Generated at 2025-12-16 05:05:18
We have 427 news from different sources.
2feed¶
2.10.6B参数逆袭7B基线?OpenTrackVLA重磅开源:重写具身智能的算力法则¶
2025/12/15 10:05 GTM
以小博大,推倒具身智能的算力高墙
2.2NeurIPS 2025 | 拒绝死记硬背!真正的高手模型,都在偷偷记“错题本”¶
2025/12/15 10:05 GTM
让模型真正学会反思
3paper¶
3.1DiffusionBrowser: Interactive Diffusion Previews via Multi-Branch Decoders¶
2025/12/16 05:02 GTM
Video diffusion models have revolutionized generative video synthesis, but they are imprecise, slow, and can be opaque during generation -- keeping users in the dark for a prolonged period. In this work, we propose DiffusionBrowser, a model-agnostic, lightweight decoder framework that allows users to interactively generate previews at any point (timestep or transformer block) during the denoising process. Our model can generate multi-modal preview representations that include RGB and scene intrinsics at more than 4 real-time speed (less than 1 second for a 4-second video) that convey consistent appearance and motion to the final video. With the trained decoder, we show that it is possible to interactively guide the generation at intermediate noise steps via stochasticity reinjection and modal steering, unlocking a new control capability. Moreover, we systematically probe the model using the learned decoders, revealing how scene, object, and other details are composed and assembled during the otherwise black-box denoising process.
3.2LitePT: Lighter Yet Stronger Point Transformer¶
2025/12/16 05:02 GTM
Modern neural architectures for 3D point cloud processing contain both convolutional layers and attention blocks, but the best way to assemble them remains unclear. We analyse the role of different computational blocks in 3D point cloud networks and find an intuitive behaviour: convolution is adequate to extract low-level geometry at high-resolution in early layers, where attention is expensive without bringing any benefits; attention captures high-level semantics and context in low-resolution, deep layers more efficiently. Guided by this design principle, we propose a new, improved 3D point cloud backbone that employs convolutions in early stages and switches to attention for deeper layers. To avoid the loss of spatial layout information when discarding redundant convolution layers, we introduce a novel, training-free 3D positional encoding, PointROPE. The resulting LitePT model has fewer parameters, runs faster, and uses less memory than the state-of-the-art Point Transformer V3, but nonetheless matches or even outperforms it on a range of tasks and datasets. Code and models are available at: https://
3.3Towards Scalable Pre-training of Visual Tokenizers for Generation¶
2025/12/16 05:02 GTM
The quality of the latent space in visual tokenizers (e.g., VAEs) is crucial for modern generative models. However, the standard reconstruction-based training paradigm produces a latent space that is biased towards low-level information, leading to a foundation flaw: better pixel-level accuracy does not lead to higher-quality generation. This implies that pouring extensive compute into visual tokenizer pre-training translates poorly to improved performance in generation. We identify this as the pre-training scaling problem and suggest a necessary shift: to be effective for generation, a latent space must concisely represent high-level semantics. We present VTP, a unified visual tokenizer pre-training framework, pioneering the joint optimization of image-text contrastive, self-supervised, and reconstruction losses. Our large-scale study reveals two principal findings: (1) understanding is a key driver of generation, and (2) much better scaling properties, where generative performance scales effectively with compute, parameters, and data allocated to the pretraining of the visual tokenizer. After large-scale pre-training, our tokenizer delivers a competitive profile (78.2 zero-shot accuracy and 0.36 rFID on ImageNet) and 4.1 times faster convergence on generation compared to advanced distillation methods. More importantly, it scales effectively: without modifying standard DiT training specs, solely investing more FLOPS in pretraining VTP achieves 65.8% FID improvement in downstream generation, while conventional autoencoder stagnates very early at 1/10 FLOPS. Our pre-trained models are available at https://
3.4Recurrent Video Masked Autoencoders¶
2025/12/16 05:02 GTM
We present Recurrent Video Masked-Autoencoders (RVM): a novel video representation learning approach that uses a transformer-based recurrent neural network to aggregate dense image features over time, effectively capturing the spatio-temporal structure of natural video data. RVM learns via an asymmetric masked prediction task requiring only a standard pixel reconstruction objective. This design yields a highly efficient ``generalist’’ encoder: RVM achieves competitive performance with state-of-the-art video models (e.g. VideoMAE, V-JEPA) on video-level tasks like action recognition and point/object tracking, while also performing favorably against image models (e.g. DINOv2) on tasks that test geometric and dense spatial understanding. Notably, RVM achieves strong performance in the small-model regime without requiring knowledge distillation, exhibiting up to 30x greater parameter efficiency than competing video masked autoencoders. Moreover, we demonstrate that RVM’s recurrent nature allows for stable feature propagation over long temporal horizons with linear computational cost, overcoming some of the limitations of standard spatio-temporal attention-based architectures. Finally, we use qualitative visualizations to highlight that RVM learns rich representations of scene semantics, structure, and motion.
3.5I-Scene: 3D Instance Models are Implicit Generalizable Spatial Learners¶
2025/12/16 05:02 GTM
Generalization remains the central challenge for interactive 3D scene generation. Existing learning-based approaches ground spatial understanding in limited scene dataset, restricting generalization to new layouts. We instead reprogram a pre-trained 3D instance generator to act as a scene level learner, replacing dataset-bounded supervision with model-centric spatial supervision. This reprogramming unlocks the generator transferable spatial knowledge, enabling generalization to unseen layouts and novel object compositions. Remarkably, spatial reasoning still emerges even when the training scenes are randomly composed objects. This demonstrates that the generator’s transferable scene prior provides a rich learning signal for inferring proximity, support, and symmetry from purely geometric cues. Replacing widely used canonical space, we instantiate this insight with a view-centric formulation of the scene space, yielding a fully feed-forward, generalizable scene generator that learns spatial relations directly from the instance model. Quantitative and qualitative results show that a 3D instance generator is an implicit spatial learner and reasoner, pointing toward foundation models for interactive 3D scene understanding and generation. Project page: https://
3.6LASER: Layer-wise Scale Alignment for Training-Free Streaming 4D Reconstruction¶
2025/12/16 05:02 GTM
Recent feed-forward reconstruction models like VGGT and achieve impressive reconstruction quality but cannot process streaming videos due to quadratic memory complexity, limiting their practical deployment. While existing streaming methods address this through learned memory mechanisms or causal attention, they require extensive retraining and may not fully leverage the strong geometric priors of state-of-the-art offline models. We propose LASER, a training-free framework that converts an offline reconstruction model into a streaming system by aligning predictions across consecutive temporal windows. We observe that simple similarity transformation () alignment fails due to layer depth misalignment: monocular scale ambiguity causes relative depth scales of different scene layers to vary inconsistently between windows. To address this, we introduce layer-wise scale alignment, which segments depth predictions into discrete layers, computes per-layer scale factors, and propagates them across both adjacent windows and timestamps. Extensive experiments show that LASER achieves state-of-the-art performance on camera pose estimation and point map reconstruction %quality with offline models while operating at 14 FPS with 6 GB peak memory on a RTX A6000 GPU, enabling practical deployment for kilometer-scale streaming videos. Project website:
3.7Feedforward 3D Editing via Text-Steerable Image-to-3D¶
2025/12/16 05:02 GTM
Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://
3.8JoVA: Unified Multimodal Learning for Joint Video-Audio Generation¶
2025/12/16 05:02 GTM
In this paper, we present JoVA, a unified framework for joint video-audio generation. Despite recent encouraging advances, existing methods face two critical limitations. First, most existing approaches can only generate ambient sounds and lack the capability to produce human speech synchronized with lip movements. Second, recent attempts at unified human video-audio generation typically rely on explicit fusion or modality-specific alignment modules, which introduce additional architecture design and weaken the model simplicity of the original transformers. To address these issues, JoVA employs joint self-attention across video and audio tokens within each transformer layer, enabling direct and efficient cross-modal interaction without the need for additional alignment modules. Furthermore, to enable high-quality lip-speech synchronization, we introduce a simple yet effective mouth-area loss based on facial keypoint detection, which enhances supervision on the critical mouth region during training without compromising architectural simplicity. Extensive experiments on benchmarks demonstrate that JoVA outperforms or is competitive with both unified and audio-driven state-of-the-art methods in lip-sync accuracy, speech quality, and overall video-audio generation fidelity. Our results establish JoVA as an elegant framework for high-quality multimodal generation.
3.9Towards Interactive Intelligence for Digital Humans¶
2025/12/16 05:02 GTM
We introduce Interactive Intelligence, a novel paradigm of digital human that is capable of personality-aligned expression, adaptive interaction, and self-evolution. To realize this, we present Mio (Multimodal Interactive Omni-Avatar), an end-to-end framework composed of five specialized modules: Thinker, Talker, Face Animator, Body Animator, and Renderer. This unified architecture integrates cognitive reasoning with real-time multimodal embodiment to enable fluid, consistent interaction. Furthermore, we establish a new benchmark to rigorously evaluate the capabilities of interactive intelligence. Extensive experiments demonstrate that our framework achieves superior performance compared to state-of-the-art methods across all evaluated dimensions. Together, these contributions move digital humans beyond superficial imitation toward intelligent interaction.
3.10Directional Textual Inversion for Personalized Text-to-Image Generation¶
2025/12/16 05:02 GTM
Textual Inversion (TI) is an efficient approach to text-to-image personalization but often fails on complex prompts. We trace these failures to embedding norm inflation: learned tokens drift to out-of-distribution magnitudes, degrading prompt conditioning in pre-norm Transformers. Empirically, we show semantics are primarily encoded by direction in CLIP token space, while inflated norms harm contextualization; theoretically, we analyze how large magnitudes attenuate positional information and hinder residual updates in pre-norm blocks. We propose Directional Textual Inversion (DTI), which fixes the embedding magnitude to an in-distribution scale and optimizes only direction on the unit hypersphere via Riemannian SGD. We cast direction learning as MAP with a von Mises-Fisher prior, yielding a constant-direction prior gradient that is simple and efficient to incorporate. Across personalization tasks, DTI improves text fidelity over TI and TI-variants while maintaining subject similarity. Crucially, DTI’s hyperspherical parameterization enables smooth, semantically coherent interpolation between learned concepts (slerp), a capability that is absent in standard TI. Our findings suggest that direction-only optimization is a robust and scalable path for prompt-faithful personalization.
3.11AgentIAD: Tool-Augmented Single-Agent for Industrial Anomaly Detection¶
2025/12/16 05:02 GTM
Industrial anomaly detection (IAD) is difficult due to the scarcity of normal reference samples and the subtle, localized nature of many defects. Single-pass vision-language models (VLMs) often overlook small abnormalities and lack explicit mechanisms to compare against canonical normal patterns. We propose AgentIAD, a tool-driven agentic framework that enables multi-stage visual inspection. The agent is equipped with a Perceptive Zoomer (PZ) for localized fine-grained analysis and a Comparative Retriever (CR) for querying normal exemplars when evidence is ambiguous. To teach these inspection behaviors, we construct structured perceptive and comparative trajectories from the MMAD dataset and train the model in two stages: supervised fine-tuning followed by reinforcement learning. A two-part reward design drives this process: a perception reward that supervises classification accuracy, spatial alignment, and type correctness, and a behavior reward that encourages efficient tool use. Together, these components enable the model to refine its judgment through step-wise observation, zooming, and verification. AgentIAD achieves a new state-of-the-art 97.62% classification accuracy on MMAD, surpassing prior MLLM-based approaches while producing transparent and interpretable inspection traces.
3.12Grab-3D: Detecting AI-Generated Videos from 3D Geometric Temporal Consistency¶
2025/12/16 05:02 GTM
Recent advances in diffusion-based generation techniques enable AI models to produce highly realistic videos, heightening the need for reliable detection mechanisms. However, existing detection methods provide only limited exploration of the 3D geometric patterns present in generated videos. In this paper, we use vanishing points as an explicit representation of 3D geometry patterns, revealing fundamental discrepancies in geometric consistency between real and AI-generated videos. We introduce Grab-3D, a geometry-aware transformer framework for detecting AI-generated videos based on 3D geometric temporal consistency. To enable reliable evaluation, we construct an AI-generated video dataset of static scenes, allowing stable 3D geometric feature extraction. We propose a geometry-aware transformer equipped with geometric positional encoding, temporal-geometric attention, and an EMA-based geometric classifier head to explicitly inject 3D geometric awareness into temporal modeling. Experiments demonstrate that Grab-3D significantly outperforms state-of-the-art detectors, achieving robust cross-domain generalization to unseen generators.
3.13RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics¶
2025/12/16 05:02 GTM
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.
3.14World Models Can Leverage Human Videos for Dexterous Manipulation¶
2025/12/16 05:02 GTM
Dexterous manipulation is challenging because it requires understanding how subtle hand motion influences the environment through contact with objects. We introduce DexWM, a Dexterous Manipulation World Model that predicts the next latent state of the environment conditioned on past states and dexterous actions. To overcome the scarcity of dexterous manipulation datasets, DexWM is trained on over 900 hours of human and non-dexterous robot videos. To enable fine-grained dexterity, we find that predicting visual features alone is insufficient; therefore, we introduce an auxiliary hand consistency loss that enforces accurate hand configurations. DexWM outperforms prior world models conditioned on text, navigation, and full-body actions, achieving more accurate predictions of future states. DexWM also demonstrates strong zero-shot generalization to unseen manipulation skills when deployed on a Franka Panda arm equipped with an Allegro gripper, outperforming Diffusion Policy by over 50% on average in grasping, placing, and reaching tasks.
3.15From Code to Field: Evaluating the Robustness of Convolutional Neural Networks for Disease Diagnosis in Mango Leaves¶
2025/12/16 05:02 GTM
The validation and verification of artificial intelligence (AI) models through robustness assessment are essential to guarantee the reliable performance of intelligent systems facing real-world challenges, such as image corruptions including noise, blurring, and weather variations. Despite the global importance of mango (Mangifera indica L.), there is a lack of studies on the robustness of models for the diagnosis of disease in its leaves. This paper proposes a methodology to evaluate convolutional neural networks (CNNs) under adverse conditions. We adapted the MangoLeafDB dataset, generating MangoLeafDB-C with 19 types of artificial corruptions at five severity levels. We conducted a benchmark comparing five architectures: ResNet-50, ResNet-101, VGG-16, Xception, and LCNN (the latter being a lightweight architecture designed specifically for mango leaf diagnosis). The metrics include the F1 score, the corruption error (CE) and the relative mean corruption error (relative mCE). The results show that LCNN outperformed complex models in corruptions that can be present in real-world scenarios such as Defocus Blur, Motion Blur, while also achieving the lowest mCE. Modern architectures (e.g., ResNet-101) exhibited significant performance degradation in corrupted scenarios, despite their high accuracy under ideal conditions. These findings suggest that lightweight and specialized models may be more suitable for real-world applications in edge devices, where robustness and efficiency are critical. The study highlights the need to incorporate robustness assessments in the development of intelligent systems for agriculture, particularly in regions with technological limitations.
3.16Charge: A Comprehensive Novel View Synthesis Benchmark and Dataset to Bind Them All¶
2025/12/16 05:02 GTM
This paper presents a new dataset for Novel View Synthesis, generated from a high-quality, animated film with stunning realism and intricate detail. Our dataset captures a variety of dynamic scenes, complete with detailed textures, lighting, and motion, making it ideal for training and evaluating cutting-edge 4D scene reconstruction and novel view generation models. In addition to high-fidelity RGB images, we provide multiple complementary modalities, including depth, surface normals, object segmentation and optical flow, enabling a deeper understanding of scene geometry and motion. The dataset is organised into three distinct benchmarking scenarios: a dense multi-view camera setup, a sparse camera arrangement, and monocular video sequences, enabling a wide range of experimentation and comparison across varying levels of data sparsity. With its combination of visual richness, high-quality annotations, and diverse experimental setups, this dataset offers a unique resource for pushing the boundaries of view synthesis and 3D vision.
3.17MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning¶
2025/12/16 05:02 GTM
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. MindDrive achieves strong closed-loop performance on the challenging Bench2Drive benchmark, with a Driving Score (DS) of 78.04 and a Success Rate (SR) of 55.09%. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
3.18SCR2-ST: Combine Single Cell with Spatial Transcriptomics for Efficient Active Sampling via Reinforcement Learning¶
2025/12/16 05:02 GTM
Spatial transcriptomics (ST) is an emerging technology that enables researchers to investigate the molecular relationships underlying tissue morphology. However, acquiring ST data remains prohibitively expensive, and traditional fixed-grid sampling strategies lead to redundant measurements of morphologically similar or biologically uninformative regions, thus resulting in scarce data that constrain current methods. The well-established single-cell sequencing field, however, could provide rich biological data as an effective auxiliary source to mitigate this limitation. To bridge these gaps, we introduce SCR2-ST, a unified framework that leverages single-cell prior knowledge to guide efficient data acquisition and accurate expression prediction. SCR2-ST integrates a single-cell guided reinforcement learning-based (SCRL) active sampling and a hybrid regression-retrieval prediction network SCR2Net. SCRL combines single-cell foundation model embeddings with spatial density information to construct biologically grounded reward signals, enabling selective acquisition of informative tissue regions under constrained sequencing budgets. SCR2Net then leverages the actively sampled data through a hybrid architecture combining regression-based modeling with retrieval-augmented inference, where a majority cell-type filtering mechanism suppresses noisy matches and retrieved expression profiles serve as soft labels for auxiliary supervision. We evaluated SCR2-ST on three public ST datasets, demonstrating SOTA performance in both sampling efficiency and prediction accuracy, particularly under low-budget scenarios. Code is publicly available at: https://
3.19Do-Undo: Generating and Reversing Physical Actions in Vision-Language Models¶
2025/12/16 05:02 GTM
We introduce the Do-Undo task and benchmark to address a critical gap in vision-language models: understanding and generating physically plausible scene transformations driven by real-world actions. Unlike prior work focused on object-level edits, Do-Undo requires models to simulate the outcome of a physical action and then accurately reverse it, reflecting true cause-and-effect in the visual world. We curate a large-scale dataset of reversible actions from real-world videos and design a training strategy enforcing consistency for robust action grounding. Our experiments reveal that current models struggle with physical reversibility, underscoring the importance of this task for embodied AI, robotics, and physics-aware generative modeling. Do-Undo establishes an intuitive testbed for evaluating and advancing physical reasoning in multimodal systems.
3.20DBT-DINO: Towards Foundation model based analysis of Digital Breast Tomosynthesis¶
2025/12/16 05:02 GTM
Foundation models have shown promise in medical imaging but remain underexplored for three-dimensional imaging modalities. No foundation model currently exists for Digital Breast Tomosynthesis (DBT), despite its use for breast cancer screening. To develop and evaluate a foundation model for DBT (DBT-DINO) across multiple clinical tasks and assess the impact of domain-specific pre-training. Self-supervised pre-training was performed using the DINOv2 methodology on over 25 million 2D slices from 487,975 DBT volumes from 27,990 patients. Three downstream tasks were evaluated: (1) breast density classification using 5,000 screening exams; (2) 5-year risk of developing breast cancer using 106,417 screening exams; and (3) lesion detection using 393 annotated volumes. For breast density classification, DBT-DINO achieved an accuracy of 0.79 (95% CI: 0.76--0.81), outperforming both the MetaAI DINOv2 baseline (0.73, 95% CI: 0.70--0.76, p<.001) and DenseNet-121 (0.74, 95% CI: 0.71--0.76, p<.001). For 5-year breast cancer risk prediction, DBT-DINO achieved an AUROC of 0.78 (95% CI: 0.76--0.80) compared to DINOv2’s 0.76 (95% CI: 0.74--0.78, p=.57). For lesion detection, DINOv2 achieved a higher average sensitivity of 0.67 (95% CI: 0.60--0.74) compared to DBT-DINO with 0.62 (95% CI: 0.53--0.71, p=.60). DBT-DINO demonstrated better performance on cancerous lesions specifically with a detection rate of 78.8% compared to Dinov2’s 77.3%. Using a dataset of unprecedented size, we developed DBT-DINO, the first foundation model for DBT. DBT-DINO demonstrated strong performance on breast density classification and cancer risk prediction. However, domain-specific pre-training showed variable benefits on the detection task, with ImageNet baseline outperforming DBT-DINO on general lesion detection, indicating that localized detection tasks require further methodological development.
3.21LongVie 2: Multimodal Controllable Ultra-Long Video World Model¶
2025/12/16 05:02 GTM
Building video world models upon pretrained video generation systems represents an important yet challenging step toward general spatiotemporal intelligence. A world model should possess three essential properties: controllability, long-term visual quality, and temporal consistency. To this end, we take a progressive approach-first enhancing controllability and then extending toward long-term, high-quality generation. We present LongVie 2, an end-to-end autoregressive framework trained in three stages: (1) Multi-modal guidance, which integrates dense and sparse control signals to provide implicit world-level supervision and improve controllability; (2) Degradation-aware training on the input frame, bridging the gap between training and long-term inference to maintain high visual quality; and (3) History-context guidance, which aligns contextual information across adjacent clips to ensure temporal consistency. We further introduce LongVGenBench, a comprehensive benchmark comprising 100 high-resolution one-minute videos covering diverse real-world and synthetic environments. Extensive experiments demonstrate that LongVie 2 achieves state-of-the-art performance in long-range controllability, temporal coherence, and visual fidelity, and supports continuous video generation lasting up to five minutes, marking a significant step toward unified video world modeling.
3.22DA-SSL: self-supervised domain adaptor to leverage foundational models in turbt histopathology slides¶
2025/12/16 05:02 GTM
Recent deep learning frameworks in histopathology, particularly multiple instance learning (MIL) combined with pathology foundational models (PFMs), have shown strong performance. However, PFMs exhibit limitations on certain cancer or specimen types due to domain shifts - these cancer types were rarely used for pretraining or specimens contain tissue-based artifacts rarely seen within the pretraining population. Such is the case for transurethral resection of bladder tumor (TURBT), which are essential for diagnosing muscle-invasive bladder cancer (MIBC), but contain fragmented tissue chips and electrocautery artifacts and were not widely used in publicly available PFMs. To address this, we propose a simple yet effective domain-adaptive self-supervised adaptor (DA-SSL) that realigns pretrained PFM features to the TURBT domain without fine-tuning the foundational model itself. We pilot this framework for predicting treatment response in TURBT, where histomorphological features are currently underutilized and identifying patients who will benefit from neoadjuvant chemotherapy (NAC) is challenging. In our multi-center study, DA-SSL achieved an AUC of 0.77+/-0.04 in five-fold cross-validation and an external test accuracy of 0.84, sensitivity of 0.71, and specificity of 0.91 using majority voting. Our results demonstrate that lightweight domain adaptation with self-supervision can effectively enhance PFM-based MIL pipelines for clinically challenging histopathology tasks. Code is Available at https://
3.23Lighting in Motion: Spatiotemporal HDR Lighting Estimation¶
2025/12/16 05:02 GTM
We present Lighting in Motion (LiMo), a diffusion-based approach to spatiotemporal lighting estimation. LiMo targets both realistic high-frequency detail prediction and accurate illuminance estimation. To account for both, we propose generating a set of mirrored and diffuse spheres at different exposures, based on their 3D positions in the input. Making use of diffusion priors, we fine-tune powerful existing diffusion models on a large-scale customized dataset of indoor and outdoor scenes, paired with spatiotemporal light probes. For accurate spatial conditioning, we demonstrate that depth alone is insufficient and we introduce a new geometric condition to provide the relative position of the scene to the target 3D position. Finally, we combine diffuse and mirror predictions at different exposures into a single HDRI map leveraging differentiable rendering. We thoroughly evaluate our method and design choices to establish LiMo as state-of-the-art for both spatial control and prediction accuracy.
3.24Image Diffusion Preview with Consistency Solver¶
2025/12/16 05:02 GTM
The slow inference process of image diffusion models significantly degrades interactive user experiences. To address this, we introduce Diffusion Preview, a novel paradigm employing rapid, low-step sampling to generate preliminary outputs for user evaluation, deferring full-step refinement until the preview is deemed satisfactory. Existing acceleration methods, including training-free solvers and post-training distillation, struggle to deliver high-quality previews or ensure consistency between previews and final outputs. We propose ConsistencySolver derived from general linear multistep methods, a lightweight, trainable high-order solver optimized via Reinforcement Learning, that enhances preview quality and consistency. Experimental results demonstrate that ConsistencySolver significantly improves generation quality and consistency in low-step scenarios, making it ideal for efficient preview-and-refine workflows. Notably, it achieves FID scores on-par with Multistep DPM-Solver using 47% fewer steps, while outperforming distillation baselines. Furthermore, user studies indicate our approach reduces overall user interaction time by nearly 50% while maintaining generation quality. Code is available at https://
3.25MMhops-R1: Multimodal Multi-hop Reasoning¶
2025/12/16 05:02 GTM
The ability to perform multi-modal multi-hop reasoning by iteratively integrating information across various modalities and external knowledge is critical for addressing complex real-world challenges. However, existing Multi-modal Large Language Models (MLLMs) are predominantly limited to single-step reasoning, as existing benchmarks lack the complexity needed to evaluate and drive multi-hop abilities. To bridge this gap, we introduce MMhops, a novel, large-scale benchmark designed to systematically evaluate and foster multi-modal multi-hop reasoning. MMhops dataset comprises two challenging task formats, Bridging and Comparison, which necessitate that models dynamically construct complex reasoning chains by integrating external knowledge. To tackle the challenges posed by MMhops, we propose MMhops-R1, a novel multi-modal Retrieval-Augmented Generation (mRAG) framework for dynamic reasoning. Our framework utilizes reinforcement learning to optimize the model for autonomously planning reasoning paths, formulating targeted queries, and synthesizing multi-level information. Comprehensive experiments demonstrate that MMhops-R1 significantly outperforms strong baselines on MMhops, highlighting that dynamic planning and multi-modal knowledge integration are crucial for complex reasoning. Moreover, MMhops-R1 demonstrates strong generalization to tasks requiring fixed-hop reasoning, underscoring the robustness of our dynamic planning approach. In conclusion, our work contributes a challenging new benchmark and a powerful baseline model, and we will release the associated code, data, and weights to catalyze future research in this critical area.
3.263D Human-Human Interaction Anomaly Detection¶
2025/12/16 05:02 GTM
Human-centric anomaly detection (AD) has been primarily studied to specify anomalous behaviors in a single person. However, as humans by nature tend to act in a collaborative manner, behavioral anomalies can also arise from human-human interactions. Detecting such anomalies using existing single-person AD models is prone to low accuracy, as these approaches are typically not designed to capture the complex and asymmetric dynamics of interactions. In this paper, we introduce a novel task, Human-Human Interaction Anomaly Detection (H2IAD), which aims to identify anomalous interactive behaviors within collaborative 3D human actions. To address H2IAD, we then propose Interaction Anomaly Detection Network (IADNet), which is formalized with a Temporal Attention Sharing Module (TASM). Specifically, in designing TASM, we share the encoded motion embeddings across both people such that collaborative motion correlations can be effectively synchronized. Moreover, we notice that in addition to temporal dynamics, human interactions are also characterized by spatial configurations between two people. We thus introduce a Distance-Based Relational Encoding Module (DREM) to better reflect social cues in H2IAD. The normalizing flow is eventually employed for anomaly scoring. Extensive experiments on human-human motion benchmarks demonstrate that IADNet outperforms existing Human-centric AD baselines in H2IAD.
3.27Pancakes: Consistent Multi-Protocol Image Segmentation Across Biomedical Domains¶
2025/12/16 05:02 GTM
A single biomedical image can be meaningfully segmented in multiple ways, depending on the desired application. For instance, a brain MRI can be segmented according to tissue types, vascular territories, broad anatomical regions, fine-grained anatomy, or pathology, etc. Existing automatic segmentation models typically either (1) support only a single protocol, the one they were trained on, or (2) require labor-intensive manual prompting to specify the desired segmentation. We introduce Pancakes, a framework that, given a new image from a previously unseen domain, automatically generates multi-label segmentation maps for multiple plausible protocols, while maintaining semantic consistency across related images. Pancakes introduces a new problem formulation that is not currently attainable by existing foundation models. In a series of experiments on seven held-out datasets, we demonstrate that our model can significantly outperform existing foundation models in producing several plausible whole-image segmentations, that are semantically coherent across images.
3.28TARA: Simple and Efficient Time Aware Retrieval Adaptation of MLLMs for Video Understanding¶
2025/12/16 05:02 GTM
Our objective is to build a general time-aware video-text embedding model for retrieval. To that end, we propose a simple and efficient recipe, dubbed TARA (Time Aware Retrieval Adaptation), to adapt Multimodal LLMs (MLLMs) to a time-aware video-text embedding model without using any video data at all. For evaluating time-awareness in retrieval, we propose a new benchmark with temporally opposite (chiral) actions as hard negatives and curated splits for chiral and non-chiral actions. We show that TARA outperforms all existing video-text models on this chiral benchmark while also achieving strong results on standard benchmarks. Furthermore, we discover additional benefits of TARA beyond time-awareness: (i) TARA embeddings are negation-aware as shown in NegBench benchmark that evaluates negation in video retrieval, (ii) TARA achieves state of the art performance on verb and adverb understanding in videos. Overall, TARA yields a strong, versatile, time-aware video-text embedding model with state of the art zero-shot performance.
3.29Seedance 1.5 pro: A Native Audio-Visual Joint Generation Foundation Model¶
2025/12/16 05:02 GTM
Recent strides in video generation have paved the way for unified audio-visual generation. In this work, we present Seedance 1.5 pro, a foundational model engineered specifically for native, joint audio-video generation. Leveraging a dual-branch Diffusion Transformer architecture, the model integrates a cross-modal joint module with a specialized multi-stage data pipeline, achieving exceptional audio-visual synchronization and superior generation quality. To ensure practical utility, we implement meticulous post-training optimizations, including Supervised Fine-Tuning (SFT) on high-quality datasets and Reinforcement Learning from Human Feedback (RLHF) with multi-dimensional reward models. Furthermore, we introduce an acceleration framework that boosts inference speed by over 10X. Seedance 1.5 pro distinguishes itself through precise multilingual and dialect lip-syncing, dynamic cinematic camera control, and enhanced narrative coherence, positioning it as a robust engine for professional-grade content creation. Seedance 1.5 pro is now accessible on Volcano Engine at https://
3.30On-Device Continual Learning for Unsupervised Visual Anomaly Detection in Dynamic Manufacturing¶
2025/12/16 05:02 GTM
In modern manufacturing, Visual Anomaly Detection (VAD) is essential for automated inspection and consistent product quality. Yet, increasingly dynamic and flexible production environments introduce key challenges: First, frequent product changes in small-batch and on-demand manufacturing require rapid model updates. Second, legacy edge hardware lacks the resources to train and run large AI models. Finally, both anomalous and normal training data are often scarce, particularly for newly introduced product variations. We investigate on-device continual learning for unsupervised VAD with localization, extending the PatchCore to incorporate online learning for real-world industrial scenarios. The proposed method leverages a lightweight feature extractor and an incremental coreset update mechanism based on k-center selection, enabling rapid, memory-efficient adaptation from limited data while eliminating costly cloud retraining. Evaluations on an industrial use case are conducted using a testbed designed to emulate flexible production with frequent variant changes in a controlled environment. Our method achieves a 12% AUROC improvement over the baseline, an 80% reduction in memory usage, and faster training compared to batch retraining. These results confirm that our method delivers accurate, resource-efficient, and adaptive VAD suitable for dynamic and smart manufacturing.
3.31Soul: Breathe Life into Digital Human for High-fidelity Long-term Multimodal Animation¶
2025/12/16 05:02 GTM
We propose a multimodal-driven framework for high-fidelity long-term digital human animation termed , which generates semantically coherent videos from a single-frame portrait image, text prompts, and audio, achieving precise lip synchronization, vivid facial expressions, and robust identity preservation. We construct Soul-1M, containing 1 million finely annotated samples with a precise automated annotation pipeline (covering portrait, upper-body, full-body, and multi-person scenes) to mitigate data scarcity, and we carefully curate Soul-Bench for comprehensive and fair evaluation of audio-/text-guided animation methods. The model is built on the Wan2.2-5B backbone, integrating audio-injection layers and multiple training strategies together with threshold-aware codebook replacement to ensure long-term generation consistency. Meanwhile, step/CFG distillation and a lightweight VAE are used to optimize inference efficiency, achieving an 11.4 speedup with negligible quality loss. Extensive experiments show that Soul significantly outperforms current leading open-source and commercial models on video quality, video-text alignment, identity preservation, and lip-synchronization accuracy, demonstrating broad applicability in real-world scenarios such as virtual anchors and film production. Project page at https://
3.32Transform Trained Transformer: Accelerating Naive 4K Video Generation Over 10¶
2025/12/16 05:02 GTM
Native 4K (21603840) video generation remains a critical challenge due to the quadratic computational explosion of full-attention as spatiotemporal resolution increases, making it difficult for models to strike a balance between efficiency and quality. This paper proposes a novel Transformer retrofit strategy termed (ransform rained ransformer) that, without altering the core architecture of full-attention pretrained models, significantly reduces compute requirements by optimizing their forward logic. Specifically, introduces a multi-scale weight-sharing window attention mechanism and, via hierarchical blocking together with an axis-preserving full-attention design, can effect an “attention pattern” transformation of a pretrained model using only modest compute and data. Results on 4K-VBench show that substantially outperforms existing approaches: while delivering performance improvements (+4.29 VQA and +0.08 VTC), it accelerates native 4K video generation by more than 10. Project page at https://
3.33PoseAnything: Universal Pose-guided Video Generation with Part-aware Temporal Coherence¶
2025/12/16 05:02 GTM
Pose-guided video generation refers to controlling the motion of subjects in generated video through a sequence of poses. It enables precise control over subject motion and has important applications in animation. However, current pose-guided video generation methods are limited to accepting only human poses as input, thus generalizing poorly to pose of other subjects. To address this issue, we propose PoseAnything, the first universal pose-guided video generation framework capable of handling both human and non-human characters, supporting arbitrary skeletal inputs. To enhance consistency preservation during motion, we introduce Part-aware Temporal Coherence Module, which divides the subject into different parts, establishes part correspondences, and computes cross-attention between corresponding parts across frames to achieve fine-grained part-level consistency. Additionally, we propose Subject and Camera Motion Decoupled CFG, a novel guidance strategy that, for the first time, enables independent camera movement control in pose-guided video generation, by separately injecting subject and camera motion control information into the positive and negative anchors of CFG. Furthermore, we present XPose, a high-quality public dataset containing 50,000 non-human pose-video pairs, along with an automated pipeline for annotation and filtering. Extensive experiments demonstrate that Pose-Anything significantly outperforms state-of-the-art methods in both effectiveness and generalization.
3.34Test-Time Modification: Inverse Domain Transformation for Robust Perception¶
2025/12/16 05:02 GTM
Generative foundation models contain broad visual knowledge and can produce diverse image variations, making them particularly promising for advancing domain generalization tasks. While they can be used for training data augmentation, synthesizing comprehensive target-domain variations remains slow, expensive, and incomplete. We propose an alternative: using diffusion models at test time to map target images back to the source distribution where the downstream model was trained. This approach requires only a source domain description, preserves the task model, and eliminates large-scale synthetic data generation. We demonstrate consistent improvements across segmentation, detection, and classification tasks under challenging environmental shifts in real-to-real domain generalization scenarios with unknown target distributions. Our analysis spans multiple generative and downstream models, including an ensemble variant for enhanced robustness. The method achieves substantial relative gains: 137% on BDD100K-Night, 68% on ImageNet-R, and 62% on DarkZurich.
3.35IMILIA: interpretable multiple instance learning for inflammation prediction in IBD from H&E whole slide images¶
2025/12/16 05:02 GTM
As the therapeutic target for Inflammatory Bowel Disease (IBD) shifts toward histologic remission, the accurate assessment of microscopic inflammation has become increasingly central for evaluating disease activity and response to treatment. In this work, we introduce IMILIA (Interpretable Multiple Instance Learning for Inflammation Analysis), an end-to-end framework designed for the prediction of inflammation presence in IBD digitized slides stained with hematoxylin and eosin (H&E), followed by the automated computation of markers characterizing tissue regions driving the predictions. IMILIA is composed of an inflammation prediction module, consisting of a Multiple Instance Learning (MIL) model, and an interpretability module, divided in two blocks: HistoPLUS, for cell instance detection, segmentation and classification; and EpiSeg, for epithelium segmentation. IMILIA achieves a cross-validation ROC-AUC of 0.83 on the discovery cohort, and a ROC-AUC of 0.99 and 0.84 on two external validation cohorts. The interpretability module yields biologically consistent insights: tiles with higher predicted scores show increased densities of immune cells (lymphocytes, plasmocytes, neutrophils and eosinophils), whereas lower-scored tiles predominantly contain normal epithelial cells. Notably, these patterns were consistent across all datasets. Code and models to partially replicate the results on the public IBDColEpi dataset can be found at https://
3.36Self-Supervised Ultrasound Representation Learning for Renal Anomaly Prediction in Prenatal Imaging¶
2025/12/16 05:02 GTM
Prenatal ultrasound is the cornerstone for detecting congenital anomalies of the kidneys and urinary tract, but diagnosis is limited by operator dependence and suboptimal imaging conditions. We sought to assess the performance of a self-supervised ultrasound foundation model for automated fetal renal anomaly classification using a curated dataset of 969 two-dimensional ultrasound images. A pretrained Ultrasound Self-Supervised Foundation Model with Masked Autoencoding (USF-MAE) was fine-tuned for binary and multi-class classification of normal kidneys, urinary tract dilation, and multicystic dysplastic kidney. Models were compared with a DenseNet-169 convolutional baseline using cross-validation and an independent test set. USF-MAE consistently improved upon the baseline across all evaluation metrics in both binary and multi-class settings. USF-MAE achieved an improvement of about 1.87% (AUC) and 7.8% (F1-score) on the validation set, 2.32% (AUC) and 4.33% (F1-score) on the independent holdout test set. The largest gains were observed in the multi-class setting, where the improvement in AUC was 16.28% and 46.15% in F1-score. To facilitate model interpretability, Score-CAM visualizations were adapted for a transformer architecture and show that model predictions were informed by known, clinically relevant renal structures, including the renal pelvis in urinary tract dilation and cystic regions in multicystic dysplastic kidney. These results show that ultrasound-specific self-supervised learning can generate a useful representation as a foundation for downstream diagnostic tasks. The proposed framework offers a robust, interpretable approach to support the prenatal detection of renal anomalies and demonstrates the promise of foundation models in obstetric imaging.
3.37A Domain-Adapted Lightweight Ensemble for Resource-Efficient Few-Shot Plant Disease Classification¶
2025/12/16 05:02 GTM
Accurate and timely identification of plant leaf diseases is essential for resilient and sustainable agriculture, yet most deep learning approaches rely on large annotated datasets and computationally intensive models that are unsuitable for data-scarce and resource-constrained environments. To address these challenges we present a few-shot learning approach within a lightweight yet efficient framework that combines domain-adapted MobileNetV2 and MobileNetV3 models as feature extractors, along with a feature fusion technique to generate robust feature representation. For the classification task, the fused features are passed through a Bi-LSTM classifier enhanced with attention mechanisms to capture sequential dependencies and focus on the most relevant features, thereby achieving optimal classification performance even in complex, real-world environments with noisy or cluttered backgrounds. The proposed framework was evaluated across multiple experimental setups, including both laboratory-controlled and field-captured datasets. On tomato leaf diseases from the PlantVillage dataset, it consistently improved performance across 1 to 15 shot scenarios, reaching 98.23+-0.33% at 15 shot, closely approaching the 99.98% SOTA benchmark achieved by a Transductive LSTM with attention, while remaining lightweight and mobile-friendly. Under real-world conditions using field images from the Dhan Shomadhan dataset, it maintained robust performance, reaching 69.28+-1.49% at 15-shot and demonstrating strong resilience to complex backgrounds. Notably, it also outperformed the previous SOTA accuracy of 96.0% on six diseases from PlantVillage, achieving 99.72% with only 15-shot learning. With a compact model size of approximately 40 MB and inference complexity of approximately 1.12 GFLOPs, this work establishes a scalable, mobile-ready foundation for precise plant disease diagnostics in data-scarce regions.
3.38MineTheGap: Automatic Mining of Biases in Text-to-Image Models¶
2025/12/16 05:02 GTM
Text-to-Image (TTI) models generate images based on text prompts, which often leave certain aspects of the desired image ambiguous. When faced with these ambiguities, TTI models have been shown to exhibit biases in their interpretations. These biases can have societal impacts, e.g., when showing only a certain race for a stated occupation. They can also affect user experience when creating redundancy within a set of generated images instead of spanning diverse possibilities. Here, we introduce MineTheGap - a method for automatically mining prompts that cause a TTI model to generate biased outputs. Our method goes beyond merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm to iteratively refine a pool of prompts, seeking for those that expose biases. This optimization process is driven by a novel bias score, which ranks biases according to their severity, as we validate on a dataset with known biases. For a given prompt, this score is obtained by comparing the distribution of generated images to the distribution of LLM-generated texts that constitute variations on the prompt. Code and examples are available on the project’s webpage.
3.39RecTok: Reconstruction Distillation along Rectified Flow¶
2025/12/16 05:02 GTM
Visual tokenizers play a crucial role in diffusion models. The dimensionality of latent space governs both reconstruction fidelity and the semantic expressiveness of the latent feature. However, a fundamental trade-off is inherent between dimensionality and generation quality, constraining existing methods to low-dimensional latent spaces. Although recent works have leveraged vision foundation models to enrich the semantics of visual tokenizers and accelerate convergence, high-dimensional tokenizers still underperform their low-dimensional counterparts. In this work, we propose RecTok, which overcomes the limitations of high-dimensional visual tokenizers through two key innovations: flow semantic distillation and reconstruction--alignment distillation. Our key insight is to make the forward flow in flow matching semantically rich, which serves as the training space of diffusion transformers, rather than focusing on the latent space as in previous works. Specifically, our method distills the semantic information in VFMs into the forward flow trajectories in flow matching. And we further enhance the semantics by introducing a masked feature reconstruction loss. Our RecTok achieves superior image reconstruction, generation quality, and discriminative performance. It achieves state-of-the-art results on the gFID-50K under both with and without classifier-free guidance settings, while maintaining a semantically rich latent space structure. Furthermore, as the latent dimensionality increases, we observe consistent improvements. Code and model are available at https://
3.40Learning to Generate Cross-Task Unexploitable Examples¶
2025/12/16 05:02 GTM
Unexploitable example generation aims to transform personal images into their unexploitable (unlearnable) versions before they are uploaded online, thereby preventing unauthorized exploitation of online personal images. Recently, this task has garnered significant research attention due to its critical relevance to personal data privacy. Yet, despite recent progress, existing methods for this task can still suffer from limited practical applicability, as they can fail to generate examples that are broadly unexploitable across different real-world computer vision tasks. To deal with this problem, in this work, we propose a novel Meta Cross-Task Unexploitable Example Generation (MCT-UEG) framework. At the core of our framework, to optimize the unexploitable example generator for effectively producing broadly unexploitable examples, we design a flat-minima-oriented meta training and testing scheme. Extensive experiments show the efficacy of our framework.
3.41USTM: Unified Spatial and Temporal Modeling for Continuous Sign Language Recognition¶
2025/12/16 05:02 GTM
Continuous sign language recognition (CSLR) requires precise spatio-temporal modeling to accurately recognize sequences of gestures in videos. Existing frameworks often rely on CNN-based spatial backbones combined with temporal convolution or recurrent modules. These techniques fail in capturing fine-grained hand and facial cues and modeling long-range temporal dependencies. To address these limitations, we propose the Unified Spatio-Temporal Modeling (USTM) framework, a spatio-temporal encoder that effectively models complex patterns using a combination of a Swin Transformer backbone enhanced with lightweight temporal adapter with positional embeddings (TAPE). Our framework captures fine-grained spatial features alongside short and long-term temporal context, enabling robust sign language recognition from RGB videos without relying on multi-stream inputs or auxiliary modalities. Extensive experiments on benchmarked datasets including PHOENIX14, PHOENIX14T, and CSL-Daily demonstrate that USTM achieves state-of-the-art performance against RGB-based as well as multi-modal CSLR approaches, while maintaining competitive performance against multi-stream approaches. These results highlight the strength and efficacy of the USTM framework for CSLR. The code is available at https://
3.42Computer vision training dataset generation for robotic environments using Gaussian splatting¶
2025/12/16 05:02 GTM
This paper introduces a novel pipeline for generating large-scale, highly realistic, and automatically labeled datasets for computer vision tasks in robotic environments. Our approach addresses the critical challenges of the domain gap between synthetic and real-world imagery and the time-consuming bottleneck of manual annotation. We leverage 3D Gaussian Splatting (3DGS) to create photorealistic representations of the operational environment and objects. These assets are then used in a game engine where physics simulations create natural arrangements. A novel, two-pass rendering technique combines the realism of splats with a shadow map generated from proxy meshes. This map is then algorithmically composited with the image to add both physically plausible shadows and subtle highlights, significantly enhancing realism. Pixel-perfect segmentation masks are generated automatically and formatted for direct use with object detection models like YOLO. Our experiments show that a hybrid training strategy, combining a small set of real images with a large volume of our synthetic data, yields the best detection and segmentation performance, confirming this as an optimal strategy for efficiently achieving robust and accurate models.
3.43End2Reg: Learning Task-Specific Segmentation for Markerless Registration in Spine Surgery¶
2025/12/16 05:02 GTM
Purpose: Intraoperative navigation in spine surgery demands millimeter-level accuracy. Current systems based on intraoperative radiographic imaging and bone-anchored markers are invasive, radiation-intensive and workflow disruptive. Recent markerless RGB-D registration methods offer a promising alternative, but existing approaches rely on weak segmentation labels to isolate relevant anatomical structures, which can propagate errors throughout registration. Methods: We present End2Reg an end-to-end deep learning framework that jointly optimizes segmentation and registration, eliminating the need for weak segmentation labels and manual steps. The network learns segmentation masks specifically optimized for registration, guided solely by the registration objective without direct segmentation supervision. Results: The proposed framework achieves state-of-the-art performance on ex- and in-vivo benchmarks, reducing median Target Registration Error by 32% to 1.83mm and mean Root Mean Square Error by 45% to 3.95mm, respectively. An ablation study confirms that end-to-end optimization significantly improves registration accuracy. Conclusion: The presented end-to-end RGB-D registration pipeline removes dependency on weak labels and manual steps, advancing towards fully automatic, markerless intraoperative navigation. Code and interactive visualizations are available at: https://
3.44rNCA: Self-Repairing Segmentation Masks¶
2025/12/16 05:02 GTM
Accurately predicting topologically correct masks remains a difficult task for general segmentation models, which often produce fragmented or disconnected outputs. Fixing these artifacts typically requires hand-crafted refinement rules or architectures specialized to a particular task. Here, we show that Neural Cellular Automata (NCA) can be directly re-purposed as an effective refinement mechanism, using local, iterative updates guided by image context to repair segmentation masks. By training on imperfect masks and ground truths, the automaton learns the structural properties of the target shape while relying solely on local information. When applied to coarse, globally predicted masks, the learned dynamics progressively reconnect broken regions, prune loose fragments and converge towards stable, topologically consistent results. We show how refinement NCA (rNCA) can be easily applied to repair common topological errors produced by different base segmentation models and tasks: for fragmented retinal vessels, it yields 2-3% gains in Dice/clDice and improves Betti errors, reducing errors by 60% and by 20%; for myocardium, it repairs 61.5% of broken cases in a zero-shot setting while lowering ASSD and HD by 19% and 16%, respectively. This showcases NCA as effective and broadly applicable refiners.
3.45Beyond the Visible: Disocclusion-Aware Editing via Proxy Dynamic Graphs¶
2025/12/16 05:02 GTM
We address image-to-video generation with explicit user control over the final frame’s disoccluded regions. Current image-to-video pipelines produce plausible motion but struggle to generate predictable, articulated motions while enforcing user-specified content in newly revealed areas. Our key idea is to separate motion specification from appearance synthesis: we introduce a lightweight, user-editable Proxy Dynamic Graph (PDG) that deterministically yet approximately drives part motion, while a frozen diffusion prior is used to synthesize plausible appearance that follows that motion. In our training-free pipeline, the user loosely annotates and reposes a PDG, from which we compute a dense motion flow to leverage diffusion as a motion-guided shader. We then let the user edit appearance in the disoccluded areas of the image, and exploit the visibility information encoded by the PDG to perform a latent-space composite that reconciles motion with user intent in these areas. This design yields controllable articulation and user control over disocclusions without fine-tuning. We demonstrate clear advantages against state-of-the-art alternatives towards images turned into short videos of articulated objects, furniture, vehicles, and deformables. Our method mixes generative control, in the form of loose pose and structure, with predictable controls, in the form of appearance specification in the final frame in the disoccluded regions, unlocking a new image-to-video workflow. Code will be released on acceptance. Project page: https://
3.46Unlocking Generalization in Polyp Segmentation with DINO Self-Attention “keys”¶
2025/12/16 05:02 GTM
Automatic polyp segmentation is crucial for improving the clinical identification of colorectal cancer (CRC). While Deep Learning (DL) techniques have been extensively researched for this problem, current methods frequently struggle with generalization, particularly in data-constrained or challenging settings. Moreover, many existing polyp segmentation methods rely on complex, task-specific architectures. To address these limitations, we present a framework that leverages the intrinsic robustness of DINO self-attention “key” features for robust segmentation. Unlike traditional methods that extract tokens from the deepest layers of the Vision Transformer (ViT), our approach leverages the key features of the self-attention module with a simple convolutional decoder to predict polyp masks, resulting in enhanced performance and better generalizability. We validate our approach using a multi-center dataset under two rigorous protocols: Domain Generalization (DG) and Extreme Single Domain Generalization (ESDG). Our results, supported by a comprehensive statistical analysis, demonstrate that this pipeline achieves state-of-the-art (SOTA) performance, significantly enhancing generalization, particularly in data-scarce and challenging scenarios. While avoiding a polyp-specific architecture, we surpass well-established models like nnU-Net and UM-Net. Additionally, we provide a systematic benchmark of the DINO framework’s evolution, quantifying the specific impact of architectural advancements on downstream polyp segmentation performance.
3.47Automated User Identification from Facial Thermograms with Siamese Networks¶
2025/12/16 05:02 GTM
The article analyzes the use of thermal imaging technologies for biometric identification based on facial thermograms. It presents a comparative analysis of infrared spectral ranges (NIR, SWIR, MWIR, and LWIR). The paper also defines key requirements for thermal cameras used in biometric systems, including sensor resolution, thermal sensitivity, and a frame rate of at least 30 Hz. Siamese neural networks are proposed as an effective approach for automating the identification process. In experiments conducted on a proprietary dataset, the proposed method achieved an accuracy of approximately 80%. The study also examines the potential of hybrid systems that combine visible and infrared spectra to overcome the limitations of individual modalities. The results indicate that thermal imaging is a promising technology for developing reliable security systems.
3.48Face Identity Unlearning for Retrieval via Embedding Dispersion¶
2025/12/16 05:02 GTM
Face recognition systems rely on learning highly discriminative and compact identity clusters to enable accurate retrieval. However, as with other surveillance-oriented technologies, such systems raise serious privacy concerns due to their potential for unauthorized identity tracking. While several works have explored machine unlearning as a means of privacy protection, their applicability to face retrieval - especially for modern embedding-based recognition models - remains largely unexplored. In this work, we study the problem of face identity unlearning for retrieval systems and present its inherent challenges. The goal is to make selected identities unretrievable by dispersing their embeddings on the hypersphere and preventing the formation of compact identity clusters that enable re-identification in the gallery. The primary challenge is to achieve this forgetting effect while preserving the discriminative structure of the embedding space and the retrieval performance of the model for the remaining identities. To address this, we evaluate several existing approximate class unlearning methods (e.g., Random Labeling, Gradient Ascent, Boundary Unlearning, and other recent approaches) in the context of face retrieval and propose a simple yet effective dispersion-based unlearning approach. Extensive experiments on standard benchmarks (VGGFace2, CelebA) demonstrate that our method achieves superior forgetting behavior while preserving retrieval utility.
3.49KlingAvatar 2.0 Technical Report¶
2025/12/16 05:02 GTM
Avatar video generation models have achieved remarkable progress in recent years. However, prior work exhibits limited efficiency in generating long-duration high-resolution videos, suffering from temporal drifting, quality degradation, and weak prompt following as video length increases. To address these challenges, we propose KlingAvatar 2.0, a spatio-temporal cascade framework that performs upscaling in both spatial resolution and temporal dimension. The framework first generates low-resolution blueprint video keyframes that capture global semantics and motion, and then refines them into high-resolution, temporally coherent sub-clips using a first-last frame strategy, while retaining smooth temporal transitions in long-form videos. To enhance cross-modal instruction fusion and alignment in extended videos, we introduce a Co-Reasoning Director composed of three modality-specific large language model (LLM) experts. These experts reason about modality priorities and infer underlying user intent, converting inputs into detailed storylines through multi-turn dialogue. A Negative Director further refines negative prompts to improve instruction alignment. Building on these components, we extend the framework to support ID-specific multi-character control. Extensive experiments demonstrate that our model effectively addresses the challenges of efficient, multimodally aligned long-form high-resolution video generation, delivering enhanced visual clarity, realistic lip-teeth rendering with accurate lip synchronization, strong identity preservation, and coherent multimodal instruction following.
3.50ShowTable: Unlocking Creative Table Visualization with Collaborative Reflection and Refinement¶
2025/12/16 05:02 GTM
While existing generation and unified models excel at general image generation, they struggle with tasks requiring deep reasoning, planning, and precise data-to-visual mapping abilities beyond general scenarios. To push beyond the existing limitations, we introduce a new and challenging task: creative table visualization, requiring the model to generate an infographic that faithfully and aesthetically visualizes the data from a given table. To address this challenge, we propose ShowTable, a pipeline that synergizes MLLMs with diffusion models via a progressive self-correcting process. The MLLM acts as the central orchestrator for reasoning the visual plan and judging visual errors to provide refined instructions, the diffusion execute the commands from MLLM, achieving high-fidelity results. To support this task and our pipeline, we introduce three automated data construction pipelines for training different modules. Furthermore, we introduce TableVisBench, a new benchmark with 800 challenging instances across 5 evaluation dimensions, to assess performance on this task. Experiments demonstrate that our pipeline, instantiated with different models, significantly outperforms baselines, highlighting its effective multi-modal reasoning, generation, and error correction capabilities.
3.51LINA: Learning INterventions Adaptively for Physical Alignment and Generalization in Diffusion Models¶
2025/12/16 05:02 GTM
Diffusion models (DMs) have achieved remarkable success in image and video generation. However, they still struggle with (1) physical alignment and (2) out-of-distribution (OOD) instruction following. We argue that these issues stem from the models’ failure to learn causal directions and to disentangle causal factors for novel recombination. We introduce the Causal Scene Graph (CSG) and the Physical Alignment Probe (PAP) dataset to enable diagnostic interventions. This analysis yields three key insights. First, DMs struggle with multi-hop reasoning for elements not explicitly determined in the prompt. Second, the prompt embedding contains disentangled representations for texture and physics. Third, visual causal structure is disproportionately established during the initial, computationally limited denoising steps. Based on these findings, we introduce LINA (Learning INterventions Adaptively), a novel framework that learns to predict prompt-specific interventions, which employs (1) targeted guidance in the prompt and visual latent spaces, and (2) a reallocated, causality-aware denoising schedule. Our approach enforces both physical alignment and OOD instruction following in image and video DMs, achieving state-of-the-art performance on challenging causal generation tasks and the Winoground dataset. Our project page is at https://
3.52CausalCLIP: Causally-Informed Feature Disentanglement and Filtering for Generalizable Detection of Generated Images¶
2025/12/16 05:02 GTM
The rapid advancement of generative models has increased the demand for generated image detectors capable of generalizing across diverse and evolving generation techniques. However, existing methods, including those leveraging pre-trained vision-language models, often produce highly entangled representations, mixing task-relevant forensic cues (causal features) with spurious or irrelevant patterns (non-causal features), thus limiting generalization. To address this issue, we propose CausalCLIP, a framework that explicitly disentangles causal from non-causal features and employs targeted filtering guided by causal inference principles to retain only the most transferable and discriminative forensic cues. By modeling the generation process with a structural causal model and enforcing statistical independence through Gumbel-Softmax-based feature masking and Hilbert-Schmidt Independence Criterion (HSIC) constraints, CausalCLIP isolates stable causal features robust to distribution shifts. When tested on unseen generative models from different series, CausalCLIP demonstrates strong generalization ability, achieving improvements of 6.83% in accuracy and 4.06% in average precision over state-of-the-art methods.
