 05:02 GTM
The future of UAV interaction systems is evolving from engineer-driven to user-driven, aiming to replace traditional predefined Human-UAV Interaction designs. This shift focuses on enabling more personalized task planning and design, thereby achieving a higher quality of interaction experience and greater flexibility, which can be used in many fileds, such as agriculture, aerial photography, logistics, and environmental monitoring. However, due to the lack of a common language between users and the UAVs, such interactions are often difficult to be achieved. The developments of Large Language Models possess the ability to understand nature languages and Robots’ (UAVs’) behaviors, marking the possibility of personalized Human-UAV Interaction. Recently, some HUI frameworks based on LLMs have been proposed, but they commonly suffer from difficulties in mixed task planning and execution, leading to low adaptability in complex scenarios. In this paper, we propose a novel dual-agent HUI framework. This framework constructs two independent LLM agents (a task planning agent, and an execution agent) and applies different Prompt Engineering to separately handle the understanding, planning, and execution of tasks. To verify the effectiveness and performance of the framework, we have built a task database covering four typical application scenarios of UAVs and quantified the performance of the HUI framework using three independent metrics. Meanwhile different LLM models are selected to control the UAVs with compared performance. Our user study experimental results demonstrate that the framework improves the smoothness of HUI and the flexibility of task execution in the tasks scenario we set up, effectively meeting users’ personalized needs.
2.177An Introduction to Deep Reinforcement and Imitation Learning¶
2025/12/10 05:02 GTM
Embodied agents, such as robots and virtual characters, must continuously select actions to execute tasks effectively, solving complex sequential decision-making problems. Given the difficulty of designing such controllers manually, learning-based approaches have emerged as promising alternatives, most notably Deep Reinforcement Learning (DRL) and Deep Imitation Learning (DIL). DRL leverages reward signals to optimize behavior, while DIL uses expert demonstrations to guide learning. This document introduces DRL and DIL in the context of embodied agents, adopting a concise, depth-first approach to the literature. It is self-contained, presenting all necessary mathematical and machine learning concepts as they are needed. It is not intended as a survey of the field; rather, it focuses on a small set of foundational algorithms and techniques, prioritizing in-depth understanding over broad coverage. The material ranges from Markov Decision Processes to REINFORCE and Proximal Policy Optimization (PPO) for DRL, and from Behavioral Cloning to Dataset Aggregation (DAgger) and Generative Adversarial Imitation Learning (GAIL) for DIL.
2.178Optimized Area Coverage in Disaster Response Utilizing Autonomous UAV Swarm Formations¶
2025/12/10 05:02 GTM
This paper presents a UAV swarm system designed to assist first responders in disaster scenarios like wildfires. By distributing sensors across multiple agents, the system extends flight duration and enhances data availability, reducing the risk of mission failure due to collisions. To mitigate this risk further, we introduce an autonomous navigation framework that utilizes a local Euclidean Signed Distance Field (ESDF) map for obstacle avoidance while maintaining swarm formation with minimal path deviation. Additionally, we incorporate a Traveling Salesman Problem (TSP) variant to optimize area coverage, prioritizing Points of Interest (POIs) based on preassigned values derived from environmental behavior and critical infrastructure. The proposed system is validated through simulations with varying swarm sizes, demonstrating its ability to maximize coverage while ensuring collision avoidance between UAVs and obstacles.
2.179DIJIT: A Robotic Head for an Active Observer¶
2025/12/10 05:02 GTM
We present DIJIT, a novel binocular robotic head expressly designed for mobile agents that behave as active observers. DIJIT’s unique breadth of functionality enables active vision research and the study of human-like eye and head-neck motions, their interrelationships, and how each contributes to visual ability. DIJIT is also being used to explore the differences between how human vision employs eye/head movements to solve visual tasks and current computer vision methods. DIJIT’s design features nine mechanical degrees of freedom, while the cameras and lenses provide an additional four optical degrees of freedom. The ranges and speeds of the mechanical design are comparable to human performance. Our design includes the ranges of motion required for convergent stereo, namely, vergence, version, and cyclotorsion. The exploration of the utility of these to both human and machine vision is ongoing. Here, we present the design of DIJIT and evaluate aspects of its performance. We present a new method for saccadic camera movements. In this method, a direct relationship between camera orientation and motor values is developed. The resulting saccadic camera movements are close to human movements in terms of their accuracy.
2.180VLD: Visual Language Goal Distance for Reinforcement Learning Navigation¶
2025/12/10 05:02 GTM
Training end-to-end policies from image data to directly predict navigation actions for robotic systems has proven inherently difficult. Existing approaches often suffer from either the sim-to-real gap during policy transfer or a limited amount of training data with action labels. To address this problem, we introduce Vision-Language Distance (VLD) learning, a scalable framework for goal-conditioned navigation that decouples perception learning from policy learning. Instead of relying on raw sensory inputs during policy training, we first train a self-supervised distance-to-goal predictor on internet-scale video data. This predictor generalizes across both image- and text-based goals, providing a distance signal that can be minimized by a reinforcement learning (RL) policy. The RL policy can be trained entirely in simulation using privileged geometric distance signals, with injected noise to mimic the uncertainty of the trained distance predictor. At deployment, the policy consumes VLD predictions, inheriting semantic goal information-“where to go”-from large-scale visual training while retaining the robust low-level navigation behaviors learned in simulation. We propose using ordinal consistency to assess distance functions directly and demonstrate that VLD outperforms prior temporal distance approaches, such as ViNT and VIP. Experiments show that our decoupled design achieves competitive navigation performance in simulation while supporting flexible goal modalities, providing an alternative and, most importantly, scalable path toward reliable, multimodal navigation policies.
2.181Sparse Variable Projection in Robotic Perception: Exploiting Separable Structure for Efficient Nonlinear Optimization¶
2025/12/10 05:02 GTM
Robotic perception often requires solving large nonlinear least-squares (NLS) problems. While sparsity has been well-exploited to scale solvers, a complementary and underexploited structure is \emph{separability} -- where some variables (e.g., visual landmarks) appear linearly in the residuals and, for any estimate of the remaining variables (e.g., poses), have a closed-form solution. Variable projection (VarPro) methods are a family of techniques that exploit this structure by analytically eliminating the linear variables and presenting a reduced problem in the remaining variables that has favorable properties. However, VarPro has seen limited use in robotic perception; a major challenge arises from gauge symmetries (e.g., cost invariance to global shifts and rotations), which are common in perception and induce specific computational challenges in standard VarPro approaches. We present a VarPro scheme designed for problems with gauge symmetries that jointly exploits separability and sparsity. Our method can be applied as a one-time preprocessing step to construct a \emph{matrix-free Schur complement operator}. This operator allows efficient evaluation of costs, gradients, and Hessian-vector products of the reduced problem and readily integrates with standard iterative NLS solvers. We provide precise conditions under which our method applies, and describe extensions when these conditions are only partially met. Across synthetic and real benchmarks in SLAM, SNL, and SfM, our approach achieves up to \textbf{2--35 faster runtimes} than state-of-the-art methods while maintaining accuracy. We release an open-source C++ implementation and all datasets from our experiments.