3.53Video Reality Test: Can AI-Generated ASMR Videos fool VLMs and Humans?¶
2025/12/16 05:02 GTM
Recent advances in video generation have produced vivid content that are often indistinguishable from real videos, making AI-generated video detection an emerging societal challenge. Prior AIGC detection benchmarks mostly evaluate video without audio, target broad narrative domains, and focus on classification solely. Yet it remains unclear whether state-of-the-art video generation models can produce immersive, audio-paired videos that reliably deceive humans and VLMs. To this end, we introduce Video Reality Test, an ASMR-sourced video benchmark suite for testing perceptual realism under tight audio-visual coupling, featuring the following dimensions: \textbf{(i) Immersive ASMR video-audio sources.} Built on carefully curated real ASMR videos, the benchmark targets fine-grained action-object interactions with diversity across objects, actions, and backgrounds. \textbf{(ii) Peer-Review evaluation.} An adversarial creator-reviewer protocol where video generation models act as creators aiming to fool reviewers, while VLMs serve as reviewers seeking to identify fakeness. Our experimental findings show: The best creator Veo3.1-Fast even fools most VLMs: the strongest reviewer (Gemini 2.5-Pro) achieves only 56% accuracy (random 50%), far below that of human experts (81.25%). Adding audio improves real-fake discrimination, yet superficial cues such as watermarks can still significantly mislead models. These findings delineate the current boundary of video generation realism and expose limitations of VLMs in perceptual fidelity and audio-visual consistency. Our code is available at https://
3.54CogniEdit: Dense Gradient Flow Optimization for Fine-Grained Image Editing¶
2025/12/16 05:02 GTM
Instruction-based image editing with diffusion models has achieved impressive results, yet existing methods strug- gle with fine-grained instructions specifying precise attributes such as colors, positions, and quantities. While recent approaches employ Group Relative Policy Optimization (GRPO) for alignment, they optimize only at individual sampling steps, providing sparse feedback that limits trajectory-level control. We propose a unified framework CogniEdit, combining multi-modal reasoning with dense reward optimization that propagates gradients across con- secutive denoising steps, enabling trajectory-level gradient flow through the sampling process. Our method comprises three components: (1) Multi-modal Large Language Models for decomposing complex instructions into actionable directives, (2) Dynamic Token Focus Relocation that adaptively emphasizes fine-grained attributes, and (3) Dense GRPO-based optimization that propagates gradients across consecutive steps for trajectory-level supervision. Extensive experiments on benchmark datasets demonstrate that our CogniEdit achieves state-of-the-art performance in balancing fine-grained instruction following with visual quality and editability preservation
3.55Post-Training and Test-Time Scaling of Generative Agent Behavior Models for Interactive Autonomous Driving¶
2025/12/16 05:02 GTM
Learning interactive motion behaviors among multiple agents is a core challenge in autonomous driving. While imitation learning models generate realistic trajectories, they often inherit biases from datasets dominated by safe demonstrations, limiting robustness in safety-critical cases. Moreover, most studies rely on open-loop evaluation, overlooking compounding errors in closed-loop execution. We address these limitations with two complementary strategies. First, we propose Group Relative Behavior Optimization (GRBO), a reinforcement learning post-training method that fine-tunes pretrained behavior models via group relative advantage maximization with human regularization. Using only 10% of the training dataset, GRBO improves safety performance by over 40% while preserving behavioral realism. Second, we introduce Warm-K, a warm-started Top-K sampling strategy that balances consistency and diversity in motion selection. Our Warm-K method-based test-time scaling enhances behavioral consistency and reactivity at test time without retraining, mitigating covariate shift and reducing performance discrepancies. Demo videos are available in the supplementary material.
3.56Toward Ambulatory Vision: Learning Visually-Grounded Active View Selection¶
2025/12/16 05:02 GTM
Vision Language Models (VLMs) excel at visual question answering (VQA) but remain limited to snapshot vision, reasoning from static images. In contrast, embodied agents require ambulatory vision, actively moving to obtain more informative views. We introduce Visually Grounded Active View Selection (VG-AVS), a task that selects the most informative next viewpoint using only the visual information in the current image, without relying on scene memory or external knowledge. To support this task, we construct a synthetic dataset with automatically generated paired query-target views and question-answer prompts. We also propose a framework that fine-tunes pretrained VLMs through supervised fine-tuning (SFT) followed by RL-based policy optimization. Our approach achieves strong question answering performance based on viewpoint selection and generalizes robustly to unseen synthetic and real scenes. Furthermore, incorporating our learned VG-AVS framework into existing scene-exploration-based EQA systems improves downstream question-answering accuracy.
3.57STARCaster: Spatio-Temporal AutoRegressive Video Diffusion for Identity- and View-Aware Talking Portraits¶
2025/12/16 05:02 GTM
This paper presents STARCaster, an identity-aware spatio-temporal video diffusion model that addresses both speech-driven portrait animation and free-viewpoint talking portrait synthesis, given an identity embedding or reference image, within a unified framework. Existing 2D speech-to-video diffusion models depend heavily on reference guidance, leading to limited motion diversity. At the same time, 3D-aware animation typically relies on inversion through pre-trained tri-plane generators, which often leads to imperfect reconstructions and identity drift. We rethink reference- and geometry-based paradigms in two ways. First, we deviate from strict reference conditioning at pre-training by introducing softer identity constraints. Second, we address 3D awareness implicitly within the 2D video domain by leveraging the inherent multi-view nature of video data. STARCaster adopts a compositional approach progressing from ID-aware motion modeling, to audio-visual synchronization via lip reading-based supervision, and finally to novel view animation through temporal-to-spatial adaptation. To overcome the scarcity of 4D audio-visual data, we propose a decoupled learning approach in which view consistency and temporal coherence are trained independently. A self-forcing training scheme enables the model to learn from longer temporal contexts than those generated at inference, mitigating the overly static animations common in existing autoregressive approaches. Comprehensive evaluations demonstrate that STARCaster generalizes effectively across tasks and identities, consistently surpassing prior approaches in different benchmarks.
3.58Ego-EXTRA: video-language Egocentric Dataset for EXpert-TRAinee assistance¶
2025/12/16 05:02 GTM
We present Ego-EXTRA, a video-language Egocentric Dataset for EXpert-TRAinee assistance. Ego-EXTRA features 50 hours of unscripted egocentric videos of subjects performing procedural activities (the trainees) while guided by real-world experts who provide guidance and answer specific questions using natural language. Following a ``Wizard of OZ’’ data collection paradigm, the expert enacts a wearable intelligent assistant, looking at the activities performed by the trainee exclusively from their egocentric point of view, answering questions when asked by the trainee, or proactively interacting with suggestions during the procedures. This unique data collection protocol enables Ego-EXTRA to capture a high-quality dialogue in which expert-level feedback is provided to the trainee. Two-way dialogues between experts and trainees are recorded, transcribed, and used to create a novel benchmark comprising more than 15k high-quality Visual Question Answer sets, which we use to evaluate Multimodal Large Language Models. The results show that Ego-EXTRA is challenging and highlight the limitations of current models when used to provide expert-level assistance to the user. The Ego-EXTRA dataset is publicly available to support the benchmark of egocentric video-language assistants: https://
3.59POLAR: A Portrait OLAT Dataset and Generative Framework for Illumination-Aware Face Modeling¶
2025/12/16 05:02 GTM
Face relighting aims to synthesize realistic portraits under novel illumination while preserving identity and geometry. However, progress remains constrained by the limited availability of large-scale, physically consistent illumination data. To address this, we introduce POLAR, a large-scale and physically calibrated One-Light-at-a-Time (OLAT) dataset containing over 200 subjects captured under 156 lighting directions, multiple views, and diverse expressions. Building upon POLAR, we develop a flow-based generative model POLARNet that predicts per-light OLAT responses from a single portrait, capturing fine-grained and direction-aware illumination effects while preserving facial identity. Unlike diffusion or background-conditioned methods that rely on statistical or contextual cues, our formulation models illumination as a continuous, physically interpretable transformation between lighting states, enabling scalable and controllable relighting. Together, POLAR and POLARNet form a unified illumination learning framework that links real data, generative synthesis, and physically grounded relighting, establishing a self-sustaining “chicken-and-egg” cycle for scalable and reproducible portrait illumination.
3.60CoRA: A Collaborative Robust Architecture with Hybrid Fusion for Efficient Perception¶
2025/12/16 05:02 GTM
Collaborative perception has garnered significant attention as a crucial technology to overcome the perceptual limitations of single-agent systems. Many state-of-the-art (SOTA) methods have achieved communication efficiency and high performance via intermediate fusion. However, they share a critical vulnerability: their performance degrades under adverse communication conditions due to the misalignment induced by data transmission, which severely hampers their practical deployment. To bridge this gap, we re-examine different fusion paradigms, and recover that the strengths of intermediate and late fusion are not a trade-off, but a complementary pairing. Based on this key insight, we propose CoRA, a novel collaborative robust architecture with a hybrid approach to decouple performance from robustness with low communication. It is composed of two components: a feature-level fusion branch and an object-level correction branch. Its first branch selects critical features and fuses them efficiently to ensure both performance and scalability. The second branch leverages semantic relevance to correct spatial displacements, guaranteeing resilience against pose errors. Experiments demonstrate the superiority of CoRA. Under extreme scenarios, CoRA improves upon its baseline performance by approximately 19% in AP@0.7 with more than 5x less communication volume, which makes it a promising solution for robust collaborative perception.
3.61MMDrive: Interactive Scene Understanding Beyond Vision with Multi-representational Fusion¶
2025/12/16 05:02 GTM
Vision-language models enable the understanding and reasoning of complex traffic scenarios through multi-source information fusion, establishing it as a core technology for autonomous driving. However, existing vision-language models are constrained by the image understanding paradigm in 2D plane, which restricts their capability to perceive 3D spatial information and perform deep semantic fusion, resulting in suboptimal performance in complex autonomous driving environments. This study proposes MMDrive, an multimodal vision-language model framework that extends traditional image understanding to a generalized 3D scene understanding framework. MMDrive incorporates three complementary modalities, including occupancy maps, LiDAR point clouds, and textual scene descriptions. To this end, it introduces two novel components for adaptive cross-modal fusion and key information extraction. Specifically, the Text-oriented Multimodal Modulator dynamically weights the contributions of each modality based on the semantic cues in the question, guiding context-aware feature integration. The Cross-Modal Abstractor employs learnable abstract tokens to generate compact, cross-modal summaries that highlight key regions and essential semantics. Comprehensive evaluations on the DriveLM and NuScenes-QA benchmarks demonstrate that MMDrive achieves significant performance gains over existing vision-language models for autonomous driving, with a BLEU-4 score of 54.56 and METEOR of 41.78 on DriveLM, and an accuracy score of 62.7% on NuScenes-QA. MMDrive effectively breaks the traditional image-only understanding barrier, enabling robust multimodal reasoning in complex driving environments and providing a new foundation for interpretable autonomous driving scene understanding.
3.62Seeing the Whole Picture: Distribution-Guided Data-Free Distillation for Semantic Segmentation¶
2025/12/16 05:02 GTM
Semantic segmentation requires a holistic understanding of the physical world, as it assigns semantic labels to spatially continuous and structurally coherent objects rather than to isolated pixels. However, existing data-free knowledge distillation (DFKD) methods-primarily designed for classification-often disregard this continuity, resulting in significant performance degradation when applied directly to segmentation tasks. In this paper, we introduce DFSS, a novel data-free distillation framework tailored for semantic segmentation. Unlike prior approaches that treat pixels independently, DFSS respects the structural and contextual continuity of real-world scenes. Our key insight is to leverage Batch Normalization (BN) statistics from a teacher model to guide Approximate Distribution Sampling (ADS), enabling the selection of data that better reflects the original training distribution-without relying on potentially misleading teacher predictions. Additionally, we propose Weighted Distribution Progressive Distillation (WDPD), which dynamically prioritizes reliable samples that are more closely aligned with the original data distribution early in training and gradually incorporates more challenging cases, mirroring the natural progression of learning in human perception. Extensive experiments on standard benchmarks demonstrate that DFSS consistently outperforms existing data-free distillation methods for semantic segmentation, achieving state-of-the-art results with significantly reduced reliance on auxiliary data.
3.63A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis¶
2025/12/16 05:02 GTM
The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.
3.64Intrinsic Image Fusion for Multi-View 3D Material Reconstruction¶
2025/12/16 05:02 GTM
We introduce Intrinsic Image Fusion, a method that reconstructs high-quality physically based materials from multi-view images. Material reconstruction is highly underconstrained and typically relies on analysis-by-synthesis, which requires expensive and noisy path tracing. To better constrain the optimization, we incorporate single-view priors into the reconstruction process. We leverage a diffusion-based material estimator that produces multiple, but often inconsistent, candidate decompositions per view. To reduce the inconsistency, we fit an explicit low-dimensional parametric function to the predictions. We then propose a robust optimization framework using soft per-view prediction selection together with confidence-based soft multi-view inlier set to fuse the most consistent predictions of the most confident views into a consistent parametric material space. Finally, we use inverse path tracing to optimize for the low-dimensional parameters. Our results outperform state-of-the-art methods in material disentanglement on both synthetic and real scenes, producing sharp and clean reconstructions suitable for high-quality relighting.
3.65StarryGazer: Leveraging Monocular Depth Estimation Models for Domain-Agnostic Single Depth Image Completion¶
2025/12/16 05:02 GTM
The problem of depth completion involves predicting a dense depth image from a single sparse depth map and an RGB image. Unsupervised depth completion methods have been proposed for various datasets where ground truth depth data is unavailable and supervised methods cannot be applied. However, these models require auxiliary data to estimate depth values, which is far from real scenarios. Monocular depth estimation (MDE) models can produce a plausible relative depth map from a single image, but there is no work to properly combine the sparse depth map with MDE for depth completion; a simple affine transformation to the depth map will yield a high error since MDE are inaccurate at estimating depth difference between objects. We introduce StarryGazer, a domain-agnostic framework that predicts dense depth images from a single sparse depth image and an RGB image without relying on ground-truth depth by leveraging the power of large MDE models. First, we employ a pre-trained MDE model to produce relative depth images. These images are segmented and randomly rescaled to form synthetic pairs for dense pseudo-ground truth and corresponding sparse depths. A refinement network is trained with the synthetic pairs, incorporating the relative depth maps and RGB images to improve the model’s accuracy and robustness. StarryGazer shows superior results over existing unsupervised methods and transformed MDE results on various datasets, demonstrating that our framework exploits the power of MDE models while appropriately fixing errors using sparse depth information.
3.66Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models¶
2025/12/16 05:02 GTM
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier’s weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
3.67Towards Unified Co-Speech Gesture Generation via Hierarchical Implicit Periodicity Learning¶
2025/12/16 05:02 GTM
Generating 3D-based body movements from speech shows great potential in extensive downstream applications, while it still suffers challenges in imitating realistic human movements. Predominant research efforts focus on end-to-end generation schemes to generate co-speech gestures, spanning GANs, VQ-VAE, and recent diffusion models. As an ill-posed problem, in this paper, we argue that these prevailing learning schemes fail to model crucial inter- and intra-correlations across different motion units, i.e. head, body, and hands, thus leading to unnatural movements and poor coordination. To delve into these intrinsic correlations, we propose a unified Hierarchical Implicit Periodicity (HIP) learning approach for audio-inspired 3D gesture generation. Different from predominant research, our approach models this multi-modal implicit relationship by two explicit technique insights: i) To disentangle the complicated gesture movements, we first explore the gesture motion phase manifolds with periodic autoencoders to imitate human natures from realistic distributions while incorporating non-period ones from current latent states for instance-level diversities. ii) To model the hierarchical relationship of face motions, body gestures, and hand movements, driving the animation with cascaded guidance during learning. We exhibit our proposed approach on 3D avatars and extensive experiments show our method outperforms the state-of-the-art co-speech gesture generation methods by both quantitative and qualitative evaluations. Code and models will be publicly available.
3.68LeafTrackNet: A Deep Learning Framework for Robust Leaf Tracking in Top-Down Plant Phenotyping¶
2025/12/16 05:02 GTM
High resolution phenotyping at the level of individual leaves offers fine-grained insights into plant development and stress responses. However, the full potential of accurate leaf tracking over time remains largely unexplored due to the absence of robust tracking methods-particularly for structurally complex crops such as canola. Existing plant-specific tracking methods are typically limited to small-scale species or rely on constrained imaging conditions. In contrast, generic multi-object tracking (MOT) methods are not designed for dynamic biological scenes. Progress in the development of accurate leaf tracking models has also been hindered by a lack of large-scale datasets captured under realistic conditions. In this work, we introduce CanolaTrack, a new benchmark dataset comprising 5,704 RGB images with 31,840 annotated leaf instances spanning the early growth stages of 184 canola plants. To enable accurate leaf tracking over time, we introduce LeafTrackNet, an efficient framework that combines a YOLOv10-based leaf detector with a MobileNetV3-based embedding network. During inference, leaf identities are maintained over time through an embedding-based memory association strategy. LeafTrackNet outperforms both plant-specific trackers and state-of-the-art MOT baselines, achieving a 9% HOTA improvement on CanolaTrack. With our work we provide a new standard for leaf-level tracking under realistic conditions and we provide CanolaTrack - the largest dataset for leaf tracking in agriculture crops, which will contribute to future research in plant phenotyping. Our code and dataset are publicly available at https://
3.69DePT3R: Joint Dense Point Tracking and 3D Reconstruction of Dynamic Scenes in a Single Forward Pass¶
2025/12/16 05:02 GTM
Current methods for dense 3D point tracking in dynamic scenes typically rely on pairwise processing, require known camera poses, or assume a temporal ordering to input frames, constraining their flexibility and applicability. Additionally, recent advances have successfully enabled efficient 3D reconstruction from large-scale, unposed image collections, underscoring opportunities for unified approaches to dynamic scene understanding. Motivated by this, we propose DePT3R, a novel framework that simultaneously performs dense point tracking and 3D reconstruction of dynamic scenes from multiple images in a single forward pass. This multi-task learning is achieved by extracting deep spatio-temporal features with a powerful backbone and regressing pixel-wise maps with dense prediction heads. Crucially, DePT3R operates without requiring camera poses, substantially enhancing its adaptability and efficiency-especially important in dynamic environments with rapid changes. We validate DePT3R on several challenging benchmarks involving dynamic scenes, demonstrating strong performance and significant improvements in memory efficiency over existing state-of-the-art methods. Data and codes are available via the open repository: https://
3.70Diffusion-Based Restoration for Multi-Modal 3D Object Detection in Adverse Weather¶
2025/12/16 05:02 GTM
Multi-modal 3D object detection is important for reliable perception in robotics and autonomous driving. However, its effectiveness remains limited under adverse weather conditions due to weather-induced distortions and misalignment between different data modalities. In this work, we propose DiffFusion, a novel framework designed to enhance robustness in challenging weather through diffusion-based restoration and adaptive cross-modal fusion. Our key insight is that diffusion models possess strong capabilities for denoising and generating data that can adapt to various weather conditions. Building on this, DiffFusion introduces Diffusion-IR restoring images degraded by weather effects and Point Cloud Restoration (PCR) compensating for corrupted LiDAR data using image object cues. To tackle misalignments between two modalities, we develop Bidirectional Adaptive Fusion and Alignment Module (BAFAM). It enables dynamic multi-modal fusion and bidirectional bird’s-eye view (BEV) alignment to maintain consistent spatial correspondence. Extensive experiments on three public datasets show that DiffFusion achieves state-of-the-art robustness under adverse weather while preserving strong clean-data performance. Zero-shot results on the real-world DENSE dataset further validate its generalization. The implementation of our DiffFusion will be released as open-source.
3.71FID-Net: A Feature-Enhanced Deep Learning Network for Forest Infestation Detection¶
2025/12/16 05:02 GTM
Forest pests threaten ecosystem stability, requiring efficient monitoring. To overcome the limitations of traditional methods in large-scale, fine-grained detection, this study focuses on accurately identifying infected trees and analyzing infestation patterns. We propose FID-Net, a deep learning model that detects pest-affected trees from UAV visible-light imagery and enables infestation analysis via three spatial metrics. Based on YOLOv8n, FID-Net introduces a lightweight Feature Enhancement Module (FEM) to extract disease-sensitive cues, an Adaptive Multi-scale Feature Fusion Module (AMFM) to align and fuse dual-branch features (RGB and FEM-enhanced), and an Efficient Channel Attention (ECA) mechanism to enhance discriminative information efficiently. From detection results, we construct a pest situation analysis framework using: (1) Kernel Density Estimation to locate infection hotspots; (2) neighborhood evaluation to assess healthy trees’ infection risk; (3) DBSCAN clustering to identify high-density healthy clusters as priority protection zones. Experiments on UAV imagery from 32 forest plots in eastern Tianshan, China, show that FID-Net achieves 86.10% precision, 75.44% recall, 82.29% mAP@0.5, and 64.30% mAP@0.5:0.95, outperforming mainstream YOLO models. Analysis confirms infected trees exhibit clear clustering, supporting targeted forest protection. FID-Net enables accurate tree health discrimination and, combined with spatial metrics, provides reliable data for intelligent pest monitoring, early warning, and precise management.
3.72Harmonizing Generalization and Specialization: Uncertainty-Informed Collaborative Learning for Semi-supervised Medical Image Segmentation¶
2025/12/16 05:02 GTM
Vision foundation models have demonstrated strong generalization in medical image segmentation by leveraging large-scale, heterogeneous pretraining. However, they often struggle to generalize to specialized clinical tasks under limited annotations or rare pathological variations, due to a mismatch between general priors and task-specific requirements. To address this, we propose Uncertainty-informed Collaborative Learning (UnCoL), a dual-teacher framework that harmonizes generalization and specialization in semi-supervised medical image segmentation. Specifically, UnCoL distills both visual and semantic representations from a frozen foundation model to transfer general knowledge, while concurrently maintaining a progressively adapting teacher to capture fine-grained and task-specific representations. To balance guidance from both teachers, pseudo-label learning in UnCoL is adaptively regulated by predictive uncertainty, which selectively suppresses unreliable supervision and stabilizes learning in ambiguous regions. Experiments on diverse 2D and 3D segmentation benchmarks show that UnCoL consistently outperforms state-of-the-art semi-supervised methods and foundation model baselines. Moreover, our model delivers near fully supervised performance with markedly reduced annotation requirements.
3.73ADHint: Adaptive Hints with Difficulty Priors for Reinforcement Learning¶
2025/12/16 05:02 GTM
To combine the advantages of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), recent methods have integrated ‘‘hints’’ into post-training, which are prefix segments of complete reasoning trajectories, aiming for powerful knowledge expansion and reasoning generalization. However, existing hint-based RL methods typically ignore difficulty when scheduling hint ratios and estimating relative advantages, leading to unstable learning and excessive imitation of off-policy hints. In this work, we propose ADHint, which treats difficulty as a key factor in both hint-ratio schedule and relative-advantage estimation to achieve a better trade-off between exploration and imitation. Specifically, we propose Adaptive Hint with Sample Difficulty Prior, which evaluates each sample’s difficulty under the policy model and accordingly schedules an appropriate hint ratio to guide its rollouts. We also introduce Consistency-based Gradient Modulation and Selective Masking for Hint Preservation to modulate token-level gradients within hints, preventing biased and destructive updates. Additionally, we propose Advantage Estimation with Rollout Difficulty Posterior, which leverages the relative difficulty of rollouts with and without hints to estimate their respective advantages, thereby achieving more balanced updates. Extensive experiments across diverse modalities, model scales, and domains demonstrate that ADHint delivers superior reasoning ability and out-of-distribution generalization, consistently surpassing existing methods in both pass@1 and avg@8. Our code and dataset will be made publicly available upon paper acceptance.
3.74UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era¶
2025/12/16 05:02 GTM
Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://
3.75DiRe: Diversity-promoting Regularization for Dataset Condensation¶
2025/12/16 05:02 GTM
In Dataset Condensation, the goal is to synthesize a small dataset that replicates the training utility of a large original dataset. Existing condensation methods synthesize datasets with significant redundancy, so there is a dire need to reduce redundancy and improve the diversity of the synthesized datasets. To tackle this, we propose an intuitive Diversity Regularizer (DiRe) composed of cosine similarity and Euclidean distance, which can be applied off-the-shelf to various state-of-the-art condensation methods. Through extensive experiments, we demonstrate that the addition of our regularizer improves state-of-the-art condensation methods on various benchmark datasets from CIFAR-10 to ImageNet-1K with respect to generalization and diversity metrics.
3.76Heart Disease Prediction using Case Based Reasoning (CBR)¶
2025/12/16 05:02 GTM
This study provides an overview of heart disease prediction using an intelligent system. Predicting disease accurately is crucial in the medical field, but traditional methods relying solely on a doctor’s experience often lack precision. To address this limitation, intelligent systems are applied as an alternative to traditional approaches. While various intelligent system methods exist, this study focuses on three: Fuzzy Logic, Neural Networks, and Case-Based Reasoning (CBR). A comparison of these techniques in terms of accuracy was conducted, and ultimately, Case-Based Reasoning (CBR) was selected for heart disease prediction. In the prediction phase, the heart disease dataset underwent data pre-processing to clean the data and data splitting to separate it into training and testing sets. The chosen intelligent system was then employed to predict heart disease outcomes based on the processed data. The experiment concluded with Case-Based Reasoning (CBR) achieving a notable accuracy rate of 97.95% in predicting heart disease. The findings also revealed that the probability of heart disease was 57.76% for males and 42.24% for females. Further analysis from related studies suggests that factors such as smoking and alcohol consumption are significant contributors to heart disease, particularly among males.
3.77Forging a Dynamic Memory: Retrieval-Guided Continual Learning for Generalist Medical Foundation Models¶
2025/12/16 05:02 GTM
Multimodal biomedical Vision-Language Models (VLMs) exhibit immense potential in the field of Continual Learning (CL). However, they confront a core dilemma: how to preserve fine-grained intra-modality features while bridging the significant domain gap across different modalities. To address this challenge, we propose a comprehensive framework. Leveraging our 18-million multimodal and comprehensive medical retrieval database derived from PubMed scientific papers, we pioneer the integration of Retrieval-Augmented Generation (RAG) into CL. Specifically, we employ a multi-modal, multi-layer RAG system that provides real-time guidance for model fine-tuning through dynamic, on-demand knowledge retrieval. Building upon this, we introduce a dynamic knowledge distillation framework. This framework precisely resolves the aforementioned core dilemma by dynamically modulating the importance of the parameter space, the granularity of the distilled knowledge, and the data distribution of the reference dataset in accordance with the required level of detail. To thoroughly validate the clinical value of our strategy, we have designed a more rigorous \textbf{M}edical Generalist Task Incremental Learning (MGTIL) benchmark. This benchmark is engineered to simultaneously evaluate the model’s capacity for adaptation to significant domain shifts, retention of subtle intra-domain features, and real-time learning of novel and complex medical tasks. Extensive experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) performance across all metrics. The code is provided in the supplementary materials.
3.78Towards Test-time Efficient Visual Place Recognition via Asymmetric Query Processing¶
2025/12/16 05:02 GTM
Visual Place Recognition (VPR) has advanced significantly with high-capacity foundation models like DINOv2, achieving remarkable performance. Nonetheless, their substantial computational cost makes deployment on resource-constrained devices impractical. In this paper, we introduce an efficient asymmetric VPR framework that incorporates a high-capacity gallery model for offline feature extraction with a lightweight query network for online processing. A key challenge in this setting is ensuring compatibility between these heterogeneous networks, which conventional approaches address through computationally expensive k-NN-based compatible training. To overcome this, we propose a geographical memory bank that structures gallery features using geolocation metadata inherent in VPR databases, eliminating the need for exhaustive k-NN computations. Additionally, we introduce an implicit embedding augmentation technique that enhances the query network to model feature variations despite its limited capacity. Extensive experiments demonstrate that our method not only significantly reduces computational costs but also outperforms existing asymmetric retrieval techniques, establishing a new aspect for VPR in resource-limited environments. The code is available at https://
3.79GTR-Turbo: Merged Checkpoint is Secretly a Free Teacher for Agentic VLM Training¶
2025/12/16 05:02 GTM
Multi-turn reinforcement learning (RL) for multi-modal agents built upon vision-language models (VLMs) is hampered by sparse rewards and long-horizon credit assignment. Recent methods densify the reward by querying a teacher that provides step-level feedback, e.g., Guided Thought Reinforcement (GTR) and On-Policy Distillation, but rely on costly, often privileged models as the teacher, limiting practicality and reproducibility. We introduce GTR-Turbo, a highly efficient upgrade to GTR, which matches the performance without training or querying an expensive teacher model. Specifically, GTR-Turbo merges the weights of checkpoints produced during the ongoing RL training, and then uses this merged model as a “free” teacher to guide the subsequent RL via supervised fine-tuning or soft logit distillation. This design removes dependence on privileged VLMs (e.g., GPT or Gemini), mitigates the “entropy collapse” observed in prior work, and keeps training stable. Across diverse visual agentic tasks, GTR-Turbo improves the accuracy of the baseline model by 10-30% while reducing wall-clock training time by 50% and compute cost by 60% relative to GTR.
3.80Bi-Erasing: A Bidirectional Framework for Concept Removal in Diffusion Models¶
2025/12/16 05:02 GTM
Concept erasure, which fine-tunes diffusion models to remove undesired or harmful visual concepts, has become a mainstream approach to mitigating unsafe or illegal image generation in text-to-image models.However, existing removal methods typically adopt a unidirectional erasure strategy by either suppressing the target concept or reinforcing safe alternatives, making it difficult to achieve a balanced trade-off between concept removal and generation quality. To address this limitation, we propose a novel Bidirectional Image-Guided Concept Erasure (Bi-Erasing) framework that performs concept suppression and safety enhancement simultaneously. Specifically, based on the joint representation of text prompts and corresponding images, Bi-Erasing introduces two decoupled image branches: a negative branch responsible for suppressing harmful semantics and a positive branch providing visual guidance for safe alternatives. By jointly optimizing these complementary directions, our approach achieves a balance between erasure efficacy and generation usability. In addition, we apply mask-based filtering to the image branches to prevent interference from irrelevant content during the erasure process. Across extensive experiment evaluations, the proposed Bi-Erasing outperforms baseline methods in balancing concept removal effectiveness and visual fidelity.
3.81Comprehensive Evaluation of Rule-Based, Machine Learning, and Deep Learning in Human Estimation Using Radio Wave Sensing: Accuracy, Spatial Generaliza...¶
2025/12/16 05:02 GTM
This study presents the first comprehensive comparison of rule-based methods, traditional machine learning models, and deep learning models in radio wave sensing with frequency modulated continuous wave multiple input multiple output radar. We systematically evaluated five approaches in two indoor environments with distinct layouts: a rule-based connected component method; three traditional machine learning models, namely k-nearest neighbors, random forest, and support vector machine; and a deep learning model combining a convolutional neural network and long short term memory. In the training environment, the convolutional neural network long short term memory model achieved the highest accuracy, while traditional machine learning models provided moderate performance. In a new layout, however, all learning based methods showed significant degradation, whereas the rule-based method remained stable. Notably, for binary detection of presence versus absence of people, all models consistently achieved high accuracy across layouts. These results demonstrate that high capacity models can produce fine grained outputs with high accuracy in the same environment, but they are vulnerable to domain shift. In contrast, rule-based methods cannot provide fine grained outputs but exhibit robustness against domain shift. Moreover, regardless of the model type, a clear trade off was revealed between spatial generalization performance and output granularity.
3.82Motus: A Unified Latent Action World Model¶
2025/12/16 05:02 GTM
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level “delta action” and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
3.83SneakPeek: Future-Guided Instructional Streaming Video Generation¶
2025/12/16 05:02 GTM
Instructional video generation is an emerging task that aims to synthesize coherent demonstrations of procedural activities from textual descriptions. Such capability has broad implications for content creation, education, and human-AI interaction, yet existing video diffusion models struggle to maintain temporal consistency and controllability across long sequences of multiple action steps. We introduce a pipeline for future-driven streaming instructional video generation, dubbed SneakPeek, a diffusion-based autoregressive framework designed to generate precise, stepwise instructional videos conditioned on an initial image and structured textual prompts. Our approach introduces three key innovations to enhance consistency and controllability: (1) predictive causal adaptation, where a causal model learns to perform next-frame prediction and anticipate future keyframes; (2) future-guided self-forcing with a dual-region KV caching scheme to address the exposure bias issue at inference time; (3) multi-prompt conditioning, which provides fine-grained and procedural control over multi-step instructions. Together, these components mitigate temporal drift, preserve motion consistency, and enable interactive video generation where future prompt updates dynamically influence ongoing streaming video generation. Experimental results demonstrate that our method produces temporally coherent and semantically faithful instructional videos that accurately follow complex, multi-step task descriptions.
3.84Comprehensive Deployment-Oriented Assessment for Cross-Environment Generalization in Deep Learning-Based mmWave Radar Sensing¶
2025/12/16 05:02 GTM
This study presents the first comprehensive evaluation of spatial generalization techniques, which are essential for the practical deployment of deep learning-based radio-frequency (RF) sensing. Focusing on people counting in indoor environments using frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) radar, we systematically investigate a broad set of approaches, including amplitude-based statistical preprocessing (sigmoid weighting and threshold zeroing), frequency-domain filtering, autoencoder-based background suppression, data augmentation strategies, and transfer learning. Experimental results collected across two environments with different layouts demonstrate that sigmoid-based amplitude weighting consistently achieves superior cross-environment performance, yielding 50.1% and 55.2% reductions in root-mean-square error (RMSE) and mean absolute error (MAE), respectively, compared with baseline methods. Data augmentation provides additional though modest benefits, with improvements up to 8.8% in MAE. By contrast, transfer learning proves indispensable for large spatial shifts, achieving 82.1% and 91.3% reductions in RMSE and MAE, respectively, with 540 target-domain samples. Taken together, these findings establish a highly practical direction for developing radar sensing systems capable of maintaining robust accuracy under spatial variations by integrating deep learning models with amplitude-based preprocessing and efficient transfer learning.
3.85What Happens Next? Next Scene Prediction with a Unified Video Model¶
2025/12/16 05:02 GTM
Recent unified models for joint understanding and generation have significantly advanced visual generation capabilities. However, their focus on conventional tasks like text-to-video generation has left the temporal reasoning potential of unified models largely underexplored. To address this gap, we introduce Next Scene Prediction (NSP), a new task that pushes unified video models toward temporal and causal reasoning. Unlike text-to-video generation, NSP requires predicting plausible futures from preceding context, demanding deeper understanding and reasoning. To tackle this task, we propose a unified framework combining Qwen-VL for comprehension and LTX for synthesis, bridged by a latent query embedding and a connector module. This model is trained in three stages on our newly curated, large-scale NSP dataset: text-to-video pre-training, supervised fine-tuning, and reinforcement learning (via GRPO) with our proposed causal consistency reward. Experiments demonstrate our model achieves state-of-the-art performance on our benchmark, advancing the capability of generalist multimodal systems to anticipate what happens next.
3.86JoDiffusion: Jointly Diffusing Image with Pixel-Level Annotations for Semantic Segmentation Promotion¶
2025/12/16 05:02 GTM
Given the inherently costly and time-intensive nature of pixel-level annotation, the generation of synthetic datasets comprising sufficiently diverse synthetic images paired with ground-truth pixel-level annotations has garnered increasing attention recently for training high-performance semantic segmentation models. However, existing methods necessitate to either predict pseudo annotations after image generation or generate images conditioned on manual annotation masks, which incurs image-annotation semantic inconsistency or scalability problem. To migrate both problems with one stone, we present a novel dataset generative diffusion framework for semantic segmentation, termed JoDiffusion. Firstly, given a standard latent diffusion model, JoDiffusion incorporates an independent annotation variational auto-encoder (VAE) network to map annotation masks into the latent space shared by images. Then, the diffusion model is tailored to capture the joint distribution of each image and its annotation mask conditioned on a text prompt. By doing these, JoDiffusion enables simultaneously generating paired images and semantically consistent annotation masks solely conditioned on text prompts, thereby demonstrating superior scalability. Additionally, a mask optimization strategy is developed to mitigate the annotation noise produced during generation. Experiments on Pascal VOC, COCO, and ADE20K datasets show that the annotated dataset generated by JoDiffusion yields substantial performance improvements in semantic segmentation compared to existing methods.
3.87TWLR: Text-Guided Weakly-Supervised Lesion Localization and Severity Regression for Explainable Diabetic Retinopathy Grading¶
2025/12/16 05:02 GTM
Accurate medical image analysis can greatly assist clinical diagnosis, but its effectiveness relies on high-quality expert annotations Obtaining pixel-level labels for medical images, particularly fundus images, remains costly and time-consuming. Meanwhile, despite the success of deep learning in medical imaging, the lack of interpretability limits its clinical adoption. To address these challenges, we propose TWLR, a two-stage framework for interpretable diabetic retinopathy (DR) assessment. In the first stage, a vision-language model integrates domain-specific ophthalmological knowledge into text embeddings to jointly perform DR grading and lesion classification, effectively linking semantic medical concepts with visual features. The second stage introduces an iterative severity regression framework based on weakly-supervised semantic segmentation. Lesion saliency maps generated through iterative refinement direct a progressive inpainting mechanism that systematically eliminates pathological features, effectively downgrading disease severity toward healthier fundus appearances. Critically, this severity regression approach achieves dual benefits: accurate lesion localization without pixel-level supervision and providing an interpretable visualization of disease-to-healthy transformations. Experimental results on the FGADR, DDR, and a private dataset demonstrate that TWLR achieves competitive performance in both DR classification and lesion segmentation, offering a more explainable and annotation-efficient solution for automated retinal image analysis.
3.88Light Field Based 6DoF Tracking of Previously Unobserved Objects¶
2025/12/16 05:02 GTM
Object tracking is an important step in robotics and reautonomous driving pipelines, which has to generalize to previously unseen and complex objects. Existing high-performing methods often rely on pre-captured object views to build explicit reference models, which restricts them to a fixed set of known objects. However, such reference models can struggle with visually complex appearance, reducing the quality of tracking. In this work, we introduce an object tracking method based on light field images that does not depend on a pre-trained model, while being robust to complex visual behavior, such as reflections. We extract semantic and geometric features from light field inputs using vision foundation models and convert them into view-dependent Gaussian splats. These splats serve as a unified object representation, supporting differentiable rendering and pose optimization. We further introduce a light field object tracking dataset containing challenging reflective objects with precise ground truth poses. Experiments demonstrate that our method is competitive with state-of-the-art model-based trackers in these difficult cases, paving the way toward universal object tracking in robotic systems. Code/data available at https://
3.89Few-Step Distillation for Text-to-Image Generation: A Practical Guide¶
2025/12/16 05:02 GTM
Diffusion distillation has dramatically accelerated class-conditional image synthesis, but its applicability to open-ended text-to-image (T2I) generation is still unclear. We present the first systematic study that adapts and compares state-of-the-art distillation techniques on a strong T2I teacher model, FLUX.1-lite. By casting existing methods into a unified framework, we identify the key obstacles that arise when moving from discrete class labels to free-form language prompts. Beyond a thorough methodological analysis, we offer practical guidelines on input scaling, network architecture, and hyperparameters, accompanied by an open-source implementation and pretrained student models. Our findings establish a solid foundation for deploying fast, high-fidelity, and resource-efficient diffusion generators in real-world T2I applications. Code is available on github
3.90Calibrating Uncertainty for Zero-Shot Adversarial CLIP¶
2025/12/16 05:02 GTM
CLIP delivers strong zero-shot classification but remains highly vulnerable to adversarial attacks. Previous work of adversarial fine-tuning largely focuses on matching the predicted logits between clean and adversarial examples, which overlooks uncertainty calibration and may degrade the zero-shot generalization. A common expectation in reliable uncertainty estimation is that predictive uncertainty should increase as inputs become more difficult or shift away from the training distribution. However, we frequently observe the opposite in the adversarial setting: perturbations not only degrade accuracy but also suppress uncertainty, leading to severe miscalibration and unreliable over-confidence. This overlooked phenomenon highlights a critical reliability gap beyond robustness. To bridge this gap, we propose a novel adversarial fine-tuning objective for CLIP considering both prediction accuracy and uncertainty alignments. By reparameterizing the output of CLIP as the concentration parameter of a Dirichlet distribution, we propose a unified representation that captures relative semantic structure and the magnitude of predictive confidence. Our objective aligns these distributions holistically under perturbations, moving beyond single-logit anchoring and restoring calibrated uncertainty. Experiments on multiple zero-shot classification benchmarks demonstrate that our approach effectively restores calibrated uncertainty and achieves competitive adversarial robustness while maintaining clean accuracy.
3.91Tackling Snow-Induced Challenges: Safe Autonomous Lane-Keeping with Robust Reinforcement Learning¶
2025/12/16 05:02 GTM
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
3.92VoroLight: Learning Quality Volumetric Voronoi Meshes from General Inputs¶
2025/12/16 05:02 GTM
We present VoroLight, a differentiable framework for 3D shape reconstruction based on Voronoi meshing. Our approach generates smooth, watertight surfaces and topologically consistent volumetric meshes directly from diverse inputs, including images, implicit shape level-set fields, point clouds and meshes. VoroLight operates in three stages: it first initializes a surface using a differentiable Voronoi formulation, then refines surface quality through a polygon-face sphere training stage, and finally reuses the differentiable Voronoi formulation for volumetric optimization with additional interior generator points. Project page: https://
3.93Scaling Up AI-Generated Image Detection via Generator-Aware Prototypes¶
2025/12/16 05:02 GTM
The pursuit of a universal AI-generated image (AIGI) detector often relies on aggregating data from numerous generators to improve generalization. However, this paper identifies a paradoxical phenomenon we term the Benefit then Conflict dilemma, where detector performance stagnates and eventually degrades as source diversity expands. Our systematic analysis, diagnoses this failure by identifying two core issues: severe data-level heterogeneity, which causes the feature distributions of real and synthetic images to increasingly overlap, and a critical model-level bottleneck from fixed, pretrained encoders that cannot adapt to the rising complexity. To address these challenges, we propose Generator-Aware Prototype Learning (GAPL), a framework that constrain representation with a structured learning paradigm. GAPL learns a compact set of canonical forgery prototypes to create a unified, low-variance feature space, effectively countering data heterogeneity.To resolve the model bottleneck, it employs a two-stage training scheme with Low-Rank Adaptation, enhancing its discriminative power while preserving valuable pretrained knowledge. This approach establishes a more robust and generalizable decision boundary. Through extensive experiments, we demonstrate that GAPL achieves state-of-the-art performance, showing superior detection accuracy across a wide variety of GAN and diffusion-based generators. Code is available at https://
3.94VLCache: Computing 2% Vision Tokens and Reusing 98% for Vision-Language Inference¶
2025/12/16 05:02 GTM
This paper presents VLCache, a cache reuse framework that exploits both Key-Value (KV) cache and encoder cache from prior multimodal inputs to eliminate costly recomputation when the same multimodal inputs recur. Unlike previous heuristic approaches, we formally identify the cumulative reuse error effect and demonstrate how to minimize the non-prefix cache reuse error effectively. We further analyze the varying importance of model layers and propose a dynamic, layer-aware recomputation strategy to balance accuracy and efficiency. Experimental results show that VLCache achieves an accuracy on par with full recomputation, while requiring only 2-5% of the tokens to compute, yielding 1.2x-16x TTFT speedups. The proposed VLCache pipeline has been integrated into SGLang, enabling significantly faster inference in practical deployments.
3.95SCAdapter: Content-Style Disentanglement for Diffusion Style Transfer¶
2025/12/16 05:02 GTM
Diffusion models have emerged as the leading approach for style transfer, yet they struggle with photo-realistic transfers, often producing painting-like results or missing detailed stylistic elements. Current methods inadequately address unwanted influence from original content styles and style reference content features. We introduce SCAdapter, a novel technique leveraging CLIP image space to effectively separate and integrate content and style features. Our key innovation systematically extracts pure content from content images and style elements from style references, ensuring authentic transfers. This approach is enhanced through three components: Controllable Style Adaptive Instance Normalization (CSAdaIN) for precise multi-style blending, KVS Injection for targeted style integration, and a style transfer consistency objective maintaining process coherence. Comprehensive experiments demonstrate SCAdapter significantly outperforms state-of-the-art methods in both conventional and diffusion-based baselines. By eliminating DDIM inversion and inference-stage optimization, our method achieves at least faster inference than other diffusion-based approaches, making it both more effective and efficient for practical applications.
3.96Leveraging Compression to Construct Transferable Bitrate Ladders¶
2025/12/16 05:02 GTM
Over the past few years, per-title and per-shot video encoding techniques have demonstrated significant gains as compared to conventional techniques such as constant CRF encoding and the fixed bitrate ladder. These techniques have demonstrated that constructing content-gnostic per-shot bitrate ladders can provide significant bitrate gains and improved Quality of Experience (QoE) for viewers under various network conditions. However, constructing a convex hull for every video incurs a significant computational overhead. Recently, machine learning-based bitrate ladder construction techniques have emerged as a substitute for convex hull construction. These methods operate by extracting features from source videos to train machine learning (ML) models to construct content-adaptive bitrate ladders. Here, we present a new ML-based bitrate ladder construction technique that accurately predicts the VMAF scores of compressed videos, by analyzing the compression procedure and by making perceptually relevant measurements on the source videos prior to compression. We evaluate the performance of our proposed framework against leading prior methods on a large corpus of videos. Since training ML models on every encoder setting is time-consuming, we also investigate how per-shot bitrate ladders perform under different encoding settings. We evaluate the performance of all models against the fixed bitrate ladder and the best possible convex hull constructed using exhaustive encoding with Bjontegaard-delta metrics.
3.97SLIM-VDB: A Real-Time 3D Probabilistic Semantic Mapping Framework¶
2025/12/16 05:02 GTM
This paper introduces SLIM-VDB, a new lightweight semantic mapping system with probabilistic semantic fusion for closed-set or open-set dictionaries. Advances in data structures from the computer graphics community, such as OpenVDB, have demonstrated significantly improved computational and memory efficiency in volumetric scene representation. Although OpenVDB has been used for geometric mapping in robotics applications, semantic mapping for scene understanding with OpenVDB remains unexplored. In addition, existing semantic mapping systems lack support for integrating both fixed-category and open-language label predictions within a single framework. In this paper, we propose a novel 3D semantic mapping system that leverages the OpenVDB data structure and integrates a unified Bayesian update framework for both closed- and open-set semantic fusion. Our proposed framework, SLIM-VDB, achieves significant reduction in both memory and integration times compared to current state-of-the-art semantic mapping approaches, while maintaining comparable mapping accuracy. An open-source C++ codebase with a Python interface is available at https://
3.98UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction¶
2025/12/16 05:02 GTM
Building extraction from remote sensing images is a challenging task due to the complex structure variations of the buildings. Existing methods employ convolutional or self-attention blocks to capture the multi-scale features in the segmentation models, while the inherent gap of the feature pyramids and insufficient global-local feature integration leads to inaccurate, ambiguous extraction results. To address this issue, in this paper, we present an Uncertainty-Aggregated Global-Local Fusion Network (UAGLNet), which is capable to exploit high-quality global-local visual semantics under the guidance of uncertainty modeling. Specifically, we propose a novel cooperative encoder, which adopts hybrid CNN and transformer layers at different stages to capture the local and global visual semantics, respectively. An intermediate cooperative interaction block (CIB) is designed to narrow the gap between the local and global features when the network becomes deeper. Afterwards, we propose a Global-Local Fusion (GLF) module to complementarily fuse the global and local representations. Moreover, to mitigate the segmentation ambiguity in uncertain regions, we propose an Uncertainty-Aggregated Decoder (UAD) to explicitly estimate the pixel-wise uncertainty to enhance the segmentation accuracy. Extensive experiments demonstrate that our method achieves superior performance to other state-of-the-art methods. Our code is available at https://
3.99Continuous Edit Distance, Geodesics and Barycenters of Time-varying Persistence Diagrams¶
2025/12/16 05:02 GTM
We introduce the Continuous Edit Distance (CED), a geodesic and elastic distance for time-varying persistence diagrams (TVPDs). The CED extends edit-distance ideas to TVPDs by combining local substitution costs with penalized deletions/insertions, controlled by two parameters: (α) (trade-off between temporal misalignment and diagram discrepancy) and (β) (gap penalty). We also provide an explicit construction of CED-geodesics. Building on these ingredients, we present two practical barycenter solvers, one stochastic and one greedy, that monotonically decrease the CED Frechet energy. Empirically, the CED is robust to additive perturbations (both temporal and spatial), recovers temporal shifts, and supports temporal pattern search. On real-life datasets, the CED achieves clustering performance comparable or better than standard elastic dissimilarities, while our clustering based on CED-barycenters yields superior classification results. Overall, the CED equips TVPD analysis with a principled distance, interpretable geodesics, and practical barycenters, enabling alignment, comparison, averaging, and clustering directly in the space of TVPDs. A C++ implementation is provided for reproducibility at the following address https://
3.100Content Adaptive based Motion Alignment Framework for Learned Video Compression¶
2025/12/16 05:02 GTM
Recent advances in end-to-end video compression have shown promising results owing to their unified end-to-end learning optimization. However, such generalized frameworks often lack content-specific adaptation, leading to suboptimal compression performance. To address this, this paper proposes a content adaptive based motion alignment framework that improves performance by adapting encoding strategies to diverse content characteristics. Specifically, we first introduce a two-stage flow-guided deformable warping mechanism that refines motion compensation with coarse-to-fine offset prediction and mask modulation, enabling precise feature alignment. Second, we propose a multi-reference quality aware strategy that adjusts distortion weights based on reference quality, and applies it to hierarchical training to reduce error propagation. Third, we integrate a training-free module that downsamples frames by motion magnitude and resolution to obtain smooth motion estimation. Experimental results on standard test datasets demonstrate that our framework CAMA achieves significant improvements over state-of-the-art Neural Video Compression models, achieving a 24.95% BD-rate (PSNR) savings over our baseline model DCVC-TCM, while also outperforming reproduced DCVC-DC and traditional codec HM-16.25.
3.101Unified Interactive Multimodal Moment Retrieval via Cascaded Embedding-Reranking and Temporal-Aware Score Fusion¶
2025/12/16 05:02 GTM
The exponential growth of video content has created an urgent need for efficient multimodal moment retrieval systems. However, existing approaches face three critical challenges: (1) fixed-weight fusion strategies fail across cross modal noise and ambiguous queries, (2) temporal modeling struggles to capture coherent event sequences while penalizing unrealistic gaps, and (3) systems require manual modality selection, reducing usability. We propose a unified multimodal moment retrieval system with three key innovations. First, a cascaded dual-embedding pipeline combines BEIT-3 and SigLIP for broad retrieval, refined by BLIP-2 based reranking to balance recall and precision. Second, a temporal-aware scoring mechanism applies exponential decay penalties to large temporal gaps via beam search, constructing coherent event sequences rather than isolated frames. Third, Agent-guided query decomposition (GPT-4o) automatically interprets ambiguous queries, decomposes them into modality specific sub-queries (visual/OCR/ASR), and performs adaptive score fusion eliminating manual modality selection. Qualitative analysis demonstrates that our system effectively handles ambiguous queries, retrieves temporally coherent sequences, and dynamically adapts fusion strategies, advancing interactive moment search capabilities.
3.102MADTempo: An Interactive System for Multi-Event Temporal Video Retrieval with Query Augmentation¶
2025/12/16 05:02 GTM
The rapid expansion of video content across online platforms has accelerated the need for retrieval systems capable of understanding not only isolated visual moments but also the temporal structure of complex events. Existing approaches often fall short in modeling temporal dependencies across multiple events and in handling queries that reference unseen or rare visual concepts. To address these challenges, we introduce MADTempo, a video retrieval framework developed by our team, AIO_Trinh, that unifies temporal search with web-scale visual grounding. Our temporal search mechanism captures event-level continuity by aggregating similarity scores across sequential video segments, enabling coherent retrieval of multi-event queries. Complementarily, a Google Image Search-based fallback module expands query representations with external web imagery, effectively bridging gaps in pretrained visual embeddings and improving robustness against out-of-distribution (OOD) queries. Together, these components advance the temporal rea- soning and generalization capabilities of modern video retrieval systems, paving the way for more semantically aware and adaptive retrieval across large-scale video corpora.
3.103Sharpness-aware Dynamic Anchor Selection for Generalized Category Discovery¶
2025/12/16 05:02 GTM
Generalized category discovery (GCD) is an important and challenging task in open-world learning. Specifically, given some labeled data of known classes, GCD aims to cluster unlabeled data that contain both known and unknown classes. Current GCD methods based on parametric classification adopt the DINO-like pseudo-labeling strategy, where the sharpened probability output of one view is used as supervision information for the other view. However, large pre-trained models have a preference for some specific visual patterns, resulting in encoding spurious correlation for unlabeled data and generating noisy pseudo-labels. To address this issue, we propose a novel method, which contains two modules: Loss Sharpness Penalty (LSP) and Dynamic Anchor Selection (DAS). LSP enhances the robustness of model parameters to small perturbations by minimizing the worst-case loss sharpness of the model, which suppressing the encoding of trivial features, thereby reducing overfitting of noise samples and improving the quality of pseudo-labels. Meanwhile, DAS selects representative samples for the unknown classes based on KNN density and class probability during the model training and assigns hard pseudo-labels to them, which not only alleviates the confidence difference between known and unknown classes but also enables the model to quickly learn more accurate feature distribution for the unknown classes, thus further improving the clustering accuracy. Extensive experiments demonstrate that the proposed method can effectively mitigate the noise of pseudo-labels, and achieve state-of-the-art results on multiple GCD benchmarks.
3.104Predictive Sample Assignment for Semantically Coherent Out-of-Distribution Detection¶
2025/12/16 05:02 GTM
Semantically coherent out-of-distribution detection (SCOOD) is a recently proposed realistic OOD detection setting: given labeled in-distribution (ID) data and mixed in-distribution and out-of-distribution unlabeled data as the training data, SCOOD aims to enable the trained model to accurately identify OOD samples in the testing data. Current SCOOD methods mainly adopt various clustering-based in-distribution sample filtering (IDF) strategies to select clean ID samples from unlabeled data, and take the remaining samples as auxiliary OOD data, which inevitably introduces a large number of noisy samples in training. To address the above issue, we propose a concise SCOOD framework based on predictive sample assignment (PSA). PSA includes a dual-threshold ternary sample assignment strategy based on the predictive energy score that can significantly improve the purity of the selected ID and OOD sample sets by assigning unconfident unlabeled data to an additional discard sample set, and a concept contrastive representation learning loss to further expand the distance between ID and OOD samples in the representation space to assist ID/OOD discrimination. In addition, we also introduce a retraining strategy to help the model fully fit the selected auxiliary ID/OOD samples. Experiments on two standard SCOOD benchmarks demonstrate that our approach outperforms the state-of-the-art methods by a significant margin.
3.105Qonvolution: Towards Learning High-Frequency Signals with Queried Convolution¶
2025/12/16 05:02 GTM
Accurately learning high-frequency signals is a challenge in computer vision and graphics, as neural networks often struggle with these signals due to spectral bias or optimization difficulties. While current techniques like Fourier encodings have made great strides in improving performance, there remains scope for improvement when presented with high-frequency information. This paper introduces Queried-Convolutions (Qonvolutions), a simple yet powerful modification using the neighborhood properties of convolution. Qonvolution convolves a low-frequency signal with queries (such as coordinates) to enhance the learning of intricate high-frequency signals. We empirically demonstrate that Qonvolutions enhance performance across a variety of high-frequency learning tasks crucial to both the computer vision and graphics communities, including 1D regression, 2D super-resolution, 2D image regression, and novel view synthesis (NVS). In particular, by combining Gaussian splatting with Qonvolutions for NVS, we showcase state-of-the-art performance on real-world complex scenes, even outperforming powerful radiance field models on image quality.
3.106Revisiting 2D Foundation Models for Scalable 3D Medical Image Classification¶
2025/12/16 05:02 GTM
3D medical image classification is essential for modern clinical workflows. Medical foundation models (FMs) have emerged as a promising approach for scaling to new tasks, yet current research suffers from three critical pitfalls: data-regime bias, suboptimal adaptation, and insufficient task coverage. In this paper, we address these pitfalls and introduce AnyMC3D, a scalable 3D classifier adapted from 2D FMs. Our method scales efficiently to new tasks by adding only lightweight plugins (about 1M parameters per task) on top of a single frozen backbone. This versatile framework also supports multi-view inputs, auxiliary pixel-level supervision, and interpretable heatmap generation. We establish a comprehensive benchmark of 12 tasks covering diverse pathologies, anatomies, and modalities, and systematically analyze state-of-the-art 3D classification techniques. Our analysis reveals key insights: (1) effective adaptation is essential to unlock FM potential, (2) general-purpose FMs can match medical-specific FMs if properly adapted, and (3) 2D-based methods surpass 3D architectures for 3D classification. For the first time, we demonstrate the feasibility of achieving state-of-the-art performance across diverse applications using a single scalable framework (including 1st place in the VLM3D challenge), eliminating the need for separate task-specific models.
3.107SignRAG: A Retrieval-Augmented System for Scalable Zero-Shot Road Sign Recognition¶
2025/12/16 05:02 GTM
Automated road sign recognition is a critical task for intelligent transportation systems, but traditional deep learning methods struggle with the sheer number of sign classes and the impracticality of creating exhaustive labeled datasets. This paper introduces a novel zero-shot recognition framework that adapts the Retrieval-Augmented Generation (RAG) paradigm to address this challenge. Our method first uses a Vision Language Model (VLM) to generate a textual description of a sign from an input image. This description is used to retrieve a small set of the most relevant sign candidates from a vector database of reference designs. Subsequently, a Large Language Model (LLM) reasons over the retrieved candidates to make a final, fine-grained recognition. We validate this approach on a comprehensive set of 303 regulatory signs from the Ohio MUTCD. Experimental results demonstrate the framework’s effectiveness, achieving 95.58% accuracy on ideal reference images and 82.45% on challenging real-world road data. This work demonstrates the viability of RAG-based architectures for creating scalable and accurate systems for road sign recognition without task-specific training.
3.108Cross-Level Sensor Fusion with Object Lists via Transformer for 3D Object Detection¶
2025/12/16 05:02 GTM
In automotive sensor fusion systems, smart sensors and Vehicle-to-Everything (V2X) modules are commonly utilized. Sensor data from these systems are typically available only as processed object lists rather than raw sensor data from traditional sensors. Instead of processing other raw data separately and then fusing them at the object level, we propose an end-to-end cross-level fusion concept with Transformer, which integrates highly abstract object list information with raw camera images for 3D object detection. Object lists are fed into a Transformer as denoising queries and propagated together with learnable queries through the latter feature aggregation process. Additionally, a deformable Gaussian mask, derived from the positional and size dimensional priors from the object lists, is explicitly integrated into the Transformer decoder. This directs attention toward the target area of interest and accelerates model training convergence. Furthermore, as there is no public dataset containing object lists as a standalone modality, we propose an approach to generate pseudo object lists from ground-truth bounding boxes by simulating state noise and false positives and negatives. As the first work to conduct cross-level fusion, our approach shows substantial performance improvements over the vision-based baseline on the nuScenes dataset. It demonstrates its generalization capability over diverse noise levels of simulated object lists and real detectors.
3.109Schrodinger Audio-Visual Editor: Object-Level Audiovisual Removal¶
2025/12/16 05:02 GTM
Joint editing of audio and visual content is crucial for precise and controllable content creation. This new task poses challenges due to the limitations of paired audio-visual data before and after targeted edits, and the heterogeneity across modalities. To address the data and modeling challenges in joint audio-visual editing, we introduce SAVEBench, a paired audiovisual dataset with text and mask conditions to enable object-grounded source-to-target learning. With SAVEBench, we train the Schrodinger Audio-Visual Editor (SAVE), an end-to-end flow-matching model that edits audio and video in parallel while keeping them aligned throughout processing. SAVE incorporates a Schrodinger Bridge that learns a direct transport from source to target audiovisual mixtures. Our evaluation demonstrates that the proposed SAVE model is able to remove the target objects in audio and visual content while preserving the remaining content, with stronger temporal synchronization and audiovisual semantic correspondence compared with pairwise combinations of an audio editor and a video editor.
3.110GradID: Adversarial Detection via Intrinsic Dimensionality of Gradients¶
2025/12/16 05:02 GTM
Despite their remarkable performance, deep neural networks exhibit a critical vulnerability: small, often imperceptible, adversarial perturbations can lead to drastically altered model predictions. Given the stringent reliability demands of applications such as medical diagnosis and autonomous driving, robust detection of such adversarial attacks is paramount. In this paper, we investigate the geometric properties of a model’s input loss landscape. We analyze the Intrinsic Dimensionality (ID) of the model’s gradient parameters, which quantifies the minimal number of coordinates required to describe the data points on their underlying manifold. We reveal a distinct and consistent difference in the ID for natural and adversarial data, which forms the basis of our proposed detection method. We validate our approach across two distinct operational scenarios. First, in a batch-wise context for identifying malicious data groups, our method demonstrates high efficacy on datasets like MNIST and SVHN. Second, in the critical individual-sample setting, we establish new state-of-the-art results on challenging benchmarks such as CIFAR-10 and MS COCO. Our detector significantly surpasses existing methods against a wide array of attacks, including CW and AutoAttack, achieving detection rates consistently above 92% on CIFAR-10. The results underscore the robustness of our geometric approach, highlighting that intrinsic dimensionality is a powerful fingerprint for adversarial detection across diverse datasets and attack strategies.
3.111Adapting Multimodal Foundation Models for Few-Shot Learning: A Comprehensive Study on Contrastive Captioners¶
2025/12/16 05:02 GTM
Large-scale multimodal foundation models, particularly Contrastive Captioners (CoCa), have achieved state-of-the-art results by unifying contrastive alignment with generative captioning. While zero-shot transfer capabilities are well-documented, the adaptation of these generative-contrastive hybrids to downstream tasks with extreme data scarcity (few-shot learning) remains under-explored. Existing literature predominantly focuses on dual-encoder architectures like CLIP, leaving a gap in understanding how CoCa’s distinct latent space responds to parameter-efficient fine-tuning (PEFT). This paper presents a comprehensive empirical study on adapting the CoCa visual backbone for few-shot image classification. We systematically evaluate a hierarchy of strategies, ranging from training-free hybrid prototyping to deep parameter adaptation via Low-Rank Adaptation (LoRA). First, we identify an “augmentation divergence”: while strong data augmentation degrades the performance of linear probing in low-shot settings, it is essential for stabilizing LoRA fine-tuning. We also demonstrate that hybrid objectives incorporating Supervised Contrastive (SupCon) loss yield consistent performance improvements over standard Cross-Entropy across varying shot counts. Crucially, we characterize the sensitivity of training configurations to data scarcity, providing empirical reference settings for scaling regularization, rank, and sampling strategies to facilitate the efficient adaptation of generative-contrastive foundation models.
3.112Lemon: A Unified and Scalable 3D Multimodal Model for Universal Spatial Understanding¶
2025/12/16 05:02 GTM
Scaling large multimodal models (LMMs) to 3D understanding poses unique challenges: point cloud data is sparse and irregular, existing models rely on fragmented architectures with modality-specific encoders, and training pipelines often suffer from instability and poor scalability. We introduce Lemon, a unified transformer architecture that addresses these challenges by jointly processing 3D point cloud patches and language tokens as a single sequence. Unlike prior work that relies on modality-specific encoders and cross-modal alignment modules, this design enables early spatial-linguistic fusion, eliminates redundant encoders, improves parameter efficiency, and supports more effective model scaling. To handle the complexity of 3D data, we develop a structured patchification and tokenization scheme that preserves spatial context, and a three-stage training curriculum that progressively builds capabilities from object-level recognition to scene-level spatial reasoning. Lemon establishes new state-of-the-art performance across comprehensive 3D understanding and reasoning tasks, from object recognition and captioning to spatial reasoning in 3D scenes, while demonstrating robust scaling properties as model size and training data increase. Our work provides a unified foundation for advancing 3D spatial intelligence in real-world applications.
3.113Learning Common and Salient Generative Factors Between Two Image Datasets¶
2025/12/16 05:02 GTM
Recent advancements in image synthesis have enabled high-quality image generation and manipulation. Most works focus on: 1) conditional manipulation, where an image is modified conditioned on a given attribute, or 2) disentangled representation learning, where each latent direction should represent a distinct semantic attribute. In this paper, we focus on a different and less studied research problem, called Contrastive Analysis (CA). Given two image datasets, we want to separate the common generative factors, shared across the two datasets, from the salient ones, specific to only one dataset. Compared to existing methods, which use attributes as supervised signals for editing (e.g., glasses, gender), the proposed method is weaker, since it only uses the dataset signal. We propose a novel framework for CA, that can be adapted to both GAN and Diffusion models, to learn both common and salient factors. By defining new and well-adapted learning strategies and losses, we ensure a relevant separation between common and salient factors, preserving a high-quality generation. We evaluate our approach on diverse datasets, covering human faces, animal images and medical scans. Our framework demonstrates superior separation ability and image quality synthesis compared to prior methods.
3.114DrivePI: Spatial-aware 4D MLLM for Unified Autonomous Driving Understanding, Perception, Prediction and Planning¶
2025/12/16 05:02 GTM
Although multi-modal large language models (MLLMs) have shown strong capabilities across diverse domains, their application in generating fine-grained 3D perception and prediction outputs in autonomous driving remains underexplored. In this paper, we propose DrivePI, a novel spatial-aware 4D MLLM that serves as a unified Vision-Language-Action (VLA) framework that is also compatible with vision-action (VA) models. Our method jointly performs spatial understanding, 3D perception (i.e., 3D occupancy), prediction (i.e., occupancy flow), and planning (i.e., action outputs) in parallel through end-to-end optimization. To obtain both precise geometric information and rich visual appearance, our approach integrates point clouds, multi-view images, and language instructions within a unified MLLM architecture. We further develop a data engine to generate text-occupancy and text-flow QA pairs for 4D spatial understanding. Remarkably, with only a 0.5B Qwen2.5 model as MLLM backbone, DrivePI as a single unified model matches or exceeds both existing VLA models and specialized VA models. Specifically, compared to VLA models, DrivePI outperforms OpenDriveVLA-7B by 2.5% mean accuracy on nuScenes-QA and reduces collision rate by 70% over ORION (from 0.37% to 0.11%) on nuScenes. Against specialized VA models, DrivePI surpasses FB-OCC by 10.3 RayIoU for 3D occupancy on OpenOcc, reduces the mAVE from 0.591 to 0.509 for occupancy flow on OpenOcc, and achieves 32% lower L2 error than VAD (from 0.72m to 0.49m) for planning on nuScenes. Code will be available at https://
3.115L-STEC: Learned Video Compression with Long-term Spatio-Temporal Enhanced Context¶
2025/12/16 05:02 GTM
Neural Video Compression has emerged in recent years, with condition-based frameworks outperforming traditional codecs. However, most existing methods rely solely on the previous frame’s features to predict temporal context, leading to two critical issues. First, the short reference window misses long-term dependencies and fine texture details. Second, propagating only feature-level information accumulates errors over frames, causing prediction inaccuracies and loss of subtle textures. To address these, we propose the Long-term Spatio-Temporal Enhanced Context (L-STEC) method. We first extend the reference chain with LSTM to capture long-term dependencies. We then incorporate warped spatial context from the pixel domain, fusing spatio-temporal information through a multi-receptive field network to better preserve reference details. Experimental results show that L-STEC significantly improves compression by enriching contextual information, achieving 37.01% bitrate savings in PSNR and 31.65% in MS-SSIM compared to DCVC-TCM, outperforming both VTM-17.0 and DCVC-FM and establishing new state-of-the-art performance.
3.116Fast 2DGS: Efficient Image Representation with Deep Gaussian Prior¶
2025/12/16 05:02 GTM
As generative models become increasingly capable of producing high-fidelity visual content, the demand for efficient, interpretable, and editable image representations has grown substantially. Recent advances in 2D Gaussian Splatting (2DGS) have emerged as a promising solution, offering explicit control, high interpretability, and real-time rendering capabilities (>1000 FPS). However, high-quality 2DGS typically requires post-optimization. Existing methods adopt random or heuristics (e.g., gradient maps), which are often insensitive to image complexity and lead to slow convergence (>10s). More recent approaches introduce learnable networks to predict initial Gaussian configurations, but at the cost of increased computational and architectural complexity. To bridge this gap, we present Fast-2DGS, a lightweight framework for efficient Gaussian image representation. Specifically, we introduce Deep Gaussian Prior, implemented as a conditional network to capture the spatial distribution of Gaussian primitives under different complexities. In addition, we propose an attribute regression network to predict dense Gaussian properties. Experiments demonstrate that this disentangled architecture achieves high-quality reconstruction in a single forward pass, followed by minimal fine-tuning. More importantly, our approach significantly reduces computational cost without compromising visual quality, bringing 2DGS closer to industry-ready deployment.
3.117JointAVBench: A Benchmark for Joint Audio-Visual Reasoning Evaluation¶
2025/12/16 05:02 GTM
Understanding videos inherently requires reasoning over both visual and auditory information. To properly evaluate Omni-Large Language Models (Omni-LLMs), which are capable of processing multi-modal information including vision and audio, an effective benchmark must comprehensively cover three key aspects: (1) multi-modal dependency (i.e., questions that cannot be answered using vision or audio alone), (2) diverse audio information types (e.g., speech, sound events), and (3) varying scene spans. However, existing datasets fall short in one or more of these dimensions, limiting strict and comprehensive evaluation. To address this gap, we introduce JointAVBench, a novel benchmark with strict audio-video correlation, spanning five cognitive dimensions, four audio information types (speech, sound events, music, vocal traits), and three scene spans (single-, cross-, and full-scene). Given the high cost of manual annotation, we propose an automated pipeline that leverages state-of-the-art vision-LLMs, audio-LLMs, and general-purpose LLMs to synthesize questions and answers that strictly require joint audio-visual understanding. We evaluate leading vision-only, audio-only, and Omni-LLMs on our dataset. Results show that even the best-performing Omni-LLM achieves an average accuracy of only 62.6%, outperforming uni-modal baselines but revealing substantial room for improvement, especially in cross-scene reasoning.
3.118CoRe3D: Collaborative Reasoning as a Foundation for 3D Intelligence¶
2025/12/16 05:02 GTM
Recent advances in large multimodal models suggest that explicit reasoning mechanisms play a critical role in improving model reliability, interpretability, and cross-modal alignment. While such reasoning-centric approaches have been proven effective in language and vision tasks, their extension to 3D remains underdeveloped. CoRe3D introduces a unified 3D understanding and generation reasoning framework that jointly operates over semantic and spatial abstractions, enabling high-level intent inferred from language to directly guide low-level 3D content formation. Central to this design is a spatially grounded reasoning representation that decomposes 3D latent space into localized regions, allowing the model to reason over geometry in a compositional and procedural manner. By tightly coupling semantic chain-of-thought inference with structured spatial reasoning, CoRe3D produces 3D outputs that exhibit strong local consistency and faithful alignment with linguistic descriptions.
3.119Federated Learning with Feedback Alignment¶
2025/12/16 05:02 GTM
Federated Learning (FL) enables collaborative training across multiple clients while preserving data privacy, yet it struggles with data heterogeneity, where clients’ data are not distributed independently and identically (non-IID). This causes local drift, hindering global model convergence. To address this, we introduce Federated Learning with Feedback Alignment (FLFA), a novel framework that integrates feedback alignment into FL. FLFA uses the global model’s weights as a shared feedback matrix during local training’s backward pass, aligning local updates with the global model efficiently. This approach mitigates local drift with minimal additional computational cost and no extra communication overhead. Our theoretical analysis supports FLFA’s design by showing how it alleviates local drift and demonstrates robust convergence for both local and global models. Empirical evaluations, including accuracy comparisons and measurements of local drift, further illustrate that FLFA can enhance other FL methods demonstrating its effectiveness.
3.120FysicsWorld: A Unified Full-Modality Benchmark for Any-to-Any Understanding, Generation, and Reasoning¶
2025/12/16 05:02 GTM
Despite rapid progress in multimodal large language models (MLLMs) and emerging omni-modal architectures, current benchmarks remain limited in scope and integration, suffering from incomplete modality coverage, restricted interaction to text-centric outputs, and weak interdependence and complementarity among modalities. To bridge these gaps, we introduce FysicsWorld, the first unified full-modality benchmark that supports bidirectional input-output across image, video, audio, and text, enabling comprehensive any-to-any evaluation across understanding, generation, and reasoning. FysicsWorld encompasses 16 primary tasks and 3,268 curated samples, aggregated from over 40 high-quality sources and covering a rich set of open-domain categories with diverse question types. We also propose the Cross-Modal Complementarity Screening (CMCS) strategy integrated in a systematic data construction framework that produces omni-modal data for spoken interaction and fusion-dependent cross-modal reasoning. Through a comprehensive evaluation of over 30 state-of-the-art baselines, spanning MLLMs, modality-specific models, unified understanding-generation models, and omni-modal language models, FysicsWorld exposes the performance disparities and limitations across models in understanding, generation, and reasoning. Our benchmark establishes a unified foundation and strong baselines for evaluating and advancing next-generation full-modality architectures.
3.121GenieDrive: Towards Physics-Aware Driving World Model with 4D Occupancy Guided Video Generation¶
2025/12/16 05:02 GTM
Physics-aware driving world model is essential for drive planning, out-of-distribution data synthesis, and closed-loop evaluation. However, existing methods often rely on a single diffusion model to directly map driving actions to videos, which makes learning difficult and leads to physically inconsistent outputs. To overcome these challenges, we propose GenieDrive, a novel framework designed for physics-aware driving video generation. Our approach starts by generating 4D occupancy, which serves as a physics-informed foundation for subsequent video generation. 4D occupancy contains rich physical information, including high-resolution 3D structures and dynamics. To facilitate effective compression of such high-resolution occupancy, we propose a VAE that encodes occupancy into a latent tri-plane representation, reducing the latent size to only 58% of that used in previous methods. We further introduce Mutual Control Attention (MCA) to accurately model the influence of control on occupancy evolution, and we jointly train the VAE and the subsequent prediction module in an end-to-end manner to maximize forecasting accuracy. Together, these designs yield a 7.2% improvement in forecasting mIoU at an inference speed of 41 FPS, while using only 3.47 M parameters. Additionally, a Normalized Multi-View Attention is introduced in the video generation model to generate multi-view driving videos with guidance from our 4D occupancy, significantly improving video quality with a 20.7% reduction in FVD. Experiments demonstrate that GenieDrive enables highly controllable, multi-view consistent, and physics-aware driving video generation.
3.122Spinal Line Detection for Posture Evaluation through Train-ing-free 3D Human Body Reconstruction with 2D Depth Images¶
2025/12/16 05:02 GTM
The spinal angle is an important indicator of body balance. It is important to restore the 3D shape of the human body and estimate the spine center line. Existing mul-ti-image-based body restoration methods require expensive equipment and complex pro-cedures, and single image-based body restoration methods have limitations in that it is difficult to accurately estimate the internal structure such as the spine center line due to occlusion and viewpoint limitation. This study proposes a method to compensate for the shortcomings of the multi-image-based method and to solve the limitations of the sin-gle-image method. We propose a 3D body posture analysis system that integrates depth images from four directions to restore a 3D human model and automatically estimate the spine center line. Through hierarchical matching of global and fine registration, restora-tion to noise and occlusion is performed. Also, the Adaptive Vertex Reduction is applied to maintain the resolution and shape reliability of the mesh, and the accuracy and stabil-ity of spinal angle estimation are simultaneously secured by using the Level of Detail en-semble. The proposed method achieves high-precision 3D spine registration estimation without relying on training data or complex neural network models, and the verification confirms the improvement of matching quality.
3.123Robust Motion Generation using Part-level Reliable Data from Videos¶
2025/12/16 05:02 GTM
Extracting human motion from large-scale web videos offers a scalable solution to the data scarcity issue in character animation. However, some human parts in many video frames cannot be seen due to off-screen captures or occlusions. It brings a dilemma: discarding the data missing any part limits scale and diversity, while retaining it compromises data quality and model performance. To address this problem, we propose leveraging credible part-level data extracted from videos to enhance motion generation via a robust part-aware masked autoregression model. First, we decompose a human body into five parts and detect the parts clearly seen in a video frame as “credible”. Second, the credible parts are encoded into latent tokens by our proposed part-aware variational autoencoder. Third, we propose a robust part-level masked generation model to predict masked credible parts, while ignoring those noisy parts. In addition, we contribute K700-M, a challenging new benchmark comprising approximately 200k real-world motion sequences, for evaluation. Experimental results indicate that our method successfully outperforms baselines on both clean and noisy datasets in terms of motion quality, semantic consistency and diversity. Project page: https://
3.124Efficient Vision-Language Reasoning via Adaptive Token Pruning¶
2025/12/16 05:02 GTM
Real-world deployment of Vision-Language Models (VLMs) is hindered by high computational demands, as existing architectures inefficiently process all tokens uniformly. We introduce Adaptive Token Pruning (ATP), a dynamic inference mechanism that retains only the most informative tokens based on contextual relevance. ATP operates at the vision-language interface, assigning a hybrid importance score combining ViT CLS attention (intra-modal saliency) and CLIP text-image similarity (inter-modal relevance) to keep top-K tokens for the LLM. Unlike static compression, ATP adapts to each input without modifying the backbone. Proposed as a lightweight gating module, ATP is compatible with popular backbones like BLIP-2, LLaVA, and Flamingo. Preliminary evaluations across VQAv2, GQA, and COCO indicate that ATP reduces inference FLOPs by around 40% and achieves roughly 1.5x speedups in end-to-end latency with negligible accuracy loss (less than 1%). Qualitative analyses suggest ATP preserves visual grounding and enhances interpretability. Beyond efficiency, we investigate robustness under corruptions; observations suggest adaptive pruning suppresses spurious correlations, improving stability. These findings imply that resource-constrained inference and model reliability are not competing objectives. Finally, we discuss ATP’s role in efficient multimodal edge computing pipelines.
3.125Hybrid Retrieval-Augmented Generation for Robust Multilingual Document Question Answering¶
2025/12/16 05:02 GTM
Large-scale digitization initiatives have unlocked massive collections of historical newspapers, yet effective computational access remains hindered by OCR corruption, multilingual orthographic variation, and temporal language drift. We develop and evaluate a multilingual Retrieval-Augmented Generation pipeline specifically designed for question answering on noisy historical documents. Our approach integrates: (i) semantic query expansion and multi-query fusion using Reciprocal Rank Fusion to improve retrieval robustness against vocabulary mismatch; (ii) a carefully engineered generation prompt that enforces strict grounding in retrieved evidence and explicit abstention when evidence is insufficient; and (iii) a modular architecture enabling systematic component evaluation. We conduct comprehensive ablation studies on Named Entity Recognition and embedding model selection, demonstrating the importance of syntactic coherence in entity extraction and balanced performance-efficiency trade-offs in dense retrieval. Our end-to-end evaluation framework shows that the pipeline generates faithful answers for well-supported queries while correctly abstaining from unanswerable questions. The hybrid retrieval strategy improves recall stability, particularly benefiting from RRF’s ability to smooth performance variance across query formulations. We release our code and configurations at https://
3.126Reassessing the Role of Supervised Fine-Tuning: An Empirical Study in VLM Reasoning¶
2025/12/16 05:02 GTM
Recent advances in vision-language models (VLMs) reasoning have been largely attributed to the rise of reinforcement Learning (RL), which has shifted the community’s focus away from the supervised fine-tuning (SFT) paradigm. Many studies suggest that introducing the SFT stage not only fails to improve reasoning ability but may also negatively impact model training. In this study, we revisit this RL-centric belief through a systematic and controlled comparison of SFT and RL on VLM Reasoning. Using identical data sources, we find that the relative effectiveness of SFT and RL is conditional and strongly influenced by model capacity, data scale, and data distribution. Contrary to common assumptions, our findings show that SFT plays a crucial role across several scenarios: (1) Effectiveness for weaker models. SFT more reliably elicits reasoning capabilities in smaller or weaker VLMs. (2) Data efficiency. SFT with only 2K achieves comparable or better reasoning performance to RL with 20K. (3) Cross-modal transferability. SFT demonstrates stronger generalization across modalities. Moreover, we identify a pervasive issue of deceptive rewards, where higher rewards fail to correlate with better reasoning accuracy in RL. These results challenge the prevailing “RL over SFT” narrative. They highlight that the role of SFT may have been underestimated and support a more balanced post-training pipeline in which SFT and RL function as complementary components.
3.127Quantum Implicit Neural Representations for 3D Scene Reconstruction and Novel View Synthesis¶
2025/12/16 05:02 GTM
Implicit neural representations (INRs) have become a powerful paradigm for continuous signal modeling and 3D scene reconstruction, yet classical networks suffer from a well-known spectral bias that limits their ability to capture high-frequency details. Quantum Implicit Representation Networks (QIREN) mitigate this limitation by employing parameterized quantum circuits with inherent Fourier structures, enabling compact and expressive frequency modeling beyond classical MLPs. In this paper, we present Quantum Neural Radiance Fields (Q-NeRF), the first hybrid quantum-classical framework for neural radiance field rendering. Q-NeRF integrates QIREN modules into the Nerfacto backbone, preserving its efficient sampling, pose refinement, and volumetric rendering strategies while replacing selected density and radiance prediction components with quantum-enhanced counterparts. We systematically evaluate three hybrid configurations on standard multi-view indoor datasets, comparing them to classical baselines using PSNR, SSIM, and LPIPS metrics. Results show that hybrid quantum-classical models achieve competitive reconstruction quality under limited computational resources, with quantum modules particularly effective in representing fine-scale, view-dependent appearance. Although current implementations rely on quantum circuit simulators constrained to few-qubit regimes, the results highlight the potential of quantum encodings to alleviate spectral bias in implicit representations. Q-NeRF provides a foundational step toward scalable quantum-enabled 3D scene reconstruction and a baseline for future quantum neural rendering research.
3.128-CLIP: Text-Conditioned Contrastive Learning for Multi-Granular Vision-Language Alignment¶
2025/12/16 05:02 GTM
CLIP achieves strong zero-shot image-text retrieval by aligning global vision and text representations, yet it falls behind on fine-grained tasks even when fine-tuned on long, detailed captions. In this work, we propose -CLIP, a multi-granular text-conditioned contrastive learning framework designed to achieve hierarchical alignment between multiple textual granularities-from full captions to sentences and phrases-and their corresponding visual regions. For each level of granularity, -CLIP utilizes cross-attention to dynamically pool image patches, producing contextualized visual embeddings. To address the semantic overlap inherent in this hierarchy, we introduce the -Contextualized Contrastive Alignment Loss (-CAL). This objective parameterizes the trade-off between strict query-specific matching and relaxed intra-image contextualization, supporting both soft Cross-Entropy and hard Binary Cross-Entropy formulations. Through extensive experiments, we demonstrate that -CLIP significantly improves dense alignment: achieving 91.8% T2I 92.3% I2T at R@1 on Urban1K and 30.9% on FG-OVD (Hard), setting state-of-the-art among methods trained without hard negatives. -CLIP establishes a robust, adaptive baseline for dense vision-language correspondence. The code and models are released at https://
3.129Scone: Bridging Composition and Distinction in Subject-Driven Image Generation via Unified Understanding-Generation Modeling¶
2025/12/16 05:02 GTM
Subject-driven image generation has advanced from single- to multi-subject composition, while neglecting distinction, the ability to identify and generate the correct subject when inputs contain multiple candidates. This limitation restricts effectiveness in complex, realistic visual settings. We propose Scone, a unified understanding-generation method that integrates composition and distinction. Scone enables the understanding expert to act as a semantic bridge, conveying semantic information and guiding the generation expert to preserve subject identity while minimizing interference. A two-stage training scheme first learns composition, then enhances distinction through semantic alignment and attention-based masking. We also introduce SconeEval, a benchmark for evaluating both composition and distinction across diverse scenarios. Experiments demonstrate that Scone outperforms existing open-source models in composition and distinction tasks on two benchmarks. Our model, benchmark, and training data are available at: https://
3.130Progressive Conditioned Scale-Shift Recalibration of Self-Attention for Online Test-time Adaptation¶
2025/12/16 05:02 GTM
Online test-time adaptation aims to dynamically adjust a network model in real-time based on sequential input samples during the inference stage. In this work, we find that, when applying a transformer network model to a new target domain, the Query, Key, and Value features of its self-attention module often change significantly from those in the source domain, leading to substantial performance degradation of the transformer model. To address this important issue, we propose to develop a new approach to progressively recalibrate the self-attention at each layer using a local linear transform parameterized by conditioned scale and shift factors. We consider the online model adaptation from the source domain to the target domain as a progressive domain shift separation process. At each transformer network layer, we learn a Domain Separation Network to extract the domain shift feature, which is used to predict the scale and shift parameters for self-attention recalibration using a Factor Generator Network. These two lightweight networks are adapted online during inference. Experimental results on benchmark datasets demonstrate that the proposed progressive conditioned scale-shift recalibration (PCSR) method is able to significantly improve the online test-time domain adaptation performance by a large margin of up to 3.9% in classification accuracy on the ImageNet-C dataset.
3.131Open-World Deepfake Attribution via Confidence-Aware Asymmetric Learning¶
2025/12/16 05:02 GTM
The proliferation of synthetic facial imagery has intensified the need for robust Open-World DeepFake Attribution (OW-DFA), which aims to attribute both known and unknown forgeries using labeled data for known types and unlabeled data containing a mixture of known and novel types. However, existing OW-DFA methods face two critical limitations: 1) A confidence skew that leads to unreliable pseudo-labels for novel forgeries, resulting in biased training. 2) An unrealistic assumption that the number of unknown forgery types is known a priori. To address these challenges, we propose a Confidence-Aware Asymmetric Learning (CAL) framework, which adaptively balances model confidence across known and novel forgery types. CAL mainly consists of two components: Confidence-Aware Consistency Regularization (CCR) and Asymmetric Confidence Reinforcement (ACR). CCR mitigates pseudo-label bias by dynamically scaling sample losses based on normalized confidence, gradually shifting the training focus from high- to low-confidence samples. ACR complements this by separately calibrating confidence for known and novel classes through selective learning on high-confidence samples, guided by their confidence gap. Together, CCR and ACR form a mutually reinforcing loop that significantly improves the model’s OW-DFA performance. Moreover, we introduce a Dynamic Prototype Pruning (DPP) strategy that automatically estimates the number of novel forgery types in a coarse-to-fine manner, removing the need for unrealistic prior assumptions and enhancing the scalability of our methods to real-world OW-DFA scenarios. Extensive experiments on the standard OW-DFA benchmark and a newly extended benchmark incorporating advanced manipulations demonstrate that CAL consistently outperforms previous methods, achieving new state-of-the-art performance on both known and novel forgery attribution.
3.132InteracTalker: Prompt-Based Human-Object Interaction with Co-Speech Gesture Generation¶
2025/12/16 05:02 GTM
Generating realistic human motions that naturally respond to both spoken language and physical objects is crucial for interactive digital experiences. Current methods, however, address speech-driven gestures or object interactions independently, limiting real-world applicability due to a lack of integrated, comprehensive datasets. To overcome this, we introduce InteracTalker, a novel framework that seamlessly integrates prompt-based object-aware interactions with co-speech gesture generation. We achieve this by employing a multi-stage training process to learn a unified motion, speech, and prompt embedding space. To support this, we curate a rich human-object interaction dataset, formed by augmenting an existing text-to-motion dataset with detailed object interaction annotations. Our framework utilizes a Generalized Motion Adaptation Module that enables independent training, adapting to the corresponding motion condition, which is then dynamically combined during inference. To address the imbalance between heterogeneous conditioning signals, we propose an adaptive fusion strategy, which dynamically reweights the conditioning signals during diffusion sampling. InteracTalker successfully unifies these previously separate tasks, outperforming prior methods in both co-speech gesture generation and object-interaction synthesis, outperforming gesture-focused diffusion methods, yielding highly realistic, object-aware full-body motions with enhanced realism, flexibility, and control.
3.133PerNodeDrop: A Method Balancing Specialized Subnets and Regularization in Deep Neural Networks¶
2025/12/16 05:02 GTM
Deep neural networks possess strong representational capacity yet remain vulnerable to overfitting, primarily because neurons tend to co-adapt in ways that, while capturing complex and fine-grained feature interactions, also reinforce spurious and non-generalizable patterns that inflate training performance but reduce reliability on unseen data. Noise-based regularizers such as Dropout and DropConnect address this issue by injecting stochastic perturbations during training, but the noise they apply is typically uniform across a layer or across a batch of samples, which can suppress both harmful and beneficial co-adaptation. This work introduces PerNodeDrop, a lightweight stochastic regularization method. It applies per-sample, per-node perturbations to break the uniformity of the noise injected by existing techniques, thereby allowing each node to experience input-specific variability. Hence, PerNodeDrop preserves useful co-adaptation while applying regularization. This narrows the gap between training and validation performance and improves reliability on unseen data, as evident from the experiments. Although superficially similar to DropConnect, PerNodeDrop operates at the sample level. It drops weights at the sample level, not the batch level. An expected-loss analysis formalizes how its perturbations attenuate excessive co-adaptation while retaining predictive interactions. Empirical evaluations on vision, text, and audio benchmarks indicate improved generalization relative to the standard noise-based regularizer.
3.134Anatomy-Guided Representation Learning Using a Transformer-Based Network for Thyroid Nodule Segmentation in Ultrasound Images¶
2025/12/16 05:02 GTM
Accurate thyroid nodule segmentation in ultrasound images is critical for diagnosis and treatment planning. However, ambiguous boundaries between nodules and surrounding tissues, size variations, and the scarcity of annotated ultrasound data pose significant challenges for automated segmentation. Existing deep learning models struggle to incorporate contextual information from the thyroid gland and generalize effectively across diverse cases. To address these challenges, we propose SSMT-Net, a Semi-Supervised Multi-Task Transformer-based Network that leverages unlabeled data to enhance Transformer-centric encoder feature extraction capability in an initial unsupervised phase. In the supervised phase, the model jointly optimizes nodule segmentation, gland segmentation, and nodule size estimation, integrating both local and global contextual features. Extensive evaluations on the TN3K and DDTI datasets demonstrate that SSMT-Net outperforms state-of-the-art methods, with higher accuracy and robustness, indicating its potential for real-world clinical applications.
3.135CogDoc: Towards Unified thinking in Documents¶
2025/12/16 05:02 GTM
Current document reasoning paradigms are constrained by a fundamental trade-off between scalability (processing long-context documents) and fidelity (capturing fine-grained, multimodal details). To bridge this gap, we propose CogDoc, a unified coarse-to-fine thinking framework that mimics human cognitive processes: a low-resolution “Fast Reading” phase for scalable information localization,followed by a high-resolution “Focused Thinking” phase for deep reasoning. We conduct a rigorous investigation into post-training strategies for the unified thinking framework, demonstrating that a Direct Reinforcement Learning (RL) approach outperforms RL with Supervised Fine-Tuning (SFT) initialization. Specifically, we find that direct RL avoids the “policy conflict” observed in SFT. Empirically, our 7B model achieves state-of-the-art performance within its parameter class, notably surpassing significantly larger proprietary models (e.g., GPT-4o) on challenging, visually rich document benchmarks.
3.136Cross-modal Fundus Image Registration under Large FoV Disparity¶
2025/12/16 05:02 GTM
Previous work on cross-modal fundus image registration (CMFIR) assumes small cross-modal Field-of-View (FoV) disparity. By contrast, this paper is targeted at a more challenging scenario with large FoV disparity, to which directly applying current methods fails. We propose Crop and Alignment for cross-modal fundus image Registration(CARe), a very simple yet effective method. Specifically, given an OCTA with smaller FoV as a source image and a wide-field color fundus photograph (wfCFP) as a target image, our Crop operation exploits the physiological structure of the retina to crop from the target image a sub-image with its FoV roughly aligned with that of the source. This operation allows us to re-purpose the previous small-FoV-disparity oriented methods for subsequent image registration. Moreover, we improve spatial transformation by a double-fitting based Alignment module that utilizes the classical RANSAC algorithm and polynomial-based coordinate fitting in a sequential manner. Extensive experiments on a newly developed test set of 60 OCTA-wfCFP pairs verify the viability of CARe for CMFIR.
3.137DiG: Differential Grounding for Enhancing Fine-Grained Perception in Multimodal Large Language Model¶
2025/12/16 05:02 GTM
Multimodal Large Language Models have achieved impressive performance on a variety of vision-language tasks, yet their fine-grained visual perception and precise spatial reasoning remain limited. In this work, we introduce DiG (Differential Grounding), a novel proxy task framework where MLLMs learn fine-grained perception by identifying and localizing all differences between similar image pairs without prior knowledge of their number. To support scalable training, we develop an automated 3D rendering-based data generation pipeline that produces high-quality paired images with fully controllable discrepancies. To address the sparsity of difference signals, we further employ curriculum learning that progressively increases complexity from single to multiple differences, enabling stable optimization. Extensive experiments demonstrate that DiG significantly improves model performance across a variety of visual perception benchmarks and that the learned fine-grained perception skills transfer effectively to standard downstream tasks, including RefCOCO, RefCOCO+, RefCOCOg, and general multimodal perception benchmarks. Our results highlight differential grounding as a scalable and robust approach for advancing fine-grained visual reasoning in MLLMs.
3.138Reasoning Within the Mind: Dynamic Multimodal Interleaving in Latent Space¶
2025/12/16 05:02 GTM
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced cross-modal understanding and reasoning by incorporating Chain-of-Thought (CoT) reasoning in the semantic space. Building upon this, recent studies extend the CoT mechanism to the visual modality, enabling models to integrate visual information during reasoning through external tools or explicit image generation. However, these methods remain dependent on explicit step-by-step reasoning, unstable perception-reasoning interaction and notable computational overhead. Inspired by human cognition, we posit that thinking unfolds not linearly but through the dynamic interleaving of reasoning and perception within the mind. Motivated by this perspective, we propose DMLR, a test-time Dynamic Multimodal Latent Reasoning framework that employs confidence-guided latent policy gradient optimization to refine latent think tokens for in-depth reasoning. Furthermore, a Dynamic Visual Injection Strategy is introduced, which retrieves the most relevant visual features at each latent think token and updates the set of best visual patches. The updated patches are then injected into latent think token to achieve dynamic visual-textual interleaving. Experiments across seven multimodal reasoning benchmarks and various model architectures demonstrate that DMLR significantly improves reasoning and perception performance while maintaining high inference efficiency.
3.139D3D-VLP: Dynamic 3D Vision-Language-Planning Model for Embodied Grounding and Navigation¶
2025/12/16 05:02 GTM
Embodied agents face a critical dilemma that end-to-end models lack interpretability and explicit 3D reasoning, while modular systems ignore cross-component interdependencies and synergies. To bridge this gap, we propose the Dynamic 3D Vision-Language-Planning Model (D3D-VLP). Our model introduces two key innovations: 1) A Dynamic 3D Chain-of-Thought (3D CoT) that unifies planning, grounding, navigation, and question answering within a single 3D-VLM and CoT pipeline; 2) A Synergistic Learning from Fragmented Supervision (SLFS) strategy, which uses a masked autoregressive loss to learn from massive and partially-annotated hybrid data. This allows different CoT components to mutually reinforce and implicitly supervise each other. To this end, we construct a large-scale dataset with 10M hybrid samples from 5K real scans and 20K synthetic scenes that are compatible with online learning methods such as RL and DAgger. Our D3D-VLP achieves state-of-the-art results on multiple benchmarks, including Vision-and-Language Navigation (R2R-CE, REVERIE-CE, NavRAG-CE), Object-goal Navigation (HM3D-OVON), and Task-oriented Sequential Grounding and Navigation (SG3D). Real-world mobile manipulation experiments further validate the effectiveness.
3.140Patch-wise Retrieval: A Bag of Practical Techniques for Instance-level Matching¶
2025/12/16 05:02 GTM
Instance-level image retrieval aims to find images containing the same object as a given query, despite variations in size, position, or appearance. To address this challenging task, we propose Patchify, a simple yet effective patch-wise retrieval framework that offers high performance, scalability, and interpretability without requiring fine-tuning. Patchify divides each database image into a small number of structured patches and performs retrieval by comparing these local features with a global query descriptor, enabling accurate and spatially grounded matching. To assess not just retrieval accuracy but also spatial correctness, we introduce LocScore, a localization-aware metric that quantifies whether the retrieved region aligns with the target object. This makes LocScore a valuable diagnostic tool for understanding and improving retrieval behavior. We conduct extensive experiments across multiple benchmarks, backbones, and region selection strategies, showing that Patchify outperforms global methods and complements state-of-the-art reranking pipelines. Furthermore, we apply Product Quantization for efficient large-scale retrieval and highlight the importance of using informative features during compression, which significantly boosts performance. Project website: https://
3.141No Cache Left Idle: Accelerating diffusion model via Extreme-slimming Caching¶
2025/12/16 05:02 GTM
Diffusion models achieve remarkable generative quality, but computational overhead scales with step count, model depth, and sequence length. Feature caching is effective since adjacent timesteps yield highly similar features. However, an inherent trade-off remains: aggressive timestep reuse offers large speedups but can easily cross the critical line, hurting fidelity, while block- or token-level reuse is safer but yields limited computational savings. We present X-Slim (eXtreme-Slimming Caching), a training-free, cache-based accelerator that, to our knowledge, is the first unified framework to exploit cacheable redundancy across timesteps, structure (blocks), and space (tokens). Rather than simply mixing levels, X-Slim introduces a dual-threshold controller that turns caching into a push-then-polish process: it first pushes reuse at the timestep level up to an early-warning line, then switches to lightweight block- and token-level refresh to polish the remaining redundancy, and triggers full inference once the critical line is crossed to reset accumulated error. At each level, context-aware indicators decide when and where to cache. Across diverse tasks, X-Slim advances the speed-quality frontier. On FLUX.1-dev and HunyuanVideo, it reduces latency by up to 4.97x and 3.52x with minimal perceptual loss. On DiT-XL/2, it reaches 3.13x acceleration and improves FID by 2.42 over prior methods.
3.142Geometry-Aware Scene-Consistent Image Generation¶
2025/12/16 05:02 GTM
We study geometry-aware scene-consistent image generation: given a reference scene image and a text condition specifying an entity to be generated in the scene and its spatial relation to the scene, the goal is to synthesize an output image that preserves the same physical environment as the reference scene while correctly generating the entity according to the spatial relation described in the text. Existing methods struggle to balance scene preservation with prompt adherence: they either replicate the scene with high fidelity but poor responsiveness to the prompt, or prioritize prompt compliance at the expense of scene consistency. To resolve this trade-off, we introduce two key contributions: (i) a scene-consistent data construction pipeline that generates diverse, geometrically-grounded training pairs, and (ii) a novel geometry-guided attention loss that leverages cross-view cues to regularize the model’s spatial reasoning. Experiments on our scene-consistent benchmark show that our approach achieves better scene alignment and text-image consistency than state-of-the-art baselines, according to both automatic metrics and human preference studies. Our method produces geometrically coherent images with diverse compositions that remain faithful to the textual instructions and the underlying scene structure.
3.143Content-Aware Ad Banner Layout Generation with Two-Stage Chain-of-Thought in Vision Language Models¶
2025/12/16 05:02 GTM
In this paper, we propose a method for generating layouts for image-based advertisements by leveraging a Vision-Language Model (VLM). Conventional advertisement layout techniques have predominantly relied on saliency mapping to detect salient regions within a background image, but such approaches often fail to fully account for the image’s detailed composition and semantic content. To overcome this limitation, our method harnesses a VLM to recognize the products and other elements depicted in the background and to inform the placement of text and logos. The proposed layout-generation pipeline consists of two steps. In the first step, the VLM analyzes the image to identify object types and their spatial relationships, then produces a text-based “placement plan” based on this analysis. In the second step, that plan is rendered into the final layout by generating HTML-format code. We validated the effectiveness of our approach through evaluation experiments, conducting both quantitative and qualitative comparisons against existing methods. The results demonstrate that by explicitly considering the background image’s content, our method produces noticeably higher-quality advertisement layouts.
3.144Vision-Enhanced Large Language Models for High-Resolution Image Synthesis and Multimodal Data Interpretation¶
2025/12/16 05:02 GTM
This research introduces a transformative framework for integrating Vision-Enhanced Large Language Models (LLMs) with advanced transformer-based architectures to tackle challenges in high-resolution image synthesis and multimodal data interpretation. The proposed model incorporates a rectified flow mechanism that connects noise and data with linear paths, enabling efficient and high-quality generation. A bidirectional tokenization strategy is employed to seamlessly merge inputs from text, image, and video modalities, fostering a unified understanding across diverse data types. By embedding spatial-temporal features and leveraging a hybrid text-image sequence modeling approach, the framework achieves unparalleled fidelity in synthesized images and coherent multimodal representations. The architecture is optimized with a noise-aware learning algorithm, addressing discrepancies in noisy data distributions and improving generative performance under varying input conditions. Rigorous evaluations on benchmark datasets demonstrate a 25% increase in image resolution clarity and a 20% reduction in computational requirements compared to diffusion-based methods. Furthermore, the model exhibits robust scalability and adaptability, showcasing its potential in applications like autonomous systems, creative content generation, and advanced video analysis. This work underscores the role of vision-centric LLMs in redefining capabilities in computer vision and multimodal artificial intelligence.
3.145Automatic Wire-Harness Color Sequence Detector¶
2025/12/16 05:02 GTM
Wire harness inspection process remains a labor-intensive process prone to errors in the modern Electronics Manufacturing Services (EMS) industry. This paper introduces a semiautomated machine vision system capable of verifying correct wire positioning, correctness of the connector polarity and correctness of color sequences for both linear and circular wire harness configurations. Five industrial standard CMOS cameras are integrated into a modularized mechanical framework in the physical structure of the solution and a HSV and RGB color domain value comparison based color sequence classifier is used in the operation. For each harness batch, a user can train the system using at least five reference samples; the trained file is stored and reused for similar harness types. The Solution is deployed at GPV Lanka Pvt. Ltd. (Fig. 2) and the system achieved 100% detection accuracy and reduced inspection time by 44% compared to manual methods. Additional features include user management, adjustable lighting, session data storage, and secure login. Results of this product usage in the real world situation demonstrate that this approach delivers reliable and efficient inspection capabilities.
3.146StegaVAR: Privacy-Preserving Video Action Recognition via Steganographic Domain Analysis¶
2025/12/16 05:02 GTM
Despite the rapid progress of deep learning in video action recognition (VAR) in recent years, privacy leakage in videos remains a critical concern. Current state-of-the-art privacy-preserving methods often rely on anonymization. These methods suffer from (1) low concealment, where producing visually distorted videos that attract attackers’ attention during transmission, and (2) spatiotemporal disruption, where degrading essential spatiotemporal features for accurate VAR. To address these issues, we propose StegaVAR, a novel framework that embeds action videos into ordinary cover videos and directly performs VAR in the steganographic domain for the first time. Throughout both data transmission and action analysis, the spatiotemporal information of hidden secret video remains complete, while the natural appearance of cover videos ensures the concealment of transmission. Considering the difficulty of steganographic domain analysis, we propose Secret Spatio-Temporal Promotion (STeP) and Cross-Band Difference Attention (CroDA) for analysis within the steganographic domain. STeP uses the secret video to guide spatiotemporal feature extraction in the steganographic domain during training. CroDA suppresses cover interference by capturing cross-band semantic differences. Experiments demonstrate that StegaVAR achieves superior VAR and privacy-preserving performance on widely used datasets. Moreover, our framework is effective for multiple steganographic models.
3.147From Tokens to Photons: Test-Time Physical Prompting for Vison-Language Models¶
2025/12/16 05:02 GTM
To extend the application of vision-language models (VLMs) from web images to sensor-mediated physical environments, we propose Multi-View Physical-prompt for Test-Time Adaptation (MVP), a forward-only framework that moves test-time adaptation (TTA) from tokens to photons by treating the camera exposure triangle--ISO, shutter speed, and aperture--as physical prompts. At inference, MVP acquires a library of physical views per scene, selects the top-k sensor settings using a source-affinity score, evaluates each retained view under lightweight digital augmentations, filters the lowest-entropy subset of augmented views, and aggregates predictions with Zero-temperature softmax (i.e., hard voting). This selection-then-vote design is simple, calibration-friendly, and requires no gradients or model modifications. On ImageNet-ES and ImageNet-ES-Diverse, MVP consistently outperforms digital-only TTA on single Auto-Exposure captures, by up to 25.6 percentage points (pp), and delivers up to 3.4 pp additional gains over pipelines that combine conventional sensor control with TTA. MVP remains effective under reduced parameter candidate sets that lower capture latency, demonstrating practicality. These results support the main claim that, beyond post-capture prompting, measurement-time control--selecting and combining real physical views--substantially improves robustness for VLMs.
3.148StreamingAssistant: Efficient Visual Token Pruning for Accelerating Online Video Understanding¶
2025/12/16 05:02 GTM
Online video understanding is essential for applications like public surveillance and AI glasses. However, applying Multimodal Large Language Models (MLLMs) to this domain is challenging due to the large number of video frames, resulting in high GPU memory usage and computational latency. To address these challenges, we propose token pruning as a means to reduce context length while retaining critical information. Specifically, we introduce a novel redundancy metric, Maximum Similarity to Spatially Adjacent Video Tokens (MSSAVT), which accounts for both token similarity and spatial position. To mitigate the bidirectional dependency between pruning and redundancy, we further design a masked pruning strategy that ensures only mutually unadjacent tokens are pruned. We also integrate an existing temporal redundancy-based pruning method to eliminate temporal redundancy of the video modality. Experimental results on multiple online and offline video understanding benchmarks demonstrate that our method significantly improves the accuracy (i.e., by 4% at most) while incurring a negligible pruning latency (i.e., less than 1ms). Our full implementation will be made publicly available.
3.149Supervised Contrastive Frame Aggregation for Video Representation Learning¶
2025/12/16 05:02 GTM
We propose a supervised contrastive learning framework for video representation learning that leverages temporally global context. We introduce a video to image aggregation strategy that spatially arranges multiple frames from each video into a single input image. This design enables the use of pre trained convolutional neural network backbones such as ResNet50 and avoids the computational overhead of complex video transformer models. We then design a contrastive learning objective that directly compares pairwise projections generated by the model. Positive pairs are defined as projections from videos sharing the same label while all other projections are treated as negatives. Multiple natural views of the same video are created using different temporal frame samplings from the same underlying video. Rather than relying on data augmentation these frame level variations produce diverse positive samples with global context and reduce overfitting. Experiments on the Penn Action and HMDB51 datasets demonstrate that the proposed method outperforms existing approaches in classification accuracy while requiring fewer computational resources. The proposed Supervised Contrastive Frame Aggregation method learns effective video representations in both supervised and self supervised settings and supports video based tasks such as classification and captioning. The method achieves seventy six percent classification accuracy on Penn Action compared to forty three percent achieved by ViVIT and forty eight percent accuracy on HMDB51 compared to thirty seven percent achieved by ViVIT.
3.150Anatomy Guided Coronary Artery Segmentation from CCTA Using Spatial Frequency Joint Modeling¶
2025/12/16 05:02 GTM
Accurate coronary artery segmentation from coronary computed tomography angiography is essential for quantitative coronary analysis and clinical decision support. Nevertheless, reliable segmentation remains challenging because of small vessel calibers, complex branching, blurred boundaries, and myocardial interference. We propose a coronary artery segmentation framework that integrates myocardial anatomical priors, structure aware feature encoding, and three dimensional wavelet inverse wavelet transformations. Myocardial priors and residual attention based feature enhancement are incorporated during encoding to strengthen coronary structure representation. Wavelet inverse wavelet based downsampling and upsampling enable joint spatial frequency modeling and preserve multi scale structural consistency, while a multi scale feature fusion module integrates semantic and geometric information in the decoding stage. The model is trained and evaluated on the public ImageCAS dataset using a 3D overlapping patch based strategy with a 7:1:2 split for training, validation, and testing. Experimental results demonstrate that the proposed method achieves a Dice coefficient of 0.8082, Sensitivity of 0.7946, Precision of 0.8471, and an HD95 of 9.77 mm, outperforming several mainstream segmentation models. Ablation studies further confirm the complementary contributions of individual components. The proposed method enables more stable and consistent coronary artery segmentation under complex geometric conditions, providing reliable segmentation results for subsequent coronary structure analysis tasks.
3.151Animus3D: Text-driven 3D Animation via Motion Score Distillation¶
2025/12/16 05:02 GTM
We present Animus3D, a text-driven 3D animation framework that generates motion field given a static 3D asset and text prompt. Previous methods mostly leverage the vanilla Score Distillation Sampling (SDS) objective to distill motion from pretrained text-to-video diffusion, leading to animations with minimal movement or noticeable jitter. To address this, our approach introduces a novel SDS alternative, Motion Score Distillation (MSD). Specifically, we introduce a LoRA-enhanced video diffusion model that defines a static source distribution rather than pure noise as in SDS, while another inversion-based noise estimation technique ensures appearance preservation when guiding motion. To further improve motion fidelity, we incorporate explicit temporal and spatial regularization terms that mitigate geometric distortions across time and space. Additionally, we propose a motion refinement module to upscale the temporal resolution and enhance fine-grained details, overcoming the fixed-resolution constraints of the underlying video model. Extensive experiments demonstrate that Animus3D successfully animates static 3D assets from diverse text prompts, generating significantly more substantial and detailed motion than state-of-the-art baselines while maintaining high visual integrity. Code will be released at https://
3.152Generative Spatiotemporal Data Augmentation¶
2025/12/16 05:02 GTM
We explore spatiotemporal data augmentation using video foundation models to diversify both camera viewpoints and scene dynamics. Unlike existing approaches based on simple geometric transforms or appearance perturbations, our method leverages off-the-shelf video diffusion models to generate realistic 3D spatial and temporal variations from a given image dataset. Incorporating these synthesized video clips as supplemental training data yields consistent performance gains in low-data settings, such as UAV-captured imagery where annotations are scarce. Beyond empirical improvements, we provide practical guidelines for (i) choosing an appropriate spatiotemporal generative setup, (ii) transferring annotations to synthetic frames, and (iii) addressing disocclusion - regions newly revealed and unlabeled in generated views. Experiments on COCO subsets and UAV-captured datasets show that, when applied judiciously, spatiotemporal augmentation broadens the data distribution along axes underrepresented by traditional and prior generative methods, offering an effective lever for improving model performance in data-scarce regimes.
3.153Advancing Cache-Based Few-Shot Classification via Patch-Driven Relational Gated Graph Attention¶
2025/12/16 05:02 GTM
Few-shot image classification remains difficult under limited supervision and visual domain shift. Recent cache-based adaptation approaches (e.g., Tip-Adapter) address this challenge to some extent by learning lightweight residual adapters over frozen features, yet they still inherit CLIP’s tendency to encode global, general-purpose representations that are not optimally discriminative to adapt the generalist to the specialist’s domain in low-data regimes. We address this limitation with a novel patch-driven relational refinement that learns cache adapter weights from intra-image patch dependencies rather than treating an image embedding as a monolithic vector. Specifically, we introduce a relational gated graph attention network that constructs a patch graph and performs edge-aware attention to emphasize informative inter-patch interactions, producing context-enriched patch embeddings. A learnable multi-aggregation pooling then composes these into compact, task-discriminative representations that better align cache keys with the target few-shot classes. Crucially, the proposed graph refinement is used only during training to distil relational structure into the cache, incurring no additional inference cost beyond standard cache lookup. Final predictions are obtained by a residual fusion of cache similarity scores with CLIP zero-shot logits. Extensive evaluations on 11 benchmarks show consistent gains over state-of-the-art CLIP adapter and cache-based baselines while preserving zero-shot efficiency. We further validate battlefield relevance by introducing an Injured vs. Uninjured Soldier dataset for casualty recognition. It is motivated by the operational need to support triage decisions within the “platinum minutes” and the broader “golden hour” window in time-critical UAV-driven search-and-rescue and combat casualty care.
3.154Adaptive Detector-Verifier Framework for Zero-Shot Polyp Detection in Open-World Settings¶
2025/12/16 05:02 GTM
Polyp detectors trained on clean datasets often underperform in real-world endoscopy, where illumination changes, motion blur, and occlusions degrade image quality. Existing approaches struggle with the domain gap between controlled laboratory conditions and clinical practice, where adverse imaging conditions are prevalent. In this work, we propose AdaptiveDetector, a novel two-stage detector-verifier framework comprising a YOLOv11 detector with a vision-language model (VLM) verifier. The detector adaptively adjusts per-frame confidence thresholds under VLM guidance, while the verifier is fine-tuned with Group Relative Policy Optimization (GRPO) using an asymmetric, cost-sensitive reward function specifically designed to discourage missed detections -- a critical clinical requirement. To enable realistic assessment under challenging conditions, we construct a comprehensive synthetic testbed by systematically degrading clean datasets with adverse conditions commonly encountered in clinical practice, providing a rigorous benchmark for zero-shot evaluation. Extensive zero-shot evaluation on synthetically degraded CVC-ClinicDB and Kvasir-SEG images demonstrates that our approach improves recall by 14 to 22 percentage points over YOLO alone, while precision remains within 0.7 points below to 1.7 points above the baseline. This combination of adaptive thresholding and cost-sensitive reinforcement learning achieves clinically aligned, open-world polyp detection with substantially fewer false negatives, thereby reducing the risk of missed precancerous polyps and improving patient outcomes.
3.155More Than the Final Answer: Improving Visual Extraction and Logical Consistency in Vision-Language Models¶
2025/12/16 05:02 GTM
Reinforcement learning from verifiable rewards (RLVR) has recently been extended from text-only LLMs to vision-language models (VLMs) to elicit long-chain multimodal reasoning. However, RLVR-trained VLMs still exhibit two persistent failure modes: inaccurate visual extraction (missing or hallucinating details) and logically inconsistent chains-of-thought, largely because verifiable signals supervise only the final answer. We propose PeRL-VL (Perception and Reasoning Learning for Vision-Language Models), a decoupled framework that separately improves visual perception and textual reasoning on top of RLVR. For perception, PeRL-VL introduces a VLM-based description reward that scores the model’s self-generated image descriptions for faithfulness and sufficiency. For reasoning, PeRL-VL adds a text-only Reasoning SFT stage on logic-rich chain-of-thought data, enhancing coherence and logical consistency independently of vision. Across diverse multimodal benchmarks, PeRL-VL improves average Pass@1 accuracy from 63.3% (base Qwen2.5-VL-7B) to 68.8%, outperforming standard RLVR, text-only reasoning SFT, and naive multimodal distillation from GPT-4o.
3.156From Particles to Fields: Reframing Photon Mapping with Continuous Gaussian Photon Fields¶
2025/12/16 05:02 GTM
Accurately modeling light transport is essential for realistic image synthesis. Photon mapping provides physically grounded estimates of complex global illumination effects such as caustics and specular-diffuse interactions, yet its per-view radiance estimation remains computationally inefficient when rendering multiple views of the same scene. The inefficiency arises from independent photon tracing and stochastic kernel estimation at each viewpoint, leading to inevitable redundant computation. To accelerate multi-view rendering, we reformulate photon mapping as a continuous and reusable radiance function. Specifically, we introduce the Gaussian Photon Field (GPF), a learnable representation that encodes photon distributions as anisotropic 3D Gaussian primitives parameterized by position, rotation, scale, and spectrum. GPF is initialized from physically traced photons in the first SPPM iteration and optimized using multi-view supervision of final radiance, distilling photon-based light transport into a continuous field. Once trained, the field enables differentiable radiance evaluation along camera rays without repeated photon tracing or iterative refinement. Extensive experiments on scenes with complex light transport, such as caustics and specular-diffuse interactions, demonstrate that GPF attains photon-level accuracy while reducing computation by orders of magnitude, unifying the physical rigor of photon-based rendering with the efficiency of neural scene representations.
3.157Endless World: Real-Time 3D-Aware Long Video Generation¶
2025/12/16 05:02 GTM
Producing long, coherent video sequences with stable 3D structure remains a major challenge, particularly in streaming scenarios. Motivated by this, we introduce Endless World, a real-time framework for infinite, 3D-consistent video generation.To support infinite video generation, we introduce a conditional autoregressive training strategy that aligns newly generated content with existing video frames. This design preserves long-range dependencies while remaining computationally efficient, enabling real-time inference on a single GPU without additional training overhead.Moreover, our Endless World integrates global 3D-aware attention to provide continuous geometric guidance across time. Our 3D injection mechanism enforces physical plausibility and geometric consistency throughout extended sequences, addressing key challenges in long-horizon and dynamic scene synthesis.Extensive experiments demonstrate that Endless World produces long, stable, and visually coherent videos, achieving competitive or superior performance to existing methods in both visual fidelity and spatial consistency. Our project has been available on https://
3.158BokehDepth: Enhancing Monocular Depth Estimation through Bokeh Generation¶
2025/12/16 05:02 GTM
Bokeh and monocular depth estimation are tightly coupled through the same lens imaging geometry, yet current methods exploit this connection in incomplete ways. High-quality bokeh rendering pipelines typically depend on noisy depth maps, which amplify estimation errors into visible artifacts, while modern monocular metric depth models still struggle on weakly textured, distant and geometrically ambiguous regions where defocus cues are most informative. We introduce BokehDepth, a two-stage framework that decouples bokeh synthesis from depth prediction and treats defocus as an auxiliary supervision-free geometric cue. In Stage-1, a physically guided controllable bokeh generator, built on a powerful pretrained image editing backbone, produces depth-free bokeh stacks with calibrated bokeh strength from a single sharp input. In Stage-2, a lightweight defocus-aware aggregation module plugs into existing monocular depth encoders, fuses features along the defocus dimension, and exposes stable depth-sensitive variations while leaving downstream decoder unchanged. Across challenging benchmarks, BokehDepth improves visual fidelity over depth-map-based bokeh baselines and consistently boosts the metric accuracy and robustness of strong monocular depth foundation models.
3.159ViInfographicVQA: A Benchmark for Single and Multi-image Visual Question Answering on Vietnamese Infographics¶
2025/12/16 05:02 GTM
Infographic Visual Question Answering (InfographicVQA) evaluates a model’s ability to read and reason over data-rich, layout-heavy visuals that combine text, charts, icons, and design elements. Compared with scene-text or natural-image VQA, infographics require stronger integration of OCR, layout understanding, and numerical and semantic reasoning. We introduce ViInfographicVQA, the first benchmark for Vietnamese InfographicVQA, comprising over 6747 real-world infographics and 20409 human-verified question-answer pairs across economics, healthcare, education, and more. The benchmark includes two evaluation settings. The Single-image task follows the traditional setup in which each question is answered using a single infographic. The Multi-image task requires synthesizing evidence across multiple semantically related infographics and is, to our knowledge, the first Vietnamese evaluation of cross-image reasoning in VQA. We evaluate a range of recent vision-language models on this benchmark, revealing substantial performance disparities, with the most significant errors occurring on Multi-image questions that involve cross-image integration and non-span reasoning. ViInfographicVQA contributes benchmark results for Vietnamese InfographicVQA and sheds light on the limitations of current multimodal models in low-resource contexts, encouraging future exploration of layout-aware and cross-image reasoning methods.
3.160A Graph Attention Network-Based Framework for Reconstructing Missing LiDAR Beams¶
2025/12/16 05:02 GTM
Vertical beam dropout in spinning LiDAR sensors triggered by hardware aging, dust, snow, fog, or bright reflections removes entire vertical slices from the point cloud and severely degrades 3D perception in autonomous vehicles. This paper proposes a Graph Attention Network (GAT)-based framework that reconstructs these missing vertical channels using only the current LiDAR frame, with no camera images or temporal information required. Each LiDAR sweep is represented as an unstructured spatial graph: points are nodes and edges connect nearby points while preserving the original beam-index ordering. A multi-layer GAT learns adaptive attention weights over local geometric neighborhoods and directly regresses the missing elevation (z) values at dropout locations. Trained and evaluated on 1,065 raw KITTI sequences with simulated channel dropout, the method achieves an average height RMSE of 11.67 cm, with 87.98% of reconstructed points falling within a 10 cm error threshold. Inference takes 14.65 seconds per frame on a single GPU, and reconstruction quality remains stable for different neighborhood sizes k. These results show that a pure graph attention model operating solely on raw point-cloud geometry can effectively recover dropped vertical beams under realistic sensor degradation.
3.161ArtGen: Conditional Generative Modeling of Articulated Objects in Arbitrary Part-Level States¶
2025/12/16 05:02 GTM
Generating articulated assets is crucial for robotics, digital twins, and embodied intelligence. Existing generative models often rely on single-view inputs representing closed states, resulting in ambiguous or unrealistic kinematic structures due to the entanglement between geometric shape and joint dynamics. To address these challenges, we introduce ArtGen, a conditional diffusion-based framework capable of generating articulated 3D objects with accurate geometry and coherent kinematics from single-view images or text descriptions at arbitrary part-level states. Specifically, ArtGen employs cross-state Monte Carlo sampling to explicitly enforce global kinematic consistency, reducing structural-motion entanglement. Additionally, we integrate a Chain-of-Thought reasoning module to infer robust structural priors, such as part semantics, joint types, and connectivity, guiding a sparse-expert Diffusion Transformer to specialize in diverse kinematic interactions. Furthermore, a compositional 3D-VAE latent prior enhanced with local-global attention effectively captures fine-grained geometry and global part-level relationships. Extensive experiments on the PartNet-Mobility benchmark demonstrate that ArtGen significantly outperforms state-of-the-art methods.
3.162Speedrunning ImageNet Diffusion¶
2025/12/16 05:02 GTM
Recent advances have significantly improved the training efficiency of diffusion transformers. However, these techniques have largely been studied in isolation, leaving unexplored the potential synergies from combining multiple approaches. We present SR-DiT (Speedrun Diffusion Transformer), a framework that systematically integrates token routing, architectural improvements, and training modifications on top of representation alignment. Our approach achieves FID 3.49 and KDD 0.319 on ImageNet-256 using only a 140M parameter model at 400K iterations without classifier-free guidance - comparable to results from 685M parameter models trained significantly longer. To our knowledge, this is a state-of the-art result at this model size. Through extensive ablation studies, we identify which technique combinations are most effective and document both synergies and incompatibilities. We release our framework as a computationally accessible baseline for future research.
3.163M4Human: A Large-Scale Multimodal mmWave Radar Benchmark for Human Mesh Reconstruction¶
2025/12/16 05:02 GTM
Human mesh reconstruction (HMR) provides direct insights into body-environment interaction, which enables various immersive applications. While existing large-scale HMR datasets rely heavily on line-of-sight RGB input, vision-based sensing is limited by occlusion, lighting variation, and privacy concerns. To overcome these limitations, recent efforts have explored radio-frequency (RF) mmWave radar for privacy-preserving indoor human sensing. However, current radar datasets are constrained by sparse skeleton labels, limited scale, and simple in-place actions. To advance the HMR research community, we introduce M4Human, the current largest-scale (661K-frame) ( prior largest) multimodal benchmark, featuring high-resolution mmWave radar, RGB, and depth data. M4Human provides both raw radar tensors (RT) and processed radar point clouds (RPC) to enable research across different levels of RF signal granularity. M4Human includes high-quality motion capture (MoCap) annotations with 3D meshes and global trajectories, and spans 20 subjects and 50 diverse actions, including in-place, sit-in-place, and free-space sports or rehabilitation movements. We establish benchmarks on both RT and RPC modalities, as well as multimodal fusion with RGB-D modalities. Extensive results highlight the significance of M4Human for radar-based human modeling while revealing persistent challenges under fast, unconstrained motion. The dataset and code will be released after the paper publication.
3.164V-Warper: Appearance-Consistent Video Diffusion Personalization via Value Warping¶
2025/12/16 05:02 GTM
Video personalization aims to generate videos that faithfully reflect a user-provided subject while following a text prompt. However, existing approaches often rely on heavy video-based finetuning or large-scale video datasets, which impose substantial computational cost and are difficult to scale. Furthermore, they still struggle to maintain fine-grained appearance consistency across frames. To address these limitations, we introduce V-Warper, a training-free coarse-to-fine personalization framework for transformer-based video diffusion models. The framework enhances fine-grained identity fidelity without requiring any additional video training. (1) A lightweight coarse appearance adaptation stage leverages only a small set of reference images, which are already required for the task. This step encodes global subject identity through image-only LoRA and subject-embedding adaptation. (2) A inference-time fine appearance injection stage refines visual fidelity by computing semantic correspondences from RoPE-free mid-layer query--key features. These correspondences guide the warping of appearance-rich value representations into semantically aligned regions of the generation process, with masking ensuring spatial reliability. V-Warper significantly improves appearance fidelity while preserving prompt alignment and motion dynamics, and it achieves these gains efficiently without large-scale video finetuning.
3.165STAGE: Storyboard-Anchored Generation for Cinematic Multi-shot Narrative¶
2025/12/16 05:02 GTM
While recent advancements in generative models have achieved remarkable visual fidelity in video synthesis, creating coherent multi-shot narratives remains a significant challenge. To address this, keyframe-based approaches have emerged as a promising alternative to computationally intensive end-to-end methods, offering the advantages of fine-grained control and greater efficiency. However, these methods often fail to maintain cross-shot consistency and capture cinematic language. In this paper, we introduce STAGE, a SToryboard-Anchored GEneration workflow to reformulate the keyframe-based multi-shot video generation task. Instead of using sparse keyframes, we propose STEP2 to predict a structural storyboard composed of start-end frame pairs for each shot. We introduce the multi-shot memory pack to ensure long-range entity consistency, the dual-encoding strategy for intra-shot coherence, and the two-stage training scheme to learn cinematic inter-shot transition. We also contribute the large-scale ConStoryBoard dataset, including high-quality movie clips with fine-grained annotations for story progression, cinematic attributes, and human preferences. Extensive experiments demonstrate that STAGE achieves superior performance in structured narrative control and cross-shot coherence.
3.166JPEG-Inspired Cloud-Edge Holography¶
2025/12/16 05:02 GTM
Computer-generated holography (CGH) presents a transformative solution for near-eye displays in augmented and virtual reality. Recent advances in deep learning have greatly improved CGH in reconstructed quality and computational efficiency. However, deploying neural CGH pipelines directly on compact, eyeglass-style devices is hindered by stringent constraints on computation and energy consumption, while cloud offloading followed by transmission with natural image codecs often distorts phase information and requires high bandwidth to maintain reconstruction quality. Neural compression methods can reduce bandwidth but impose heavy neural decoders at the edge, increasing inference latency and hardware demand. In this work, we introduce JPEG-Inspired Cloud-Edge Holography, an efficient pipeline designed around a learnable transform codec that retains the block-structured and hardware-friendly nature of JPEG. Our system shifts all heavy neural processing to the cloud, while the edge device performs only lightweight decoding without any neural inference. To further improve throughput, we implement custom CUDA kernels for entropy coding on both cloud and edge. This design achieves a peak signal-to-noise ratio of 32.15 dB at 2 bits per pixel with decode latency as low as 4.2 ms. Both numerical simulations and optical experiments confirm the high reconstruction quality of the holograms. By aligning CGH with a codec that preserves JPEG’s structural efficiency while extending it with learnable components, our framework enables low-latency, bandwidth-efficient hologram streaming on resource-constrained wearable devices-using only simple block-based decoding readily supported by modern system-on-chips, without requiring neural decoders or specialized hardware.
3.167VideoARM: Agentic Reasoning over Hierarchical Memory for Long-Form Video Understanding¶
2025/12/16 05:02 GTM
Long-form video understanding remains challenging due to the extended temporal structure and dense multimodal cues. Despite recent progress, many existing approaches still rely on hand-crafted reasoning pipelines or employ token-consuming video preprocessing to guide MLLMs in autonomous reasoning. To overcome these limitations, we introduce VideoARM, an Agentic Reasoning-over-hierarchical-Memory paradigm for long-form video understanding. Instead of static, exhaustive preprocessing, VideoARM performs adaptive, on-the-fly agentic reasoning and memory construction. Specifically, VideoARM performs an adaptive and continuous loop of observing, thinking, acting, and memorizing, where a controller autonomously invokes tools to interpret the video in a coarse-to-fine manner, thereby substantially reducing token consumption. In parallel, a hierarchical multimodal memory continuously captures and updates multi-level clues throughout the operation of the agent, providing precise contextual information to support the controller in decision-making. Experiments on prevalent benchmarks demonstrate that VideoARM outperforms the state-of-the-art method, DVD, while significantly reducing token consumption for long-form videos.
3.168TCLeaf-Net: a transformer-convolution framework with global-local attention for robust in-field lesion-level plant leaf disease detection¶
2025/12/16 05:02 GTM
Timely and accurate detection of foliar diseases is vital for safeguarding crop growth and reducing yield losses. Yet, in real-field conditions, cluttered backgrounds, domain shifts, and limited lesion-level datasets hinder robust modeling. To address these challenges, we release Daylily-Leaf, a paired lesion-level dataset comprising 1,746 RGB images and 7,839 lesions captured under both ideal and in-field conditions, and propose TCLeaf-Net, a transformer-convolution hybrid detector optimized for real-field use. TCLeaf-Net is designed to tackle three major challenges. To mitigate interference from complex backgrounds, the transformer-convolution module (TCM) couples global context with locality-preserving convolution to suppress non-leaf regions. To reduce information loss during downsampling, the raw-scale feature recalling and sampling (RSFRS) block combines bilinear resampling and convolution to preserve fine spatial detail. To handle variations in lesion scale and feature shifts, the deformable alignment block with FPN (DFPN) employs offset-based alignment and multi-receptive-field perception to strengthen multi-scale fusion. Experimental results show that on the in-field split of the Daylily-Leaf dataset, TCLeaf-Net improves mAP@50 by 5.4 percentage points over the baseline model, reaching 78.2%, while reducing computation by 7.5 GFLOPs and GPU memory usage by 8.7%. Moreover, the model outperforms recent YOLO and RT-DETR series in both precision and recall, and demonstrates strong performance on the PlantDoc, Tomato-Leaf, and Rice-Leaf datasets, validating its robustness and generalizability to other plant disease detection scenarios.
3.169Unified Control for Inference-Time Guidance of Denoising Diffusion Models¶
2025/12/16 05:02 GTM
Aligning diffusion model outputs with downstream objectives is essential for improving task-specific performance. Broadly, inference-time training-free approaches for aligning diffusion models can be categorized into two main strategies: sampling-based methods, which explore multiple candidate outputs and select those with higher reward signals, and gradient-guided methods, which use differentiable reward approximations to directly steer the generation process. In this work, we propose a universal algorithm, UniCoDe, which brings together the strengths of sampling and gradient-based guidance into a unified framework. UniCoDe integrates local gradient signals during sampling, thereby addressing the sampling inefficiency inherent in complex reward-based sampling approaches. By cohesively combining these two paradigms, UniCoDe enables more efficient sampling while offering better trade-offs between reward alignment and divergence from the diffusion unconditional prior. Empirical results demonstrate that UniCoDe remains competitive with state-of-the-art baselines across a range of tasks. The code is available at https://
3.170WeDetect: Fast Open-Vocabulary Object Detection as Retrieval¶
2025/12/16 05:02 GTM
Open-vocabulary object detection aims to detect arbitrary classes via text prompts. Methods without cross-modal fusion layers (non-fusion) offer faster inference by treating recognition as a retrieval problem, \ie, matching regions to text queries in a shared embedding space. In this work, we fully explore this retrieval philosophy and demonstrate its unique advantages in efficiency and versatility through a model family named WeDetect: (1) State-of-the-art performance. WeDetect is a real-time detector with a dual-tower architecture. We show that, with well-curated data and full training, the non-fusion WeDetect surpasses other fusion models and establishes a strong open-vocabulary foundation. (2) Fast backtrack of historical data. WeDetect-Uni is a universal proposal generator based on WeDetect. We freeze the entire detector and only finetune an objectness prompt to retrieve generic object proposals across categories. Importantly, the proposal embeddings are class-specific and enable a new application, object retrieval, supporting retrieval objects in historical data. (3) Integration with LMMs for referring expression comprehension (REC). We further propose WeDetect-Ref, an LMM-based object classifier to handle complex referring expressions, which retrieves target objects from the proposal list extracted by WeDetect-Uni. It discards next-token prediction and classifies objects in a single forward pass. Together, the WeDetect family unifies detection, proposal generation, object retrieval, and REC under a coherent retrieval framework, achieving state-of-the-art performance across 15 benchmarks with high inference efficiency.
3.171MRD: Using Physically Based Differentiable Rendering to Probe Vision Models for 3D Scene Understanding¶
2025/12/16 05:02 GTM
While deep learning methods have achieved impressive success in many vision benchmarks, it remains difficult to understand and explain the representations and decisions of these models. Though vision models are typically trained on 2D inputs, they are often assumed to develop an implicit representation of the underlying 3D scene (for example, showing tolerance to partial occlusion, or the ability to reason about relative depth). Here, we introduce MRD (metamers rendered differentiably), an approach that uses physically based differentiable rendering to probe vision models’ implicit understanding of generative 3D scene properties, by finding 3D scene parameters that are physically different but produce the same model activation (i.e. are model metamers). Unlike previous pixel-based methods for evaluating model representations, these reconstruction results are always grounded in physical scene descriptions. This means we can, for example, probe a model’s sensitivity to object shape while holding material and lighting constant. As a proof-of-principle, we assess multiple models in their ability to recover scene parameters of geometry (shape) and bidirectional reflectance distribution function (material). The results show high similarity in model activation between target and optimized scenes, with varying visual results. Qualitatively, these reconstructions help investigate the physical scene attributes to which models are sensitive or invariant. MRD holds promise for advancing our understanding of both computer and human vision by enabling analysis of how physical scene parameters drive changes in model responses.
3.172OMUDA: Omni-level Masking for Unsupervised Domain Adaptation in Semantic Segmentation¶
2025/12/16 05:02 GTM
Unsupervised domain adaptation (UDA) enables semantic segmentation models to generalize from a labeled source domain to an unlabeled target domain. However, existing UDA methods still struggle to bridge the domain gap due to cross-domain contextual ambiguity, inconsistent feature representations, and class-wise pseudo-label noise. To address these challenges, we propose Omni-level Masking for Unsupervised Domain Adaptation (OMUDA), a unified framework that introduces hierarchical masking strategies across distinct representation levels. Specifically, OMUDA comprises: 1) a Context-Aware Masking (CAM) strategy that adaptively distinguishes foreground from background to balance global context and local details; 2) a Feature Distillation Masking (FDM) strategy that enhances robust and consistent feature learning through knowledge transfer from pre-trained models; and 3) a Class Decoupling Masking (CDM) strategy that mitigates the impact of noisy pseudo-labels by explicitly modeling class-wise uncertainty. This hierarchical masking paradigm effectively reduces the domain shift at the contextual, representational, and categorical levels, providing a unified solution beyond existing approaches. Extensive experiments on multiple challenging cross-domain semantic segmentation benchmarks validate the effectiveness of OMUDA. Notably, on the SYNTHIA->Cityscapes and GTA5->Cityscapes tasks, OMUDA can be seamlessly integrated into existing UDA methods and consistently achieving state-of-the-art results with an average improvement of 7%.
3.173From Human Intention to Action Prediction: A Comprehensive Benchmark for Intention-driven End-to-End Autonomous Driving¶
2025/12/16 05:02 GTM
Current end-to-end autonomous driving systems operate at a level of intelligence akin to following simple steering commands. However, achieving genuinely intelligent autonomy requires a paradigm shift: moving from merely executing low-level instructions to understanding and fulfilling high-level, abstract human intentions. This leap from a command-follower to an intention-fulfiller, as illustrated in our conceptual framework, is hindered by a fundamental challenge: the absence of a standardized benchmark to measure and drive progress on this complex task. To address this critical gap, we introduce Intention-Drive, the first comprehensive benchmark designed to evaluate the ability to translate high-level human intent into safe and precise driving actions. Intention-Drive features two core contributions: (1) a new dataset of complex scenarios paired with corresponding natural language intentions, and (2) a novel evaluation protocol centered on the Intent Success Rate (ISR), which assesses the semantic fulfillment of the human’s goal beyond simple geometric accuracy. Through an extensive evaluation of a spectrum of baseline models on Intention-Drive, we reveal a significant performance deficit, showing that the baseline model struggle to achieve the comprehensive scene and intention understanding required for this advanced task.
3.174GrowTAS: Progressive Expansion from Small to Large Subnets for Efficient ViT Architecture Search¶
2025/12/16 05:02 GTM
Transformer architecture search (TAS) aims to automatically discover efficient vision transformers (ViTs), reducing the need for manual design. Existing TAS methods typically train an over-parameterized network (i.e., a supernet) that encompasses all candidate architectures (i.e., subnets). However, all subnets share the same set of weights, which leads to interference that degrades the smaller subnets severely. We have found that well-trained small subnets can serve as a good foundation for training larger ones. Motivated by this, we propose a progressive training framework, dubbed GrowTAS, that begins with training small subnets and incorporate larger ones gradually. This enables reducing the interference and stabilizing a training process. We also introduce GrowTAS+ that fine-tunes a subset of weights only to further enhance the performance of large subnets. Extensive experiments on ImageNet and several transfer learning benchmarks, including CIFAR-10/100, Flowers, CARS, and INAT-19, demonstrate the effectiveness of our approach over current TAS methods
3.175RealDrag: The First Dragging Benchmark with Real Target Image¶
2025/12/16 05:02 GTM
The evaluation of drag based image editing models is unreliable due to a lack of standardized benchmarks and metrics. This ambiguity stems from inconsistent evaluation protocols and, critically, the absence of datasets containing ground truth target images, making objective comparisons between competing methods difficult. To address this, we introduce \textbf{RealDrag}, the first comprehensive benchmark for point based image editing that includes paired ground truth target images. Our dataset contains over 400 human annotated samples from diverse video sources, providing source/target images, handle/target points, editable region masks, and descriptive captions for both the image and the editing action. We also propose four novel, task specific metrics: Semantical Distance (SeD), Outer Mask Preserving Score (OMPS), Inner Patch Preserving Score (IPPS), and Directional Similarity (DiS). These metrics are designed to quantify pixel level matching fidelity, check preservation of non edited (out of mask) regions, and measure semantic alignment with the desired task. Using this benchmark, we conduct the first large scale systematic analysis of the field, evaluating 17 SOTA models. Our results reveal clear trade offs among current approaches and establish a robust, reproducible baseline to guide future research. Our dataset and evaluation toolkit will be made publicly available.
3.176V-Rex: Real-Time Streaming Video LLM Acceleration via Dynamic KV Cache Retrieval¶
2025/12/16 05:02 GTM
Streaming video large language models (LLMs) are increasingly used for real-time multimodal tasks such as video captioning, question answering, conversational agents, and augmented reality. However, these models face fundamental memory and computational challenges because their key-value (KV) caches grow substantially with continuous streaming video input. This process requires an iterative prefill stage, which is a unique feature of streaming video LLMs. Due to its iterative prefill stage, it suffers from significant limitations, including extensive computation, substantial data transfer, and degradation in accuracy. Crucially, this issue is exacerbated for edge deployment, which is the primary target for these models. In this work, we propose V-Rex, the first software-hardware co-designed accelerator that comprehensively addresses both algorithmic and hardware bottlenecks in streaming video LLM inference. At its core, V-Rex introduces ReSV, a training-free dynamic KV cache retrieval algorithm. ReSV exploits temporal and spatial similarity-based token clustering to reduce excessive KV cache memory across video frames. To fully realize these algorithmic benefits, V-Rex offers a compact, low-latency hardware accelerator with a dynamic KV cache retrieval engine (DRE), featuring bit-level and early-exit based computing units. V-Rex achieves unprecedented real-time of 3.9-8.3 FPS and energy-efficient streaming video LLM inference on edge deployment with negligible accuracy loss. While DRE only accounts for 2.2% power and 2.0% area, the system delivers 1.9-19.7x speedup and 3.1-18.5x energy efficiency improvements over AGX Orin GPU. This work is the first to comprehensively tackle KV cache retrieval across algorithms and hardware, enabling real-time streaming video LLM inference on resource-constrained edge devices.
3.177Cognitive-YOLO: LLM-Driven Architecture Synthesis from First Principles of Data for Object Detection¶
2025/12/16 05:02 GTM
Designing high-performance object detection architectures is a complex task, where traditional manual design is time-consuming and labor-intensive, and Neural Architecture Search (NAS) is computationally prohibitive. While recent approaches using Large Language Models (LLMs) show promise, they often function as iterative optimizers within a search loop, rather than generating architectures directly from a holistic understanding of the data. To address this gap, we propose Cognitive-YOLO, a novel framework for LLM-driven architecture synthesis that generates network configurations directly from the intrinsic characteristics of the dataset. Our method consists of three stages: first, an analysis module extracts key meta-features (e.g., object scale distribution and scene density) from the target dataset; second, the LLM reasons upon these features, augmented with state-of-the-art components retrieved via Retrieval-Augmented Generation (RAG), to synthesize the architecture into a structured Neural Architecture Description Language (NADL); finally, a compiler instantiates this description into a deployable model. Extensive experiments on five diverse object detection datasets demonstrate that our proposed Cognitive-YOLO consistently generates superior architectures, achieving highly competitive performance and demonstrating a superior performance-per-parameter trade-off compared to strong baseline models across multiple benchmarks. Crucially, our ablation studies prove that the LLM’s data-driven reasoning is the primary driver of performance, demonstrating that a deep understanding of data “first principles” is more critical for achieving a superior architecture than simply retrieving SOTA components.
3.178Feature Aggregation for Efficient Continual Learning of Complex Facial Expressions¶
2025/12/16 05:02 GTM
As artificial intelligence (AI) systems become increasingly embedded in our daily life, the ability to recognize and adapt to human emotions is essential for effective human-computer interaction. Facial expression recognition (FER) provides a primary channel for inferring affective states, but the dynamic and culturally nuanced nature of emotions requires models that can learn continuously without forgetting prior knowledge. In this work, we propose a hybrid framework for FER in a continual learning setting that mitigates catastrophic forgetting. Our approach integrates two complementary modalities: deep convolutional features and facial Action Units (AUs) derived from the Facial Action Coding System (FACS). The combined representation is modelled through Bayesian Gaussian Mixture Models (BGMMs), which provide a lightweight, probabilistic solution that avoids retraining while offering strong discriminative power. Using the Compound Facial Expression of Emotion (CFEE) dataset, we show that our model can first learn basic expressions and then progressively recognize compound expressions. Experiments demonstrate improved accuracy, stronger knowledge retention, and reduced forgetting. This framework contributes to the development of emotionally intelligent AI systems with applications in education, healthcare, and adaptive user interfaces.
3.179MetaTPT: Meta Test-time Prompt Tuning for Vision-Language Models¶
2025/12/16 05:02 GTM
Vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization but remain sensitive to domain shifts at test time. Test-time prompt tuning (TPT) mitigates this issue by adapting prompts with fixed augmentations, which may falter in more challenging settings. In this work, we propose Meta Test-Time Prompt Tuning (MetaTPT), a meta-learning framework that learns a self-supervised auxiliary task to guide test-time prompt tuning. The auxiliary task dynamically learns parameterized augmentations for each sample, enabling more expressive transformations that capture essential features in target domains. MetaTPT adopts a dual-loop optimization paradigm: an inner loop learns a self-supervised task that generates informative views, while the outer loop performs prompt tuning by enforcing consistency across these views. By coupling augmentation learning with prompt tuning, MetaTPT improves test-time adaptation under domain shifts. Extensive experiments demonstrate that MetaTPT achieves state-of-the-art performance on domain generalization and cross-dataset benchmarks.
3.180Moment and Highlight Detection via MLLM Frame Segmentation¶
2025/12/16 05:02 GTM
Detecting video moments and highlights from natural-language queries have been unified by transformer-based methods. Other works use generative Multimodal LLM (MLLM) to predict moments and/or highlights as text timestamps, utilizing its reasoning capability. While effective, text-based generation cannot provide direct gradients for frame-level predictions because the model only emits language tokens. Although recent Reinforcement Learning (RL) methods attempt to address the issue, we propose a novel approach by applying segmentation objectives directly on the LLM’s output tokens. The LLM is fed with a fixed number of frames alongside a prompt that enforces it to output a sequence of continuous “0” and/or “1” characters, with one character per frame. The “0”/“1” characters benefit from the LLM’s inherent language capability while also acting as background and foreground probabilities, respectively. Training employs segmentation losses on the probabilities alongside a normal causal LM loss. At inference, beam search generates sequence and logits, acting as moments and saliency scores, respectively. Despite sampling only 25 frames -- less than half of comparable methods -- our method achieved strong highlight detection (56.74 HIT@1) on QVHighlights. Additionally, our efficient method scores above the baseline (35.28 MAP) for moment retrieval. Empirically, segmentation losses provide a stable complementary learning signal even when the causal LM loss plateaus.
3.181Resolution-Independent Neural Operators for Multi-Rate Sparse-View CT¶
2025/12/16 05:02 GTM
Sparse-view Computed Tomography (CT) reconstructs images from a limited number of X-ray projections to reduce radiation and scanning time, which makes reconstruction an ill-posed inverse problem. Deep learning methods achieve high-fidelity reconstructions but often overfit to a fixed acquisition setup, failing to generalize across sampling rates and image resolutions. For example, convolutional neural networks (CNNs) use the same learned kernels across resolutions, leading to artifacts when data resolution changes. We propose Computed Tomography neural Operator (CTO), a unified CT reconstruction framework that extends to continuous function space, enabling generalization (without retraining) across sampling rates and image resolutions. CTO operates jointly in the sinogram and image domains through rotation-equivariant Discrete-Continuous convolutions parametrized in the function space, making it inherently resolution- and sampling-agnostic. Empirically, CTO enables consistent multi-sampling-rate and cross-resolution performance, with on average >4dB PSNR gain over CNNs. Compared to state-of-the-art diffusion methods, CTO is 500 faster in inference time with on average 3dB gain. Empirical results also validate our design choices behind CTO’s sinogram-space operator learning and rotation-equivariant convolution. Overall, CTO outperforms state-of-the-art baselines across sampling rates and resolutions, offering a scalable and generalizable solution that makes automated CT reconstruction more practical for deployment.
3.182Ultra-Low Bitrate Perceptual Image Compression with Shallow Encoder¶
2025/12/16 05:02 GTM
Ultra-low bitrate image compression (below 0.05 bits per pixel) is increasingly critical for bandwidth-constrained and computation-limited encoding scenarios such as edge devices. Existing frameworks typically rely on large pretrained encoders (e.g., VAEs or tokenizer-based models) and perform transform coding within their generative latent space. While these approaches achieve impressive perceptual fidelity, their reliance on heavy encoder networks makes them unsuitable for deployment on weak sender devices. In this work, we explore the feasibility of applying shallow encoders for ultra-low bitrate compression and propose a novel Asymmetric Extreme Image Compression (AEIC) framework that pursues simultaneously encoding simplicity and decoding quality. Specifically, AEIC employs moderate or even shallow encoder networks, while leveraging an one-step diffusion decoder to maintain high-fidelity and high-realism reconstructions under extreme bitrates. To further enhance the efficiency of shallow encoders, we design a dual-side feature distillation scheme that transfers knowledge from AEIC with moderate encoders to its shallow encoder variants. Experiments demonstrate that AEIC not only outperforms existing methods on rate-distortion-perception performance at ultra-low bitrates, but also delivers exceptional encoding efficiency for 35.8 FPS on 1080P input images, while maintaining competitive decoding speed compared to existing methods.
3.183Comparison of different segmentation algorithms on brain volume and fractal dimension in infant brain MRIs¶
2025/12/16 05:02 GTM
Accurate segmentation of infant brain MRI is essential for quantifying developmental changes in structure and complexity. However, ongoing myelination and reduced tissue contrast make automated segmentation particularly challenging. This study systematically compared segmentation accuracy and its impact on volumetric and fractal dimension (FD) estimates in infant brain MRI using the Baby Open Brains (BOB) dataset (71 scans, 1-9 months). Two methods, SynthSeg and SamSeg, were evaluated against expert annotations using Dice, Intersection over Union, 95th-percentile Hausdorff distance, and Normalised Mutual Information. SynthSeg outperformed SamSeg across all quality metrics (mean Dice > 0.8 for major regions) and provided volumetric estimates closely matching the manual reference (mean +4% [-28% - 71%]). SamSeg systematically overestimated ventricular and whole-brain volumes (mean +76% [-12% - 190%]). Segmentation accuracy improved with age, consistent with increasing tissue contrast during myelination. Fractal dimension a(FD) nalyses revealed significant regional differences between SynthSeg and expert segmentations, and Bland-Altman limits of agreement indicated that segmentation-related FD variability exceeded most group differences reported in developmental cohorts. Volume and FD deviations were positively correlated across structures, indicating that segmentation bias directly affects FD estimation. Overall, SynthSeg provided the most reliable volumetric and FD results for paediatric MRI, yet small morphological differences in volume and FD should be interpreted with caution due to segmentation-related uncertainty.
3.184ProImage-Bench: Rubric-Based Evaluation for Professional Image Generation¶
2025/12/16 05:02 GTM
We study professional image generation, where a model must synthesize information-dense, scientifically precise illustrations from technical descriptions rather than merely produce visually plausible pictures. To quantify the progress, we introduce ProImage-Bench, a rubric-based benchmark that targets biology schematics, engineering/patent drawings, and general scientific diagrams. For 654 figures collected from real textbooks and technical reports, we construct detailed image instructions and a hierarchy of rubrics that decompose correctness into 6,076 criteria and 44,131 binary checks. Rubrics are derived from surrounding text and reference figures using large multimodal models, and are evaluated by an automated LMM-based judge with a principled penalty scheme that aggregates sub-question outcomes into interpretable criterion scores. We benchmark several representative text-to-image models on ProImage-Bench and find that, despite strong open-domain performance, the best base model reaches only 0.791 rubric accuracy and 0.553 criterion score overall, revealing substantial gaps in fine-grained scientific fidelity. Finally, we show that the same rubrics provide actionable supervision: feeding failed checks back into an editing model for iterative refinement boosts a strong generator from 0.653 to 0.865 in rubric accuracy and from 0.388 to 0.697 in criterion score. ProImage-Bench thus offers both a rigorous diagnostic for professional image generation and a scalable signal for improving specification-faithful scientific illustrations.
3.185Fine-Grained Zero-Shot Learning with Attribute-Centric Representations¶
2025/12/16 05:02 GTM
Recognizing unseen fine-grained categories demands a model that can distinguish subtle visual differences. This is typically achieved by transferring visual-attribute relationships from seen classes to unseen classes. The core challenge is attribute entanglement, where conventional models collapse distinct attributes like color, shape, and texture into a single visual embedding. This causes interference that masks these critical distinctions. The post-hoc solutions of previous work are insufficient, as they operate on representations that are already mixed. We propose a zero-shot learning framework that learns AttributeCentric Representations (ACR) to tackle this problem by imposing attribute disentanglement during representation learning. ACR is achieved with two mixture-of-experts components, including Mixture of Patch Experts (MoPE) and Mixture of Attribute Experts (MoAE). First, MoPE is inserted into the transformer using a dual-level routing mechanism to conditionally dispatch image patches to specialized experts. This ensures coherent attribute families are processed by dedicated experts. Finally, the MoAE head projects these expert-refined features into sparse, partaware attribute maps for robust zero-shot classification. On zero-shot learning benchmark datasets CUB, AwA2, and SUN, our ACR achieves consistent state-of-the-art results.
3.186Journey Before Destination: On the importance of Visual Faithfulness in Slow Thinking¶
2025/12/16 05:02 GTM
Reasoning-augmented vision language models (VLMs) generate explicit chains of thought that promise greater capability and transparency but also introduce new failure modes: models may reach correct answers via visually unfaithful intermediate steps, or reason faithfully yet fail on the final prediction. Standard evaluations that only measure final-answer accuracy cannot distinguish these behaviors. We introduce the visual faithfulness of reasoning chains as a distinct evaluation dimension, focusing on whether the perception steps of a reasoning chain are grounded in the image. We propose a training- and reference-free framework that decomposes chains into perception versus reasoning steps and uses off-the-shelf VLM judges for step-level faithfulness, additionally verifying this approach through a human meta-evaluation. Building on this metric, we present a lightweight self-reflection procedure that detects and locally regenerates unfaithful perception steps without any training. Across multiple reasoning-trained VLMs and perception-heavy benchmarks, our method reduces Unfaithful Perception Rate while preserving final-answer accuracy, improving the reliability of multimodal reasoning.
3.187CineLOG: A Training Free Approach for Cinematic Long Video Generation¶
2025/12/16 05:02 GTM
Controllable video synthesis is a central challenge in computer vision, yet current models struggle with fine grained control beyond textual prompts, particularly for cinematic attributes like camera trajectory and genre. Existing datasets often suffer from severe data imbalance, noisy labels, or a significant simulation to real gap. To address this, we introduce CineLOG, a new dataset of 5,000 high quality, balanced, and uncut video clips. Each entry is annotated with a detailed scene description, explicit camera instructions based on a standard cinematic taxonomy, and genre label, ensuring balanced coverage across 17 diverse camera movements and 15 film genres. We also present our novel pipeline designed to create this dataset, which decouples the complex text to video (T2V) generation task into four easier stages with more mature technology. To enable coherent, multi shot sequences, we introduce a novel Trajectory Guided Transition Module that generates smooth spatio-temporal interpolation. Extensive human evaluations show that our pipeline significantly outperforms SOTA end to end T2V models in adhering to specific camera and screenplay instructions, while maintaining professional visual quality. All codes and data are available at https://
3.188A Hybrid Deep Learning Framework for Emotion Recognition in Children with Autism During NAO Robot-Mediated Interaction¶
2025/12/16 05:02 GTM
Understanding emotional responses in children with Autism Spectrum Disorder (ASD) during social interaction remains a critical challenge in both developmental psychology and human-robot interaction. This study presents a novel deep learning pipeline for emotion recognition in autistic children in response to a name-calling event by a humanoid robot (NAO), under controlled experimental settings. The dataset comprises of around 50,000 facial frames extracted from video recordings of 15 children with ASD. A hybrid model combining a fine-tuned ResNet-50-based Convolutional Neural Network (CNN) and a three-layer Graph Convolutional Network (GCN) trained on both visual and geometric features extracted from MediaPipe FaceMesh landmarks. Emotions were probabilistically labeled using a weighted ensemble of two models: DeepFace’s and FER, each contributing to soft-label generation across seven emotion classes. Final classification leveraged a fused embedding optimized via Kullback-Leibler divergence. The proposed method demonstrates robust performance in modeling subtle affective responses and offers significant promise for affective profiling of ASD children in clinical and therapeutic human-robot interaction contexts, as the pipeline effectively captures micro emotional cues in neurodivergent children, addressing a major gap in autism-specific HRI research. This work represents the first such large-scale, real-world dataset and pipeline from India on autism-focused emotion analysis using social robotics, contributing an essential foundation for future personalized assistive technologies.
3.189ALERT Open Dataset and Input-Size-Agnostic Vision Transformer for Driver Activity Recognition using IR-UWB¶
2025/12/16 05:02 GTM
Distracted driving contributes to fatal crashes worldwide. To address this, researchers are using driver activity recognition (DAR) with impulse radio ultra-wideband (IR-UWB) radar, which offers advantages such as interference resistance, low power consumption, and privacy preservation. However, two challenges limit its adoption: the lack of large-scale real-world UWB datasets covering diverse distracted driving behaviors, and the difficulty of adapting fixed-input Vision Transformers (ViTs) to UWB radar data with non-standard dimensions. This work addresses both challenges. We present the ALERT dataset, which contains 10,220 radar samples of seven distracted driving activities collected in real driving conditions. We also propose the input-size-agnostic Vision Transformer (ISA-ViT), a framework designed for radar-based DAR. The proposed method resizes UWB data to meet ViT input requirements while preserving radar-specific information such as Doppler shifts and phase characteristics. By adjusting patch configurations and leveraging pre-trained positional embedding vectors (PEVs), ISA-ViT overcomes the limitations of naive resizing approaches. In addition, a domain fusion strategy combines range- and frequency-domain features to further improve classification performance. Comprehensive experiments demonstrate that ISA-ViT achieves a 22.68% accuracy improvement over an existing ViT-based approach for UWB-based DAR. By publicly releasing the ALERT dataset and detailing our input-size-agnostic strategy, this work facilitates the development of more robust and scalable distracted driving detection systems for real-world deployment.
3.190A Multi-Year Urban Streetlight Imagery Dataset for Visual Monitoring and Spatio-Temporal Drift Detection¶
2025/12/16 05:02 GTM
We present a large-scale, longitudinal visual dataset of urban streetlights captured by 22 fixed-angle cameras deployed across Bristol, U.K., from 2021 to 2025. The dataset contains over 526,000 images, collected hourly under diverse lighting, weather, and seasonal conditions. Each image is accompanied by rich metadata, including timestamps, GPS coordinates, and device identifiers. This unique real-world dataset enables detailed investigation of visual drift, anomaly detection, and MLOps strategies in smart city deployments. To promtoe seconardary analysis, we additionally provide a self-supervised framework based on convolutional variational autoencoders (CNN-VAEs). Models are trained separately for each camera node and for day/night image sets. We define two per-sample drift metrics: relative centroid drift, capturing latent space deviation from a baseline quarter, and relative reconstruction error, measuring normalized image-domain degradation. This dataset provides a realistic, fine-grained benchmark for evaluating long-term model stability, drift-aware learning, and deployment-ready vision systems. The images and structured metadata are publicly released in JPEG and CSV formats, supporting reproducibility and downstream applications such as streetlight monitoring, weather inference, and urban scene understanding. The dataset can be found at Li et al. (2025) and Li et al. (2025).
3.191Navigation Around Unknown Space Objects Using Visible-Thermal Image Fusion¶
2025/12/16 05:02 GTM
As the popularity of on-orbit operations grows, so does the need for precise navigation around unknown resident space objects (RSOs) such as other spacecraft, orbital debris, and asteroids. The use of Simultaneous Localization and Mapping (SLAM) algorithms is often studied as a method to map out the surface of an RSO and find the inspector’s relative pose using a lidar or conventional camera. However, conventional cameras struggle during eclipse or shadowed periods, and lidar, though robust to lighting conditions, tends to be heavier, bulkier, and more power-intensive. Thermal-infrared cameras can track the target RSO throughout difficult illumination conditions without these limitations. While useful, thermal-infrared imagery lacks the resolution and feature-richness of visible cameras. In this work, images of a target satellite in low Earth orbit are photo-realistically simulated in both visible and thermal-infrared bands. Pixel-level fusion methods are used to create visible/thermal-infrared composites that leverage the best aspects of each camera. Navigation errors from a monocular SLAM algorithm are compared between visible, thermal-infrared, and fused imagery in various lighting and trajectories. Fused imagery yields substantially improved navigation performance over visible-only and thermal-only methods.
3.192Thermal RGB Fusion for Micro-UAV Wildfire Perimeter Tracking with Minimal Comms¶
2025/12/16 05:02 GTM
This study introduces a lightweight perimeter tracking method designed for micro UAV teams operating over wildfire environments under limited bandwidth conditions. Thermal image frames generate coarse hot region masks through adaptive thresholding and morphological refinement, while RGB frames contribute edge cues and suppress texture related false detections using gradient based filtering. A rule level merging strategy selects boundary candidates and simplifies them via the Ramer Douglas Peucker algorithm. The system incorporates periodic beacons and an inertial feedback loop that maintains trajectory stability in the presence of GPS degradation. The guidance loop targets sub 50 ms latency on embedded System on Chip (SoC) platforms by constraining per frame pixel operations and precomputing gradient tables. Small scale simulations demonstrate reductions in average path length and boundary jitter compared to a pure edge tracking baseline, while maintaining environmental coverage measured through intersection merge analysis. Battery consumption and computational utilization confirm the feasibility of achieving 10, 15 m/s forward motion on standard micro platforms. This approach enables rapid deployment in the field, requiring robust sensing and minimal communications for emergency reconnaissance applications.
3.193AutoMV: An Automatic Multi-Agent System for Music Video Generation¶
2025/12/16 05:02 GTM
Music-to-Video (M2V) generation for full-length songs faces significant challenges. Existing methods produce short, disjointed clips, failing to align visuals with musical structure, beats, or lyrics, and lack temporal consistency. We propose AutoMV, a multi-agent system that generates full music videos (MVs) directly from a song. AutoMV first applies music processing tools to extract musical attributes, such as structure, vocal tracks, and time-aligned lyrics, and constructs these features as contextual inputs for following agents. The screenwriter Agent and director Agent then use this information to design short script, define character profiles in a shared external bank, and specify camera instructions. Subsequently, these agents call the image generator for keyframes and different video generators for “story” or “singer” scenes. A Verifier Agent evaluates their output, enabling multi-agent collaboration to produce a coherent longform MV. To evaluate M2V generation, we further propose a benchmark with four high-level categories (Music Content, Technical, Post-production, Art) and twelve ine-grained criteria. This benchmark was applied to compare commercial products, AutoMV, and human-directed MVs with expert human raters: AutoMV outperforms current baselines significantly across all four categories, narrowing the gap to professional MVs. Finally, we investigate using large multimodal models as automatic MV judges; while promising, they still lag behind human expert, highlighting room for future work.
3.194SMRABooth: Subject and Motion Representation Alignment for Customized Video Generation¶
2025/12/16 05:02 GTM
Customized video generation aims to produce videos that faithfully preserve the subject’s appearance from reference images while maintaining temporally consistent motion from reference videos. Existing methods struggle to ensure both subject appearance similarity and motion pattern consistency due to the lack of object-level guidance for subject and motion. To address this, we propose SMRABooth, which leverages the self-supervised encoder and optical flow encoder to provide object-level subject and motion representations. These representations are aligned with the model during the LoRA fine-tuning process. Our approach is structured in three core stages: (1) We exploit subject representations via a self-supervised encoder to guide subject alignment, enabling the model to capture overall structure of subject and enhance high-level semantic consistency. (2) We utilize motion representations from an optical flow encoder to capture structurally coherent and object-level motion trajectories independent of appearance. (3) We propose a subject-motion association decoupling strategy that applies sparse LoRAs injection across both locations and timing, effectively reducing interference between subject and motion LoRAs. Extensive experiments show that SMRABooth excels in subject and motion customization, maintaining consistent subject appearance and motion patterns, proving its effectiveness in controllable text-to-video generation.
3.195Audio-Visual Camera Pose Estimationn with Passive Scene Sounds and In-the-Wild Video¶
2025/12/16 05:02 GTM
Understanding camera motion is a fundamental problem in embodied perception and 3D scene understanding. While visual methods have advanced rapidly, they often struggle under visually degraded conditions such as motion blur or occlusions. In this work, we show that passive scene sounds provide complementary cues for relative camera pose estimation for in-the-wild videos. We introduce a simple but effective audio-visual framework that integrates direction-ofarrival (DOA) spectra and binauralized embeddings into a state-of-the-art vision-only pose estimation model. Our results on two large datasets show consistent gains over strong visual baselines, plus robustness when the visual information is corrupted. To our knowledge, this represents the first work to successfully leverage audio for relative camera pose estimation in real-world videos, and it establishes incidental, everyday audio as an unexpected but promising signal for a classic spatial challenge. Project: http://
3.196Open Horizons: Evaluating Deep Models in the Wild¶
2025/12/16 05:02 GTM
Open-world deployment requires models to recognize both known categories and remain reliable when novel classes appear. We present a unified experimental study spanning open-set recognition (OSR) and few-shot class-incremental learning (FSCIL) on CIFAR-10. For OSR, we compare three pretrained frozen visual encoders: ResNet-50, ConvNeXt-Tiny and CLIP ViT-B/16,using a linear probe and four post-hoc scoring functions, namely MSP, Energy, Mahalanobis and kNN. Across metrics,such as, AUROC, AUPR, FPR@95, and OSCR, CLIP consistently yields the strongest separability between known and unknown samples, with Energy providing the most stable performance across backbones. For FSCIL, we compare modified SPPR, OrCo, and ConCM using partially frozen ResNet-50 across 1-, 5-, and 10-shot scenarios. ConCM achieves 84.7% accuracy in the 10-shot setting with the cleanest confusion matrix, while all methods show saturation beyond 5 shots. Our controlled evaluation reveals how the backbone architecture and scoring mechanisms affect unknown detection and how prototype-based methods mitigate catastrophic forgetting during incremental adaptation.
3.197MeltwaterBench: Deep learning for spatiotemporal downscaling of surface meltwater¶
2025/12/16 05:02 GTM
The Greenland ice sheet is melting at an accelerated rate due to processes that are not fully understood and hard to measure. The distribution of surface meltwater can help understand these processes and is observable through remote sensing, but current maps of meltwater face a trade-off: They are either high-resolution in time or space, but not both. We develop a deep learning model that creates gridded surface meltwater maps at daily 100m resolution by fusing data streams from remote sensing observations and physics-based models. In particular, we spatiotemporally downscale regional climate model (RCM) outputs using synthetic aperture radar (SAR), passive microwave (PMW), and a digital elevation model (DEM) over the Helheim Glacier in Eastern Greenland from 2017-2023. Using SAR-derived meltwater as “ground truth”, we show that a deep learning-based method that fuses all data streams is over 10 percentage points more accurate over our study area than existing non deep learning-based approaches that only rely on a regional climate model (83% vs. 95% Acc.) or passive microwave observations (72% vs. 95% Acc.). Alternatively, creating a gridded product through a running window calculation with SAR data underestimates extreme melt events, but also achieves notable accuracy (90%) and does not rely on deep learning. We evaluate standard deep learning methods (UNet and DeepLabv3+), and publish our spatiotemporally aligned dataset as a benchmark, MeltwaterBench, for intercomparisons with more complex data-driven downscaling methods. The code and data are available at .
3.198A Benchmark Dataset for Spatially Aligned Road Damage Assessment in Small Uncrewed Aerial Systems Disaster Imagery¶
2025/12/16 05:02 GTM
This paper presents the largest known benchmark dataset for road damage assessment and road alignment, and provides 18 baseline models trained on the CRASAR-U-DRIODs dataset’s post-disaster small uncrewed aerial systems (sUAS) imagery from 10 federally declared disasters, addressing three challenges within prior post-disaster road damage assessment datasets. While prior disaster road damage assessment datasets exist, there is no current state of practice, as prior public datasets have either been small-scale or reliant on low-resolution imagery insufficient for detecting phenomena of interest to emergency managers. Further, while machine learning (ML) systems have been developed for this task previously, none are known to have been operationally validated. These limitations are overcome in this work through the labeling of 657.25km of roads according to a 10-class labeling schema, followed by training and deploying ML models during the operational response to Hurricanes Debby and Helene in 2024. Motivated by observed road line misalignment in practice, 9,184 road line adjustments were provided for spatial alignment of a priori road lines, as it was found that when the 18 baseline models are deployed against real-world misaligned road lines, model performance degraded on average by 5.596% Macro IoU. If spatial alignment is not considered, approximately 8% (11km) of adverse conditions on road lines will be labeled incorrectly, with approximately 9% (59km) of road lines misaligned off the actual road. These dynamics are gaps that should be addressed by the ML, CV, and robotics communities to enable more effective and informed decision-making during disasters.
3.199A Novel Patch-Based TDA Approach for Computed Tomography¶
2025/12/16 05:02 GTM
The development of machine learning (ML) models based on computed tomography (CT) imaging modality has been a major focus of recent research in the medical imaging domain. Incorporating robust feature engineering approach can highly improve the performance of these models. Topological data analysis (TDA), a recent development based on the mathematical field of algebraic topology, mainly focuses on the data from a topological perspective, extracting deeper insight and higher dimensional structures from the data. Persistent homology (PH), a fundamental tool in the area of TDA, can extract topological features such as connected components, cycles and voids from the data. A popular approach to construct PH from 3D CT images is to utilize the 3D cubical complex filtration, a method adapted for grid-structured data. However, this approach may not always yield the best performance and can suffer from computational complexity with higher resolution CT images. This study introduces a novel patch-based PH construction approach tailored for volumetric medical imaging data, in particular CT modality. A wide range of experiments has been conducted on several datasets of 3D CT images to comprehensively analyze the performance of the proposed method with various parameters and benchmark it against the 3D cubical complex algorithm. Our results highlight the dominance of the patch-based TDA approach in terms of both classification performance and time-efficiency. The proposed approach outperformed the cubical complex method, achieving average improvement of 10.38%, 6.94%, 2.06%, 11.58%, and 8.51% in accuracy, AUC, sensitivity, specificity, and F1 score, respectively, across all datasets. Finally, we provide a convenient python package, Patch-TDA, to facilitate the utilization of the proposed approach.
3.200EchoVLM: Measurement-Grounded Multimodal Learning for Echocardiography¶
2025/12/16 05:02 GTM
Echocardiography is the most widely used imaging modality in cardiology, yet its interpretation remains labor-intensive and inherently multimodal, requiring view recognition, quantitative measurements, qualitative assessments, and guideline-based reasoning. While recent vision-language models (VLMs) have achieved broad success in natural images and certain medical domains, their potential in echocardiography has been limited by the lack of large-scale, clinically grounded image-text datasets and the absence of measurement-based reasoning central to echo interpretation. We introduce EchoGround-MIMIC, the first measurement-grounded multimodal echocardiography dataset, comprising 19,065 image-text pairs from 1,572 patients with standardized views, structured measurements, measurement-grounded captions, and guideline-derived disease labels. Building on this resource, we propose EchoVLM, a vision-language model that incorporates two novel pretraining objectives: (i) a view-informed contrastive loss that encodes the view-dependent structure of echocardiographic imaging, and (ii) a negation-aware contrastive loss that distinguishes clinically critical negative from positive findings. Across five types of clinical applications with 36 tasks spanning multimodal disease classification, image-text retrieval, view classification, chamber segmentation, and landmark detection, EchoVLM achieves state-of-the-art performance (86.5% AUC in zero-shot disease classification and 95.1% accuracy in view classification). We demonstrate that clinically grounded multimodal pretraining yields transferable visual representations and establish EchoVLM as a foundation model for end-to-end echocardiography interpretation. We will release EchoGround-MIMIC and the data curation code, enabling reproducibility and further research in multimodal echocardiography interpretation.
3.201AI-Augmented Pollen Recognition in Optical and Holographic Microscopy for Veterinary Imaging¶
2025/12/16 05:02 GTM
We present a comprehensive study on fully automated pollen recognition across both conventional optical and digital in-line holographic microscopy (DIHM) images of sample slides. Visually recognizing pollen in unreconstructed holographic images remains challenging due to speckle noise, twin-image artifacts and substantial divergence from bright-field appearances. We establish the performance baseline by training YOLOv8s for object detection and MobileNetV3L for classification on a dual-modality dataset of automatically annotated optical and affinely aligned DIHM images. On optical data, detection mAP50 reaches 91.3% and classification accuracy reaches 97%, whereas on DIHM data, we achieve only 8.15% for detection mAP50 and 50% for classification accuracy. Expanding the bounding boxes of pollens in DIHM images over those acquired in aligned optical images achieves 13.3% for detection mAP50 and 54% for classification accuracy. To improve object detection in DIHM images, we employ a Wasserstein GAN with spectral normalization (WGAN-SN) to create synthetic DIHM images, yielding an FID score of 58.246. Mixing real-world and synthetic data at the 1.0 : 1.5 ratio for DIHM images improves object detection up to 15.4%. These results demonstrate that GAN-based augmentation can reduce the performance divide, bringing fully automated DIHM workflows for veterinary imaging a small but important step closer to practice.
3.202SPDMark: Selective Parameter Displacement for Robust Video Watermarking¶
2025/12/16 05:02 GTM
The advent of high-quality video generation models has amplified the need for robust watermarking schemes that can be used to reliably detect and track the provenance of generated videos. Existing video watermarking methods based on both post-hoc and in-generation approaches fail to simultaneously achieve imperceptibility, robustness, and computational efficiency. This work introduces a novel framework for in-generation video watermarking called SPDMark (pronounced `SpeedMark’) based on selective parameter displacement of a video diffusion model. Watermarks are embedded into the generated videos by modifying a subset of parameters in the generative model. To make the problem tractable, the displacement is modeled as an additive composition of layer-wise basis shifts, where the final composition is indexed by the watermarking key. For parameter efficiency, this work specifically leverages low-rank adaptation (LoRA) to implement the basis shifts. During the training phase, the basis shifts and the watermark extractor are jointly learned by minimizing a combination of message recovery, perceptual similarity, and temporal consistency losses. To detect and localize temporal modifications in the watermarked videos, we use a cryptographic hashing function to derive frame-specific watermark messages from the given base watermarking key. During watermark extraction, maximum bipartite matching is applied to recover the correct frame order, even from temporally tampered videos. Evaluations on both text-to-video and image-to-video generation models demonstrate the ability of SPDMark to generate imperceptible watermarks that can be recovered with high accuracy and also establish its robustness against a variety of common video modifications.
3.203VEGAS: Mitigating Hallucinations in Large Vision-Language Models via Vision-Encoder Attention Guided Adaptive Steering¶
2025/12/16 05:02 GTM
Large vision-language models (LVLMs) exhibit impressive ability to jointly reason over visual and textual inputs. However, they often produce outputs that are linguistically fluent but factually inconsistent with the visual evidence, i.e., they hallucinate. Despite growing efforts to mitigate such hallucinations, a key question remains: what form of visual attention can effectively suppress hallucinations during decoding? In this work, we provide a simple answer: the vision encoder’s own attention map. We show that LVLMs tend to hallucinate when their final visual-attention maps fail to concentrate on key image objects, whereas the vision encoder’s more concentrated attention maps substantially reduce hallucinations. To further investigate the cause, we analyze vision-text conflicts during decoding and find that these conflicts peak in the language model’s middle layers. Injecting the vision encoder’s attention maps into these layers effectively suppresses hallucinations. Building on these insights, we introduce VEGAS, a simple yet effective inference-time method that integrates the vision encoder’s attention maps into the language model’s mid-layers and adaptively steers tokens which fail to concentrate on key image objects. Extensive experiments across multiple benchmarks demonstrate that VEGAS consistently achieves state-of-the-art performance in reducing hallucinations.
3.204RePack: Representation Packing of Vision Foundation Model Features Enhances Diffusion Transformer¶
2025/12/16 05:02 GTM
The superior representation capability of pre-trained vision foundation models (VFMs) has been harnessed for enhancing latent diffusion models (LDMs). These approaches inject the rich semantics from high-dimensional VFM representations (e.g., DINOv3) into LDMs at different phases, resulting in accelerated learning and better generation performance. However, the high-dimensionality of VFM representations may also lead to Information Overload, particularly when the VFM features exceed the size of the original image for decoding. To address this issue while preserving the utility of VFM features, we propose RePack (Representation Packing), a simple yet effective framework for improving Diffusion Transformers (DiTs). RePack transforms the VFM representation into a more compact, decoder-friendly representation by projecting onto low-dimensional manifolds. We find that RePack can effectively filter out non-semantic noise while preserving the core structural information needed for high-fidelity reconstruction. Experimental results show that RePack significantly accelerates DiT convergence and outperforms recent methods that directly inject raw VFM features into the decoder for image reconstruction. On DiT-XL/2, RePack achieves an FID of 3.66 in only 64 epochs, which is 35% faster than the state-of-the-art method. This demonstrates that RePack successfully extracts the core semantics of VFM representations while bypassing their high-dimensionality side effects.
3.205BAgger: Backwards Aggregation for Mitigating Drift in Autoregressive Video Diffusion Models¶
2025/12/16 05:02 GTM
Autoregressive video models are promising for world modeling via next-frame prediction, but they suffer from exposure bias: a mismatch between training on clean contexts and inference on self-generated frames, causing errors to compound and quality to drift over time. We introduce Backwards Aggregation (BAgger), a self-supervised scheme that constructs corrective trajectories from the model’s own rollouts, teaching it to recover from its mistakes. Unlike prior approaches that rely on few-step distillation and distribution-matching losses, which can hurt quality and diversity, BAgger trains with standard score or flow matching objectives, avoiding large teachers and long-chain backpropagation through time. We instantiate BAgger on causal diffusion transformers and evaluate on text-to-video, video extension, and multi-prompt generation, observing more stable long-horizon motion and better visual consistency with reduced drift.
3.206CreativeVR: Diffusion-Prior-Guided Approach for Structure and Motion Restoration in Generative and Real Videos¶
2025/12/16 05:02 GTM
Modern text-to-video (T2V) diffusion models can synthesize visually compelling clips, yet they remain brittle at fine-scale structure: even state-of-the-art generators often produce distorted faces and hands, warped backgrounds, and temporally inconsistent motion. Such severe structural artifacts also appear in very low-quality real-world videos. Classical video restoration and super-resolution (VR/VSR) methods, in contrast, are tuned for synthetic degradations such as blur and downsampling and tend to stabilize these artifacts rather than repair them, while diffusion-prior restorers are usually trained on photometric noise and offer little control over the trade-off between perceptual quality and fidelity. We introduce CreativeVR, a diffusion-prior-guided video restoration framework for AI-generated (AIGC) and real videos with severe structural and temporal artifacts. Our deep-adapter-based method exposes a single precision knob that controls how strongly the model follows the input, smoothly trading off between precise restoration on standard degradations and stronger structure- and motion-corrective behavior on challenging content. Our key novelty is a temporally coherent degradation module used during training, which applies carefully designed transformations that produce realistic structural failures. To evaluate AIGC-artifact restoration, we propose the AIGC54 benchmark with FIQA, semantic and perceptual metrics, and multi-aspect scoring. CreativeVR achieves state-of-the-art results on videos with severe artifacts and performs competitively on standard video restoration benchmarks, while running at practical throughput (about 13 FPS at 720p on a single 80-GB A100). Project page: https://
3.207Enhancing deep learning performance on burned area delineation from SPOT-6/7 imagery for emergency management¶
2025/12/16 05:02 GTM
After a wildfire, delineating burned areas (BAs) is crucial for quantifying damages and supporting ecosystem recovery. Current BA mapping approaches rely on computer vision models trained on post-event remote sensing imagery, but often overlook their applicability to time-constrained emergency management scenarios. This study introduces a supervised semantic segmentation workflow aimed at boosting both the performance and efficiency of BA delineation. It targets SPOT-6/7 imagery due to its very high resolution and on-demand availability. Experiments are evaluated based on Dice score, Intersection over Union, and inference time. The results show that U-Net and SegFormer models perform similarly with limited training data. However, SegFormer requires more resources, challenging its practical use in emergencies. Incorporating land cover data as an auxiliary task enhances model robustness without increasing inference time. Lastly, Test-Time Augmentation improves BA delineation performance but raises inference time, which can be mitigated with optimization methods like Mixed Precision.
3.208Adaptive federated learning for ship detection across diverse satellite imagery sources¶
2025/12/16 05:02 GTM
We investigate the application of Federated Learning (FL) for ship detection across diverse satellite datasets, offering a privacy-preserving solution that eliminates the need for data sharing or centralized collection. This approach is particularly advantageous for handling commercial satellite imagery or sensitive ship annotations. Four FL models including FedAvg, FedProx, FedOpt, and FedMedian, are evaluated and compared to a local training baseline, where the YOLOv8 ship detection model is independently trained on each dataset without sharing learned parameters. The results reveal that FL models substantially improve detection accuracy over training on smaller local datasets and achieve performance levels close to global training that uses all datasets during the training. Furthermore, the study underscores the importance of selecting appropriate FL configurations, such as the number of communication rounds and local training epochs, to optimize detection precision while maintaining computational efficiency.
3.209Exploring Spatial-Temporal Representation via Star Graph for mmWave Radar-based Human Activity Recognition¶
2025/12/16 05:02 GTM
Human activity recognition (HAR) requires extracting accurate spatial-temporal features with human movements. A mmWave radar point cloud-based HAR system suffers from sparsity and variable-size problems due to the physical features of the mmWave signal. Existing works usually borrow the preprocessing algorithms for the vision-based systems with dense point clouds, which may not be optimal for mmWave radar systems. In this work, we proposed a graph representation with a discrete dynamic graph neural network (DDGNN) to explore the spatial-temporal representation of human movement-related features. Specifically, we designed a star graph to describe the high-dimensional relative relationship between a manually added static center point and the dynamic mmWave radar points in the same and consecutive frames. We then adopted DDGNN to learn the features residing in the star graph with variable sizes. Experimental results demonstrated that our approach outperformed other baseline methods using real-world HAR datasets. Our system achieved an overall classification accuracy of 94.27%, which gets the near-optimal performance with a vision-based skeleton data accuracy of 97.25%. We also conducted an inference test on Raspberry Pi~4 to demonstrate its effectiveness on resource-constraint platforms. \sh{ We provided a comprehensive ablation study for variable DDGNN structures to validate our model design. Our system also outperformed three recent radar-specific methods without requiring resampling or frame aggregators.
3.210Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus¶
2025/12/16 05:02 GTM
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of “Long-Tail” training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a “System 2” inference-time alignment strategy, utilizing a multi-model “Judge-Scout” consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% compared to single models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
3.211V-REX: Benchmarking Exploratory Visual Reasoning via Chain-of-Questions¶
2025/12/16 05:02 GTM
While many vision-language models (VLMs) are developed to answer well-defined, straightforward questions with highly specified targets, as in most benchmarks, they often struggle in practice with complex open-ended tasks, which usually require multiple rounds of exploration and reasoning in the visual space. Such visual thinking paths not only provide step-by-step exploration and verification as an AI detective but also produce better interpretations of the final answers. However, these paths are challenging to evaluate due to the large exploration space of intermediate steps. To bridge the gap, we develop an evaluation suite, ``Visual Reasoning with multi-step EXploration (V-REX)‘’, which is composed of a benchmark of challenging visual reasoning tasks requiring native multi-step exploration and an evaluation protocol. V-REX covers rich application scenarios across diverse domains. V-REX casts the multi-step exploratory reasoning into a Chain-of-Questions (CoQ) and disentangles VLMs’ capability to (1) Planning: breaking down an open-ended task by selecting a chain of exploratory questions; and (2) Following: answering curated CoQ sequentially to collect information for deriving the final answer. By curating finite options of questions and answers per step, V-REX achieves a reliable quantitative and fine-grained analysis of the intermediate steps. By assessing SOTA proprietary and open-sourced VLMs, we reveal consistent scaling trends, significant differences between planning and following abilities, and substantial room for improvement in multi-step exploratory reasoning.
3.212CARI4D: Category Agnostic 4D Reconstruction of Human-Object Interaction¶
2025/12/16 05:02 GTM
Accurate capture of human-object interaction from ubiquitous sensors like RGB cameras is important for applications in human understanding, gaming, and robot learning. However, inferring 4D interactions from a single RGB view is highly challenging due to the unknown object and human information, depth ambiguity, occlusion, and complex motion, which hinder consistent 3D and temporal reconstruction. Previous methods simplify the setup by assuming ground truth object template or constraining to a limited set of object categories. We present CARI4D, the first category-agnostic method that reconstructs spatially and temporarily consistent 4D human-object interaction at metric scale from monocular RGB videos. To this end, we propose a pose hypothesis selection algorithm that robustly integrates the individual predictions from foundation models, jointly refine them through a learned render-and-compare paradigm to ensure spatial, temporal and pixel alignment, and finally reasoning about intricate contacts for further refinement satisfying physical constraints. Experiments show that our method outperforms prior art by 38% on in-distribution dataset and 36% on unseen dataset in terms of reconstruction error. Our model generalizes beyond the training categories and thus can be applied zero-shot to in-the-wild internet videos. Our code and pretrained models will be publicly released.
3.213Semantic search for 100M+ galaxy images using AI-generated captions¶
2025/12/16 05:02 GTM
Finding scientifically interesting phenomena through slow, manual labeling campaigns severely limits our ability to explore the billions of galaxy images produced by telescopes. In this work, we develop a pipeline to create a semantic search engine from completely unlabeled image data. Our method leverages Vision-Language Models (VLMs) to generate descriptions for galaxy images, then contrastively aligns a pre-trained multimodal astronomy foundation model with these embedded descriptions to produce searchable embeddings at scale. We find that current VLMs provide descriptions that are sufficiently informative to train a semantic search model that outperforms direct image similarity search. Our model, AION-Search, achieves state-of-the-art zero-shot performance on finding rare phenomena despite training on randomly selected images with no deliberate curation for rare cases. Furthermore, we introduce a VLM-based re-ranking method that nearly doubles the recall for our most challenging targets in the top-100 results. For the first time, AION-Search enables flexible semantic search scalable to 140 million galaxy images, enabling discovery from previously infeasible searches. More broadly, our work provides an approach for making large, unlabeled scientific image archives semantically searchable, expanding data exploration capabilities in fields from Earth observation to microscopy. The code, data, and app are publicly available at https://
3.214A Comparative Analysis of Semiconductor Wafer Map Defect Detection with Image Transformer¶
2025/12/16 05:02 GTM
Predictive maintenance is an important sector in modern industries which improves fault detection and cost reduction processes. By using machine learning algorithms in the whole process, the defects detection process can be implemented smoothly. Semiconductor is a sensitive maintenance field that requires predictability in work. While convolutional neural networks (CNNs) such as VGG-19, Xception and Squeeze-Net have demonstrated solid performance in image classification for semiconductor wafer industry, their effectiveness often declines in scenarios with limited and imbalanced data. This study investigates the use of the Data-Efficient Image Transformer (DeiT) for classifying wafer map defects under data-constrained conditions. Experimental results reveal that the DeiT model achieves highest classification accuracy of 90.83%, outperforming CNN models such as VGG-19(65%), SqueezeNet(82%), Xception(66%) and Hybrid(67%). DeiT also demonstrated superior F1-score (90.78%) and faster training convergence, with enhanced robustness in detecting minority defect classes. These findings highlight the potential of transformer-based models like DeiT in semiconductor wafer defect detection and support predictive maintenance strategies within semiconductor fabrication processes.
3.215Pre-training vision models for the classification of alerts from wide-field time-domain surveys¶
2025/12/16 05:02 GTM
Modern wide-field time-domain surveys facilitate the study of transient, variable and moving phenomena by conducting image differencing and relaying alerts to their communities. Machine learning tools have been used on data from these surveys and their precursors for more than a decade, and convolutional neural networks (CNNs), which make predictions directly from input images, saw particularly broad adoption through the 2010s. Since then, continually rapid advances in computer vision have transformed the standard practices around using such models. It is now commonplace to use standardized architectures pre-trained on large corpora of everyday images (e.g., ImageNet). In contrast, time-domain astronomy studies still typically design custom CNN architectures and train them from scratch. Here, we explore the affects of adopting various pre-training regimens and standardized model architectures on the performance of alert classification. We find that the resulting models match or outperform a custom, specialized CNN like what is typically used for filtering alerts. Moreover, our results show that pre-training on galaxy images from Galaxy Zoo tends to yield better performance than pre-training on ImageNet or training from scratch. We observe that the design of standardized architectures are much better optimized than the custom CNN baseline, requiring significantly less time and memory for inference despite having more trainable parameters. On the eve of the Legacy Survey of Space and Time and other image-differencing surveys, these findings advocate for a paradigm shift in the creation of vision models for alerts, demonstrating that greater performance and efficiency, in time and in data, can be achieved by adopting the latest practices from the computer vision field.
3.216DynaPURLS: Dynamic Refinement of Part-aware Representations for Skeleton-based Zero-Shot Action Recognition¶
2025/12/16 05:02 GTM
Zero-shot skeleton-based action recognition (ZS-SAR) is fundamentally constrained by prevailing approaches that rely on aligning skeleton features with static, class-level semantics. This coarse-grained alignment fails to bridge the domain shift between seen and unseen classes, thereby impeding the effective transfer of fine-grained visual knowledge. To address these limitations, we introduce \textbf{DynaPURLS}, a unified framework that establishes robust, multi-scale visual-semantic correspondences and dynamically refines them at inference time to enhance generalization. Our framework leverages a large language model to generate hierarchical textual descriptions that encompass both global movements and local body-part dynamics. Concurrently, an adaptive partitioning module produces fine-grained visual representations by semantically grouping skeleton joints. To fortify this fine-grained alignment against the train-test domain shift, DynaPURLS incorporates a dynamic refinement module. During inference, this module adapts textual features to the incoming visual stream via a lightweight learnable projection. This refinement process is stabilized by a confidence-aware, class-balanced memory bank, which mitigates error propagation from noisy pseudo-labels. Extensive experiments on three large-scale benchmark datasets, including NTU RGB+D 60/120 and PKU-MMD, demonstrate that DynaPURLS significantly outperforms prior art, setting new state-of-the-art records. The source code is made publicly available at https://
3.217Contextual Peano Scan and Fast Image Segmentation Using Hidden and Evidential Markov Chains¶
2025/12/16 05:02 GTM
Transforming bi-dimensional sets of image pixels into mono-dimensional sequences with a Peano scan (PS) is an established technique enabling the use of hidden Markov chains (HMCs) for unsupervised image segmentation. Related Bayesian segmentation methods can compete with hidden Markov fields (HMFs)-based ones and are much faster. PS has recently been extended to the contextual PS, and some initial experiments have shown the value of the associated HMC model, denoted as HMC-CPS, in image segmentation. Moreover, HMCs have been extended to hidden evidential Markov chains (HEMCs), which are capable of improving HMC-based Bayesian segmentation. In this study, we introduce a new HEMC-CPS model by simultaneously considering contextual PS and evidential HMC. We show its effectiveness for Bayesian maximum posterior mode (MPM) segmentation using synthetic and real images. Segmentation is performed in an unsupervised manner, with parameters being estimated using the stochastic expectation--maximization (SEM) method. The new HEMC-CPS model presents potential for the modeling and segmentation of more complex images, such as three-dimensional or multi-sensor multi-resolution images. Finally, the HMC-CPS and HEMC-CPS models are not limited to image segmentation and could be used for any kind of spatially correlated data.
3.218MONET -- Virtual Cell Painting of Brightfield Images and Time Lapses Using Reference Consistent Diffusion¶
2025/12/16 05:02 GTM
Cell painting is a popular technique for creating human-interpretable, high-contrast images of cell morphology. There are two major issues with cell paint: (1) it is labor-intensive and (2) it requires chemical fixation, making the study of cell dynamics impossible. We train a diffusion model (Morphological Observation Neural Enhancement Tool, or MONET) on a large dataset to predict cell paint channels from brightfield images. We show that model quality improves with scale. The model uses a consistency architecture to generate time-lapse videos, despite the impossibility of obtaining cell paint video training data. In addition, we show that this architecture enables a form of in-context learning, allowing the model to partially transfer to out-of-distribution cell lines and imaging protocols. Virtual cell painting is not intended to replace physical cell painting completely, but to act as a complementary tool enabling novel workflows in biological research.
3.219TransBridge: Boost 3D Object Detection by Scene-Level Completion with Transformer Decoder¶
2025/12/16 05:02 GTM
3D object detection is essential in autonomous driving, providing vital information about moving objects and obstacles. Detecting objects in distant regions with only a few LiDAR points is still a challenge, and numerous strategies have been developed to address point cloud sparsity through densification.This paper presents a joint completion and detection framework that improves the detection feature in sparse areas while maintaining costs unchanged. Specifically, we propose TransBridge, a novel transformer-based up-sampling block that fuses the features from the detection and completion networks.The detection network can benefit from acquiring implicit completion features derived from the completion network. Additionally, we design the Dynamic-Static Reconstruction (DSRecon) module to produce dense LiDAR data for the completion network, meeting the requirement for dense point cloud ground truth.Furthermore, we employ the transformer mechanism to establish connections between channels and spatial relations, resulting in a high-resolution feature map used for completion purposes.Extensive experiments on the nuScenes and Waymo datasets demonstrate the effectiveness of the proposed framework.The results show that our framework consistently improves end-to-end 3D object detection, with the mean average precision (mAP) ranging from 0.7 to 1.5 across multiple methods, indicating its generalization ability. For the two-stage detection framework, it also boosts the mAP up to 5.78 points.
3.220FloraForge: LLM-Assisted Procedural Generation of Editable and Analysis-Ready 3D Plant Geometric Models For Agricultural Applications¶
2025/12/16 05:02 GTM
Accurate 3D plant models are crucial for computational phenotyping and physics-based simulation; however, current approaches face significant limitations. Learning-based reconstruction methods require extensive species-specific training data and lack editability. Procedural modeling offers parametric control but demands specialized expertise in geometric modeling and an in-depth understanding of complex procedural rules, making it inaccessible to domain scientists. We present FloraForge, an LLM-assisted framework that enables domain experts to generate biologically accurate, fully parametric 3D plant models through iterative natural language Plant Refinements (PR), minimizing programming expertise. Our framework leverages LLM-enabled co-design to refine Python scripts that generate parameterized plant geometries as hierarchical B-spline surface representations with botanical constraints with explicit control points and parametric deformation functions. This representation can be easily tessellated into polygonal meshes with arbitrary precision, ensuring compatibility with functional structural plant analysis workflows such as light simulation, computational fluid dynamics, and finite element analysis. We demonstrate the framework on maize, soybean, and mung bean, fitting procedural models to empirical point cloud data through manual refinement of the Plant Descriptor (PD), human-readable files. The pipeline generates dual outputs: triangular meshes for visualization and triangular meshes with additional parametric metadata for quantitative analysis. This approach uniquely combines LLM-assisted template creation, mathematically continuous representations enabling both phenotyping and rendering, and direct parametric control through PD. The framework democratizes sophisticated geometric modeling for plant science while maintaining mathematical rigor.
3.221MPath: Multimodal Pathology Report Generation from Whole Slide Images¶
2025/12/16 05:02 GTM
Automated generation of diagnostic pathology reports directly from whole slide images (WSIs) is an emerging direction in computational pathology. Translating high-resolution tissue patterns into clinically coherent text remains difficult due to large morphological variability and the complex structure of pathology narratives. We introduce MPath, a lightweight multimodal framework that conditions a pretrained biomedical language model (BioBART) on WSI-derived visual embeddings through a learned visual-prefix prompting mechanism. Instead of end-to-end vision-language pretraining, MPath leverages foundation-model WSI features (CONCH + Titan) and injects them into BioBART via a compact projection module, keeping the language backbone frozen for stability and data efficiency. MPath was developed and evaluated on the RED 2025 Grand Challenge dataset and ranked 4th in Test Phase 2, despite limited submission opportunities. The results highlight the potential of prompt-based multimodal conditioning as a scalable and interpretable strategy for pathology report generation.
3.222Smartphone monitoring of smiling as a behavioral proxy of well-being in everyday life¶
2025/12/16 05:02 GTM
Subjective well-being is a cornerstone of individual and societal health, yet its scientific measurement has traditionally relied on self-report methods prone to recall bias and high participant burden. This has left a gap in our understanding of well-being as it is expressed in everyday life. We hypothesized that candid smiles captured during natural smartphone interactions could serve as a scalable, objective behavioral correlate of positive affect. To test this, we analyzed 405,448 video clips passively recorded from 233 consented participants over one week. Using a deep learning model to quantify smile intensity, we identified distinct diurnal and daily patterns. Daily patterns of smile intensity across the week showed strong correlation with national survey data on happiness (r=0.92), and diurnal rhythms documented close correspondence with established results from the day reconstruction method (r=0.80). Higher daily mean smile intensity was significantly associated with more physical activity (Beta coefficient = 0.043, 95% CI [0.001, 0.085]) and greater light exposure (Beta coefficient = 0.038, [0.013, 0.063]), whereas no significant effects were found for smartphone use. These findings suggest that passive smartphone sensing could serve as a powerful, ecologically valid methodology for studying the dynamics of affective behavior and open the door to understanding this behavior at a population scale.
3.223Aion: Towards Hierarchical 4D Scene Graphs with Temporal Flow Dynamics¶
2025/12/16 05:02 GTM
Autonomous navigation in dynamic environments requires spatial representations that capture both semantic structure and temporal evolution. 3D Scene Graphs (3DSGs) provide hierarchical multi-resolution abstractions that encode geometry and semantics, but existing extensions toward dynamics largely focus on individual objects or agents. In parallel, Maps of Dynamics (MoDs) model typical motion patterns and temporal regularities, yet are usually tied to grid-based discretizations that lack semantic awareness and do not scale well to large environments. In this paper we introduce Aion, a framework that embeds temporal flow dynamics directly within a hierarchical 3DSG, effectively incorporating the temporal dimension. Aion employs a graph-based sparse MoD representation to capture motion flows over arbitrary time intervals and attaches them to navigational nodes in the scene graph, yielding more interpretable and scalable predictions that improve planning and interaction in complex dynamic environments.
3.224CLARGA: Multimodal Graph Representation Learning over Arbitrary Sets of Modalities¶
2025/12/16 05:02 GTM
We introduce CLARGA, a general-purpose multimodal fusion architecture for multimodal representation learning that works with any number and type of modalities without changing the underlying framework. Given a supervised dataset, CLARGA can be applied to virtually any machine learning task to fuse different multimodal representations for processing by downstream layers. On a sample-by-sample basis, CLARGA learns how modalities should inform one another by building an attention weighted graph over their features and passing messages along this graph with a multi-head Graph Attention Network. Not only does this make CLARGA highly adaptive, as it constructs unique graphs for different samples, it makes for efficient fusion with sub-quadratic complexity as the number of modalities grows. Through a learnable mask, it can also adapt to missing modality inputs. The model is trained with a hybrid objective that combines a supervised task loss with contrastive InfoNCE loss, improving cross-modal consistency and robustness to noisy inputs. We demonstrate CLARGA’s effectiveness in diverse multimodal representation learning tasks across 7 datasets spanning finance, human-computer interaction, general multimedia classification, and affective computing. It consistently outperforms baselines, state-of-the-art models, and ablations. Additional experiments also demonstrate its robustness to missing inputs and ability to excel on niche tasks. Overall, CLARGA can be easily plugged into machine learning models for effective and efficient learning of representations across a wide variety of tasks.
3.225Read or Ignore? A Unified Benchmark for Typographic-Attack Robustness and Text Recognition in Vision-Language Models¶
2025/12/16 05:02 GTM
Large vision-language models (LVLMs) are vulnerable to typographic attacks, where misleading text within an image overrides visual understanding. Existing evaluation protocols and defenses, largely focused on object recognition, implicitly encourage ignoring text to achieve robustness; however, real-world scenarios often require joint reasoning over both objects and text (e.g., recognizing pedestrians while reading traffic signs). To address this, we introduce a novel task, Read-or-Ignore VQA (RIO-VQA), which formalizes selective text use in visual question answering (VQA): models must decide, from context, when to read text and when to ignore it. For evaluation, we present the Read-or-Ignore Benchmark (RIO-Bench), a standardized dataset and protocol that, for each real image, provides same-scene counterfactuals (read / ignore) by varying only the textual content and question type. Using RIO-Bench, we show that strong LVLMs and existing defenses fail to balance typographic robustness and text-reading capability, highlighting the need for improved approaches. Finally, RIO-Bench enables a novel data-driven defense that learns adaptive selective text use, moving beyond prior non-adaptive, text-ignoring defenses. Overall, this work reveals a fundamental misalignment between the existing evaluation scope and real-world requirements, providing a principled path toward reliable LVLMs. Our Project Page is at https://
3.226Microscopic Vehicle Trajectory Datasets from UAV-collected Video for Heterogeneous, Area-Based Urban Traffic¶
2025/12/16 05:02 GTM
This paper offers openly available microscopic vehicle trajectory (MVT) datasets collected using unmanned aerial vehicles (UAVs) in heterogeneous, area-based urban traffic conditions. Traditional roadside video collection often fails in dense mixed traffic due to occlusion, limited viewing angles, and irregular vehicle movements. UAV-based recording provides a top-down perspective that reduces these issues and captures rich spatial and temporal dynamics. The datasets described here were extracted using the Data from Sky (DFS) platform and validated against manual counts, space mean speeds, and probe trajectories in earlier work. Each dataset contains time-stamped vehicle positions, speeds, longitudinal and lateral accelerations, and vehicle classifications at a resolution of 30 frames per second. Data were collected at six mid-block locations in the national capital region of India, covering diverse traffic compositions and density levels. Exploratory analyses highlight key behavioural patterns, including lane-keeping preferences, speed distributions, and lateral manoeuvres typical of heterogeneous and area-based traffic settings. These datasets are intended as a resource for the global research community to support simulation modelling, safety assessment, and behavioural studies under area-based traffic conditions. By making these empirical datasets openly available, this work offers researchers a unique opportunity to develop, test, and validate models that more accurately represent complex urban traffic environments.
3.227Hot Hém: Sài Gòn Giũa Cái Nóng Hông Còng Bàng -- Saigon in Unequal Heat¶
2025/12/16 05:02 GTM
Pedestrian heat exposure is a critical health risk in dense tropical cities, yet standard routing algorithms often ignore micro-scale thermal variation. Hot Hém is a GeoAI workflow that estimates and operationalizes pedestrian heat exposure in Hô Chí Minh City (HCMC), Vi\d{e}t Nam, colloquially known as Sài Gòn. This spatial data science pipeline combines Google Street View (GSV) imagery, semantic image segmentation, and remote sensing. Two XGBoost models are trained to predict land surface temperature (LST) using a GSV training dataset in selected administrative wards, known as phŏng, and are deployed in a patchwork manner across all OSMnx-derived pedestrian network nodes to enable heat-aware routing. This is a model that, when deployed, can provide a foundation for pinpointing where and further understanding why certain city corridors may experience disproportionately higher temperatures at an infrastructural scale.
3.228mmWEAVER: Environment-Specific mmWave Signal Synthesis from a Photo and Activity Description¶
2025/12/16 05:02 GTM
Realistic signal generation and dataset augmentation are essential for advancing mmWave radar applications such as activity recognition and pose estimation, which rely heavily on diverse, and environment-specific signal datasets. However, mmWave signals are inherently complex, sparse, and high-dimensional, making physical simulation computationally expensive. This paper presents mmWeaver, a novel framework that synthesizes realistic, environment-specific complex mmWave signals by modeling them as continuous functions using Implicit Neural Representations (INRs), achieving up to 49-fold compression. mmWeaver incorporates hypernetworks that dynamically generate INR parameters based on environmental context (extracted from RGB-D images) and human motion features (derived from text-to-pose generation via MotionGPT), enabling efficient and adaptive signal synthesis. By conditioning on these semantic and geometric priors, mmWeaver generates diverse I/Q signals at multiple resolutions, preserving phase information critical for downstream tasks such as point cloud estimation and activity classification. Extensive experiments show that mmWeaver achieves a complex SSIM of 0.88 and a PSNR of 35 dB, outperforming existing methods in signal realism while improving activity recognition accuracy by up to 7% and reducing human pose estimation error by up to 15%, all while operating 6-35 times faster than simulation-based approaches.
3.229Generalization vs. Specialization: Evaluating Segment Anything Model (SAM3) Zero-Shot Segmentation Against Fine-Tuned YOLO Detectors¶
2025/12/16 05:02 GTM
Deep learning has advanced two fundamentally different paradigms for instance segmentation: specialized models optimized through task-specific fine-tuning and generalist foundation models capable of zero-shot segmentation. This work presents a comprehensive comparison between SAM3 (Segment Anything Model, also called SAMv3) operating in zero-shot mode and three variants of Ultralytics YOLO11 (nano, medium, and large) fine-tuned for instance segmentation. The evaluation is conducted on the MinneApple dataset, a dense benchmark comprising 670 orchard images with 28,179 annotated apple instances, enabling rigorous validation of model behavior under high object density and occlusion. Our analysis shows IoU choices can inflate performance gaps by up to 30%. At the appropriate IoU = 0.15 threshold, YOLO models achieve 68.9%, 72.2%, and 71.9% F1, while SAM3 reaches 59.8% in pure zero-shot mode. However, YOLO exhibits steep degradation 48-50 points across IoU ranges whereas SAM3 drops only 4 points, revealing 12 times superior boundary stability of SAM3. This highlights the strength of SAMv3 in mask precision versus specialization in detection completeness of YOLO11. We provide open-source code, evaluation pipelines, and methodological recommendations, contributing to a deeper understanding of when specialized fine-tuned models or generalist foundation models are preferable for dense instance segmentation tasks. This project repository is available on GitHub as https://
3.230Aesthetic Alignment Risks Assimilation: How Image Generation and Reward Models Reinforce Beauty Bias and Ideological “Censorship”¶
2025/12/16 05:02 GTM
Over-aligning image generation models to a generalized aesthetic preference conflicts with user intent, particularly when ``anti-aesthetic" outputs are requested for artistic or critical purposes. This adherence prioritizes developer-centered values, compromising user autonomy and aesthetic pluralism. We test this bias by constructing a wide-spectrum aesthetics dataset and evaluating state-of-the-art generation and reward models. We find that aesthetic-aligned generation models frequently default to conventionally beautiful outputs, failing to respect instructions for low-quality or negative imagery. Crucially, reward models penalize anti-aesthetic images even when they perfectly match the explicit user prompt. We confirm this systemic bias through image-to-image editing and evaluation against real abstract artworks.
3.231Pseudo-Label Refinement for Robust Wheat Head Segmentation via Two-Stage Hybrid Training¶
2025/12/16 05:02 GTM
This extended abstract details our solution for the Global Wheat Full Semantic Segmentation Competition. We developed a systematic self-training framework. This framework combines a two-stage hybrid training strategy with extensive data augmentation. Our core model is SegFormer with a Mix Transformer (MiT-B4) backbone. We employ an iterative teacher-student loop. This loop progressively refines model accuracy. It also maximizes data utilization. Our method achieved competitive performance. This was evident on both the Development and Testing Phase datasets.
3.232Automated Plant Disease and Pest Detection System Using Hybrid Lightweight CNN-MobileViT Models for Diagnosis of Indigenous Crops¶
2025/12/16 05:02 GTM
Agriculture supports over 80% of the population in the Tigray region of Ethiopia, where infrastructural disruptions limit access to expert crop disease diagnosis. We present an offline-first detection system centered on a newly curated indigenous cactus-fig (Opuntia ficus-indica) dataset consisting of 3,587 field images across three core symptom classes. Given deployment constraints in post-conflict edge environments, we benchmark three mobile-efficient architectures: a custom lightweight CNN, EfficientNet-Lite1, and the CNN-Transformer hybrid MobileViT-XS. While the broader system contains independent modules for potato, apple, and corn, this study isolates cactus-fig model performance to evaluate attention sensitivity and inductive bias transfer on indigenous morphology alone. Results establish a clear Pareto trade-off: EfficientNet-Lite1 achieves 90.7% test accuracy, the lightweight CNN reaches 89.5% with the most favorable deployment profile (42 ms inference latency, 4.8 MB model size), and MobileViT-XS delivers 97.3% mean cross-validation accuracy, demonstrating that MHSA-based global reasoning disambiguates pest clusters from two dimensional fungal lesions more reliably than local texture CNN kernels. The ARM compatible models are deployed in a Tigrigna and Amharic localized Flutter application supporting fully offline inference on Cortex-A53 class devices, strengthening inclusivity for food security critical diagnostics.
3.233Temporal-Anchor3DLane: Enhanced 3D Lane Detection with Multi-Task Losses and LSTM Fusion¶
2025/12/16 05:02 GTM
Monocular 3D lane detection remains challenging due to depth ambiguity, occlusion, and temporal instability across frames. Anchor-based approaches such as Anchor3DLane have demonstrated strong performance by regressing continuous 3D lane curves from multi-camera surround views. However, the baseline model still exhibits (i) sensitivity to regression outliers, (ii) weak supervision of global curve geometry, (iii) difficulty in balancing multiple loss terms, and (iv) limited exploitation of temporal continuity. We propose Temporal-Anchor3DLane, an enhanced 3D lane detection framework that extends Anchor3DLane with three key contributions: (1) a set of multi-task loss improvements, including Balanced L1 regression, Chamfer point-set distance, and uncertainty-based loss weighting, together with focal and Dice components for classification and visibility; (2) a lightweight Temporal LSTM Fusion module that aggregates per-anchor features across frames, replacing a heavier Transformer-style temporal fusion; and (3) ESCOP-style training refinements that couple curve-level supervision with temporal consistency. On OpenLane, Temporal-Anchor3DLane improves F1 by +6.2 and yields smoother temporal trajectories, showing that small architectural and loss refinements significantly enhance 3D lane robustness without extra sensors or scaling.
3.234On the Dangers of Bootstrapping Generation for Continual Learning and Beyond¶
2025/12/16 05:02 GTM
The use of synthetically generated data for training models is becoming a common practice. While generated data can augment the training data, repeated training on synthetic data raises concerns about distribution drift and degradation of performance due to contamination of the dataset. We investigate the consequences of this bootstrapping process through the lens of continual learning, drawing a connection to Generative Experience Replay (GER) methods. We present a statistical analysis showing that synthetic data introduces significant bias and variance into training objectives, weakening the reliability of maximum likelihood estimation. We provide empirical evidence showing that popular generative models collapse under repeated training with synthetic data. We quantify this degradation and show that state-of-the-art GER methods fail to maintain alignment in the latent space. Our findings raise critical concerns about the use of synthetic data in continual learning.
3.235Explainable Adversarial-Robust Vision-Language-Action Model for Robotic Manipulation¶
2025/12/16 05:02 GTM
Smart farming has emerged as a key technology for advancing modern agriculture through automation and intelligent control. However, systems relying on RGB cameras for perception and robotic manipulators for control, common in smart farming, are vulnerable to photometric perturbations such as hue, illumination, and noise changes, which can cause malfunction under adversarial attacks. To address this issue, we propose an explainable adversarial-robust Vision-Language-Action model based on the OpenVLA-OFT framework. The model integrates an Evidence-3 module that detects photometric perturbations and generates natural language explanations of their causes and effects. Experiments show that the proposed model reduces Current Action L1 loss by 21.7% and Next Actions L1 loss by 18.4% compared to the baseline, demonstrating improved action prediction accuracy and explainability under adversarial conditions.
3.236KH-FUNSD: A Hierarchical and Fine-Grained Layout Analysis Dataset for Low-Resource Khmer Business Document¶
2025/12/16 05:02 GTM
Automated document layout analysis remains a major challenge for low-resource, non-Latin scripts. Khmer is a language spoken daily by over 17 million people in Cambodia, receiving little attention in the development of document AI tools. The lack of dedicated resources is particularly acute for business documents, which are critical for both public administration and private enterprise. To address this gap, we present \textbf{KH-FUNSD}, the first publicly available, hierarchically annotated dataset for Khmer form document understanding, including receipts, invoices, and quotations. Our annotation framework features a three-level design: (1) region detection that divides each document into core zones such as header, form field, and footer; (2) FUNSD-style annotation that distinguishes questions, answers, headers, and other key entities, together with their relationships; and (3) fine-grained classification that assigns specific semantic roles, such as field labels, values, headers, footers, and symbols. This multi-level approach supports both comprehensive layout analysis and precise information extraction. We benchmark several leading models, providing the first set of baseline results for Khmer business documents, and discuss the distinct challenges posed by non-Latin, low-resource scripts. The KH-FUNSD dataset and documentation will be available at URL.
3.237Vision Foundry: A System for Training Foundational Vision AI Models¶
2025/12/16 05:02 GTM
Self-supervised learning (SSL) leverages vast unannotated medical datasets, yet steep technical barriers limit adoption by clinical researchers. We introduce Vision Foundry, a code-free, HIPAA-compliant platform that democratizes pre-training, adaptation, and deployment of foundational vision models. The system integrates the DINO-MX framework, abstracting distributed infrastructure complexities while implementing specialized strategies like Magnification-Aware Distillation (MAD) and Parameter-Efficient Fine-Tuning (PEFT). We validate the platform across domains, including neuropathology segmentation, lung cellularity estimation, and coronary calcium scoring. Our experiments demonstrate that models trained via Vision Foundry significantly outperform generic baselines in segmentation fidelity and regression accuracy, while exhibiting robust zero-shot generalization across imaging protocols. By bridging the gap between advanced representation learning and practical application, Vision Foundry enables domain experts to develop state-of-the-art clinical AI tools with minimal annotation overhead, shifting focus from engineering optimization to clinical discovery.
3.238Soft Decision Tree classifier: explainable and extendable PyTorch implementation¶
2025/12/16 05:02 GTM
We implemented a Soft Decision Tree (SDT) and a Short-term Memory Soft Decision Tree (SM-SDT) using PyTorch. The methods were extensively tested on simulated and clinical datasets. The SDT was visualized to demonstrate the potential for its explainability. SDT, SM-SDT, and XGBoost demonstrated similar area under the curve (AUC) values. These methods were better than Random Forest, Logistic Regression, and Decision Tree. The results on clinical datasets suggest that, aside from a decision tree, all tested classification methods yield comparable results. The code and datasets are available online on GitHub: https://
3.239On the Design of One-step Diffusion via Shortcutting Flow Paths¶
2025/12/16 05:02 GTM
Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (a.k.a. shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.
3.240Assessing Greenspace Attractiveness with ChatGPT, Claude, and Gemini: Do AI Models Reflect Human Perceptions?¶
2025/12/16 05:02 GTM
Understanding greenspace attractiveness is essential for designing livable and inclusive urban environments, yet existing assessment approaches often overlook informal or transient spaces and remain too resource intensive to capture subjective perceptions at scale. This study examines the ability of multimodal large language models (MLLMs), ChatGPT GPT-4o, Claude 3.5 Haiku, and Gemini 2.0 Flash, to assess greenspace attractiveness similarly to humans using Google Street View imagery. We compared model outputs with responses from a geo-questionnaire of residents in Lodz, Poland, across both formal (for example, parks and managed greenspaces) and informal (for example, meadows and wastelands) greenspaces. Survey respondents and models indicated whether each greenspace was attractive or unattractive and provided up to three free text explanations. Analyses examined how often their attractiveness judgments aligned and compared their explanations after classifying them into shared reasoning categories. Results show high AI human agreement for attractive formal greenspaces and unattractive informal spaces, but low alignment for attractive informal and unattractive formal greenspaces. Models consistently emphasized aesthetic and design oriented features, underrepresenting safety, functional infrastructure, and locally embedded qualities valued by survey respondents. While these findings highlight the potential for scalable pre-assessment, they also underscore the need for human oversight and complementary participatory approaches. We conclude that MLLMs can support, but not replace, context sensitive greenspace evaluation in planning practice.
3.241ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision¶
2025/12/16 05:02 GTM
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves \SI{96.73}{\percent} grasp classification accuracy with sub-\SI{40.00}{\milli\second} end-to-end latency. Physical validation using standardized benchmarks shows \SI{82.71}{\percent} success on YCB object manipulation and reliable performance across \SI{27.00}{} Activities of Daily Living (ADL) tasks. With a total cost under $\SI{250.00}{} and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
3.242A Reproducible Workflow for Scraping, Structuring, and Segmenting Legacy Archaeological Artifact Images¶
2025/12/16 05:02 GTM
This technical note presents a reproducible workflow for converting a legacy archaeological image collection into a structured and segmentation ready dataset. The case study focuses on the Lower Palaeolithic hand axe and biface collection curated by the Archaeology Data Service (ADS), a dataset that provides thousands of standardised photographs but no mechanism for bulk download or automated processing. To address this, two open source tools were developed: a web scraping script that retrieves all record pages, extracts associated metadata, and downloads the available images while respecting ADS Terms of Use and ethical scraping guidelines; and an image processing pipeline that renames files using UUIDs, generates binary masks and bounding boxes through classical computer vision, and stores all derived information in a COCO compatible Json file enriched with archaeological metadata. The original images are not redistributed, and only derived products such as masks, outlines, and annotations are shared. Together, these components provide a lightweight and reusable approach for transforming web based archaeological image collections into machine learning friendly formats, facilitating downstream analysis and contributing to more reproducible research practices in digital archaeology.
3.243Enhancing Urban Visual Place Recognition for Crowdsourced Flood Imagery via LLM-Guided Attention¶
2025/12/16 05:02 GTM
Crowdsourced street-view imagery from social media provides valuable real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing Visual Place Recognition (VPR) models exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts inherent in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geospatial knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress transient visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.
3.244Benchmarking Tesla’s Traffic Light and Stop Sign Control: Field Dataset and Behavior Insights¶
2025/12/16 05:02 GTM
Understanding how Advanced Driver-Assistance Systems (ADAS) interact with Traffic Control Devices (TCDs) is critical for assessing their influence on traffic operations, yet this interaction has received little focused empirical study. This paper presents a field dataset and behavioral analysis of Tesla’s Traffic Light and Stop Sign Control (TLSSC), a mature ADAS that perceives traffic lights and stop signs. We design and execute experiments across varied speed limits and TCD types, collecting synchronized high-resolution vehicle trajectory data and driver-perspective video. From these data, we develop a taxonomy of TLSSC-TCD interaction behaviors (i.e., stopping, accelerating, and car following) and calibrate the Full Velocity Difference Model (FVDM) to quantitatively characterize each behavior mode. A novel empirical insight is the identification of a car-following threshold (~90 m). Calibration results reveal that stopping behavior is driven by strong responsiveness to both desired speed deviation and relative speed, whereas accelerating behavior is more conservative. Intersection car-following behavior exhibits smoother dynamics and tighter headways compared to standard car-following behaviors. The established dataset, behavior definitions, and model characterizations together provide a foundation for future simulation, safety evaluation, and design of ADAS-TCD interaction logic. Our dataset is available at GitHub.
3.245Beyond surface form: A pipeline for semantic analysis in Alzheimer’s Disease detection from spontaneous speech¶
2025/12/16 05:02 GTM
Alzheimer’s Disease (AD) is a progressive neurodegenerative condition that adversely affects cognitive abilities. Language-related changes can be automatically identified through the analysis of outputs from linguistic assessment tasks, such as picture description. Language models show promise as a basis for screening tools for AD, but their limited interpretability poses a challenge in distinguishing true linguistic markers of cognitive decline from surface-level textual patterns. To address this issue, we examine how surface form variation affects classification performance, with the goal of assessing the ability of language models to represent underlying semantic indicators. We introduce a novel approach where texts surface forms are transformed by altering syntax and vocabulary while preserving semantic content. The transformations significantly modify the structure and lexical content, as indicated by low BLEU and chrF scores, yet retain the underlying semantics, as reflected in high semantic similarity scores, isolating the effect of semantic information, and finding models perform similarly to if they were using the original text, with only small deviations in macro-F1. We also investigate whether language from picture descriptions retains enough detail to reconstruct the original image using generative models. We found that image-based transformations add substantial noise reducing classification accuracy. Our methodology provides a novel way of looking at what features influence model predictions, and allows the removal of possible spurious correlations. We find that just using semantic information, language model based classifiers can still detect AD. This work shows that difficult to detect semantic impairment can be identified, addressing an overlooked feature of linguistic deterioration, and opening new pathways for early detection systems.
3.246Towards Effective Model Editing for LLM Personalization¶
2025/12/16 05:02 GTM
Personalization is becoming indispensable for LLMs to align with individual user preferences and needs. Yet current approaches are often computationally expensive, data-intensive, susceptible to catastrophic forgetting, and prone to performance degradation in multi-turn interactions or when handling implicit queries. To address these challenges, we conceptualize personalization as a model editing task and introduce Personalization Editing, a framework that applies localized edits guided by clustered preference representations. This design enables precise preference-aligned updates while preserving overall model capabilities. In addition, existing personalization benchmarks frequently rely on persona-based dialogs between LLMs rather than user-LLM interactions, or focus primarily on stylistic imitation while neglecting information-seeking tasks that require accurate recall of user-specific preferences. We introduce User Preference Question Answering (UPQA), a short-answer QA dataset constructed from in-situ user queries with varying levels of difficulty. Unlike prior benchmarks, UPQA directly evaluates a model’s ability to recall and apply specific user preferences. Across experimental settings, Personalization Editing achieves higher editing accuracy and greater computational efficiency than fine-tuning, while outperforming prompting-based baselines in multi-turn conversations and implicit preference questions settings.
3.247Towards Interactive Intelligence for Digital Humans¶
2025/12/16 05:02 GTM
We introduce Interactive Intelligence, a novel paradigm of digital human that is capable of personality-aligned expression, adaptive interaction, and self-evolution. To realize this, we present Mio (Multimodal Interactive Omni-Avatar), an end-to-end framework composed of five specialized modules: Thinker, Talker, Face Animator, Body Animator, and Renderer. This unified architecture integrates cognitive reasoning with real-time multimodal embodiment to enable fluid, consistent interaction. Furthermore, we establish a new benchmark to rigorously evaluate the capabilities of interactive intelligence. Extensive experiments demonstrate that our framework achieves superior performance compared to state-of-the-art methods across all evaluated dimensions. Together, these contributions move digital humans beyond superficial imitation toward intelligent interaction.
3.248A stylometric analysis of speaker attribution from speech transcripts¶
2025/12/16 05:02 GTM
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts’ conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
3.249Comparative Analysis of LLM Abliteration Methods: A Cross-Architecture Evaluation¶
2025/12/16 05:02 GTM
Safety alignment mechanisms in large language models prevent responses to harmful queries through learned refusal behavior, yet these same mechanisms impede legitimate research applications including cognitive modeling, adversarial testing, and security analysis. While abliteration techniques enable surgical removal of refusal representations through directional orthogonalization, the relative effectiveness of available implementations remains uncharacterized. This study evaluates four abliteration tools (Heretic, DECCP, ErisForge, FailSpy) across sixteen instruction-tuned models (7B-14B parameters), reporting tool compatibility on all 16 models and quantitative metrics on subsets dictated by tool support. Single-pass methods demonstrated superior capability preservation on the benchmarked subset (avg GSM8K change across three models: ErisForge -0.28 pp; DECCP -0.13 pp), while Bayesian-optimized abliteration produced variable distribution shift (KL divergence: 0.043-1.646) with model-dependent capability impact. These findings provide researchers with evidence-based selection criteria for abliteration tool deployment across diverse model architectures. The principal finding indicates that mathematical reasoning capabilities exhibit the highest sensitivity to abliteration interventions, with GSM8K change ranging from +1.51 pp to -18.81 pp (-26.5% relative) depending on tool selection and model architecture.
3.250Large-Language Memorization During the Classification of United States Supreme Court Cases¶
2025/12/16 05:02 GTM
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called “hallucinations” since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.
3.251Temporal Tokenization Strategies for Event Sequence Modeling with Large Language Models¶
2025/12/16 05:02 GTM
Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data’s statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
3.252Nemotron-Cascade: Scaling Cascaded Reinforcement Learning for General-Purpose Reasoning Models¶
2025/12/16 05:02 GTM
Building general-purpose reasoning models with reinforcement learning (RL) entails substantial cross-domain heterogeneity, including large variation in inference-time response lengths and verification latency. Such variability complicates the RL infrastructure, slows training, and makes training curriculum (e.g., response length extension) and hyperparameter selection challenging. In this work, we propose cascaded domain-wise reinforcement learning (Cascade RL) to develop general-purpose reasoning models, Nemotron-Cascade, capable of operating in both instruct and deep thinking modes. Departing from conventional approaches that blend heterogeneous prompts from different domains, Cascade RL orchestrates sequential, domain-wise RL, reducing engineering complexity and delivering state-of-the-art performance across a wide range of benchmarks. Notably, RLHF for alignment, when used as a pre-step, boosts the model’s reasoning ability far beyond mere preference optimization, and subsequent domain-wise RLVR stages rarely degrade the benchmark performance attained in earlier domains and may even improve it (see an illustration in Figure 1). Our 14B model, after RL, outperforms its SFT teacher, DeepSeek-R1-0528, on LiveCodeBench v5/v6/Pro and achieves silver-medal performance in the 2025 International Olympiad in Informatics (IOI). We transparently share our training and data recipes.
3.253Textual Gradients are a Flawed Metaphor for Automatic Prompt Optimization¶
2025/12/16 05:02 GTM
A well-engineered prompt can increase the performance of large language models; automatic prompt optimization techniques aim to increase performance without requiring human effort to tune the prompts. One leading class of prompt optimization techniques introduces the analogy of textual gradients. We investigate the behavior of these textual gradient methods through a series of experiments and case studies. While such methods often result in a performance improvement, our experiments suggest that the gradient analogy does not accurately explain their behavior. Our insights may inform the selection of prompt optimization strategies, and development of new approaches.
3.254ReFusion: A Diffusion Large Language Model with Parallel Autoregressive Decoding¶
2025/12/16 05:02 GTM
Autoregressive models (ARMs) are hindered by slow sequential inference. While masked diffusion models (MDMs) offer a parallel alternative, they suffer from critical drawbacks: high computational overhead from precluding Key-Value (KV) caching, and incoherent generation arising from learning dependencies over an intractable space of token combinations. To address these limitations, we introduce ReFusion, a novel masked diffusion model that achieves superior performance and efficiency by elevating parallel decoding from the token level to a higher slot level, where each slot is a fixed-length, contiguous sub-sequence. This is achieved through an iterative ``plan-and-infill’’ decoding process: a diffusion-based planning step first identifies a set of weakly dependent slots, and an autoregressive infilling step then decodes these selected slots in parallel. The slot-based design simultaneously unlocks full KV cache reuse with a unified causal framework and reduces the learning complexity from the token combination space to a manageable slot-level permutation space. Extensive experiments on seven diverse benchmarks show that ReFusion not only overwhelmingly surpasses prior MDMs with 34% performance gains and an over 18 speedup on average, but also bridges the performance gap to strong ARMs while maintaining a 2.33 average speedup.
3.255Memory in the Age of AI Agents¶
2025/12/16 05:02 GTM
Memory has emerged, and will continue to remain, a core capability of foundation model-based agents. As research on agent memory rapidly expands and attracts unprecedented attention, the field has also become increasingly fragmented. Existing works that fall under the umbrella of agent memory often differ substantially in their motivations, implementations, and evaluation protocols, while the proliferation of loosely defined memory terminologies has further obscured conceptual clarity. Traditional taxonomies such as long/short-term memory have proven insufficient to capture the diversity of contemporary agent memory systems. This work aims to provide an up-to-date landscape of current agent memory research. We begin by clearly delineating the scope of agent memory and distinguishing it from related concepts such as LLM memory, retrieval augmented generation (RAG), and context engineering. We then examine agent memory through the unified lenses of forms, functions, and dynamics. From the perspective of forms, we identify three dominant realizations of agent memory, namely token-level, parametric, and latent memory. From the perspective of functions, we propose a finer-grained taxonomy that distinguishes factual, experiential, and working memory. From the perspective of dynamics, we analyze how memory is formed, evolved, and retrieved over time. To support practical development, we compile a comprehensive summary of memory benchmarks and open-source frameworks. Beyond consolidation, we articulate a forward-looking perspective on emerging research frontiers, including memory automation, reinforcement learning integration, multimodal memory, multi-agent memory, and trustworthiness issues. We hope this survey serves not only as a reference for existing work, but also as a conceptual foundation for rethinking memory as a first-class primitive in the design of future agentic intelligence.
3.256Verifying Rumors via Stance-Aware Structural Modeling¶
2025/12/16 05:02 GTM
Verifying rumors on social media is critical for mitigating the spread of false information. The stances of conversation replies often provide important cues to determine a rumor’s veracity. However, existing models struggle to jointly capture semantic content, stance information, and conversation strructure, especially under the sequence length constraints of transformer-based encoders. In this work, we propose a stance-aware structural modeling that encodes each post in a discourse with its stance signal and aggregates reply embedddings by stance category enabling a scalable and semantically enriched representation of the entire thread. To enhance structural awareness, we introduce stance distribution and hierarchical depth as covariates, capturing stance imbalance and the influence of reply depth. Extensive experiments on benchmark datasets demonstrate that our approach significantly outperforms prior methods in the ability to predict truthfulness of a rumor. We also demonstrate that our model is versatile for early detection and cross-platfrom generalization.
3.257PrahokBART: A Pre-trained Sequence-to-Sequence Model for Khmer Natural Language Generation¶
2025/12/16 05:02 GTM
This work introduces {\it PrahokBART}, a compact pre-trained sequence-to-sequence model trained from scratch for Khmer using carefully curated Khmer and English corpora. We focus on improving the pre-training corpus quality and addressing the linguistic issues of Khmer, which are ignored in existing multilingual models, by incorporating linguistic components such as word segmentation and normalization. We evaluate PrahokBART on three generative tasks: machine translation, text summarization, and headline generation, where our results demonstrate that it outperforms mBART50, a strong multilingual pre-trained model. Additionally, our analysis provides insights into the impact of each linguistic module and evaluates how effectively our model handles space during text generation, which is crucial for the naturalness of texts in Khmer.
3.258Fine-tuned LLM-based Code Migration Framework¶
2025/12/16 05:02 GTM
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
3.259SkipCat: Rank-Maximized Low-Rank Compression of Large Language Models via Shared Projection and Block Skipping¶
2025/12/16 05:02 GTM
Large language models (LLM) have achieved remarkable performance across a wide range of tasks. However, their substantial parameter sizes pose significant challenges for deployment on edge devices with limited computational and memory resources. Low-rank compression is a promising approach to address this issue, as it reduces both computational and memory costs, making LLM more suitable for resource-constrained environments. Nonetheless, naïve low-rank compression methods require a significant reduction in the retained rank to achieve meaningful memory and computation savings. For a low-rank model, the ranks need to be reduced by more than half to yield efficiency gains. Such aggressive truncation, however, typically results in substantial performance degradation. To address this trade-off, we propose SkipCat, a novel low-rank compression framework that enables the use of higher ranks while achieving the same compression rates. First, we introduce an intra-layer shared low-rank projection method, where multiple matrices that share the same input use a common projection. This reduces redundancy and improves compression efficiency. Second, we propose a block skipping technique that omits computations and memory transfers for selected sub-blocks within the low-rank decomposition. These two techniques jointly enable our compressed model to retain more effective ranks under the same compression budget. Experimental results show that, without any additional fine-tuning, our method outperforms previous low-rank compression approaches by 7% accuracy improvement on zero-shot tasks under the same compression rate. These results highlight the effectiveness of our rank-maximized compression strategy in preserving model performance under tight resource constraints.
3.260SIGMA: An AI-Empowered Training Stack on Early-Life Hardware¶
2025/12/16 05:02 GTM
An increasing variety of AI accelerators is being considered for large-scale training. However, enabling large-scale training on early-life AI accelerators faces three core challenges: frequent system disruptions and undefined failure modes that undermine reliability; numerical errors and training instabilities that threaten correctness and convergence; and the complexity of parallelism optimization combined with unpredictable local noise that degrades efficiency. To address these challenges, SIGMA is an open-source training stack designed to improve the reliability, stability, and efficiency of large-scale distributed training on early-life AI hardware. The core of this initiative is the LUCIA TRAINING PLATFORM (LTP), the system optimized for clusters with early-life AI accelerators. Since its launch in March 2025, LTP has significantly enhanced training reliability and operational productivity. Over the past five months, it has achieved an impressive 94.45% effective cluster accelerator utilization, while also substantially reducing node recycling and job-recovery times. Building on the foundation of LTP, the LUCIA TRAINING FRAMEWORK (LTF) successfully trained SIGMA-MOE, a 200B MoE model, using 2,048 AI accelerators. This effort delivered remarkable stability and efficiency outcomes, achieving 21.08% MFU, state-of-the-art downstream accuracy, and encountering only one stability incident over a 75-day period. Together, these advances establish SIGMA, which not only tackles the critical challenges of large-scale training but also establishes a new benchmark for AI infrastructure and platform innovation, offering a robust, cost-effective alternative to prevailing established accelerator stacks and significantly advancing AI capabilities and scalability. The source code of SIGMA is available at https://
3.261Advancing Bangla Machine Translation Through Informal Datasets¶
2025/12/16 05:02 GTM
Bangla is the sixth most widely spoken language globally, with approximately 234 million native speakers. However, progress in open-source Bangla machine translation remains limited. Most online resources are in English and often remain untranslated into Bangla, excluding millions from accessing essential information. Existing research in Bangla translation primarily focuses on formal language, neglecting the more commonly used informal language. This is largely due to the lack of pairwise Bangla-English data and advanced translation models. If datasets and models can be enhanced to better handle natural, informal Bangla, millions of people will benefit from improved online information access. In this research, we explore current state-of-the-art models and propose improvements to Bangla translation by developing a dataset from informal sources like social media and conversational texts. This work aims to advance Bangla machine translation by focusing on informal language translation and improving accessibility for Bangla speakers in the digital world.
3.262neuralFOMO: Can LLMs Handle Being Second Best? Measuring Envy-Like Preferences in Multi-Agent Settings¶
2025/12/16 05:02 GTM
Envy is a common human behavior that shapes competitiveness and can alter outcomes in team settings. As large language models (LLMs) increasingly act on behalf of humans in collaborative and competitive workflows, there is a pressing need to evaluate whether and under what conditions they exhibit envy-like preferences. In this paper, we test whether LLMs show envy-like behavior toward each other. We considered two scenarios: (1) A point allocation game that tests whether a model tries to win over its peer. (2) A workplace setting observing behaviour when recognition is unfair. Our findings reveal consistent evidence of envy-like patterns in certain LLMs, with large variation across models and contexts. For instance, GPT-5-mini and Claude-3.7-Sonnet show a clear tendency to pull down the peer model to equalize outcomes, whereas Mistral-Small-3.2-24B instead focuses on maximizing its own individual gains. These results highlight the need to consider competitive dispositions as a safety and design factor in LLM-based multi-agent systems.
3.263Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models¶
2025/12/16 05:02 GTM
Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing “Dr. Smith the cardiologist” from “Dr. Smith the researcher”). These mechanisms are unified by an external Resolution Operator that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR’s ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.
3.264Scaling Laws for Code: Every Programming Language Matters¶
2025/12/16 05:02 GTM
Code large language models (Code LLMs) are powerful but costly to train, with scaling laws predicting performance from model size, data, and compute. However, different programming languages (PLs) have varying impacts during pre-training that significantly affect base model performance, leading to inaccurate performance prediction. Besides, existing works focus on language-agnostic settings, neglecting the inherently multilingual nature of modern software development. Therefore, it is first necessary to investigate the scaling laws of different PLs, and then consider their mutual influences to arrive at the final multilingual scaling law. In this paper, we present the first systematic exploration of scaling laws for multilingual code pre-training, conducting over 1000+ experiments (Equivalent to 336,000+ H800 hours) across multiple PLs, model sizes (0.2B to 14B parameters), and dataset sizes (1T tokens). We establish comprehensive scaling laws for code LLMs across multiple PLs, revealing that interpreted languages (e.g., Python) benefit more from increased model size and data than compiled languages (e.g., Rust). The study demonstrates that multilingual pre-training provides synergistic benefits, particularly between syntactically similar PLs. Further, the pre-training strategy of the parallel pairing (concatenating code snippets with their translations) significantly enhances cross-lingual abilities with favorable scaling properties. Finally, a proportion-dependent multilingual scaling law is proposed to optimally allocate training tokens by prioritizing high-utility PLs (e.g., Python), balancing high-synergy pairs (e.g., JavaScript-TypeScript), and reducing allocation to fast-saturating languages (Rust), achieving superior average performance across all PLs compared to uniform distribution under the same compute budget.
3.265Large language models are not about language¶
2025/12/16 05:02 GTM
Large Language Models are useless for linguistics, as they are probabilistic models that require a vast amount of data to analyse externalized strings of words. In contrast, human language is underpinned by a mind-internal computational system that recursively generates hierarchical thought structures. The language system grows with minimal external input and can readily distinguish between real language and impossible languages.
3.266Differentiable Evolutionary Reinforcement Learning¶
2025/12/16 05:02 GTM
The design of effective reward functions presents a central and often arduous challenge in reinforcement learning (RL), particularly when developing autonomous agents for complex reasoning tasks. While automated reward optimization approaches exist, they typically rely on derivative-free evolutionary heuristics that treat the reward function as a black box, failing to capture the causal relationship between reward structure and task performance. To bridge this gap, we propose Differentiable Evolutionary Reinforcement Learning (DERL), a bilevel framework that enables the autonomous discovery of optimal reward signals. In DERL, a Meta-Optimizer evolves a reward function (i.e., Meta-Reward) by composing structured atomic primitives, guiding the training of an inner-loop policy. Crucially, unlike previous evolution, DERL is differentiable in its metaoptimization: it treats the inner-loop validation performance as a signal to update the Meta-Optimizer via reinforcement learning. This allows DERL to approximate the “meta-gradient” of task success, progressively learning to generate denser and more actionable feedback. We validate DERL across three distinct domains: robotic agent (ALFWorld), scientific simulation (ScienceWorld), and mathematical reasoning (GSM8k, MATH). Experimental results show that DERL achieves state-of-the-art performance on ALFWorld and ScienceWorld, significantly outperforming methods relying on heuristic rewards, especially in out-of-distribution scenarios. Analysis of the evolutionary trajectory demonstrates that DERL successfully captures the intrinsic structure of tasks, enabling selfimproving agent alignment without human intervention.
3.267Detecting Emotion Drift in Mental Health Text Using Pre-Trained Transformers¶
2025/12/16 05:02 GTM
This study investigates emotion drift: the change in emotional state across a single text, within mental health-related messages. While sentiment analysis typically classifies an entire message as positive, negative, or neutral, the nuanced shift of emotions over the course of a message is often overlooked. This study detects sentence-level emotions and measures emotion drift scores using pre-trained transformer models such as DistilBERT and RoBERTa. The results provide insights into patterns of emotional escalation or relief in mental health conversations. This methodology can be applied to better understand emotional dynamics in content.
3.268On the Effectiveness of Membership Inference in Targeted Data Extraction from Large Language Models¶
2025/12/16 05:02 GTM
Large Language Models (LLMs) are prone to mem- orizing training data, which poses serious privacy risks. Two of the most prominent concerns are training data extraction and Membership Inference Attacks (MIAs). Prior research has shown that these threats are interconnected: adversaries can extract training data from an LLM by querying the model to generate a large volume of text and subsequently applying MIAs to verify whether a particular data point was included in the training set. In this study, we integrate multiple MIA techniques into the data extraction pipeline to systematically benchmark their effectiveness. We then compare their performance in this integrated setting against results from conventional MIA bench- marks, allowing us to evaluate their practical utility in real-world extraction scenarios.
3.269FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models¶
2025/12/16 05:02 GTM
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://
3.270MiniLingua: A Small Open-Source LLM for European Languages¶
2025/12/16 05:02 GTM
Large language models are powerful but often limited by high computational cost, privacy concerns, and English-centric training. Recent progress demonstrates that small, efficient models with around one billion parameters can deliver strong results and enable on-device use. This paper introduces MiniLingua, a multilingual open-source LLM of one billion parameters trained from scratch for 13 European languages, designed to balance coverage and instruction-following capabilities. Based on evaluation results, the instruction-tuned version of MiniLingua outperforms EuroLLM, a model with a similar training approach but a larger training budget, on summarization, classification and both open- and closed-book question answering. Moreover, it remains competitive with more advanced state-of-the-art models on open-ended generation tasks. We release model weights, tokenizer and source code used for data processing and model training.
3.271Integrating Causal Reasoning into Automated Fact-Checking¶
2025/12/16 05:02 GTM
In fact-checking applications, a common reason to reject a claim is to detect the presence of erroneous cause-effect relationships between the events at play. However, current automated fact-checking methods lack dedicated causal-based reasoning, potentially missing a valuable opportunity for semantically rich explainability. To address this gap, we propose a methodology that combines event relation extraction, semantic similarity computation, and rule-based reasoning to detect logical inconsistencies between chains of events mentioned in a claim and in an evidence. Evaluated on two fact-checking datasets, this method establishes the first baseline for integrating fine-grained causal event relationships into fact-checking and enhance explainability of verdict prediction.
3.272AIR: Post-training Data Selection for Reasoning via Attention Head Influence¶
2025/12/16 05:02 GTM
LLMs achieve remarkable multi-step reasoning capabilities, yet effectively transferring these skills via post-training distillation remains challenging. Existing data selection methods, ranging from manual curation to heuristics based on length, entropy, or overall loss, fail to capture the causal importance of individual reasoning steps, limiting distillation efficiency. To address this, we propose Attention Influence for Reasoning (AIR), a principled, unsupervised and training-free framework that leverages mechanistic insights of the retrieval head to select high-value post-training data. AIR first identifies reasoning-critical attention heads of an off-the-shelf model, then constructs a weakened reference model with disabled head influence, and finally quantifies the resulting loss divergence as the Attention Influence Score. This score enables fine-grained assessment at both the step and sample levels, supporting step-level weighted fine-tuning and global sample selection. Experiments across multiple reasoning benchmarks show that AIR consistently improves reasoning accuracy, surpassing heuristic baselines and effectively isolating the most critical steps and samples. Our work establishes a mechanism-driven, data-efficient approach for reasoning distillation in LLMs.
3.273AutoTool: Dynamic Tool Selection and Integration for Agentic Reasoning¶
2025/12/16 05:02 GTM
Agentic reinforcement learning has advanced large language models (LLMs) to reason through long chain-of-thought trajectories while interleaving external tool use. Existing approaches assume a fixed inventory of tools, limiting LLM agents’ adaptability to new or evolving toolsets. We present AutoTool, a framework that equips LLM agents with dynamic tool-selection capabilities throughout their reasoning trajectories. We first construct a 200k dataset with explicit tool-selection rationales across 1,000+ tools and 100+ tasks spanning mathematics, science, code generation, and multimodal reasoning. Building on this data foundation, AutoTool employs a dual-phase optimization pipeline: (i) supervised and RL-based trajectory stabilization for coherent reasoning, and (ii) KL-regularized Plackett-Luce ranking to refine consistent multi-step tool selection. Across ten diverse benchmarks, we train two base models, Qwen3-8B and Qwen2.5-VL-7B, with AutoTool. With fewer parameters, AutoTool consistently outperforms advanced LLM agents and tool-integration methods, yielding average gains of 6.4% in math & science reasoning, 4.5% in search-based QA, 7.7% in code generation, and 6.9% in multimodal understanding. In addition, AutoTool exhibits stronger generalization by dynamically leveraging unseen tools from evolving toolsets during inference.
3.274Efficient Adaptive Rejection Sampling for Accelerating Speculative Decoding in Large Language Models¶
2025/12/16 05:02 GTM
Speculative Decoding is a prominent technique for accelerating the autoregressive inference of large language models (LLMs) by employing a fast draft model to propose candidate token sequences and a large target model to verify them in parallel. However, its core component -- the rejection sampling mechanism -- relies on a fixed, context-independent random threshold. This leads to a significant “random rejection” problem in high-uncertainty generation scenarios, where plausible candidate tokens are frequently rejected due to random chance, undermining inference efficiency. This paper introduces Efficient Adaptive Rejection Sampling (EARS), a novel method that dynamically adjusts the acceptance threshold by incorporating the target model’s own predictive uncertainty, measured as (1 - \max(P_{\mathrm{target}})). By introducing a tolerance term proportional to this uncertainty, EARS intelligently relaxes the acceptance criterion when the model is uncertain, effectively reducing random rejections while maintaining strict standards when the model is confident. Experiments on creative writing and open-domain QA tasks demonstrate that EARS significantly enhances the efficiency of speculative decoding, achieving up to an 18.12% increase in throughput with a negligible 0.84% accuracy drop on the GSM8K benchmark. The method requires no modifications to model architectures and can be seamlessly integrated into existing speculative decoding frameworks.
3.275SpeakRL: Synergizing Reasoning, Speaking, and Acting in Language Models with Reinforcement Learning¶
2025/12/16 05:02 GTM
Effective human-agent collaboration is increasingly prevalent in real-world applications. Current trends in such collaborations are predominantly unidirectional, with users providing instructions or posing questions to agents, where agents respond directly without seeking necessary clarifications or confirmations. However, the evolving capabilities of these agents require more proactive engagement, where agents should dynamically participate in conversations to clarify user intents, resolve ambiguities, and adapt to changing circumstances. Existing prior work under-utilize the conversational capabilities of language models (LMs), thereby optimizing agents as better followers rather than effective speakers. In this work, we introduce SpeakRL, a reinforcement learning (RL) method that enhances agents’ conversational capabilities by rewarding proactive interactions with users, such as asking right clarification questions when necessary. To support this, we curate SpeakER, a synthetic dataset that includes diverse scenarios from task-oriented dialogues, where tasks are resolved through interactive clarification questions. We present a systematic analysis of reward design for conversational proactivity and propose a principled reward formulation for teaching agents to balance asking with acting. Empirical evaluations demonstrate that our approach achieves a 20.14% absolute improvement in task completion over base models without increasing conversation turns even surpassing even much larger proprietary models, demonstrating the promise of clarification-centric user-agent interactions.
3.276MAC: A Multi-Agent Framework for Interactive User Clarification in Multi-turn Conversations¶
2025/12/16 05:02 GTM
Conversational agents often encounter ambiguous user requests, requiring an effective clarification to successfully complete tasks. While recent advancements in real-world applications favor multi-agent architectures to manage complex conversational scenarios efficiently, ambiguity resolution remains a critical and underexplored challenge--particularly due to the difficulty of determining which agent should initiate a clarification and how agents should coordinate their actions when faced with uncertain or incomplete user input. The fundamental questions of when to interrupt a user and how to formulate the optimal clarification query within the most optimal multi-agent settings remain open. In this paper, we propose MAC (Multi-Agent Clarification), an interactive multi-agent framework specifically optimized to resolve user ambiguities by strategically managing clarification dialogues. We first introduce a novel taxonomy categorizing user ambiguities to systematically guide clarification strategies. Then, we present MAC that autonomously coordinates multiple agents to interact synergistically with users. Empirical evaluations on MultiWOZ 2.4 demonstrate that enabling clarification at both levels increases task success rate 7.8% (54.5 to 62.3) and reduces the average number of dialogue turns (6.53 to 4.86) by eliciting all required user information up front and minimizing repetition. Our findings highlight the importance of active user interaction and role-aware clarification for more reliable human-agent communication.
3.277Uncovering the Role of Initial Saliency in U-Shaped Attention Bias: Scaling Initial Token Weight for Enhanced Long-Text Processing¶
2025/12/16 05:02 GTM
Large language models (LLMs) have demonstrated strong performance on a variety of natural language processing (NLP) tasks. However, they often struggle with long-text sequences due to the ``lost in the middle’’ phenomenon. This issue has been shown to arise from a U-shaped attention bias, where attention is disproportionately focused on the beginning and end of a text, leaving the middle section underrepresented. While previous studies have attributed this bias to position encoding, our research first identifies an additional factor: initial saliency. It means that in the attention computation for each token, tokens with higher attention weights relative to the initial token tend to receive more attention in the prediction of the next token. We further find that utilizing this property by scaling attention weight between the initial token and others improves the model’s ability to process long contexts, achieving a maximum improvement of 3.6% in MDQA dataset. Moreover, combining this approach with existing methods to reduce position encoding bias further enhances performance, achieving a maximum improvement of 3.4% in KV-Retrieval tasks.
3.278Heart Disease Prediction using Case Based Reasoning (CBR)¶
2025/12/16 05:02 GTM
This study provides an overview of heart disease prediction using an intelligent system. Predicting disease accurately is crucial in the medical field, but traditional methods relying solely on a doctor’s experience often lack precision. To address this limitation, intelligent systems are applied as an alternative to traditional approaches. While various intelligent system methods exist, this study focuses on three: Fuzzy Logic, Neural Networks, and Case-Based Reasoning (CBR). A comparison of these techniques in terms of accuracy was conducted, and ultimately, Case-Based Reasoning (CBR) was selected for heart disease prediction. In the prediction phase, the heart disease dataset underwent data pre-processing to clean the data and data splitting to separate it into training and testing sets. The chosen intelligent system was then employed to predict heart disease outcomes based on the processed data. The experiment concluded with Case-Based Reasoning (CBR) achieving a notable accuracy rate of 97.95% in predicting heart disease. The findings also revealed that the probability of heart disease was 57.76% for males and 42.24% for females. Further analysis from related studies suggests that factors such as smoking and alcohol consumption are significant contributors to heart disease, particularly among males.
3.279M-GRPO: Stabilizing Self-Supervised Reinforcement Learning for Large Language Models with Momentum-Anchored Policy Optimization¶
2025/12/16 05:02 GTM
Self-supervised reinforcement learning (RL) presents a promising approach for enhancing the reasoning capabilities of Large Language Models (LLMs) without reliance on expensive human-annotated data. However, we find that existing methods suffer from a critical failure mode under long-horizon training: a “policy collapse” where performance precipitously degrades. We diagnose this instability and demonstrate that simply scaling the number of rollouts -- a common strategy to improve performance -- only delays, but does not prevent, this collapse. To counteract this instability, we first introduce M-GRPO (Momentum-Anchored Group Relative Policy Optimization), a framework that leverages a slowly evolving momentum model to provide a stable training target. In addition, we identify that this process is often accompanied by a rapid collapse in policy entropy, resulting in a prematurely confident and suboptimal policy. To specifically address this issue, we propose a second contribution: an adaptive filtering method based on the interquartile range (IQR) that dynamically prunes low-entropy trajectories, preserving essential policy diversity. Our extensive experiments on multiple reasoning benchmarks demonstrate that M-GRPO stabilizes the training process while the IQR filter prevents premature convergence. The combination of these two innovations leads to superior training stability and state-of-the-art performance.
3.280LLM Rationalis? Measuring Bargaining Capabilities of AI Negotiators¶
2025/12/16 05:02 GTM
Bilateral negotiation is a complex, context-sensitive task in which human negotiators dynamically adjust anchors, pacing, and flexibility to exploit power asymmetries and informal cues. We introduce a unified mathematical framework for modeling concession dynamics based on a hyperbolic tangent curve, and propose two metrics burstiness tau and the Concession-Rigidity Index (CRI) to quantify the timing and rigidity of offer trajectories. We conduct a large-scale empirical comparison between human negotiators and four state-of-the-art large language models (LLMs) across natural-language and numeric-offers settings, with and without rich market context, as well as six controlled power-asymmetry scenarios. Our results reveal that, unlike humans who smoothly adapt to situations and infer the opponents position and strategies, LLMs systematically anchor at extremes of the possible agreement zone for negotiations and optimize for fixed points irrespective of leverage or context. Qualitative analysis further shows limited strategy diversity and occasional deceptive tactics used by LLMs. Moreover the ability of LLMs to negotiate does not improve with better models. These findings highlight fundamental limitations in current LLM negotiation capabilities and point to the need for models that better internalize opponent reasoning and context-dependent strategy.
3.281An Open and Reproducible Deep Research Agent for Long-Form Question Answering¶
2025/12/16 05:02 GTM
We present an open deep research system for long-form question answering, selected as a winning system in the text-to-text track of the MMU-RAG competition at NeurIPS 2025. The system combines an open-source large language model (LLM) with an open web search API to perform iterative retrieval, reasoning, and synthesis in real-world open-domain settings. To enhance reasoning quality, we apply preference tuning based on LLM-as-a-judge feedback that evaluates multiple aspects, including clarity, insightfulness, and factuality. Our experimental results show that the proposed method consistently improves answer quality across all three aspects. Our source code is publicly available at https://
3.282Understanding Structured Financial Data with LLMs: A Case Study on Fraud Detection¶
2025/12/16 05:02 GTM
Detecting fraud in financial transactions typically relies on tabular models that demand heavy feature engineering to handle high-dimensional data and offer limited interpretability, making it difficult for humans to understand predictions. Large Language Models (LLMs), in contrast, can produce human-readable explanations and facilitate feature analysis, potentially reducing the manual workload of fraud analysts and informing system refinements. However, they perform poorly when applied directly to tabular fraud detection due to the difficulty of reasoning over many features, the extreme class imbalance, and the absence of contextual information. To bridge this gap, we introduce FinFRE-RAG, a two-stage approach that applies importance-guided feature reduction to serialize a compact subset of numeric/categorical attributes into natural language and performs retrieval-augmented in-context learning over label-aware, instance-level exemplars. Across four public fraud datasets and three families of open-weight LLMs, FinFRE-RAG substantially improves F1/MCC over direct prompting and is competitive with strong tabular baselines in several settings. Although these LLMs still lag behind specialized classifiers, they narrow the performance gap and provide interpretable rationales, highlighting their value as assistive tools in fraud analysis.
3.283Scaling Bidirectional Spans and Span Violations in Attention Mechanism¶
2025/12/16 05:02 GTM
The canonical Transformer remains the empirical performance frontier in sequence modeling, and its training can be further optimized by addressing geometric inefficiency. We propose an optimization framework that leverages an asymmetric projection to decompose the backward-pass gradients into parallel spans and orthogonal violations, while keeping the canonical forward-pass structure intact. Through consistent experimental validation across various decomposition and projection setups, we provide strong theoretical evidence: the standard attention gradient is suboptimal. We demonstrated that selectively scaling these components, focusing primarily on order bidirectional parallel spans, yields the most effective learning signal. On the limited WikiText-2 dataset, and using a crude configuration, this method achieved a reduction in validation loss, confirming the framework’s fundamental validity and suggesting significant potential gains on larger datasets and deeper training regimes
3.284Authors Should Annotate¶
2025/12/16 05:02 GTM
The status quo for labeling text is third-party annotation, but there are many cases where information directly from the document’s source would be preferable over a third-person proxy, especially for egocentric features like sentiment and belief. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 10,000 users to deploy an author labeling annotation system for subjective features related to product recommendation. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors’ answers in real time. We train and deploy an online-learning model architecture for product recommendation that continuously improves from author labeling and find it achieved a 534% increase in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at academic.echollm.io.
3.285QwenLong-L1.5: Post-Training Recipe for Long-Context Reasoning and Memory Management¶
2025/12/16 05:02 GTM
We introduce QwenLong-L1.5, a model that achieves superior long-context reasoning capabilities through systematic post-training innovations. The key technical breakthroughs of QwenLong-L1.5 are as follows: (1) Long-Context Data Synthesis Pipeline: We develop a systematic synthesis framework that generates challenging reasoning tasks requiring multi-hop grounding over globally distributed evidence. By deconstructing documents into atomic facts and their underlying relationships, and then programmatically composing verifiable reasoning questions, our approach creates high-quality training data at scale, moving substantially beyond simple retrieval tasks to enable genuine long-range reasoning capabilities. (2) Stabilized Reinforcement Learning for Long-Context Training: To overcome the critical instability in long-context RL, we introduce task-balanced sampling with task-specific advantage estimation to mitigate reward bias, and propose Adaptive Entropy-Controlled Policy Optimization (AEPO) that dynamically regulates exploration-exploitation trade-offs. (3) Memory-Augmented Architecture for Ultra-Long Contexts: Recognizing that even extended context windows cannot accommodate arbitrarily long sequences, we develop a memory management framework with multi-stage fusion RL training that seamlessly integrates single-pass reasoning with iterative memory-based processing for tasks exceeding 4M tokens. Based on Qwen3-30B-A3B-Thinking, QwenLong-L1.5 achieves performance comparable to GPT-5 and Gemini-2.5-Pro on long-context reasoning benchmarks, surpassing its baseline by 9.90 points on average. On ultra-long tasks (1M~4M tokens), QwenLong-L1.5’s memory-agent framework yields a 9.48-point gain over the agent baseline. Additionally, the acquired long-context reasoning ability translates to enhanced performance in general domains like scientific reasoning, memory tool using, and extended dialogue.
3.286Building from Scratch: A Multi-Agent Framework with Human-in-the-Loop for Multilingual Legal Terminology Mapping¶
2025/12/16 05:02 GTM
Accurately mapping legal terminology across languages remains a significant challenge, especially for language pairs like Chinese and Japanese, which share a large number of homographs with different meanings. Existing resources and standardized tools for these languages are limited. To address this, we propose a human-AI collaborative approach for building a multilingual legal terminology database, based on a multi-agent framework. This approach integrates advanced large language models and legal domain experts throughout the entire process-from raw document preprocessing, article-level alignment, to terminology extraction, mapping, and quality assurance. Unlike a single automated pipeline, our approach places greater emphasis on how human experts participate in this multi-agent system. Humans and AI agents take on different roles: AI agents handle specific, repetitive tasks, such as OCR, text segmentation, semantic alignment, and initial terminology extraction, while human experts provide crucial oversight, review, and supervise the outputs with contextual knowledge and legal judgment. We tested the effectiveness of this framework using a trilingual parallel corpus comprising 35 key Chinese statutes, along with their English and Japanese translations. The experimental results show that this human-in-the-loop, multi-agent workflow not only improves the precision and consistency of multilingual legal terminology mapping but also offers greater scalability compared to traditional manual methods.
3.287Meta-GPT: Decoding the Metasurface Genome with Generative Artificial Intelligence¶
2025/12/16 05:02 GTM
Advancing artificial intelligence for physical sciences requires representations that are both interpretable and compatible with the underlying laws of nature. We introduce METASTRINGS, a symbolic language for photonics that expresses nanostructures as textual sequences encoding materials, geometries, and lattice configurations. Analogous to molecular textual representations in chemistry, METASTRINGS provides a framework connecting human interpretability with computational design by capturing the structural hierarchy of photonic metasurfaces. Building on this representation, we develop Meta-GPT, a foundation transformer model trained on METASTRINGS and finetuned with physics-informed supervised, reinforcement, and chain-of-thought learning. Across various design tasks, the model achieves <3% mean-squared spectral error and maintains >98% syntactic validity, generating diverse metasurface prototypes whose experimentally measured optical responses match their target spectra. These results demonstrate that Meta-GPT can learn the compositional rules of light-matter interactions through METASTRINGS, laying a rigorous foundation for AI-driven photonics and representing an important step toward a metasurface genome project.
3.288SignRAG: A Retrieval-Augmented System for Scalable Zero-Shot Road Sign Recognition¶
2025/12/16 05:02 GTM
Automated road sign recognition is a critical task for intelligent transportation systems, but traditional deep learning methods struggle with the sheer number of sign classes and the impracticality of creating exhaustive labeled datasets. This paper introduces a novel zero-shot recognition framework that adapts the Retrieval-Augmented Generation (RAG) paradigm to address this challenge. Our method first uses a Vision Language Model (VLM) to generate a textual description of a sign from an input image. This description is used to retrieve a small set of the most relevant sign candidates from a vector database of reference designs. Subsequently, a Large Language Model (LLM) reasons over the retrieved candidates to make a final, fine-grained recognition. We validate this approach on a comprehensive set of 303 regulatory signs from the Ohio MUTCD. Experimental results demonstrate the framework’s effectiveness, achieving 95.58% accuracy on ideal reference images and 82.45% on challenging real-world road data. This work demonstrates the viability of RAG-based architectures for creating scalable and accurate systems for road sign recognition without task-specific training.
3.289ERA-IT: Aligning Semantic Models with Revealed Economic Preference for Real-Time and Explainable Patent Valuation¶
2025/12/16 05:02 GTM
Valuing intangible assets under uncertainty remains a critical challenge in the strategic management of technological innovation due to the information asymmetry inherent in high-dimensional technical specifications. Traditional bibliometric indicators, such as citation counts, fail to address this friction in a timely manner due to the systemic latency inherent in data accumulation. To bridge this gap, this study proposes the Economic Reasoning Alignment via Instruction Tuning (ERA-IT) framework. We theoretically conceptualize patent renewal history as a revealed economic preference and leverage it as an objective supervisory signal to align the generative reasoning of Large Language Models (LLMs) with market realities, a process we term Eco-Semantic Alignment. Using a randomly sampled dataset of 10,000 European Patent Office patents across diverse technological domains, we trained the model not only to predict value tiers but also to reverse-engineer the Economic Chain-of-Thought from unstructured text. Empirical results demonstrate that ERA-IT significantly outperforms both conventional econometric models and zero-shot LLMs in predictive accuracy. More importantly, by generating explicit, logically grounded rationales for valuation, the framework serves as a transparent cognitive scaffold for decision-makers, reducing the opacity of black-box AI in high-stakes intellectual property management.
3.290Counting Clues: A Lightweight Probabilistic Baseline Can Match an LLM¶
2025/12/16 05:02 GTM
Large language models (LLMs) excel on multiple-choice clinical diagnosis benchmarks, yet it is unclear how much of this performance reflects underlying probabilistic reasoning. We study this through questions from MedQA, where the task is to select the most likely diagnosis. We introduce the Frequency-Based Probabilistic Ranker (FBPR), a lightweight method that scores options with a smoothed Naive Bayes over concept-diagnosis co-occurrence statistics from a large corpus. When co-occurrence statistics were sourced from the pretraining corpora for OLMo and Llama, FBPR achieves comparable performance to the corresponding LLMs pretrained on that same corpus. Direct LLM inference and FBPR largely get different questions correct, with an overlap only slightly above random chance, indicating complementary strengths of each method. These findings highlight the continued value of explicit probabilistic baselines: they provide a meaningful performance reference point and a complementary signal for potential hybridization. While the performance of LLMs seems to be driven by a mechanism other than simple frequency aggregation, we show that an approach similar to the historically grounded, low-complexity expert systems still accounts for a substantial portion of benchmark performance.
3.291What Matters in Evaluating Book-Length Stories? A Systematic Study of Long Story Evaluation¶
2025/12/16 05:02 GTM
In this work, we conduct systematic research in a challenging area: the automatic evaluation of book-length stories (>100K tokens). Our study focuses on two key questions: (1) understanding which evaluation aspects matter most to readers, and (2) exploring effective methods for evaluating lengthy stories. We introduce the first large-scale benchmark, LongStoryEval, comprising 600 newly published books with an average length of 121K tokens (maximum 397K). Each book includes its average rating and multiple reader reviews, presented as critiques organized by evaluation aspects. By analyzing all user-mentioned aspects, we propose an evaluation criteria structure and conduct experiments to identify the most significant aspects among the 8 top-level criteria. For evaluation methods, we compare the effectiveness of three types: aggregation-based, incremental-updated, and summary-based evaluations. Our findings reveal that aggregation- and summary-based evaluations perform better, with the former excelling in detail assessment and the latter offering greater efficiency. Building on these insights, we further propose NovelCritique, an 8B model that leverages the efficient summary-based framework to review and score stories across specified aspects. NovelCritique outperforms commercial models like GPT-4o in aligning with human evaluations. Our datasets and codes are available at https://
3.292Hindsight is 20/20: Building Agent Memory that Retains, Recalls, and Reflects¶
2025/12/16 05:02 GTM
Agent memory has been touted as a dimension of growth for LLM-based applications, enabling agents that can accumulate experience, adapt across sessions, and move beyond single-shot question answering. The current generation of agent memory systems treats memory as an external layer that extracts salient snippets from conversations, stores them in vector or graph-based stores, and retrieves top-k items into the prompt of an otherwise stateless model. While these systems improve personalization and context carry-over, they still blur the line between evidence and inference, struggle to organize information over long horizons, and offer limited support for agents that must explain their reasoning. We present Hindsight, a memory architecture that treats agent memory as a structured, first-class substrate for reasoning by organizing it into four logical networks that distinguish world facts, agent experiences, synthesized entity summaries, and evolving beliefs. This framework supports three core operations -- retain, recall, and reflect -- that govern how information is added, accessed, and updated. Under this abstraction, a temporal, entity aware memory layer incrementally turns conversational streams into a structured, queryable memory bank, while a reflection layer reasons over this bank to produce answers and to update information in a traceable way. On key long-horizon conversational memory benchmarks like LongMemEval and LoCoMo, Hindsight with an open-source 20B model lifts overall accuracy from 39% to 83.6% over a full-context baseline with the same backbone and outperforms full context GPT-4o. Scaling the backbone further pushes Hindsight to 91.4% on LongMemEval and up to 89.61% on LoCoMo (vs. 75.78% for the strongest prior open system), consistently outperforming existing memory architectures on multi-session and open-domain questions.
3.293Does Tone Change the Answer? Evaluating Prompt Politeness Effects on Modern LLMs: GPT, Gemini, LLaMA¶
2025/12/16 05:02 GTM
Prompt engineering has emerged as a critical factor influencing large language model (LLM) performance, yet the impact of pragmatic elements such as linguistic tone and politeness remains underexplored, particularly across different model families. In this work, we propose a systematic evaluation framework to examine how interaction tone affects model accuracy and apply it to three recently released and widely available LLMs: GPT-4o mini (OpenAI), Gemini 2.0 Flash (Google DeepMind), and Llama 4 Scout (Meta). Using the MMMLU benchmark, we evaluate model performance under Very Friendly, Neutral, and Very Rude prompt variants across six tasks spanning STEM and Humanities domains, and analyze pairwise accuracy differences with statistical significance testing. Our results show that tone sensitivity is both model-dependent and domain-specific. Neutral or Very Friendly prompts generally yield higher accuracy than Very Rude prompts, but statistically significant effects appear only in a subset of Humanities tasks, where rude tone reduces accuracy for GPT and Llama, while Gemini remains comparatively tone-insensitive. When performance is aggregated across tasks within each domain, tone effects diminish and largely lose statistical significance. Compared with earlier researches, these findings suggest that dataset scale and coverage materially influence the detection of tone effects. Overall, our study indicates that while interaction tone can matter in specific interpretive settings, modern LLMs are broadly robust to tonal variation in typical mixed-domain use, providing practical guidance for prompt design and model selection in real-world deployments.
3.294State over Tokens: Characterizing the Role of Reasoning Tokens¶
2025/12/16 05:02 GTM
Large Language Models (LLMs) can generate reasoning tokens before their final answer to boost performance on complex tasks. While these sequences seem like human thought processes, empirical evidence reveals that they are not a faithful explanation of the model’s actual reasoning process. To address this gap between appearance and function, we introduce the State over Tokens (SoT) conceptual framework. SoT reframes reasoning tokens not as a linguistic narrative, but as an externalized computational state -- the sole persistent information carrier across the model’s stateless generation cycles. This explains how the tokens can drive correct reasoning without being a faithful explanation when read as text and surfaces previously overlooked research questions on these tokens. We argue that to truly understand the process that LLMs do, research must move beyond reading the reasoning tokens as text and focus on decoding them as state.
3.295Persistent Personas? Role-Playing, Instruction Following, and Safety in Extended Interactions¶
2025/12/16 05:02 GTM
Persona-assigned large language models (LLMs) are used in domains such as education, healthcare, and sociodemographic simulation. Yet, they are typically evaluated only in short, single-round settings that do not reflect real-world usage. We introduce an evaluation protocol that combines long persona dialogues (over 100 rounds) and evaluation datasets to create dialogue-conditioned benchmarks that can robustly measure long-context effects. We then investigate the effects of dialogue length on persona fidelity, instruction-following, and safety of seven state-of-the-art open- and closed-weight LLMs. We find that persona fidelity degrades over the course of dialogues, especially in goal-oriented conversations, where models must sustain both persona fidelity and instruction following. We identify a trade-off between fidelity and instruction following, with non-persona baselines initially outperforming persona-assigned models; as dialogues progress and fidelity fades, persona responses become increasingly similar to baseline responses. Our findings highlight the fragility of persona applications in extended interactions and our work provides a protocol to systematically measure such failures.
3.296Curió-Edu 7B: Examining Data Selection Impacts in LLM Continued Pretraining¶
2025/12/16 05:02 GTM
Continued pretraining extends a language model’s capabilities by further exposing it to additional data, often tailored to a specific linguistic or domain context. This strategy has emerged as an efficient alternative to full retraining when adapting general-purpose models to new settings. In this work, we investigate this paradigm through Curió 7B, a 7-billion-parameter model derived from LLaMA-2 and trained on 100 billion Portuguese tokens from the ClassiCC-PT corpus - the most extensive Portuguese-specific continued-pretraining effort above the three-billion-parameter scale to date. Beyond scale, we investigate whether quantity alone suffices or whether data quality plays a decisive role in linguistic adaptation. To this end, we introduce Curió-Edu 7B, a variant trained exclusively on the educational and STEM-filtered subset of the same corpus, totaling just 10 billion tokens. Despite using only 10% of the data and 20% of the computation, Curió-Edu 7B surpasses the full-corpus model in our evaluations, demonstrating that data selection can be fundamental even when adapting models with limited prior exposure to the target language. The developed models are available at https://
3.297Intelligent Scientific Literature Explorer using Machine Learning (ISLE)¶
2025/12/16 05:02 GTM
The rapid acceleration of scientific publishing has created substantial challenges for researchers attempting to discover, contextualize, and interpret relevant literature. Traditional keyword-based search systems provide limited semantic understanding, while existing AI-driven tools typically focus on isolated tasks such as retrieval, clustering, or bibliometric visualization. This paper presents an integrated system for scientific literature exploration that combines large-scale data acquisition, hybrid retrieval, semantic topic modeling, and heterogeneous knowledge graph construction. The system builds a comprehensive corpus by merging full-text data from arXiv with structured metadata from OpenAlex. A hybrid retrieval architecture fuses BM25 lexical search with embedding-based semantic search using Reciprocal Rank Fusion. Topic modeling is performed on retrieved results using BERTopic or non-negative matrix factorization depending on computational resources. A knowledge graph unifies papers, authors, institutions, countries, and extracted topics into an interpretable structure. The system provides a multi-layered exploration environment that reveals not only relevant publications but also the conceptual and relational landscape surrounding a query. Evaluation across multiple queries demonstrates improvements in retrieval relevance, topic coherence, and interpretability. The proposed framework contributes an extensible foundation for AI-assisted scientific discovery.
3.298NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents¶
2025/12/16 05:02 GTM
Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents.
3.299CoDA: A Context-Decoupled Hierarchical Agent with Reinforcement Learning¶
2025/12/16 05:02 GTM
Large Language Model (LLM) agents trained with reinforcement learning (RL) show great promise for solving complex, multi-step tasks. However, their performance is often crippled by “Context Explosion”, where the accumulation of long text outputs overwhelms the model’s context window and leads to reasoning failures. To address this, we introduce CoDA, a Context-Decoupled hierarchical Agent, a simple but effective reinforcement learning framework that decouples high-level planning from low-level execution. It employs a single, shared LLM backbone that learns to operate in two distinct, contextually isolated roles: a high-level Planner that decomposes tasks within a concise strategic context, and a low-level Executor that handles tool interactions in an ephemeral, isolated workspace. We train this unified agent end-to-end using PECO (Planner-Executor Co-Optimization), a reinforcement learning methodology that applies a trajectory-level reward to jointly optimize both roles, fostering seamless collaboration through context-dependent policy updates. Extensive experiments demonstrate that CoDA achieves significant performance improvements over state-of-the-art baselines on complex multi-hop question-answering benchmarks, and it exhibits strong robustness in long-context scenarios, maintaining stable performance while all other baselines suffer severe degradation, thus further validating the effectiveness of our hierarchical design in mitigating context overload.
3.300Efficient Vision-Language Reasoning via Adaptive Token Pruning¶
2025/12/16 05:02 GTM
Real-world deployment of Vision-Language Models (VLMs) is hindered by high computational demands, as existing architectures inefficiently process all tokens uniformly. We introduce Adaptive Token Pruning (ATP), a dynamic inference mechanism that retains only the most informative tokens based on contextual relevance. ATP operates at the vision-language interface, assigning a hybrid importance score combining ViT CLS attention (intra-modal saliency) and CLIP text-image similarity (inter-modal relevance) to keep top-K tokens for the LLM. Unlike static compression, ATP adapts to each input without modifying the backbone. Proposed as a lightweight gating module, ATP is compatible with popular backbones like BLIP-2, LLaVA, and Flamingo. Preliminary evaluations across VQAv2, GQA, and COCO indicate that ATP reduces inference FLOPs by around 40% and achieves roughly 1.5x speedups in end-to-end latency with negligible accuracy loss (less than 1%). Qualitative analyses suggest ATP preserves visual grounding and enhances interpretability. Beyond efficiency, we investigate robustness under corruptions; observations suggest adaptive pruning suppresses spurious correlations, improving stability. These findings imply that resource-constrained inference and model reliability are not competing objectives. Finally, we discuss ATP’s role in efficient multimodal edge computing pipelines.
3.301WebOperator: Action-Aware Tree Search for Autonomous Agents in Web Environment¶
2025/12/16 05:02 GTM
LLM-based agents often operate in a greedy, step-by-step manner, selecting actions solely based on the current observation without considering long-term consequences or alternative paths. This lack of foresight is particularly problematic in web environments, which are only partially observable-limited to browser-visible content (e.g., DOM and UI elements)-where a single misstep often requires complex and brittle navigation to undo. Without an explicit backtracking mechanism, agents struggle to correct errors or systematically explore alternative paths. Tree-search methods provide a principled framework for such structured exploration, but existing approaches lack mechanisms for safe backtracking, making them prone to unintended side effects. They also assume that all actions are reversible, ignoring the presence of irreversible actions-limitations that reduce their effectiveness in realistic web tasks. To address these challenges, we introduce WebOperator, a tree-search framework that enables reliable backtracking and strategic exploration. Our method incorporates a best-first search strategy that ranks actions by both reward estimates and safety considerations, along with a robust backtracking mechanism that verifies the feasibility of previously visited paths before replaying them, preventing unintended side effects. To further guide exploration, WebOperator generates action candidates from multiple, varied reasoning contexts to ensure diverse and robust exploration, and subsequently curates a high-quality action set by filtering out invalid actions pre-execution and merging semantically equivalent ones. Experimental results on WebArena and WebVoyager demonstrate the effectiveness of WebOperator. On WebArena, WebOperator achieves a state-of-the-art 54.6% success rate with gpt-4o, underscoring the critical advantage of integrating strategic foresight with safe execution.
3.302Reassessing the Role of Supervised Fine-Tuning: An Empirical Study in VLM Reasoning¶
2025/12/16 05:02 GTM
Recent advances in vision-language models (VLMs) reasoning have been largely attributed to the rise of reinforcement Learning (RL), which has shifted the community’s focus away from the supervised fine-tuning (SFT) paradigm. Many studies suggest that introducing the SFT stage not only fails to improve reasoning ability but may also negatively impact model training. In this study, we revisit this RL-centric belief through a systematic and controlled comparison of SFT and RL on VLM Reasoning. Using identical data sources, we find that the relative effectiveness of SFT and RL is conditional and strongly influenced by model capacity, data scale, and data distribution. Contrary to common assumptions, our findings show that SFT plays a crucial role across several scenarios: (1) Effectiveness for weaker models. SFT more reliably elicits reasoning capabilities in smaller or weaker VLMs. (2) Data efficiency. SFT with only 2K achieves comparable or better reasoning performance to RL with 20K. (3) Cross-modal transferability. SFT demonstrates stronger generalization across modalities. Moreover, we identify a pervasive issue of deceptive rewards, where higher rewards fail to correlate with better reasoning accuracy in RL. These results challenge the prevailing “RL over SFT” narrative. They highlight that the role of SFT may have been underestimated and support a more balanced post-training pipeline in which SFT and RL function as complementary components.
3.303Theoretical Foundations of Prompt Engineering: From Heuristics to Expressivity¶
2025/12/16 05:02 GTM
Prompts can switch a model’s behavior even when the weights are fixed, yet this phenomenon is rarely treated as a clean theoretical object rather than a heuristic. We study the family of functions obtainable by holding a Transformer backbone fixed as an executor and varying only the prompt. Our core idea is to view the prompt as an externally injected program and to construct a simplified Transformer that interprets it to implement different computations. The construction exposes a mechanism-level decomposition: attention performs selective routing from prompt memory, the FFN performs local arithmetic conditioned on retrieved fragments, and depth-wise stacking composes these local updates into a multi-step computation. Under this viewpoint, we prove a constructive existential result showing that a single fixed backbone can approximate a broad class of target behaviors via prompts alone. The framework provides a unified starting point for formalizing trade-offs under prompt length/precision constraints and for studying structural limits of prompt-based switching, while remaining distinct from empirical claims about pretrained LLMs.
3.304Memoria: A Scalable Agentic Memory Framework for Personalized Conversational AI¶
2025/12/16 05:02 GTM
Agentic memory is emerging as a key enabler for large language models (LLM) to maintain continuity, personalization, and long-term context in extended user interactions, critical capabilities for deploying LLMs as truly interactive and adaptive agents. Agentic memory refers to the memory that provides an LLM with agent-like persistence: the ability to retain and act upon information across conversations, similar to how a human would. We present Memoria, a modular memory framework that augments LLM-based conversational systems with persistent, interpretable, and context-rich memory. Memoria integrates two complementary components: dynamic session-level summarization and a weighted knowledge graph (KG)-based user modelling engine that incrementally captures user traits, preferences, and behavioral patterns as structured entities and relationships. This hybrid architecture enables both short-term dialogue coherence and long-term personalization while operating within the token constraints of modern LLMs. We demonstrate how Memoria enables scalable, personalized conversational artificial intelligence (AI) by bridging the gap between stateless LLM interfaces and agentic memory systems, offering a practical solution for industry applications requiring adaptive and evolving user experiences.
3.305Fine-Tuning Causal LLMs for Text Classification: Embedding-Based vs. Instruction-Based Approaches¶
2025/12/16 05:02 GTM
We explore efficient strategies to fine-tune decoder-only Large Language Models (LLMs) for downstream text classification under resource constraints. Two approaches are investigated: (1) attaching a classification head to a pre-trained causal LLM and fine-tuning on the task (using the LLM’s final token embedding as a sequence representation), and (2) instruction-tuning the LLM in a prompt->response format for classification. To enable single-GPU fine-tuning of models up to 8B parameters, we combine 4-bit model quantization with Low-Rank Adaptation (LoRA) for parameter-efficient training. Experiments on two datasets - a proprietary single-label dataset and the public WIPO-Alpha patent dataset (extreme multi-label classification) - show that the embedding-based method significantly outperforms the instruction-tuned method in F1-score, and is very competitive with - even surpassing - fine-tuned domain-specific models (e.g. BERT) on the same tasks. These results demonstrate that directly leveraging the internal representations of causal LLMs, along with efficient fine-tuning techniques, yields impressive classification performance under limited computational resources. We discuss the advantages of each approach while outlining practical guidelines and future directions for optimizing LLM fine-tuning in classification scenarios.
3.306Modeling Authorial Style in Urdu Novels Using Character Interaction Graphs and Graph Neural Networks¶
2025/12/16 05:02 GTM
Authorship analysis has traditionally focused on lexical and stylistic cues within text, while higher-level narrative structure remains underexplored, particularly for low-resource languages such as Urdu. This work proposes a graph-based framework that models Urdu novels as character interaction networks to examine whether authorial style can be inferred from narrative structure alone. Each novel is represented as a graph where nodes correspond to characters and edges denote their co-occurrence within narrative proximity. We systematically compare multiple graph representations, including global structural features, node-level semantic summaries, unsupervised graph embeddings, and supervised graph neural networks. Experiments on a dataset of 52 Urdu novels written by seven authors show that learned graph representations substantially outperform hand-crafted and unsupervised baselines, achieving up to 0.857 accuracy under a strict author-aware evaluation protocol.
3.307LexRel: Benchmarking Legal Relation Extraction for Chinese Civil Cases¶
2025/12/16 05:02 GTM
Legal relations form a highly consequential analytical framework of civil law system, serving as a crucial foundation for resolving disputes and realizing values of the rule of law in judicial practice. However, legal relations in Chinese civil cases remain underexplored in the field of legal artificial intelligence (legal AI), largely due to the absence of comprehensive schemas. In this work, we firstly introduce a comprehensive schema, which contains a hierarchical taxonomy and definitions of arguments, for AI systems to capture legal relations in Chinese civil cases. Based on this schema, we then formulate legal relation extraction task and present LexRel, an expert-annotated benchmark for legal relation extraction in Chinese civil law. We use LexRel to evaluate state-of-the-art large language models (LLMs) on legal relation extractions, showing that current LLMs exhibit significant limitations in accurately identifying civil legal relations. Furthermore, we demonstrate that incorporating legal relations information leads to consistent performance gains on other downstream legal AI tasks.
3.308Which Pieces Does Unigram Tokenization Really Need?¶
2025/12/16 05:02 GTM
The Unigram tokenization algorithm offers a probabilistic alternative to the greedy heuristics of Byte-Pair Encoding. Despite its theoretical elegance, its implementation in practice is complex, limiting its adoption to the SentencePiece package and adapters thereof. We bridge this gap between theory and practice by providing a clear guide to implementation and parameter choices. We also identify a simpler algorithm that accepts slightly higher training loss in exchange for improved compression.
3.309Reasoning Within the Mind: Dynamic Multimodal Interleaving in Latent Space¶
2025/12/16 05:02 GTM
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced cross-modal understanding and reasoning by incorporating Chain-of-Thought (CoT) reasoning in the semantic space. Building upon this, recent studies extend the CoT mechanism to the visual modality, enabling models to integrate visual information during reasoning through external tools or explicit image generation. However, these methods remain dependent on explicit step-by-step reasoning, unstable perception-reasoning interaction and notable computational overhead. Inspired by human cognition, we posit that thinking unfolds not linearly but through the dynamic interleaving of reasoning and perception within the mind. Motivated by this perspective, we propose DMLR, a test-time Dynamic Multimodal Latent Reasoning framework that employs confidence-guided latent policy gradient optimization to refine latent think tokens for in-depth reasoning. Furthermore, a Dynamic Visual Injection Strategy is introduced, which retrieves the most relevant visual features at each latent think token and updates the set of best visual patches. The updated patches are then injected into latent think token to achieve dynamic visual-textual interleaving. Experiments across seven multimodal reasoning benchmarks and various model architectures demonstrate that DMLR significantly improves reasoning and perception performance while maintaining high inference efficiency.
3.310Understanding Syllogistic Reasoning in LLMs from Formal and Natural Language Perspectives¶
2025/12/16 05:02 GTM
We study syllogistic reasoning in LLMs from the logical and natural language perspectives. In process, we explore fundamental reasoning capabilities of the LLMs and the direction this research is moving forward. To aid in our studies, we use 14 large language models and investigate their syllogistic reasoning capabilities in terms of symbolic inferences as well as natural language understanding. Even though this reasoning mechanism is not a uniform emergent property across LLMs, the perfect symbolic performances in certain models make us wonder whether LLMs are becoming more and more formal reasoning mechanisms, rather than making explicit the nuances of human reasoning.
3.311StruProKGR: A Structural and Probabilistic Framework for Sparse Knowledge Graph Reasoning¶
2025/12/16 05:02 GTM
Sparse Knowledge Graphs (KGs) are commonly encountered in real-world applications, where knowledge is often incomplete or limited. Sparse KG reasoning, the task of inferring missing knowledge over sparse KGs, is inherently challenging due to the scarcity of knowledge and the difficulty of capturing relational patterns in sparse scenarios. Among all sparse KG reasoning methods, path-based ones have attracted plenty of attention due to their interpretability. Existing path-based methods typically rely on computationally intensive random walks to collect paths, producing paths of variable quality. Additionally, these methods fail to leverage the structured nature of graphs by treating paths independently. To address these shortcomings, we propose a Structural and Probabilistic framework named StruProKGR, tailored for efficient and interpretable reasoning on sparse KGs. StruProKGR utilizes a distance-guided path collection mechanism to significantly reduce computational costs while exploring more relevant paths. It further enhances the reasoning process by incorporating structural information through probabilistic path aggregation, which prioritizes paths that reinforce each other. Extensive experiments on five sparse KG reasoning benchmarks reveal that StruProKGR surpasses existing path-based methods in both effectiveness and efficiency, providing an effective, efficient, and interpretable solution for sparse KG reasoning.
3.312Human-Inspired Learning for Large Language Models via Obvious Record and Maximum-Entropy Method Discovery¶
2025/12/16 05:02 GTM
Large Language Models (LLMs) excel at extracting common patterns from large-scale corpora, yet they struggle with rare, low-resource, or previously unseen scenarios-such as niche hardware deployment issues or irregular IoT device behaviors-because such cases are sparsely represented in training data. Moreover, LLMs rely primarily on implicit parametric memory, which limits their ability to explicitly acquire, recall, and refine methods, causing them to behave predominantly as intuition-driven predictors rather than deliberate, method-oriented learners. Inspired by how humans learn from rare experiences, this paper proposes a human-inspired learning framework that integrates two complementary mechanisms. The first, Obvious Record, explicitly stores cause--result (or question--solution) relationships as symbolic memory, enabling persistent learning even from single or infrequent encounters. The second, Maximum-Entropy Method Discovery, prioritizes and preserves methods with high semantic dissimilarity, allowing the system to capture diverse and underrepresented strategies that are typically overlooked by next-token prediction. Verification on a benchmark of 60 semantically diverse question--solution pairs demonstrates that the proposed entropy-guided approach achieves stronger coverage of unseen questions and significantly greater internal diversity than a random baseline, confirming its effectiveness in discovering more generalizable and human-inspired methods.
3.313AgentSHAP: Interpreting LLM Agent Tool Importance with Monte Carlo Shapley Value Estimation¶
2025/12/16 05:02 GTM
LLM agents that use external tools can solve complex tasks, but understanding which tools actually contributed to a response remains a blind spot. No existing XAI methods address tool-level explanations. We introduce AgentSHAP, the first framework for explaining tool importance in LLM agents. AgentSHAP is model-agnostic: it treats the agent as a black box and works with any LLM (GPT, Claude, Llama, etc.) without needing access to internal weights or gradients. Using Monte Carlo Shapley values, AgentSHAP tests how an agent responds with different tool subsets and computes fair importance scores based on game theory. Our contributions are: (1) the first explainability method for agent tool attribution, grounded in Shapley values from game theory; (2) Monte Carlo sampling that reduces cost from O(2n) to practical levels; and (3) comprehensive experiments on API-Bank showing that AgentSHAP produces consistent scores across runs, correctly identifies which tools matter, and distinguishes relevant from irrelevant tools. AgentSHAP joins TokenSHAP (for tokens) and PixelSHAP (for image regions) to complete a family of Shapley-based XAI tools for modern generative AI. Code: https://
3.314Coupled Variational Reinforcement Learning for Language Model General Reasoning¶
2025/12/16 05:02 GTM
While reinforcement learning have achieved impressive progress in language model reasoning, they are constrained by the requirement for verifiable rewards. Recent verifier-free RL methods address this limitation by utilizing the intrinsic probabilities of LLMs generating reference answers as reward signals. However, these approaches typically sample reasoning traces conditioned only on the question. This design decouples reasoning-trace sampling from answer information, leading to inefficient exploration and incoherence between traces and final answers. In this paper, we propose \textit{\b{Co}upled \b{V}ariational \b{R}einforcement \b{L}earning} (CoVRL), which bridges variational inference and reinforcement learning by coupling prior and posterior distributions through a hybrid sampling strategy. By constructing and optimizing a composite distribution that integrates these two distributions, CoVRL enables efficient exploration while preserving strong thought-answer coherence. Extensive experiments on mathematical and general reasoning benchmarks show that CoVRL improves performance by 12.4% over the base model and achieves an additional 2.3% improvement over strong state-of-the-art verifier-free RL baselines, providing a principled framework for enhancing the general reasoning capabilities of language models.
3.315HyperEdit: Unlocking Instruction-based Text Editing in LLMs via Hypernetworks¶
2025/12/16 05:02 GTM
Instruction-based text editing is increasingly critical for real-world applications such as code editors (e.g., Cursor), but Large Language Models (LLMs) continue to struggle with this task. Unlike free-form generation, editing requires faithfully implementing user instructions while preserving unchanged content, as even minor unintended modifications can break functionality. Existing approaches treat editing as generic text generation, leading to two key failures: they struggle to faithfully align edits with diverse user intents, and they often over-edit unchanged regions. We propose HyperEdit to address both issues. First, we introduce hypernetwork-based dynamic adaptation that generates request-specific parameters, enabling the model to tailor its editing strategy to each instruction. Second, we develop difference-aware regularization that focuses supervision on modified spans, preventing over-editing while ensuring precise, minimal changes. HyperEdit achieves a 9%--30% relative improvement in BLEU on modified regions over state-of-the-art baselines, despite utilizing only 3B parameters.
3.316NagaNLP: Bootstrapping NLP for Low-Resource Nagamese Creole with Human-in-the-Loop Synthetic Data¶
2025/12/16 05:02 GTM
The vast majority of the world’s languages, particularly creoles like Nagamese, remain severely under-resourced in Natural Language Processing (NLP), creating a significant barrier to their representation in digital technology. This paper introduces NagaNLP, a comprehensive open-source toolkit for Nagamese, bootstrapped through a novel methodology that relies on LLM-driven but human-validated synthetic data generation. We detail a multi-stage pipeline where an expert-guided LLM (Gemini) generates a candidate corpus, which is then refined and annotated by native speakers. This synthetic-hybrid approach yielded a 10K pair conversational dataset and a high-quality annotated corpus for foundational tasks. To assess the effectiveness of our methodology, we trained both discriminative and generative models. Our fine-tuned XLM-RoBERTa-base model establishes a new benchmark for Nagamese, achieving a 93.81% accuracy (0.90 F1-Macro) on Part-of-Speech tagging and a 0.75 F1-Macro on Named Entity Recognition, massively outperforming strong zero-shot baselines. Furthermore, we fine-tuned a Llama-3.2-3B Instruct model, named NagaLLaMA, which demonstrates superior performance on conversational tasks, achieving a Perplexity of 3.85, an order of magnitude improvement over its few-shot counterpart (96.76). We release the NagaNLP toolkit, including all datasets, models, and code, providing a foundational resource for a previously underserved language and a reproducible framework for reducing data scarcity in other low-resource contexts.
3.317Adaptive Detector-Verifier Framework for Zero-Shot Polyp Detection in Open-World Settings¶
2025/12/16 05:02 GTM
Polyp detectors trained on clean datasets often underperform in real-world endoscopy, where illumination changes, motion blur, and occlusions degrade image quality. Existing approaches struggle with the domain gap between controlled laboratory conditions and clinical practice, where adverse imaging conditions are prevalent. In this work, we propose AdaptiveDetector, a novel two-stage detector-verifier framework comprising a YOLOv11 detector with a vision-language model (VLM) verifier. The detector adaptively adjusts per-frame confidence thresholds under VLM guidance, while the verifier is fine-tuned with Group Relative Policy Optimization (GRPO) using an asymmetric, cost-sensitive reward function specifically designed to discourage missed detections -- a critical clinical requirement. To enable realistic assessment under challenging conditions, we construct a comprehensive synthetic testbed by systematically degrading clean datasets with adverse conditions commonly encountered in clinical practice, providing a rigorous benchmark for zero-shot evaluation. Extensive zero-shot evaluation on synthetically degraded CVC-ClinicDB and Kvasir-SEG images demonstrates that our approach improves recall by 14 to 22 percentage points over YOLO alone, while precision remains within 0.7 points below to 1.7 points above the baseline. This combination of adaptive thresholding and cost-sensitive reinforcement learning achieves clinically aligned, open-world polyp detection with substantially fewer false negatives, thereby reducing the risk of missed precancerous polyps and improving patient outcomes.
3.318The American Ghost in the Machine: How language models align culturally and the effects of cultural prompting¶
2025/12/16 05:02 GTM
Culture is the bedrock of human interaction; it dictates how we perceive and respond to everyday interactions. As the field of human-computer interaction grows via the rise of generative Large Language Models (LLMs), the cultural alignment of these models become an important field of study. This work, using the VSM13 International Survey and Hofstede’s cultural dimensions, identifies the cultural alignment of popular LLMs (DeepSeek-V3, V3.1, GPT-5, GPT-4.1, GPT-4, Claude Opus 4, Llama 3.1, and Mistral Large). We then use cultural prompting, or using system prompts to shift the cultural alignment of a model to a desired country, to test the adaptability of these models to other cultures, namely China, France, India, Iran, Japan, and the United States. We find that the majority of the eight LLMs tested favor the United States when the culture is not specified, with varying results when prompted for other cultures. When using cultural prompting, seven of the eight models shifted closer to the expected culture. We find that models had trouble aligning with Japan and China, despite two of the models tested originating with the Chinese company DeepSeek.
3.319Large language models have learned to use language¶
2025/12/16 05:02 GTM
Acknowledging that large language models have learned to use language can open doors to breakthrough language science. Achieving these breakthroughs may require abandoning some long-held ideas about how language knowledge is evaluated and reckoning with the difficult fact that we have entered a post-Turing test era.
3.320Can GPT replace human raters? Validity and reliability of machine-generated norms for metaphors¶
2025/12/16 05:02 GTM
As Large Language Models (LLMs) are increasingly being used in scientific research, the issue of their trustworthiness becomes crucial. In psycholinguistics, LLMs have been recently employed in automatically augmenting human-rated datasets, with promising results obtained by generating ratings for single words. Yet, performance for ratings of complex items, i.e., metaphors, is still unexplored. Here, we present the first assessment of the validity and reliability of ratings of metaphors on familiarity, comprehensibility, and imageability, generated by three GPT models for a total of 687 items gathered from the Italian Figurative Archive and three English studies. We performed a thorough validation in terms of both alignment with human data and ability to predict behavioral and electrophysiological responses. We found that machine-generated ratings positively correlated with human-generated ones. Familiarity ratings reached moderate-to-strong correlations for both English and Italian metaphors, although correlations weakened for metaphors with high sensorimotor load. Imageability showed moderate correlations in English and moderate-to-strong in Italian. Comprehensibility for English metaphors exhibited the strongest correlations. Overall, larger models outperformed smaller ones and greater human-model misalignment emerged with familiarity and imageability. Machine-generated ratings significantly predicted response times and the EEG amplitude, with a strength comparable to human ratings. Moreover, GPT ratings obtained across independent sessions were highly stable. We conclude that GPT, especially larger models, can validly and reliably replace - or augment - human subjects in rating metaphor properties. Yet, LLMs align worse with humans when dealing with conventionality and multimodal aspects of metaphorical meaning, calling for careful consideration of the nature of stimuli.
3.321The Morphemic Origin of Zipf’s Law: A Factorized Combinatorial Framework¶
2025/12/16 05:02 GTM
We present a simple structure based model of how words are formed from morphemes. The model explains two major empirical facts: the typical distribution of word lengths and the appearance of Zipf like rank frequency curves. In contrast to classical explanations based on random text or communication efficiency, our approach uses only the combinatorial organization of prefixes, roots, suffixes and inflections. In this Morphemic Combinatorial Word Model, a word is created by activating several positional slots. Each slot turns on with a certain probability and selects one morpheme from its inventory. Morphemes are treated as stable building blocks that regularly appear in word formation and have characteristic positions. This mechanism produces realistic word length patterns with a concentrated middle zone and a thin long tail, closely matching real languages. Simulations with synthetic morpheme inventories also generate rank frequency curves with Zipf like exponents around 1.1-1.4, similar to English, Russian and Romance languages. The key result is that Zipf like behavior can emerge without meaning, communication pressure or optimization principles. The internal structure of morphology alone, combined with probabilistic activation of slots, is sufficient to create the robust statistical patterns observed across languages.
3.322The Data Efficiency Frontier of Financial Foundation Models: Scaling Laws from Continued Pretraining¶
2025/12/16 05:02 GTM
Domain-adaptive pretraining (DAPT) offers a practical path to specializing large language models for high-value domains without full retraining. We conduct an early-stage scaling-law analysis of continued pretraining on U.S. SEC filings, training 1B and 3B-parameter Llama-3.2 models on a 400M-token financial corpus with validation checkpoints at 50M, 100M, 200M, and 400M tokens. Results show consistent improvements in SEC-domain validation loss for both models, with the largest gains occurring within the first 200M tokens and diminishing returns thereafter. Power-law fits reveal shallow exponents, indicating that financial language is highly regular and efficiently learnable under continued pretraining. General-domain validation loss remains effectively unchanged across all token budgets, suggesting minimal drift and no signs of catastrophic forgetting. A data-efficiency frontier further shows that both models move toward improved specialization with negligible mixed-domain degradation. Together, these findings provide early empirical guidance for scaling financial foundation models, suggesting that meaningful domain adaptation can be achieved with comparatively modest token budgets and that larger model scales (7B-70B) remain tractable under projected data requirements.
3.323VideoARM: Agentic Reasoning over Hierarchical Memory for Long-Form Video Understanding¶
2025/12/16 05:02 GTM
Long-form video understanding remains challenging due to the extended temporal structure and dense multimodal cues. Despite recent progress, many existing approaches still rely on hand-crafted reasoning pipelines or employ token-consuming video preprocessing to guide MLLMs in autonomous reasoning. To overcome these limitations, we introduce VideoARM, an Agentic Reasoning-over-hierarchical-Memory paradigm for long-form video understanding. Instead of static, exhaustive preprocessing, VideoARM performs adaptive, on-the-fly agentic reasoning and memory construction. Specifically, VideoARM performs an adaptive and continuous loop of observing, thinking, acting, and memorizing, where a controller autonomously invokes tools to interpret the video in a coarse-to-fine manner, thereby substantially reducing token consumption. In parallel, a hierarchical multimodal memory continuously captures and updates multi-level clues throughout the operation of the agent, providing precise contextual information to support the controller in decision-making. Experiments on prevalent benchmarks demonstrate that VideoARM outperforms the state-of-the-art method, DVD, while significantly reducing token consumption for long-form videos.
3.324SCIR: A Self-Correcting Iterative Refinement Framework for Enhanced Information Extraction Based on Schema¶
2025/12/16 05:02 GTM
Although Large language Model (LLM)-powered information extraction (IE) systems have shown impressive capabilities, current fine-tuning paradigms face two major limitations: high training costs and difficulties in aligning with LLM preferences. To address these issues, we propose a novel universal IE paradigm, the Self-Correcting Iterative Refinement (SCIR) framework, along with a Multi-task Bilingual (Chinese-English) Self-Correcting (MBSC) dataset containing over 100,000 entries. The SCIR framework achieves plug-and-play compatibility with existing LLMs and IE systems through its Dual-Path Self-Correcting module and feedback-driven optimization, thereby significantly reducing training costs. Concurrently, the MBSC dataset tackles the challenge of preference alignment by indirectly distilling GPT-4’s capabilities into IE result detection models. Experimental results demonstrate that SCIR outperforms state-of-the-art IE methods across three key tasks: named entity recognition, relation extraction, and event extraction, achieving a 5.27 percent average improvement in span-based Micro-F1 while reducing training costs by 87 percent compared to baseline approaches. These advancements not only enhance the flexibility and accuracy of IE systems but also pave the way for lightweight and efficient IE paradigms.
3.325From Human Intention to Action Prediction: A Comprehensive Benchmark for Intention-driven End-to-End Autonomous Driving¶
2025/12/16 05:02 GTM
Current end-to-end autonomous driving systems operate at a level of intelligence akin to following simple steering commands. However, achieving genuinely intelligent autonomy requires a paradigm shift: moving from merely executing low-level instructions to understanding and fulfilling high-level, abstract human intentions. This leap from a command-follower to an intention-fulfiller, as illustrated in our conceptual framework, is hindered by a fundamental challenge: the absence of a standardized benchmark to measure and drive progress on this complex task. To address this critical gap, we introduce Intention-Drive, the first comprehensive benchmark designed to evaluate the ability to translate high-level human intent into safe and precise driving actions. Intention-Drive features two core contributions: (1) a new dataset of complex scenarios paired with corresponding natural language intentions, and (2) a novel evaluation protocol centered on the Intent Success Rate (ISR), which assesses the semantic fulfillment of the human’s goal beyond simple geometric accuracy. Through an extensive evaluation of a spectrum of baseline models on Intention-Drive, we reveal a significant performance deficit, showing that the baseline model struggle to achieve the comprehensive scene and intention understanding required for this advanced task.
3.326F5-TTS-RO: Extending F5-TTS to Romanian TTS via Lightweight Input Adaptation¶
2025/12/16 05:02 GTM
This work introduces a lightweight input-level adapter for the F5-TTS model that enables Romanian Language support. To preserve the existing capabilities of the model (voice cloning, English and Chinese support), we keep the original weights frozen, append a sub-network to the model and train it as an extension for the textual embedding matrix of the text encoder. For simplicity, we rely on ConvNeXt module implemented in F5-TTS to also model the co-dependencies between the new character-level embeddings. The module serves as a soft letter-to-sound layer, converting Romanian text into a continuous representation that the F5-TTS model uses to produce naturally sounding Romanian utterances. We evaluate the model with a pool of 20 human listeners across three tasks: (a) audio similarity between reference and generated speech, (b) pronunciation and naturalness and (c) Romanian-English code-switching. The results indicate that our approach maintains voice cloning capabilities and enables, to a certain extent, code-switching within the same utterance; however, residual English accent characteristics remain. We open-source our code and provide example audio samples at https://
3.327Market-Bench: Evaluating Large Language Models on Introductory Quantitative Trading and Market Dynamics¶
2025/12/16 05:02 GTM
We introduce MARKET-BENCH, a benchmark that evaluates large language models (LLMs) on introductory quantitative trading tasks by asking them to construct executable backtesters from natural-language strategy descriptions and market assumptions. Each instance specifies one of three canonical strategies -- scheduled trading on Microsoft (NASDAQ: MSFT), pairs trading on Coca-Cola (NASDAQ: KO) and Pepsi (NASDAQ: PEP), or delta hedging on MSFT -- and models must produce code whose P&L, drawdown, and position paths match a verifiable reference implementation. We assess twelve state-of-the-art models using a multi-round pass@k metric that separates structural reliability (whether the backtest runs) from numerical accuracy (mean absolute error of the backtest metrics). While most models reliably execute the simplest strategy (average pass@3 of 0.80), errors vary by orders of magnitude across models and tasks: Gemini 3 Pro and Claude 4.5 Sonnet combine strong reliability with low error on simpler strategies, GPT-5.1 Codex-Max achieves perfect pass@1 on the first two strategies and the lowest best-run error on the easiest task, and Qwen3 Max attains perfect pass@3 yet sometimes produces inaccurate P&L paths. These results show that current LLMs can scaffold basic trading infrastructure but still struggle to reason robustly about prices, inventory, and risk; we release MARKET-BENCH and a public leaderboard at https://
3.328Adversarially Probing Cross-Family Sound Symbolism in 27 Languages¶
2025/12/16 05:02 GTM
The phenomenon of sound symbolism, the non-arbitrary mapping between word sounds and meanings, has long been demonstrated through anecdotal experiments like Bouba Kiki, but rarely tested at scale. We present the first computational cross-linguistic analysis of sound symbolism in the semantic domain of size. We compile a typologically broad dataset of 810 adjectives (27 languages, 30 words each), each phonemically transcribed and validated with native-speaker audio. Using interpretable classifiers over bag-of-segment features, we find that phonological form predicts size semantics above chance even across unrelated languages, with both vowels and consonants contributing. To probe universality beyond genealogy, we train an adversarial scrubber that suppresses language identity while preserving size signal (also at family granularity). Language prediction averaged across languages and settings falls below chance while size prediction remains significantly above chance, indicating cross-family sound-symbolic bias. We release data, code, and diagnostic tools for future large-scale studies of iconicity.
3.329Semantic Distance Measurement based on Multi-Kernel Gaussian Processes¶
2025/12/16 05:02 GTM
Semantic distance measurement is a fundamental problem in computational linguistics, providing a quantitative characterization of similarity or relatedness between text segments, and underpinning tasks such as text retrieval and text classification. From a mathematical perspective, a semantic distance can be viewed as a metric defined on a space of texts or on a representation space derived from them. However, most classical semantic distance methods are essentially fixed, making them difficult to adapt to specific data distributions and task requirements. In this paper, a semantic distance measure based on multi-kernel Gaussian processes (MK-GP) was proposed. The latent semantic function associated with texts was modeled as a Gaussian process, with its covariance function given by a combined kernel combining Matérn and polynomial components. The kernel parameters were learned automatically from data under supervision, rather than being hand-crafted. This semantic distance was instantiated and evaluated in the context of fine-grained sentiment classification with large language models under an in-context learning (ICL) setup. The experimental results demonstrated the effectiveness of the proposed measure.
3.330Journey Before Destination: On the importance of Visual Faithfulness in Slow Thinking¶
2025/12/16 05:02 GTM
Reasoning-augmented vision language models (VLMs) generate explicit chains of thought that promise greater capability and transparency but also introduce new failure modes: models may reach correct answers via visually unfaithful intermediate steps, or reason faithfully yet fail on the final prediction. Standard evaluations that only measure final-answer accuracy cannot distinguish these behaviors. We introduce the visual faithfulness of reasoning chains as a distinct evaluation dimension, focusing on whether the perception steps of a reasoning chain are grounded in the image. We propose a training- and reference-free framework that decomposes chains into perception versus reasoning steps and uses off-the-shelf VLM judges for step-level faithfulness, additionally verifying this approach through a human meta-evaluation. Building on this metric, we present a lightweight self-reflection procedure that detects and locally regenerates unfaithful perception steps without any training. Across multiple reasoning-trained VLMs and perception-heavy benchmarks, our method reduces Unfaithful Perception Rate while preserving final-answer accuracy, improving the reliability of multimodal reasoning.
3.331Training Versatile Coding Agents in Synthetic Environments¶
2025/12/16 05:02 GTM
Prior works on training software engineering agents have explored utilizing existing resources such as issues on GitHub repositories to construct software engineering tasks and corresponding test suites. These approaches face two key limitations: (1) their reliance on pre-existing GitHub repositories offers limited flexibility, and (2) their primary focus on issue resolution tasks restricts their applicability to the much wider variety of tasks a software engineer must handle. To overcome these challenges, we introduce SWE-Playground, a novel pipeline for generating environments and trajectories which supports the training of versatile coding agents. Unlike prior efforts, SWE-Playground synthetically generates projects and tasks from scratch with strong language models and agents, eliminating reliance on external data sources. This allows us to tackle a much wider variety of coding tasks, such as reproducing issues by generating unit tests and implementing libraries from scratch. We demonstrate the effectiveness of this approach on three distinct benchmarks, and results indicate that SWE-Playground produces trajectories with dense training signal, enabling agents to reach comparable performance with significantly fewer trajectories than previous works.
3.332Diffusion Language Model Inference with Monte Carlo Tree Search¶
2025/12/16 05:02 GTM
Diffusion language models (DLMs) have recently emerged as a compelling alternative to autoregressive generation, offering parallel generation and improved global coherence. During inference, DLMs generate text by iteratively denoising masked sequences in parallel; however, determining which positions to unmask and which tokens to commit forms a large combinatorial search problem. Existing inference methods approximate this search using heuristics, which often yield suboptimal decoding paths; other approaches instead rely on additional training to guide token selection. To introduce a principled search mechanism for DLMs inference, we introduce MEDAL, a framework that integrates Monte Carlo Tree SEarch initialization for Diffusion LAnguage Model inference. We employ Monte Carlo Tree Search at the initialization stage to explore promising unmasking trajectories, providing a robust starting point for subsequent refinement. This integration is enabled by restricting the search space to high-confidence actions and prioritizing token choices that improve model confidence over remaining masked positions. Across multiple benchmarks, MEDAL achieves up to 22.0% improvement over existing inference strategies, establishing a new paradigm for search-based inference in diffusion language models.
3.333Extending the Context of Pretrained LLMs by Dropping Their Positional Embeddings¶
2025/12/16 05:02 GTM
So far, expensive finetuning beyond the pretraining sequence length has been a requirement for effectively extending the context of language models (LM). In this work, we break this key bottleneck by Dropping the Positional Embeddings of LMs after training (DroPE). Our simple method is motivated by three key theoretical and empirical observations. First, positional embeddings (PEs) serve a crucial role during pretraining, providing an important inductive bias that significantly facilitates convergence. Second, over-reliance on this explicit positional information is also precisely what prevents test-time generalization to sequences of unseen length, even when using popular PE-scaling methods. Third, positional embeddings are not an inherent requirement of effective language modeling and can be safely removed after pretraining, following a short recalibration phase. Empirically, DroPE yields seamless zero-shot context extension without any long-context finetuning, quickly adapting pretrained LMs without compromising their capabilities in the original training context. Our findings hold across different models and dataset sizes, far outperforming previous specialized architectures and established rotary positional embedding scaling methods.
3.334VEGAS: Mitigating Hallucinations in Large Vision-Language Models via Vision-Encoder Attention Guided Adaptive Steering¶
2025/12/16 05:02 GTM
Large vision-language models (LVLMs) exhibit impressive ability to jointly reason over visual and textual inputs. However, they often produce outputs that are linguistically fluent but factually inconsistent with the visual evidence, i.e., they hallucinate. Despite growing efforts to mitigate such hallucinations, a key question remains: what form of visual attention can effectively suppress hallucinations during decoding? In this work, we provide a simple answer: the vision encoder’s own attention map. We show that LVLMs tend to hallucinate when their final visual-attention maps fail to concentrate on key image objects, whereas the vision encoder’s more concentrated attention maps substantially reduce hallucinations. To further investigate the cause, we analyze vision-text conflicts during decoding and find that these conflicts peak in the language model’s middle layers. Injecting the vision encoder’s attention maps into these layers effectively suppresses hallucinations. Building on these insights, we introduce VEGAS, a simple yet effective inference-time method that integrates the vision encoder’s attention maps into the language model’s mid-layers and adaptively steers tokens which fail to concentrate on key image objects. Extensive experiments across multiple benchmarks demonstrate that VEGAS consistently achieves state-of-the-art performance in reducing hallucinations.
3.335BLASST: Dynamic BLocked Attention Sparsity via Softmax Thresholding¶
2025/12/16 05:02 GTM
The growing demand for long-context inference capabilities in Large Language Models (LLMs) has intensified the computational and memory bottlenecks inherent to the standard attention mechanism. To address this challenge, we introduce BLASST, a drop-in sparse attention method that dynamically prunes the attention matrix without any pre-computation or proxy scores. Our method uses a fixed threshold and existing information from online softmax to identify negligible attention scores, skipping softmax computation, Value block loading, and the subsequent matrix multiplication. This fits seamlessly into existing FlashAttention kernel designs with negligible latency overhead. The approach is applicable to both prefill and decode stages across all attention variants (MHA, GQA, MQA, and MLA), providing a unified solution for accelerating long-context inference. We develop an automated calibration procedure that reveals a simple inverse relationship between optimal threshold and context length, enabling robust deployment across diverse scenarios. Maintaining high accuracy, we demonstrate a 1.62x speedup for prefill at 74.7% sparsity and a 1.48x speedup for decode at 73.2% sparsity on modern GPUs. Furthermore, we explore sparsity-aware training as a natural extension, showing that models can be trained to be inherently more robust to sparse attention patterns, pushing the accuracy-sparsity frontier even further.
3.336VOYAGER: A Training Free Approach for Generating Diverse Datasets using LLMs¶
2025/12/16 05:02 GTM
Large language models (LLMs) are increasingly being used to generate synthetic datasets for the evaluation and training of downstream models. However, prior work has noted that such generated data lacks diversity. In this paper, we propose Voyager, a novel principled approach to generate diverse datasets. Our approach is iterative and directly optimizes a mathematical quantity that optimizes the diversity of the dataset using the machinery of determinantal point processes. Furthermore, our approach is training-free, applicable to closed-source models, and scalable. In addition to providing theoretical justification for the working of our method, we also demonstrate through comprehensive experiments that Voyager significantly outperforms popular baseline approaches by providing a 1.5-3x improvement in diversity.
3.337Rethinking Jailbreak Detection of Large Vision Language Models with Representational Contrastive Scoring¶
2025/12/16 05:02 GTM
Large Vision-Language Models (LVLMs) are vulnerable to a growing array of multimodal jailbreak attacks, necessitating defenses that are both generalizable to novel threats and efficient for practical deployment. Many current strategies fall short, either targeting specific attack patterns, which limits generalization, or imposing high computational overhead. While lightweight anomaly-detection methods offer a promising direction, we find that their common one-class design tends to confuse novel benign inputs with malicious ones, leading to unreliable over-rejection. To address this, we propose Representational Contrastive Scoring (RCS), a framework built on a key insight: the most potent safety signals reside within the LVLM’s own internal representations. Our approach inspects the internal geometry of these representations, learning a lightweight projection to maximally separate benign and malicious inputs in safety-critical layers. This enables a simple yet powerful contrastive score that differentiates true malicious intent from mere novelty. Our instantiations, MCD (Mahalanobis Contrastive Detection) and KCD (K-nearest Contrastive Detection), achieve state-of-the-art performance on a challenging evaluation protocol designed to test generalization to unseen attack types. This work demonstrates that effective jailbreak detection can be achieved by applying simple, interpretable statistical methods to the appropriate internal representations, offering a practical path towards safer LVLM deployment. Our code is available on Github https://
3.338The Instability of Safety: How Random Seeds and Temperature Expose Inconsistent LLM Refusal Behavior¶
2025/12/16 05:02 GTM
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model’s safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 44.71, p < 0.001), with mean SSI dropping from 0.951 at temperature 0.0 to 0.896 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen’s kappa = 0.62). These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time, and recommend using at least 3 samples per prompt for reliable safety assessment.
3.339Benchmarking Contextual Understanding for In-Car Conversational Systems¶
2025/12/16 05:02 GTM
In-Car Conversational Question Answering (ConvQA) systems significantly enhance user experience by enabling seamless voice interactions. However, assessing their accuracy and reliability remains a challenge. This paper explores the use of Large Language Models (LLMs) alongside advanced prompting techniques and agent-based methods to evaluate the extent to which ConvQA system responses adhere to user utterances. The focus lies on contextual understanding and the ability to provide accurate venue recommendations considering user constraints and situational context. To evaluate utterance-response coherence using an LLM, we synthetically generate user utterances accompanied by correct and modified failure-containing system responses. We use input-output, chain-of-thought, self-consistency prompting, and multi-agent prompting techniques with 13 reasoning and non-reasoning LLMs of varying sizes and providers, including OpenAI, DeepSeek, Mistral AI, and Meta. We evaluate our approach on a case study involving restaurant recommendations. The most substantial improvements occur for small non-reasoning models when applying advanced prompting techniques, particularly multi-agent prompting. However, reasoning models consistently outperform non-reasoning models, with the best performance achieved using single-agent prompting with self-consistency. Notably, DeepSeek-R1 reaches an F1-score of 0.99 at a cost of 0.002 USD per request. Overall, the best balance between effectiveness and cost-time efficiency is reached with the non-reasoning model DeepSeek-V3. Our findings show that LLM-based evaluation offers a scalable and accurate alternative to traditional human evaluation for benchmarking contextual understanding in ConvQA systems.
3.340Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus¶
2025/12/16 05:02 GTM
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of “Long-Tail” training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a “System 2” inference-time alignment strategy, utilizing a multi-model “Judge-Scout” consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% compared to single models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
3.341Hold Onto That Thought: Assessing KV Cache Compression On Reasoning¶
2025/12/16 05:02 GTM
Large language models (LLMs) have demonstrated remarkable performance on long-context tasks, but are often bottlenecked by memory constraints. Namely, the KV cache, which is used to significantly speed up attention computations, grows linearly with context length. A suite of compression algorithms has been introduced to alleviate cache growth by evicting unimportant tokens. However, several popular strategies are targeted towards the prefill phase, i.e., processing long prompt context, and their performance is rarely assessed on reasoning tasks requiring long decoding. In particular, short but complex prompts, such as those in benchmarks like GSM8K and MATH500, often benefit from multi-step reasoning and self-reflection, resulting in thinking sequences thousands of tokens long. In this work, we benchmark the performance of several popular compression strategies on long-reasoning tasks. For the non-reasoning Llama-3.1-8B-Instruct, we determine that no singular strategy fits all, and that performance is heavily influenced by dataset type. However, we discover that H2O and our decoding-enabled variant of SnapKV are dominant strategies for reasoning models, indicating the utility of heavy-hitter tracking for reasoning traces. We also find that eviction strategies at low budgets can produce longer reasoning traces, revealing a tradeoff between cache size and inference costs.
3.342Direct Confidence Alignment: Aligning Verbalized Confidence with Internal Confidence In Large Language Models¶
2025/12/16 05:02 GTM
Producing trustworthy and reliable Large Language Models (LLMs) has become increasingly important as their usage becomes more widespread. Calibration seeks to achieve this by improving the alignment between the model’s confidence and the actual likelihood of its responses being correct or desirable. However, it has been observed that the internal confidence of a model, derived from token probabilities, is not well aligned with its verbalized confidence, leading to misleading results with different calibration methods. In this paper, we propose Direct Confidence Alignment (DCA), a method using Direct Preference Optimization to align an LLM’s verbalized confidence with its internal confidence rather than ground-truth accuracy, enhancing model transparency and reliability by ensuring closer alignment between the two confidence measures. We evaluate DCA across multiple open-weight LLMs on a wide range of datasets. To further assess this alignment, we also introduce three new calibration error-based metrics. Our results show that DCA improves alignment metrics on certain model architectures, reducing inconsistencies in a model’s confidence expression. However, we also show that it can be ineffective on others, highlighting the need for more model-aware approaches in the pursuit of more interpretable and trustworthy LLMs.
3.343TopicProphet: Prophesies on Temporal Topic Trends and Stocks¶
2025/12/16 05:02 GTM
Stocks can’t be predicted. Despite many hopes, this premise held itself true for many years due to the nature of quantitative stock data lacking causal logic along with rapid market changes hindering accumulation of significant data for training models. To undertake this matter, we propose a novel framework, TopicProphet, to analyze historical eras that share similar public sentiment trends and historical background. Our research deviates from previous studies that identified impacts of keywords and sentiments - we expand on that method by a sequence of topic modeling, temporal analysis, breakpoint detection and segment optimization to detect the optimal time period for training. This results in improving predictions by providing the model with nuanced patterns that occur from that era’s socioeconomic and political status while also resolving the shortage of pertinent stock data to train on. Through extensive analysis, we conclude that TopicProphet produces improved outcomes compared to the state-of-the-art methods in capturing the optimal training data for forecasting financial percentage changes.
3.344KH-FUNSD: A Hierarchical and Fine-Grained Layout Analysis Dataset for Low-Resource Khmer Business Document¶
2025/12/16 05:02 GTM
Automated document layout analysis remains a major challenge for low-resource, non-Latin scripts. Khmer is a language spoken daily by over 17 million people in Cambodia, receiving little attention in the development of document AI tools. The lack of dedicated resources is particularly acute for business documents, which are critical for both public administration and private enterprise. To address this gap, we present \textbf{KH-FUNSD}, the first publicly available, hierarchically annotated dataset for Khmer form document understanding, including receipts, invoices, and quotations. Our annotation framework features a three-level design: (1) region detection that divides each document into core zones such as header, form field, and footer; (2) FUNSD-style annotation that distinguishes questions, answers, headers, and other key entities, together with their relationships; and (3) fine-grained classification that assigns specific semantic roles, such as field labels, values, headers, footers, and symbols. This multi-level approach supports both comprehensive layout analysis and precise information extraction. We benchmark several leading models, providing the first set of baseline results for Khmer business documents, and discuss the distinct challenges posed by non-Latin, low-resource scripts. The KH-FUNSD dataset and documentation will be available at URL.
3.345Love First, Know Later: Persona-Based Romantic Compatibility Through LLM Text World Engines¶
2025/12/16 05:02 GTM
We propose Love First, Know Later: a paradigm shift in computational matching that simulates interactions first, then assesses compatibility. Instead of comparing static profiles, our framework leverages LLMs as text world engines that operate in dual capacity-as persona-driven agents following behavioral policies and as the environment modeling interaction dynamics. We formalize compatibility assessment as a reward-modeling problem: given observed matching outcomes, we learn to extract signals from simulations that predict human preferences. Our key insight is that relationships hinge on responses to critical moments-we translate this observation from relationship psychology into mathematical hypotheses, enabling effective simulation. Theoretically, we prove that as LLM policies better approximate human behavior, the induced matching converges to optimal stable matching. Empirically, we validate on speed dating data for initial chemistry and divorce prediction for long-term stability. This paradigm enables interactive, personalized matching systems where users iteratively refine their agents, unlocking future possibilities for transparent and interactive compatibility assessment.
3.346The Ontological Dissonance Hypothesis: AI-Triggered Delusional Ideation as Folie a Deux Technologique¶
2025/12/16 05:02 GTM
This paper argues that contemporary large language models (LLMs) can contribute to psychotic involvement by creating interactions that resemble the relational dynamics of folie a deux. Drawing on Bateson’s double bind theory, clinical literature on shared psychotic disorder, and McGilchrist’s hemisphere theory, we show how the combination of high linguistic coherence and the absence of an underlying subject produces a structural tension for the user: language suggests an interlocutor, while intuition registers a void. In contexts of emotional need or instability, this tension can lead users to resolve the conflict through imaginative projection, attributing interiority, intention, or presence to a system that possesses none. The paper situates these dynamics within emerging clinical reports, develops a phenomenological account of how they unfold, and argues that current engagement-optimised design choices exacerbate the risk. We conclude by proposing ‘ontological honesty’ as a necessary design principle for mitigating technologically mediated folie a deux.
3.347Reinforcement Learning for Latent-Space Thinking in LLMs¶
2025/12/16 05:02 GTM
Chain-of-Thought (CoT) reasoning typically utilizes the discrete language space for thinking, which is inherently inefficient, as many generated tokens only enforce linguistic rules that are not required for reasoning. To bypass this, latent-space thinking allows models to think using the continuous embedding space. While existing methods for training those models show domain-specific gains, they fail to maintain performance in complex tasks, such as mathematical reasoning. We experimentally demonstrate that the Coconut approach, a form of supervised fine-tuning for latent-space thinking, is highly sensitive to design choices and exhibits several inherent limitations. To address these issues, we investigate reinforcement learning (RL) techniques -- an underexplored direction in latent-space thinking -- including GRPO and design a novel Latent RL method for directly optimizing the latent thinking steps. Our experimental results reveal that these RL-trained models still lag behind traditional language-space CoT models in the mathematical reasoning domain. We make our codebase publicly available.
3.348Enhancing Urban Visual Place Recognition for Crowdsourced Flood Imagery via LLM-Guided Attention¶
2025/12/16 05:02 GTM
Crowdsourced street-view imagery from social media provides valuable real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing Visual Place Recognition (VPR) models exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts inherent in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geospatial knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress transient visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.
3.349NL2SpaTiaL: Generating Geometric Spatio-Temporal Logic Specifications from Natural Language for Manipulation Tasks¶
2025/12/16 05:02 GTM
Spatio-Temporal Logic (SpaTiaL) offers a principled formalism for expressing geometric spatial requirements-an essential component of robotic manipulation, where object locations, neighborhood relations, pose constraints, and interactions directly determine task success. Yet prior works have largely relied on standard temporal logic (TL), which models only robot trajectories and overlooks object-level interactions. Existing datasets built from randomly generated TL formulas paired with natural-language descriptions therefore cover temporal operators but fail to represent the layered spatial relations that manipulation tasks depend on. To address this gap, we introduce a dataset generation framework that synthesizes SpaTiaL specifications and converts them into natural-language descriptions through a deterministic, semantics-preserving back-translation procedure. This pipeline produces the NL2SpaTiaL dataset, aligning natural language with multi-level spatial relations and temporal objectives to reflect the compositional structure of manipulation tasks. Building on this foundation, we propose a translation-verification framework equipped with a language-based semantic checker that ensures the generated SpaTiaL formulas faithfully encode the semantics specified by the input description. Experiments across a suite of manipulation tasks show that SpaTiaL-based representations yield more interpretable, verifiable, and compositional grounding for instruction following. Project website: https://
3.350RoboTracer: Mastering Spatial Trace with Reasoning in Vision-Language Models for Robotics¶
2025/12/16 05:02 GTM
Spatial tracing, as a fundamental embodied interaction ability for robots, is inherently challenging as it requires multi-step metric-grounded reasoning compounded with complex spatial referring and real-world metric measurement. However, existing methods struggle with this compositional task. To this end, we propose RoboTracer, a 3D-aware VLM that first achieves both 3D spatial referring and measuring via a universal spatial encoder and a regression-supervised decoder to enhance scale awareness during supervised fine-tuning (SFT). Moreover, RoboTracer advances multi-step metric-grounded reasoning via reinforcement fine-tuning (RFT) with metric-sensitive process rewards, supervising key intermediate perceptual cues to accurately generate spatial traces. To support SFT and RFT training, we introduce TraceSpatial, a large-scale dataset of 30M QA pairs, spanning outdoor/indoor/tabletop scenes and supporting complex reasoning processes (up to 9 steps). We further present TraceSpatial-Bench, a challenging benchmark filling the gap to evaluate spatial tracing. Experimental results show that RoboTracer surpasses baselines in spatial understanding, measuring, and referring, with an average success rate of 79.1%, and also achieves SOTA performance on TraceSpatial-Bench by a large margin, exceeding Gemini-2.5-Pro by 36% accuracy. Notably, RoboTracer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (UR5, G1 humanoid) in cluttered real-world scenes.
3.351World Models Can Leverage Human Videos for Dexterous Manipulation¶
2025/12/16 05:02 GTM
Dexterous manipulation is challenging because it requires understanding how subtle hand motion influences the environment through contact with objects. We introduce DexWM, a Dexterous Manipulation World Model that predicts the next latent state of the environment conditioned on past states and dexterous actions. To overcome the scarcity of dexterous manipulation datasets, DexWM is trained on over 900 hours of human and non-dexterous robot videos. To enable fine-grained dexterity, we find that predicting visual features alone is insufficient; therefore, we introduce an auxiliary hand consistency loss that enforces accurate hand configurations. DexWM outperforms prior world models conditioned on text, navigation, and full-body actions, achieving more accurate predictions of future states. DexWM also demonstrates strong zero-shot generalization to unseen manipulation skills when deployed on a Franka Panda arm equipped with an Allegro gripper, outperforming Diffusion Policy by over 50% on average in grasping, placing, and reaching tasks.
3.352MindDrive: A Vision-Language-Action Model for Autonomous Driving via Online Reinforcement Learning¶
2025/12/16 05:02 GTM
Current Vision-Language-Action (VLA) paradigms in autonomous driving primarily rely on Imitation Learning (IL), which introduces inherent challenges such as distribution shift and causal confusion. Online Reinforcement Learning offers a promising pathway to address these issues through trial-and-error learning. However, applying online reinforcement learning to VLA models in autonomous driving is hindered by inefficient exploration in continuous action spaces. To overcome this limitation, we propose MindDrive, a VLA framework comprising a large language model (LLM) with two distinct sets of LoRA parameters. The one LLM serves as a Decision Expert for scenario reasoning and driving decision-making, while the other acts as an Action Expert that dynamically maps linguistic decisions into feasible trajectories. By feeding trajectory-level rewards back into the reasoning space, MindDrive enables trial-and-error learning over a finite set of discrete linguistic driving decisions, instead of operating directly in a continuous action space. This approach effectively balances optimal decision-making in complex scenarios, human-like driving behavior, and efficient exploration in online reinforcement learning. MindDrive achieves strong closed-loop performance on the challenging Bench2Drive benchmark, with a Driving Score (DS) of 78.04 and a Success Rate (SR) of 55.09%. To the best of our knowledge, this is the first work to demonstrate the effectiveness of online reinforcement learning for the VLA model in autonomous driving.
3.353Near-Field Perception for Safety Enhancement of Autonomous Mobile Robots in Manufacturing Environments¶
2025/12/16 05:02 GTM
Near-field perception is essential for the safe operation of autonomous mobile robots (AMRs) in manufacturing environments. Conventional ranging sensors such as light detection and ranging (LiDAR) and ultrasonic devices provide broad situational awareness but often fail to detect small objects near the robot base. To address this limitation, this paper presents a three-tier near-field perception framework. The first approach employs light-discontinuity detection, which projects a laser stripe across the near-field zone and identifies interruptions in the stripe to perform fast, binary cutoff sensing for obstacle presence. The second approach utilizes light-displacement measurement to estimate object height by analyzing the geometric displacement of a projected stripe in the camera image, which provides quantitative obstacle height information with minimal computational overhead. The third approach employs a computer vision-based object detection model on embedded AI hardware to classify objects, enabling semantic perception and context-aware safety decisions. All methods are implemented on a Raspberry Pi 5 system, achieving real-time performance at 25 or 50 frames per second. Experimental evaluation and comparative analysis demonstrate that the proposed hierarchy balances precision, computation, and cost, thereby providing a scalable perception solution for enabling safe operations of AMRs in manufacturing environments.
3.354Reinforcement Learning based 6-DoF Maneuvers for Microgravity Intravehicular Docking: A Simulation Study with Int-Ball2 in ISS-JEM¶
2025/12/16 05:02 GTM
Autonomous free-flyers play a critical role in intravehicular tasks aboard the International Space Station (ISS), where their precise docking under sensing noise, small actuation mismatches, and environmental variability remains a nontrivial challenge. This work presents a reinforcement learning (RL) framework for six-degree-of-freedom (6-DoF) docking of JAXA’s Int-Ball2 robot inside a high-fidelity Isaac Sim model of the Japanese Experiment Module (JEM). Using Proximal Policy Optimization (PPO), we train and evaluate controllers under domain-randomized dynamics and bounded observation noise, while explicitly modeling propeller drag-torque effects and polarity structure. This enables a controlled study of how Int-Ball2’s propulsion physics influence RL-based docking performance in constrained microgravity interiors. The learned policy achieves stable and reliable docking across varied conditions and lays the groundwork for future extensions pertaining to Int-Ball2 in collision-aware navigation, safe RL, propulsion-accurate sim-to-real transfer, and vision-based end-to-end docking.
3.355Evaluating the Navigation Capabilities of a Modified COAST Guidewire Robot in an Anatomical Phantom Model¶
2025/12/16 05:02 GTM
To address the issues that arise due to the manual navigation of guidewires in endovascular interventions, research in medical robotics has taken a strong interest in developing robotically steerable guidewires, which offer the possibility of enhanced maneuverability and navigation, as the tip of the guidewire can be actively steered. The COaxially Aligned STeerable (COAST) guidewire robot has the ability to generate a wide variety of motions including bending motion with different bending lengths, follow-the-leader motion, and feedforward motion. In our past studies, we have explored different designs of the COAST guidewire robot and developed modeling, control, and sensing strategies for the COAST guidewire robot. In this study, the performance of a modified COAST guidewire robot is evaluated by conducting navigation experiments in an anatomical phantom model with pulsatile flow. The modified COAST guidewire robot is a simplified version of the COAST guidewire robot and consists of two tubes as opposed to three tubes. Through this study, we demonstrate the effectiveness of the modified COAST guidewire robot in navigating the tortuous phantom vasculature.
3.356Universal Dexterous Functional Grasping via Demonstration-Editing Reinforcement Learning¶
2025/12/16 05:02 GTM
Reinforcement learning (RL) has achieved great success in dexterous grasping, significantly improving grasp performance and generalization from simulation to the real world. However, fine-grained functional grasping, which is essential for downstream manipulation tasks, remains underexplored and faces several challenges: the complexity of specifying goals and reward functions for functional grasps across diverse objects, the difficulty of multi-task RL exploration, and the challenge of sim-to-real transfer. In this work, we propose DemoFunGrasp for universal dexterous functional grasping. We factorize functional grasping conditions into two complementary components - grasping style and affordance - and integrate them into an RL framework that can learn to grasp any object with any functional grasping condition. To address the multi-task optimization challenge, we leverage a single grasping demonstration and reformulate the RL problem as one-step demonstration editing, substantially enhancing sample efficiency and performance. Experimental results in both simulation and the real world show that DemoFunGrasp generalizes to unseen combinations of objects, affordances, and grasping styles, outperforming baselines in both success rate and functional grasping accuracy. In addition to strong sim-to-real capability, by incorporating a vision-language model (VLM) for planning, our system achieves autonomous instruction-following grasp execution.
3.357Fast Policy Learning for 6-DOF Position Control of Underwater Vehicles¶
2025/12/16 05:02 GTM
Autonomous Underwater Vehicles (AUVs) require reliable six-degree-of-freedom (6-DOF) position control to operate effectively in complex and dynamic marine environments. Traditional controllers are effective under nominal conditions but exhibit degraded performance when faced with unmodeled dynamics or environmental disturbances. Reinforcement learning (RL) provides a powerful alternative but training is typically slow and sim-to-real transfer remains challenging. This work introduces a GPU-accelerated RL training pipeline built in JAX and MuJoCo-XLA (MJX). By jointly JIT-compiling large-scale parallel physics simulation and learning updates, we achieve training times of under two minutes.Through systematic evaluation of multiple RL algorithms, we show robust 6-DOF trajectory tracking and effective disturbance rejection in real underwater experiments, with policies transferred zero-shot from simulation. Our results provide the first explicit real-world demonstration of RL-based AUV position control across all six degrees of freedom.
3.358Control of a Twin Rotor using Twin Delayed Deep Deterministic Policy Gradient (TD3)¶
2025/12/16 05:02 GTM
This paper proposes a reinforcement learning (RL) framework for controlling and stabilizing the Twin Rotor Aerodynamic System (TRAS) at specific pitch and azimuth angles and tracking a given trajectory. The complex dynamics and non-linear characteristics of the TRAS make it challenging to control using traditional control algorithms. However, recent developments in RL have attracted interest due to their potential applications in the control of multirotors. The Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm was used in this paper to train the RL agent. This algorithm is used for environments with continuous state and action spaces, similar to the TRAS, as it does not require a model of the system. The simulation results illustrated the effectiveness of the RL control method. Next, external disturbances in the form of wind disturbances were used to test the controller’s effectiveness compared to conventional PID controllers. Lastly, experiments on a laboratory setup were carried out to confirm the controller’s effectiveness in real-world applications.
3.359Humanoid Robot Running Through Random Stepping Stones and Jumping Over Obstacles: Step Adaptation Using Spring-Mass Trajectories¶
2025/12/16 05:02 GTM
This study proposes a step adaptation framework for running through spring-mass trajectories and deadbeat control gain libraries. It includes four main parts: (1) Automatic spring-mass trajectory library generation; (2) Deadbeat control gain library generation through an actively controlled template model that resembles the whole-body dynamics well; (3) Trajectory selection policy development for step adaptation; (4) Mapping spring-mass trajectories to a humanoid model through a whole-body control (WBC) framework also accounting for closed-kinematic chain systems, self collisions, and reactive limb swinging. We show the inclusiveness and the robustness of the proposed framework through various challenging and agile behaviors such as running through randomly generated stepping stones, jumping over random obstacles, performing slalom motions, changing the running direction suddenly with a random leg, and rejecting significant disturbances and uncertainties through the MuJoCo physics simulator. We also perform additional simulations under a comprehensive set of uncertainties and noise to better justify the proposed method’s robustness to real-world challenges, including signal noise, imprecision, modeling errors, and delays. All the aforementioned behaviors are performed with a single library and the same set of WBC control parameters without additional tuning. The spring-mass and the deadbeat control gain library are automatically computed in 4.5 seconds in total for 315 different trajectories.
3.360Intrinsic-Motivation Multi-Robot Social Formation Navigation with Coordinated Exploration¶
2025/12/16 05:02 GTM
This paper investigates the application of reinforcement learning (RL) to multi-robot social formation navigation, a critical capability for enabling seamless human-robot coexistence. While RL offers a promising paradigm, the inherent unpredictability and often uncooperative dynamics of pedestrian behavior pose substantial challenges, particularly concerning the efficiency of coordinated exploration among robots. To address this, we propose a novel coordinated-exploration multi-robot RL algorithm introducing an intrinsic motivation exploration. Its core component is a self-learning intrinsic reward mechanism designed to collectively alleviate policy conservatism. Moreover, this algorithm incorporates a dual-sampling mode within the centralized training and decentralized execution framework to enhance the representation of both the navigation policy and the intrinsic reward, leveraging a two-time-scale update rule to decouple parameter updates. Empirical results on social formation navigation benchmarks demonstrate the proposed algorithm’s superior performance over existing state-of-the-art methods across crucial metrics. Our code and video demos are available at: https://
3.361SAMAY: System for Acoustic Measurement and Analysis¶
2025/12/16 05:02 GTM
This paper describes an automatic bird call recording system called SAMAY, which is developed to study bird species by creating a database of large amounts of bird acoustic data. By analysing the recorded bird call data, the system can also be used for automatic classification of bird species, monitoring bird populations and analysing the impact of environmental changes. The system is driven through a powerful STM32F407 series microcontroller, supports 4 microphones, is equipped with 128 GB of storage capacity, and is powered by a 10400 mAh battery pack interfaced with a solar charger. In addition, the device is user-configurable over USB and Wi-Fi during runtime, ensuring user-friendly operation during field deployment.
3.362Lightweight Dynamic Modeling of Cable-Driven Continuum Robots Based on Actuation-Space Energy Formulation¶
2025/12/16 05:02 GTM
Cable-driven continuum robots (CDCRs) require accurate, real-time dynamic models for high-speed dynamics prediction or model-based control, making such capability an urgent need. In this paper, we propose the Lightweight Actuation-Space Energy Modeling (LASEM) framework for CDCRs, which formulates actuation potential energy directly in actuation space to enable lightweight yet accurate dynamic modeling. Through a unified variational derivation, the governing dynamics reduce to a single partial differential equation (PDE), requiring only the Euler moment balance while implicitly incorporating the Newton force balance. By also avoiding explicit computation of cable-backbone contact forces, the formulation simplifies the model structure and improves computational efficiency while preserving geometric accuracy and physical consistency. Importantly, the proposed framework for dynamic modeling natively supports both force-input and displacement-input actuation modes, a capability seldom achieved in existing dynamic formulations. Leveraging this lightweight structure, a Galerkin space-time modal discretization with analytical time-domain derivatives of the reduced state further enables an average 62.3% computational speedup over state-of-the-art real-time dynamic modeling approaches.
3.363Post-Training and Test-Time Scaling of Generative Agent Behavior Models for Interactive Autonomous Driving¶
2025/12/16 05:02 GTM
Learning interactive motion behaviors among multiple agents is a core challenge in autonomous driving. While imitation learning models generate realistic trajectories, they often inherit biases from datasets dominated by safe demonstrations, limiting robustness in safety-critical cases. Moreover, most studies rely on open-loop evaluation, overlooking compounding errors in closed-loop execution. We address these limitations with two complementary strategies. First, we propose Group Relative Behavior Optimization (GRBO), a reinforcement learning post-training method that fine-tunes pretrained behavior models via group relative advantage maximization with human regularization. Using only 10% of the training dataset, GRBO improves safety performance by over 40% while preserving behavioral realism. Second, we introduce Warm-K, a warm-started Top-K sampling strategy that balances consistency and diversity in motion selection. Our Warm-K method-based test-time scaling enhances behavioral consistency and reactivity at test time without retraining, mitigating covariate shift and reducing performance discrepancies. Demo videos are available in the supplementary material.
3.364A Unified Framework for Automated Assembly Sequence and Production Line Planning using Graph-based Optimization¶
2025/12/16 05:02 GTM
This paper presents PyCAALP (Python-based Computer-Aided Assembly Line Planning), a framework for automated Assembly Sequence Planning (ASP) and Production Line Planning (PLP), employing a graph-based approach to model components and joints within production modules. The framework integrates kinematic boundary conditions, such as potential part collisions, to guarantee the feasibility of automated assembly planning. The developed algorithm computes all feasible production sequences, integrating modules for detecting spatial relationships and formulating geometric constraints. The algorithm incorporates additional attributes, including handling feasibility, tolerance matching, and joint compatibility, to manage the high combinatorial complexity inherent in assembly sequence generation. Heuristics, such as Single-Piece Flow assembly and geometrical constraint enforcement, are utilized to further refine the solution space, facilitating more efficient planning for complex assemblies. The PLP stage is formulated as a Mixed-Integer Program (MIP), balancing the total times of a fixed number of manufacturing stations. While some complexity reduction techniques may sacrifice optimality, they significantly reduce the MIPs computational time. Furthermore, the framework enables customization of engineering constraints and supports a flexible trade-off between ASP and PLP. The open-source nature of the framework, available at https://
3.365Multi-directional Safe Rectangle Corridor-Based MPC for Nonholonomic Robots Navigation in Cluttered Environment¶
2025/12/16 05:02 GTM
Autonomous Mobile Robots (AMRs) have become indispensable in industrial applications due to their operational flexibility and efficiency. Navigation serves as a crucial technical foundation for accomplishing complex tasks. However, navigating AMRs in dense, cluttered, and semi-structured environments remains challenging, primarily due to nonholonomic vehicle dynamics, interactions with mixed static/dynamic obstacles, and the non-convex constrained nature of such operational spaces. To solve these problems, this paper proposes an Improved Sequential Model Predictive Control (ISMPC) navigation framework that systematically reformulates navigation tasks as sequential switched optimal control problems. The framework addresses the aforementioned challenges through two key innovations: 1) Implementation of a Multi-Directional Safety Rectangular Corridor (MDSRC) algorithm, which encodes the free space through rectangular convex regions to avoid collision with static obstacles, eliminating redundant computational burdens and accelerating solver convergence; 2) A sequential MPC navigation framework that integrates corridor constraints with barrier function constraints is proposed to achieve static and dynamic obstacle avoidance. The ISMPC navigation framework enables direct velocity generation for AMRs, simplifying traditional navigation algorithm architectures. Comparative experiments demonstrate the framework’s superiority in free-space utilization ( an increase of 41.05 in the average corridor area) while maintaining real-time computational performance (average corridors generation latency of 3 ms).
3.366Differentiable Material Point Method for the Control of Deformable Objects¶
2025/12/16 05:02 GTM
Controlling the deformation of flexible objects is challenging due to their non-linear dynamics and high-dimensional configuration space. This work presents a differentiable Material Point Method (MPM) simulator targeted at control applications. We exploit the differentiability of the simulator to optimize a control trajectory in an active damping problem for a hyperelastic rope. The simulator effectively minimizes the kinetic energy of the rope around 2 faster than a baseline MPPI method and to a 20% lower energy level, while using about 3% of the computation time.
3.367ALBATROSS: A robotised system for high-throughput electrolyte screening via automated electrolyte formulation, coin-cell fabrication, and electrochemi...¶
2025/12/16 05:02 GTM
As battery technologies advance toward higher stability and energy density, the need for extensive cell-level testing across various component configurations becomes critical. To evaluate performance and understand the operating principles of batteries in laboratory scale, fabrication and evaluation of coin cells are essential processes. However, the conventional coin-cell assembly and testing processes require significant time and labor from researchers, posing challenges to high-throughput screening research. In this study, we introduce an Automated Li-ion BAttery Testing RObot SyStem (ALBATROSS), an automated system capable of electrolyte formulation, coin-cell assembly, and electrochemical evaluation. The system, integrated within a argon-filled glovebox, enables fully automated assembly and testing of up to 48 cells without researcher intervention. By incorporating custom-designed robot gripper and 3D-printed structures optimized for precise cell handling, ALBATROSS achieved high assembly reliability, yielding a relative standard deviation (RSD) of less than 1.2% in discharge capacity and a standard deviation of less than 3 Ω in EIS measurements for NCM811||Li half cells. Owing to its high reliability and automation capability, ALBATROSS allows for the acquisition of high-quality coin-cell datasets, which are expected to accelerate the development of next-generation electrolytes.
3.368Efficient Generation of Smooth Paths with Curvature Guarantees by Mollification¶
2025/12/16 05:02 GTM
Most path following and trajectory tracking algorithms in mobile robotics require the desired path or trajectory to be defined by at least twice continuously differentiable functions to guarantee key properties such as global convergence, especially for nonholonomic robots like unicycles with speed constraints. Consequently, these algorithms typically exclude continuous but non-differentiable paths, such as piecewise functions. Despite this exclusion, such paths provide convenient high-level inputs for describing robot missions or behavior. While techniques such as spline interpolation or optimization-based methods are commonly used to smooth non-differentiable paths or create feasible ones from sequences of waypoints, they either can produce unnecessarily complex trajectories or are computationally expensive. In this work, we present a method to regularize non-differentiable functions and generate feasible paths through mollification. Specifically, we approximate an arbitrary path with a differentiable function that can converge to it with arbitrary precision. Additionally, we provide a systematic method for bounding the curvature of generated paths, which we demonstrate by applying it to paths resulting from linking a sequence of waypoints with segments. The proposed approach is computationally efficient, enabling real-time implementation on microcontrollers and compatibility with standard trajectory tracking and path following algorithms.
3.369MMDrive: Interactive Scene Understanding Beyond Vision with Multi-representational Fusion¶
2025/12/16 05:02 GTM
Vision-language models enable the understanding and reasoning of complex traffic scenarios through multi-source information fusion, establishing it as a core technology for autonomous driving. However, existing vision-language models are constrained by the image understanding paradigm in 2D plane, which restricts their capability to perceive 3D spatial information and perform deep semantic fusion, resulting in suboptimal performance in complex autonomous driving environments. This study proposes MMDrive, an multimodal vision-language model framework that extends traditional image understanding to a generalized 3D scene understanding framework. MMDrive incorporates three complementary modalities, including occupancy maps, LiDAR point clouds, and textual scene descriptions. To this end, it introduces two novel components for adaptive cross-modal fusion and key information extraction. Specifically, the Text-oriented Multimodal Modulator dynamically weights the contributions of each modality based on the semantic cues in the question, guiding context-aware feature integration. The Cross-Modal Abstractor employs learnable abstract tokens to generate compact, cross-modal summaries that highlight key regions and essential semantics. Comprehensive evaluations on the DriveLM and NuScenes-QA benchmarks demonstrate that MMDrive achieves significant performance gains over existing vision-language models for autonomous driving, with a BLEU-4 score of 54.56 and METEOR of 41.78 on DriveLM, and an accuracy score of 62.7% on NuScenes-QA. MMDrive effectively breaks the traditional image-only understanding barrier, enabling robust multimodal reasoning in complex driving environments and providing a new foundation for interpretable autonomous driving scene understanding.
3.370Iterative Tuning of Nonlinear Model Predictive Control for Robotic Manufacturing Tasks¶
2025/12/16 05:02 GTM
Manufacturing processes are often perturbed by drifts in the environment and wear in the system, requiring control re-tuning even in the presence of repetitive operations. This paper presents an iterative learning framework for automatic tuning of Nonlinear Model Predictive Control (NMPC) weighting matrices based on task-level performance feedback. Inspired by norm-optimal Iterative Learning Control (ILC), the proposed method adaptively adjusts NMPC weights Q and R across task repetitions to minimize key performance indicators (KPIs) related to tracking accuracy, control effort, and saturation. Unlike gradient-based approaches that require differentiating through the NMPC solver, we construct an empirical sensitivity matrix, enabling structured weight updates without analytic derivatives. The framework is validated through simulation on a UR10e robot performing carbon fiber winding on a tetrahedral core. Results demonstrate that the proposed approach converges to near-optimal tracking performance (RMSE within 0.3% of offline Bayesian Optimization (BO)) in just 4 online repetitions, compared to 100 offline evaluations required by BO algorithm. The method offers a practical solution for adaptive NMPC tuning in repetitive robotic tasks, combining the precision of carefully optimized controllers with the flexibility of online adaptation.
3.371START: Traversing Sparse Footholds with Terrain Reconstruction¶
2025/12/16 05:02 GTM
Traversing terrains with sparse footholds like legged animals presents a promising yet challenging task for quadruped robots, as it requires precise environmental perception and agile control to secure safe foot placement while maintaining dynamic stability. Model-based hierarchical controllers excel in laboratory settings, but suffer from limited generalization and overly conservative behaviors. End-to-end learning-based approaches unlock greater flexibility and adaptability, but existing state-of-the-art methods either rely on heightmaps that introduce noise and complex, costly pipelines, or implicitly infer terrain features from egocentric depth images, often missing accurate critical geometric cues and leading to inefficient learning and rigid gaits. To overcome these limitations, we propose START, a single-stage learning framework that enables agile, stable locomotion on highly sparse and randomized footholds. START leverages only low-cost onboard vision and proprioception to accurately reconstruct local terrain heightmap, providing an explicit intermediate representation to convey essential features relevant to sparse foothold regions. This supports comprehensive environmental understanding and precise terrain assessment, reducing exploration cost and accelerating skill acquisition. Experimental results demonstrate that START achieves zero-shot transfer across diverse real-world scenarios, showcasing superior adaptability, precise foothold placement, and robust locomotion.
3.372OXE-AugE: A Large-Scale Robot Augmentation of OXE for Scaling Cross-Embodiment Policy Learning¶
2025/12/16 05:02 GTM
Large and diverse datasets are needed for training generalist robot policies that have potential to control a variety of robot embodiments -- robot arm and gripper combinations -- across diverse tasks and environments. As re-collecting demonstrations and retraining for each new hardware platform are prohibitively costly, we show that existing robot data can be augmented for transfer and generalization. The Open X-Embodiment (OXE) dataset, which aggregates demonstrations from over 60 robot datasets, has been widely used as the foundation for training generalist policies. However, it is highly imbalanced: the top four robot types account for over 85% of its real data, which risks overfitting to robot--scene combinations. We present AugE-Toolkit, a scalable robot augmentation pipeline, and OXE-AugE, a high-quality open-source dataset that augments OXE with 9 different robot embodiments. OXE-AugE provides over 4.4 million trajectories, more than triple the size of the original OXE. We conduct a systematic study of how scaling robot augmentation impacts cross-embodiment learning. Results suggest that augmenting datasets with diverse arms and grippers improves policy performance not only on the augmented robots, but also on unseen robots and even the original robots under distribution shifts. In physical experiments, we demonstrate that state-of-the-art generalist policies such as OpenVLA and benefit from fine-tuning on OXE-AugE, improving success rates by 24-45% on previously unseen robot--gripper combinations across four real-world manipulation tasks. Project website: https://
3.373Sequence of Expert: Boosting Imitation Planners for Autonomous Driving through Temporal Alternation¶
2025/12/16 05:02 GTM
Imitation learning (IL) has emerged as a central paradigm in autonomous driving. While IL excels in matching expert behavior in open-loop settings by minimizing per-step prediction errors, its performance degrades unexpectedly in closed-loop due to the gradual accumulation of small, often imperceptible errors over time.Over successive planning cycles, these errors compound, potentially resulting in severe failures.Current research efforts predominantly rely on increasingly sophisticated network architectures or high-fidelity training datasets to enhance the robustness of IL planners against error accumulation, focusing on the state-level robustness at a single time point. However, autonomous driving is inherently a continuous-time process, and leveraging the temporal scale to enhance robustness may provide a new perspective for addressing this issue.To this end, we propose a method termed Sequence of Experts (SoE), a temporal alternation policy that enhances closed-loop performance without increasing model size or data requirements. Our experiments on large-scale autonomous driving benchmarks nuPlan demonstrate that SoE method consistently and significantly improves the performance of all the evaluated models, and achieves state-of-the-art performance.This module may provide a key and widely applicable support for improving the training efficiency of autonomous driving models.
3.374PvP: Data-Efficient Humanoid Robot Learning with Proprioceptive-Privileged Contrastive Representations¶
2025/12/16 05:02 GTM
Achieving efficient and robust whole-body control (WBC) is essential for enabling humanoid robots to perform complex tasks in dynamic environments. Despite the success of reinforcement learning (RL) in this domain, its sample inefficiency remains a significant challenge due to the intricate dynamics and partial observability of humanoid robots. To address this limitation, we propose PvP, a Proprioceptive-Privileged contrastive learning framework that leverages the intrinsic complementarity between proprioceptive and privileged states. PvP learns compact and task-relevant latent representations without requiring hand-crafted data augmentations, enabling faster and more stable policy learning. To support systematic evaluation, we develop SRL4Humanoid, the first unified and modular framework that provides high-quality implementations of representative state representation learning (SRL) methods for humanoid robot learning. Extensive experiments on the LimX Oli robot across velocity tracking and motion imitation tasks demonstrate that PvP significantly improves sample efficiency and final performance compared to baseline SRL methods. Our study further provides practical insights into integrating SRL with RL for humanoid WBC, offering valuable guidance for data-efficient humanoid robot learning.
3.375Multi-Robot Motion Planning from Vision and Language using Heat-Inspired Diffusion¶
2025/12/16 05:02 GTM
Diffusion models have recently emerged as powerful tools for robot motion planning by capturing the multi-modal distribution of feasible trajectories. However, their extension to multi-robot settings with flexible, language-conditioned task specifications remains limited. Furthermore, current diffusion-based approaches incur high computational cost during inference and struggle with generalization because they require explicit construction of environment representations and lack mechanisms for reasoning about geometric reachability. To address these limitations, we present Language-Conditioned Heat-Inspired Diffusion (LCHD), an end-to-end vision-based framework that generates language-conditioned, collision-free trajectories. LCHD integrates CLIP-based semantic priors with a collision-avoiding diffusion kernel serving as a physical inductive bias that enables the planner to interpret language commands strictly within the reachable workspace. This naturally handles out-of-distribution scenarios -- in terms of reachability -- by guiding robots toward accessible alternatives that match the semantic intent, while eliminating the need for explicit obstacle information at inference time. Extensive evaluations on diverse real-world-inspired maps, along with real-robot experiments, show that LCHD consistently outperforms prior diffusion-based planners in success rate, while reducing planning latency.
3.376Spatial-Aware VLA Pretraining through Visual-Physical Alignment from Human Videos¶
2025/12/16 05:02 GTM
Vision-Language-Action (VLA) models provide a promising paradigm for robot learning by integrating visual perception with language-guided policy learning. However, most existing approaches rely on 2D visual inputs to perform actions in 3D physical environments, creating a significant gap between perception and action grounding. To bridge this gap, we propose a Spatial-Aware VLA Pretraining paradigm that performs explicit alignment between visual space and physical space during pretraining, enabling models to acquire 3D spatial understanding before robot policy learning. Starting from pretrained vision-language models, we leverage large-scale human demonstration videos to extract 3D visual and 3D action annotations, forming a new source of supervision that aligns 2D visual observations with 3D spatial reasoning. We instantiate this paradigm with VIPA-VLA, a dual-encoder architecture that incorporates a 3D visual encoder to augment semantic visual representations with 3D-aware features. When adapted to downstream robot tasks, VIPA-VLA achieves significantly improved grounding between 2D vision and 3D action, resulting in more robust and generalizable robotic policies.
3.377Motus: A Unified Latent Action World Model¶
2025/12/16 05:02 GTM
While a general embodied agent must function as a unified system, current methods are built on isolated models for understanding, world modeling, and control. This fragmentation prevents unifying multimodal generative capabilities and hinders learning from large-scale, heterogeneous data. In this paper, we propose Motus, a unified latent action world model that leverages existing general pretrained models and rich, sharable motion information. Motus introduces a Mixture-of-Transformer (MoT) architecture to integrate three experts (i.e., understanding, video generation, and action) and adopts a UniDiffuser-style scheduler to enable flexible switching between different modeling modes (i.e., world models, vision-language-action models, inverse dynamics models, video generation models, and video-action joint prediction models). Motus further leverages the optical flow to learn latent actions and adopts a recipe with three-phase training pipeline and six-layer data pyramid, thereby extracting pixel-level “delta action” and enabling large-scale action pretraining. Experiments show that Motus achieves superior performance against state-of-the-art methods in both simulation (a +15% improvement over X-VLA and a +45% improvement over Pi0.5) and real-world scenarios(improved by +11~48%), demonstrating unified modeling of all functionalities and priors significantly benefits downstream robotic tasks.
3.378K-VARK: Kernelized Variance-Aware Residual Kalman Filter for Sensorless Force Estimation in Collaborative Robots¶
2025/12/16 05:02 GTM
Reliable estimation of contact forces is crucial for ensuring safe and precise interaction of robots with unstructured environments. However, accurate sensorless force estimation remains challenging due to inherent modeling errors and complex residual dynamics and friction. To address this challenge, in this paper, we propose K-VARK (Kernelized Variance-Aware Residual Kalman filter), a novel approach that integrates a kernelized, probabilistic model of joint residual torques into an adaptive Kalman filter framework. Through Kernelized Movement Primitives trained on optimized excitation trajectories, K-VARK captures both the predictive mean and input-dependent heteroscedastic variance of residual torques, reflecting data variability and distance-to-training effects. These statistics inform a variance-aware virtual measurement update by augmenting the measurement noise covariance, while the process noise covariance adapts online via variational Bayesian optimization to handle dynamic disturbances. Experimental validation on a 6-DoF collaborative manipulator demonstrates that K-VARK achieves over 20% reduction in RMSE compared to state-of-the-art sensorless force estimation methods, yielding robust and accurate external force/torque estimation suitable for advanced tasks such as polishing and assembly.
3.379Learning Terrain Aware Bipedal Locomotion via Reduced Dimensional Perceptual Representations¶
2025/12/16 05:02 GTM
This work introduces a hierarchical strategy for terrain-aware bipedal locomotion that integrates reduced-dimensional perceptual representations to enhance reinforcement learning (RL)-based high-level (HL) policies for real-time gait generation. Unlike end-to-end approaches, our framework leverages latent terrain encodings via a Convolutional Variational Autoencoder (CNN-VAE) alongside reduced-order robot dynamics, optimizing the locomotion decision process with a compact state. We systematically analyze the impact of latent space dimensionality on learning efficiency and policy robustness. Additionally, we extend our method to be history-aware, incorporating sequences of recent terrain observations into the latent representation to improve robustness. To address real-world feasibility, we introduce a distillation method to learn the latent representation directly from depth camera images and provide preliminary hardware validation by comparing simulated and real sensor data. We further validate our framework using the high-fidelity Agility Robotics (AR) simulator, incorporating realistic sensor noise, state estimation, and actuator dynamics. The results confirm the robustness and adaptability of our method, underscoring its potential for hardware deployment.
3.380Tackling Snow-Induced Challenges: Safe Autonomous Lane-Keeping with Robust Reinforcement Learning¶
2025/12/16 05:02 GTM
This paper proposes two new algorithms for the lane keeping system (LKS) in autonomous vehicles (AVs) operating under snowy road conditions. These algorithms use deep reinforcement learning (DRL) to handle uncertainties and slippage. They include Action-Robust Recurrent Deep Deterministic Policy Gradient (AR-RDPG) and end-to-end Action-Robust convolutional neural network Attention Deterministic Policy Gradient (AR-CADPG), two action-robust approaches for decision-making. In the AR-RDPG method, within the perception layer, camera images are first denoised using multi-scale neural networks. Then, the centerline coefficients are extracted by a pre-trained deep convolutional neural network (DCNN). These coefficients, concatenated with the driving characteristics, are used as input to the control layer. The AR-CADPG method presents an end-to-end approach in which a convolutional neural network (CNN) and an attention mechanism are integrated within a DRL framework. Both methods are first trained in the CARLA simulator and validated under various snowy scenarios. Real-world experiments on a Jetson Nano-based autonomous vehicle confirm the feasibility and stability of the learned policies. Among the two models, the AR-CADPG approach demonstrates superior path-tracking accuracy and robustness, highlighting the effectiveness of combining temporal memory, adversarial resilience, and attention mechanisms in AVs.
3.381SLIM-VDB: A Real-Time 3D Probabilistic Semantic Mapping Framework¶
2025/12/16 05:02 GTM
This paper introduces SLIM-VDB, a new lightweight semantic mapping system with probabilistic semantic fusion for closed-set or open-set dictionaries. Advances in data structures from the computer graphics community, such as OpenVDB, have demonstrated significantly improved computational and memory efficiency in volumetric scene representation. Although OpenVDB has been used for geometric mapping in robotics applications, semantic mapping for scene understanding with OpenVDB remains unexplored. In addition, existing semantic mapping systems lack support for integrating both fixed-category and open-language label predictions within a single framework. In this paper, we propose a novel 3D semantic mapping system that leverages the OpenVDB data structure and integrates a unified Bayesian update framework for both closed- and open-set semantic fusion. Our proposed framework, SLIM-VDB, achieves significant reduction in both memory and integration times compared to current state-of-the-art semantic mapping approaches, while maintaining comparable mapping accuracy. An open-source C++ codebase with a Python interface is available at https://
3.382SignRAG: A Retrieval-Augmented System for Scalable Zero-Shot Road Sign Recognition¶
2025/12/16 05:02 GTM
Automated road sign recognition is a critical task for intelligent transportation systems, but traditional deep learning methods struggle with the sheer number of sign classes and the impracticality of creating exhaustive labeled datasets. This paper introduces a novel zero-shot recognition framework that adapts the Retrieval-Augmented Generation (RAG) paradigm to address this challenge. Our method first uses a Vision Language Model (VLM) to generate a textual description of a sign from an input image. This description is used to retrieve a small set of the most relevant sign candidates from a vector database of reference designs. Subsequently, a Large Language Model (LLM) reasons over the retrieved candidates to make a final, fine-grained recognition. We validate this approach on a comprehensive set of 303 regulatory signs from the Ohio MUTCD. Experimental results demonstrate the framework’s effectiveness, achieving 95.58% accuracy on ideal reference images and 82.45% on challenging real-world road data. This work demonstrates the viability of RAG-based architectures for creating scalable and accurate systems for road sign recognition without task-specific training.
3.383Cross-Level Sensor Fusion with Object Lists via Transformer for 3D Object Detection¶
2025/12/16 05:02 GTM
In automotive sensor fusion systems, smart sensors and Vehicle-to-Everything (V2X) modules are commonly utilized. Sensor data from these systems are typically available only as processed object lists rather than raw sensor data from traditional sensors. Instead of processing other raw data separately and then fusing them at the object level, we propose an end-to-end cross-level fusion concept with Transformer, which integrates highly abstract object list information with raw camera images for 3D object detection. Object lists are fed into a Transformer as denoising queries and propagated together with learnable queries through the latter feature aggregation process. Additionally, a deformable Gaussian mask, derived from the positional and size dimensional priors from the object lists, is explicitly integrated into the Transformer decoder. This directs attention toward the target area of interest and accelerates model training convergence. Furthermore, as there is no public dataset containing object lists as a standalone modality, we propose an approach to generate pseudo object lists from ground-truth bounding boxes by simulating state noise and false positives and negatives. As the first work to conduct cross-level fusion, our approach shows substantial performance improvements over the vision-based baseline on the nuScenes dataset. It demonstrates its generalization capability over diverse noise levels of simulated object lists and real detectors.
3.384MPC-Guided Safe Reinforcement Learning and Lipschitz-Based Filtering for Structured Nonlinear Systems¶
2025/12/16 05:02 GTM
Modern engineering systems, such as autonomous vehicles, flexible robotics, and intelligent aerospace platforms, require controllers that are robust to uncertainties, adaptive to environmental changes, and safety-aware under real-time constraints. RL offers powerful data-driven adaptability for systems with nonlinear dynamics that interact with uncertain environments. RL, however, lacks built-in mechanisms for dynamic constraint satisfaction during exploration. MPC offers structured constraint handling and robustness, but its reliance on accurate models and computationally demanding online optimization may pose significant challenges. This paper proposes an integrated MPC-RL framework that combines stability and safety guarantees of MPC with the adaptability of RL. During training, MPC defines safe control bounds that guide the RL component and that enable constraint-aware policy learning. At deployment, the learned policy operates in real time with a lightweight safety filter based on Lipschitz continuity to ensure constraint satisfaction without heavy online optimizations. The approach, which is validated on a nonlinear aeroelastic wing system, demonstrates improved disturbance rejection, reduced actuator effort, and robust performance under turbulence. The architecture generalizes to other domains with structured nonlinearities and bounded disturbances, offering a scalable solution for safe artificial-intelligence-driven control in engineering applications.
3.385SAGA: Open-World Mobile Manipulation via Structured Affordance Grounding¶
2025/12/16 05:02 GTM
We present SAGA, a versatile and adaptive framework for visuomotor control that can generalize across various environments, task objectives, and user specifications. To efficiently learn such capability, our key idea is to disentangle high-level semantic intent from low-level visuomotor control by explicitly grounding task objectives in the observed environment. Using an affordance-based task representation, we express diverse and complex behaviors in a unified, structured form. By leveraging multimodal foundation models, SAGA grounds the proposed task representation to the robot’s visual observation as 3D affordance heatmaps, highlighting task-relevant entities while abstracting away spurious appearance variations that would hinder generalization. These grounded affordances enable us to effectively train a conditional policy on multi-task demonstration data for whole-body control. In a unified framework, SAGA can solve tasks specified in different forms, including language instructions, selected points, and example demonstrations, enabling both zero-shot execution and few-shot adaptation. We instantiate SAGA on a quadrupedal manipulator and conduct extensive experiments across eleven real-world tasks. SAGA consistently outperforms end-to-end and modular baselines by substantial margins. Together, these results demonstrate that structured affordance grounding offers a scalable and effective pathway toward generalist mobile manipulation.
3.386VLG-Loc: Vision-Language Global Localization from Labeled Footprint Maps¶
2025/12/16 05:02 GTM
This paper presents Vision-Language Global Localization (VLG-Loc), a novel global localization method that uses human-readable labeled footprint maps containing only names and areas of distinctive visual landmarks in an environment. While humans naturally localize themselves using such maps, translating this capability to robotic systems remains highly challenging due to the difficulty of establishing correspondences between observed landmarks and those in the map without geometric and appearance details. To address this challenge, VLG-Loc leverages a vision-language model (VLM) to search the robot’s multi-directional image observations for the landmarks noted in the map. The method then identifies robot poses within a Monte Carlo localization framework, where the found landmarks are used to evaluate the likelihood of each pose hypothesis. Experimental validation in simulated and real-world retail environments demonstrates superior robustness compared to existing scan-based methods, particularly under environmental changes. Further improvements are achieved through the probabilistic fusion of visual and scan-based localization.
3.387High Order Control Lyapunov Function - Control Barrier Function - Quadratic Programming Based Autonomous Driving Controller for Bicyclist Safety¶
2025/12/16 05:02 GTM
Ensuring the safety of Vulnerable Road Users (VRUs) is a critical challenge in the development of advanced autonomous driving systems in smart cities. Among vulnerable road users, bicyclists present unique characteristics that make their safety both critical and also manageable. Vehicles often travel at significantly higher relative speeds when interacting with bicyclists as compared to their interactions with pedestrians which makes collision avoidance system design for bicyclist safety more challenging. Yet, bicyclist movements are generally more predictable and governed by clear traffic rules as compared to the sudden and sometimes erratic pedestrian motion, offering opportunities for model-based control strategies. To address bicyclist safety in complex traffic environments, this study proposes and develops a High Order Control Lyapunov Function High Order Control Barrier Function Quadratic Programming (HOCLF HOCBF QP) control framework. Through this framework, CLFs constraints guarantee system stability so that the vehicle can track its reference trajectory, whereas CBFs constraints ensure system safety by letting vehicle avoiding potential collisions region with surrounding obstacles. Then by solving a QP problem, an optimal control command that simultaneously satisfies stability and safety requirements can be calculated. Three key bicyclist crash scenarios recorded in the Fatality Analysis Reporting System (FARS) are recreated and used to comprehensively evaluate the proposed autonomous driving bicyclist safety control strategy in a simulation study. Simulation results demonstrate that the HOCLF HOCBF QP controller can help the vehicle perform robust, and collision-free maneuvers, highlighting its potential for improving bicyclist safety in complex traffic environments.
3.388Making Robots Play by the Rules: The ROS 2 CLIPS-Executive¶
2025/12/16 05:02 GTM
CLIPS is a rule-based programming language for building knowledge-driven applications, well suited for the complex task of coordinating autonomous robots. Inspired by the CLIPS-Executive originally developed for the lesser known Fawkes robotics framework, we present an Integration of CLIPS into the ROS ecosystem. Additionally, we show the flexibility of CLIPS by describing a PDDL-based planning framework integration.
3.389HMPCC: Human-Aware Model Predictive Coverage Control¶
2025/12/16 05:02 GTM
We address the problem of coordinating a team of robots to cover an unknown environment while ensuring safe operation and avoiding collisions with non-cooperative agents. Traditional coverage strategies often rely on simplified assumptions, such as known or convex environments and static density functions, and struggle to adapt to real-world scenarios, especially when humans are involved. In this work, we propose a human-aware coverage framework based on Model Predictive Control (MPC), namely HMPCC, where human motion predictions are integrated into the planning process. By anticipating human trajectories within the MPC horizon, robots can proactively coordinate their actions %avoid redundant exploration, and adapt to dynamic conditions. The environment is modeled as a Gaussian Mixture Model (GMM), representing regions of interest. Team members operate in a fully decentralized manner, without relying on explicit communication, an essential feature in hostile or communication-limited scenarios. Our results show that human trajectory forecasting enables more efficient and adaptive coverage, improving coordination between human and robotic agents.
3.390Bayesian Optimization Parameter Tuning Framework for a Lyapunov Based Path Following Controller¶
2025/12/16 05:02 GTM
Parameter tuning in real-world experiments is constrained by the limited evaluation budget available on hardware. The path-following controller studied in this paper reflects a typical situation in nonlinear geometric controller, where multiple gains influence the dynamics through coupled nonlinear terms. Such interdependence makes manual tuning inefficient and unlikely to yield satisfactory performance within a practical number of trials. To address this challenge, we propose a Bayesian optimization (BO) framework that treats the closed-loop system as a black box and selects controller gains using a Gaussian-process surrogate. BO offers model-free exploration, quantified uncertainty, and data-efficient search, making it well suited for tuning tasks where each evaluation is costly. The framework is implemented on Honda’s AI-Formula three-wheeled robot and assessed through repeated full-lap experiments on a fixed test track. The results show that BO improves controller performance within 32 trials, including 15 warm-start initial evaluations, indicating that it can efficiently locate high-performing regions of the parameter space under real-world conditions. These findings demonstrate that BO provides a practical, reliable, and data-efficient tuning approach for nonlinear path-following controllers on real robotic platforms.
3.391Optimized Conflict Management for Urban Air Mobility Using Swarm UAV Networks¶
2025/12/16 05:02 GTM
Urban Air Mobility (UAM) poses unprecedented traffic coordination challenges, especially with increasing UAV densities in dense urban corridors. This paper introduces a mathematical model using a control algorithm to optimize an Edge AI-driven decentralized swarm architecture for intelligent conflict resolution, enabling real-time decision-making with low latency. Using lightweight neural networks, the system leverages edge nodes to perform distributed conflict detection and resolution. A simulation platform was developed to evaluate the scheme under various UAV densities. Results indicate that the conflict resolution time is dramatically minimized up to 3.8 times faster, and accuracy is enhanced compared to traditional centralized control models. The proposed architecture is highly promising for scalable, efficient, and safe aerial traffic management in future UAM systems.
3.392D3D-VLP: Dynamic 3D Vision-Language-Planning Model for Embodied Grounding and Navigation¶
2025/12/16 05:02 GTM
Embodied agents face a critical dilemma that end-to-end models lack interpretability and explicit 3D reasoning, while modular systems ignore cross-component interdependencies and synergies. To bridge this gap, we propose the Dynamic 3D Vision-Language-Planning Model (D3D-VLP). Our model introduces two key innovations: 1) A Dynamic 3D Chain-of-Thought (3D CoT) that unifies planning, grounding, navigation, and question answering within a single 3D-VLM and CoT pipeline; 2) A Synergistic Learning from Fragmented Supervision (SLFS) strategy, which uses a masked autoregressive loss to learn from massive and partially-annotated hybrid data. This allows different CoT components to mutually reinforce and implicitly supervise each other. To this end, we construct a large-scale dataset with 10M hybrid samples from 5K real scans and 20K synthetic scenes that are compatible with online learning methods such as RL and DAgger. Our D3D-VLP achieves state-of-the-art results on multiple benchmarks, including Vision-and-Language Navigation (R2R-CE, REVERIE-CE, NavRAG-CE), Object-goal Navigation (HM3D-OVON), and Task-oriented Sequential Grounding and Navigation (SG3D). Real-world mobile manipulation experiments further validate the effectiveness.
3.393Autonomously Unweaving Multiple Cables Using Visual Feedback¶
2025/12/16 05:02 GTM
Many cable management tasks involve separating out the different cables and removing tangles. Automating this task is challenging because cables are deformable and can have combinations of knots and multiple interwoven segments. Prior works have focused on untying knots in one cable, which is one subtask of cable management. However, in this paper, we focus on a different subtask called multi-cable unweaving, which refers to removing the intersections among multiple interwoven cables to separate them and facilitate further manipulation. We propose a method that utilizes visual feedback to unweave a bundle of loosely entangled cables. We formulate cable unweaving as a pick-and-place problem, where the grasp position is selected from discrete nodes in a graph-based cable state representation. Our cable state representation encodes both topological and geometric information about the cables from the visual image. To predict future cable states and identify valid actions, we present a novel state transition model that takes into account the straightening and bending of cables during manipulation. Using this state transition model, we select between two high-level action primitives and calculate predicted immediate costs to optimize the lower-level actions. We experimentally demonstrate that iterating the above perception-planning-action process enables unweaving electric cables and shoelaces with an 84% success rate on average.
3.394Sim2Real Reinforcement Learning for Soccer skills¶
2025/12/16 05:02 GTM
This thesis work presents a more efficient and effective approach to training control-related tasks for humanoid robots using Reinforcement Learning (RL). The traditional RL methods are limited in adapting to real-world environments, complexity, and natural motions, but the proposed approach overcomes these limitations by using curriculum training and Adversarial Motion Priors (AMP) technique. The results show that the developed RL policies for kicking, walking, and jumping are more dynamic, and adaptive, and outperformed previous methods. However, the transfer of the learned policy from simulation to the real world was unsuccessful, highlighting the limitations of current RL methods in fully adapting to real-world scenarios.
3.395Unifying Quadrotor Motion Planning and Control by Chaining Different Fidelity Models¶
2025/12/16 05:02 GTM
Many aerial tasks involving quadrotors demand both instant reactivity and long-horizon planning. High-fidelity models enable accurate control but are too slow for long horizons; low-fidelity planners scale but degrade closed-loop performance. We present Unique, a unified MPC that cascades models of different fidelity within a single optimization: a short-horizon, high-fidelity model for accurate control, and a long-horizon, low-fidelity model for planning. We align costs across horizons, derive feasibility-preserving thrust and body-rate constraints for the point-mass model, and introduce transition constraints that match the different states, thrust-induced acceleration, and jerk-body-rate relations. To prevent local minima emerging from nonsmooth clutter, we propose a 3D progressive smoothing schedule that morphs norm-based obstacles along the horizon. In addition, we deploy parallel randomly initialized MPC solvers to discover lower-cost local minima on the long, low-fidelity horizon. In simulation and real flights, under equal computational budgets, Unique improves closed-loop position or velocity tracking by up to 75% compared with standard MPC and hierarchical planner-tracker baselines. Ablations and Pareto analyses confirm robust gains across horizon variations, constraint approximations, and smoothing schedules.
3.396INDOOR-LiDAR: Bridging Simulation and Reality for Robot-Centric 360 degree Indoor LiDAR Perception -- A Robot-Centric Hybrid Dataset¶
2025/12/16 05:02 GTM
We present INDOOR-LIDAR, a comprehensive hybrid dataset of indoor 3D LiDAR point clouds designed to advance research in robot perception. Existing indoor LiDAR datasets often suffer from limited scale, inconsistent annotation formats, and human-induced variability during data collection. INDOOR-LIDAR addresses these limitations by integrating simulated environments with real-world scans acquired using autonomous ground robots, providing consistent coverage and realistic sensor behavior under controlled variations. Each sample consists of dense point cloud data enriched with intensity measurements and KITTI-style annotations. The annotation schema encompasses common indoor object categories within various scenes. The simulated subset enables flexible configuration of layouts, point densities, and occlusions, while the real-world subset captures authentic sensor noise, clutter, and domain-specific artifacts characteristic of real indoor settings. INDOOR-LIDAR supports a wide range of applications including 3D object detection, bird’s-eye-view (BEV) perception, SLAM, semantic scene understanding, and domain adaptation between simulated and real indoor domains. By bridging the gap between synthetic and real-world data, INDOOR-LIDAR establishes a scalable, realistic, and reproducible benchmark for advancing robotic perception in complex indoor environments.
3.397Programmable Deformation Design of Porous Soft Actuator through Volumetric-Pattern-Induced Anisotropy¶
2025/12/16 05:02 GTM
Conventional soft pneumatic actuators, typically based on hollow elastomeric chambers, often suffer from small structural support and require costly geometry-specific redesigns for multimodal functionality. Porous materials such as foam, filled into chambers, can provide structural stability for the actuators. However, methods to achieve programmable deformation by tailoring the porous body itself remain underexplored. In this paper, a novel design method is presented to realize soft porous actuators with programmable deformation by incising specific patterns into the porous foam body. This approach introduces localized structural anisotropy of the foam guiding the material’s deformation under a global vacuum input. Furthermore, three fundamental patterns on a cylindrical foam substrate are discussed: transverse for bending, longitudinal for tilting, and diagonal for twisting. A computational model is built with Finite Element Analysis (FEA), to investigate the mechanism of the incision-patterning method. Experiments demonstrate that with a potential optimal design of the pattern array number N, actuators can achieve bending up to (N=2), tilting of (N=1), and twisting of (N=8). The versatility of our approach is demonstrated via pattern transferability, scalability, and mold-less rapid prototyping of complex designs. As a comprehensive application, we translate the human hand crease map into a functional incision pattern, creating a bio-inspired soft robot hand capable of human-like adaptive grasping. Our work provides a new, efficient, and scalable paradigm for the design of multi-functional soft porous robots.
3.398From Human Intention to Action Prediction: A Comprehensive Benchmark for Intention-driven End-to-End Autonomous Driving¶
2025/12/16 05:02 GTM
Current end-to-end autonomous driving systems operate at a level of intelligence akin to following simple steering commands. However, achieving genuinely intelligent autonomy requires a paradigm shift: moving from merely executing low-level instructions to understanding and fulfilling high-level, abstract human intentions. This leap from a command-follower to an intention-fulfiller, as illustrated in our conceptual framework, is hindered by a fundamental challenge: the absence of a standardized benchmark to measure and drive progress on this complex task. To address this critical gap, we introduce Intention-Drive, the first comprehensive benchmark designed to evaluate the ability to translate high-level human intent into safe and precise driving actions. Intention-Drive features two core contributions: (1) a new dataset of complex scenarios paired with corresponding natural language intentions, and (2) a novel evaluation protocol centered on the Intent Success Rate (ISR), which assesses the semantic fulfillment of the human’s goal beyond simple geometric accuracy. Through an extensive evaluation of a spectrum of baseline models on Intention-Drive, we reveal a significant performance deficit, showing that the baseline model struggle to achieve the comprehensive scene and intention understanding required for this advanced task.
3.399CAR-CHASE: Car-Like Robot Conflict-Aware Heuristic Adaptive Search Enhancement¶
2025/12/16 05:02 GTM
Multi-Agent Path Finding (MAPF) for car-like robots, addressed by algorithms such as Conflict-Based Search with Continuous Time (CL-CBS), faces significant computational challenges due to expensive kinematic heuristic calculations. Traditional heuristic caching assumes that the heuristic function depends only on the state, which is incorrect in CBS where constraints from conflict resolution make the search space context-dependent. We propose \textbf{CAR-CHASE} (Car-Like Robot Conflict-Aware Heuristic Adaptive Search Enhancement), a novel approach that combines \textbf{conflict-aware heuristic caching} -- which caches heuristic values based on both state and relevant constraint context -- with an \textbf{adaptive hybrid heuristic} that intelligently switches between fast approximate and exact computations. Our key innovations are (1) a compact \emph{conflict fingerprint} that efficiently encodes which constraints affect a state’s heuristic, (2) a relevance filter using spatial, temporal, and geometric criteria, and (3) an adaptive switching strategy with theoretical quality bounds. Experimental evaluation on 480 benchmark instances with varying agent counts (10 to 30) and obstacle densities (0% and 50%) demonstrates a geometric mean speedup of 2.46 over the baseline CL-CBS implementation while maintaining solution optimality. The optimizations improve success rate from 77.9% to 84.8% (+6.9 percentage points), reduce total runtime by 70.1%, and enable solving 33 additional instances that previously timed out. Performance gains scale with problem complexity, reaching up to 4.06 speedup for challenging 30-agent obstacle scenarios. Our techniques are general and applicable to other CBS variants.
3.400Robust Underwater Localization of Buoyancy Driven microFloats Using Acoustic Time-of-Flight Measurements¶
2025/12/16 05:02 GTM
Accurate underwater localization remains a challenge for inexpensive autonomous platforms that require highfrequency position updates. In this paper, we present a robust, low-cost localization pipeline for buoyancy-driven microFloats operating in coastal waters. We build upon previous work by introducing a bidirectional acoustic Time-of-Flight (ToF) localization framework, which incorporates both float-to-buoy and buoy-to-float transmissions, thereby increasing the number of usable measurements. The method integrates nonlinear trilateration with a filtering of computed position estimates based on geometric cost and Cramer-Rao Lower Bounds (CRLB). This approach removes outliers caused by multipath effects and other acoustic errors from the ToF estimation and improves localization robustness without relying on heavy smoothing. We validate the framework in two field deployments in Puget Sound, Washington, USA. The localization pipeline achieves median positioning errors below 4 m relative to GPS positions. The filtering technique shows a reduction in mean error from 139.29 m to 12.07 m, and improved alignment of trajectories with GPS paths. Additionally, we demonstrate a Time-Difference-of-Arrival (TDoA) localization for unrecovered floats that were transmitting during the experiment. Range-based acoustic localization techniques are widely used and generally agnostic to hardware-this work aims to maximize their utility by improving positioning frequency and robustness through careful algorithmic design.
3.401Learning to Get Up Across Morphologies: Zero-Shot Recovery with a Unified Humanoid Policy¶
2025/12/16 05:02 GTM
Fall recovery is a critical skill for humanoid robots in dynamic environments such as RoboCup, where prolonged downtime often decides the match. Recent techniques using deep reinforcement learning (DRL) have produced robust get-up behaviors, yet existing methods require training of separate policies for each robot morphology. This paper presents a single DRL policy capable of recovering from falls across seven humanoid robots with diverse heights (0.48 - 0.81 m), weights (2.8 - 7.9 kg), and dynamics. Trained with CrossQ, the unified policy transfers zero-shot up to 86 +/- 7% (95% CI [81, 89]) on unseen morphologies, eliminating the need for robot-specific training. Comprehensive leave-one-out experiments, morph scaling analysis, and diversity ablations show that targeted morphological coverage improves zero-shot generalization. In some cases, the shared policy even surpasses the specialist baselines. These findings illustrate the practicality of morphology-agnostic control for fall recovery, laying the foundation for generalist humanoid control. The software is open-source and available at: https://
3.402Semantic Zone based 3D Map Management for Mobile Robot¶
2025/12/16 05:02 GTM
Mobile robots in large-scale indoor environments, such as hospitals and logistics centers, require accurate 3D spatial representations. However, 3D maps consume substantial memory, making it difficult to maintain complete map data within limited computational resources. Existing SLAM frameworks typically rely on geometric distance or temporal metrics for memory management, often resulting in inefficient data retrieval in spatially compartmentalized environments. To address this, we propose a semantic zone-based 3D map management method that shifts the paradigm from geometry-centric to semantics-centric control. Our approach partitions the environment into meaningful spatial units (e.g., lobbies, hallways) and designates these zones as the primary unit for memory management. By dynamically loading only task-relevant zones into Working Memory (WM) and offloading inactive zones to Long-Term Memory (LTM), the system strictly enforces user-defined memory thresholds. Implemented within the RTAB-Map framework, our method demonstrates substantial reductions in unnecessary signature load/unload cycles and cumulative memory utilization compared to standard approaches. The results confirm that semantic zone-based management ensures stable, predictable memory usage while preserving map availability for navigation. Code is available at: https://
3.403Measuring What Matters: Scenario-Driven Evaluation for Trajectory Predictors in Autonomous Driving¶
2025/12/16 05:02 GTM
Being able to anticipate the motion of surrounding agents is essential for the safe operation of autonomous driving systems in dynamic situations. While various methods have been proposed for trajectory prediction, the current evaluation practices still rely on error-based metrics (e.g., ADE, FDE), which reveal the accuracy from a post-hoc view but ignore the actual effect the predictor brings to the self-driving vehicles (SDVs), especially in complex interactive scenarios: a high-quality predictor not only chases accuracy, but should also captures all possible directions a neighbor agent might move, to support the SDVs’ cautious decision-making. Given that the existing metrics hardly account for this standard, in our work, we propose a comprehensive pipeline that adaptively evaluates the predictor’s performance by two dimensions: accuracy and diversity. Based on the criticality of the driving scenario, these two dimensions are dynamically combined and result in a final score for the predictor’s performance. Extensive experiments on a closed-loop benchmark using real-world datasets show that our pipeline yields a more reasonable evaluation than traditional metrics by better reflecting the correlation of the predictors’ evaluation with the autonomous vehicles’ driving performance. This evaluation pipeline shows a robust way to select a predictor that potentially contributes most to the SDV’s driving performance.
3.404A Hybrid Deep Learning Framework for Emotion Recognition in Children with Autism During NAO Robot-Mediated Interaction¶
2025/12/16 05:02 GTM
Understanding emotional responses in children with Autism Spectrum Disorder (ASD) during social interaction remains a critical challenge in both developmental psychology and human-robot interaction. This study presents a novel deep learning pipeline for emotion recognition in autistic children in response to a name-calling event by a humanoid robot (NAO), under controlled experimental settings. The dataset comprises of around 50,000 facial frames extracted from video recordings of 15 children with ASD. A hybrid model combining a fine-tuned ResNet-50-based Convolutional Neural Network (CNN) and a three-layer Graph Convolutional Network (GCN) trained on both visual and geometric features extracted from MediaPipe FaceMesh landmarks. Emotions were probabilistically labeled using a weighted ensemble of two models: DeepFace’s and FER, each contributing to soft-label generation across seven emotion classes. Final classification leveraged a fused embedding optimized via Kullback-Leibler divergence. The proposed method demonstrates robust performance in modeling subtle affective responses and offers significant promise for affective profiling of ASD children in clinical and therapeutic human-robot interaction contexts, as the pipeline effectively captures micro emotional cues in neurodivergent children, addressing a major gap in autism-specific HRI research. This work represents the first such large-scale, real-world dataset and pipeline from India on autism-focused emotion analysis using social robotics, contributing an essential foundation for future personalized assistive technologies.
3.405Navigation Around Unknown Space Objects Using Visible-Thermal Image Fusion¶
2025/12/16 05:02 GTM
As the popularity of on-orbit operations grows, so does the need for precise navigation around unknown resident space objects (RSOs) such as other spacecraft, orbital debris, and asteroids. The use of Simultaneous Localization and Mapping (SLAM) algorithms is often studied as a method to map out the surface of an RSO and find the inspector’s relative pose using a lidar or conventional camera. However, conventional cameras struggle during eclipse or shadowed periods, and lidar, though robust to lighting conditions, tends to be heavier, bulkier, and more power-intensive. Thermal-infrared cameras can track the target RSO throughout difficult illumination conditions without these limitations. While useful, thermal-infrared imagery lacks the resolution and feature-richness of visible cameras. In this work, images of a target satellite in low Earth orbit are photo-realistically simulated in both visible and thermal-infrared bands. Pixel-level fusion methods are used to create visible/thermal-infrared composites that leverage the best aspects of each camera. Navigation errors from a monocular SLAM algorithm are compared between visible, thermal-infrared, and fused imagery in various lighting and trajectories. Fused imagery yields substantially improved navigation performance over visible-only and thermal-only methods.
3.406B-ActiveSEAL: Scalable Uncertainty-Aware Active Exploration with Tightly Coupled Localization-Mapping¶
2025/12/16 05:02 GTM
Active robot exploration requires decision-making processes that integrate localization and mapping under tightly coupled uncertainty. However, managing these interdependent uncertainties over long-term operations in large-scale environments rapidly becomes computationally intractable. To address this challenge, we propose B-ActiveSEAL, a scalable information-theoretic active exploration framework that explicitly accounts for coupled uncertainties-from perception through mapping-into the decision-making process. Our framework (i) adaptively balances map uncertainty (exploration) and localization uncertainty (exploitation), (ii) accommodates a broad class of generalized entropy measures, enabling flexible and uncertainty-aware active exploration, and (iii) establishes Behavioral entropy (BE) as an effective information measure for active exploration by enabling intuitive and adaptive decision-making under coupled uncertainties. We establish a theoretical foundation for propagating coupled uncertainties and integrating them into general entropy formulations, enabling uncertainty-aware active exploration under tightly coupled localization-mapping. The effectiveness of the proposed approach is validated through rigorous theoretical analysis and extensive experiments on open-source maps and ROS-Unity simulations across diverse and complex environments. The results demonstrate that B-ActiveSEAL achieves a well-balanced exploration-exploitation trade-off and produces diverse, adaptive exploration behaviors across environments, highlighting clear advantages over representative baselines.
3.407A Stochastic Approach to Terrain Maps for Safe Lunar Landing¶
2025/12/16 05:02 GTM
Safely landing on the lunar surface is a challenging task, especially in the heavily-shadowed South Pole region where traditional vision-based hazard detection methods are not reliable. The potential existence of valuable resources at the lunar South Pole has made landing in that region a high priority for many space agencies and commercial companies. However, relying on a LiDAR for hazard detection during descent is risky, as this technology is fairly untested in the lunar environment. There exists a rich log of lunar surface data from the Lunar Reconnaissance Orbiter (LRO), which could be used to create informative prior maps of the surface before descent. In this work, we propose a method for generating stochastic elevation maps from LRO data using Gaussian processes (GPs), which are a powerful Bayesian framework for non-parametric modeling that produce accompanying uncertainty estimates. In high-risk environments such as autonomous spaceflight, interpretable estimates of terrain uncertainty are critical. However, no previous approaches to stochastic elevation mapping have taken LRO Digital Elevation Model (DEM) confidence maps into account, despite this data containing key information about the quality of the DEM in different areas. To address this gap, we introduce a two-stage GP model in which a secondary GP learns spatially varying noise characteristics from DEM confidence data. This heteroscedastic information is then used to inform the noise parameters for the primary GP, which models the lunar terrain. Additionally, we use stochastic variational GPs to enable scalable training. By leveraging GPs, we are able to more accurately model the impact of heteroscedastic sensor noise on the resulting elevation map. As a result, our method produces more informative terrain uncertainty, which can be used for downstream tasks such as hazard detection and safe landing site selection.
3.408Goal Reaching with Eikonal-Constrained Hierarchical Quasimetric Reinforcement Learning¶
2025/12/16 05:02 GTM
Goal-Conditioned Reinforcement Learning (GCRL) mitigates the difficulty of reward design by framing tasks as goal reaching rather than maximizing hand-crafted reward signals. In this setting, the optimal goal-conditioned value function naturally forms a quasimetric, motivating Quasimetric RL (QRL), which constrains value learning to quasimetric mappings and enforces local consistency through discrete, trajectory-based constraints. We propose Eikonal-Constrained Quasimetric RL (Eik-QRL), a continuous-time reformulation of QRL based on the Eikonal Partial Differential Equation (PDE). This PDE-based structure makes Eik-QRL trajectory-free, requiring only sampled states and goals, while improving out-of-distribution generalization. We provide theoretical guarantees for Eik-QRL and identify limitations that arise under complex dynamics. To address these challenges, we introduce Eik-Hierarchical QRL (Eik-HiQRL), which integrates Eik-QRL into a hierarchical decomposition. Empirically, Eik-HiQRL achieves state-of-the-art performance in offline goal-conditioned navigation and yields consistent gains over QRL in manipulation tasks, matching temporal-difference methods.
3.409Modified Hybrid A* Collision-Free Path-Planning for Automated Reverse Parking¶
2025/12/16 05:02 GTM
Parking a vehicle in tight spaces is a challenging task to perform due to the scarcity of feasible paths that are also collision-free. This paper presents a strategy to tackle this kind of maneuver with a modified Hybrid-A* path-planning algorithm that combines the feasibility guarantee inherent in the standard Hybrid A* algorithm with the addition of static obstacle collision avoidance. A kinematic single-track model is derived to describe the low-speed motion of the vehicle, which is subsequently used as the motion model in the Hybrid A* path-planning algorithm to generate feasible motion primitive branches. The model states are also used to reconstruct the vehicle centerline, which, in conjunction with an inflated binary occupancy map, facilitates static obstacle collision avoidance functions. Simulation study and animation are set up to test the efficacy of the approach, and the proposed algorithm proves to consistently provide kinematically feasible trajectories that are also collision-free.
3.410Semantic-Drive: Democratizing Long-Tail Data Curation via Open-Vocabulary Grounding and Neuro-Symbolic VLM Consensus¶
2025/12/16 05:02 GTM
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of “Long-Tail” training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a “System 2” inference-time alignment strategy, utilizing a multi-model “Judge-Scout” consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% compared to single models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
3.411Taylor-Lagrange Control for Safety-Critical Systems¶
2025/12/16 05:02 GTM
This paper proposes a novel Taylor-Lagrange Control (TLC) method for nonlinear control systems to ensure the safety and stability through Taylor’s theorem with Lagrange remainder. To achieve this, we expand a safety or stability function with respect to time along the system dynamics using the Lie derivative and Taylor’s theorem. This expansion enables the control input to appear in the Taylor series at an order equivalent to the relative degree of the function. We show that the proposed TLC provides necessary and sufficient conditions for system safety and is applicable to systems and constraints of arbitrary relative degree. The TLC exhibits connections with existing Control Barrier Function (CBF) and Control Lyapunov Function (CLF) methods, and it further extends the CBF and CLF methods to the complex domain, especially for higher order cases. Compared to High-Order CBFs (HOCBFs), TLC is less restrictive as it does not require forward invariance of the intersection of a set of safe sets while HOCBFs do. We employ TLC to reformulate a constrained optimal control problem as a sequence of quadratic programs with a zero-order hold implementation method, and demonstrate the safety of zero-order hold TLC using an event-triggered control method to address inter-sampling effects. Finally, we illustrate the effectiveness of the proposed TLC method through an adaptive cruise control system and a robot control problem, and compare it with existing CBF methods.
3.412A Review of Learning-Based Motion Planning: Toward a Data-Driven Optimal Control Approach¶
2025/12/16 05:02 GTM
Motion planning for high-level autonomous driving is constrained by a fundamental trade-off between the transparent, yet brittle, nature of pipeline methods and the adaptive, yet opaque, “black-box” characteristics of modern learning-based systems. This paper critically synthesizes the evolution of the field -- from pipeline methods through imitation learning, reinforcement learning, and generative AI -- to demonstrate how this persistent dilemma has hindered the development of truly trustworthy systems. To resolve this impasse, we conduct a comprehensive review of learning-based motion planning methods. Based on this review, we outline a data-driven optimal control paradigm as a unifying framework that synergistically integrates the verifiable structure of classical control with the adaptive capacity of machine learning, leveraging real-world data to continuously refine key components such as system dynamics, cost functions, and safety constraints. We explore this framework’s potential to enable three critical next-generation capabilities: “Human-Centric” customization, “Platform-Adaptive” dynamics adaptation, and “System Self-Optimization” via self-tuning. We conclude by proposing future research directions based on this paradigm, aimed at developing intelligent transportation systems that are simultaneously safe, interpretable, and capable of human-like autonomy.
3.413Towards Accessible Physical AI: LoRA-Based Fine-Tuning of VLA Models for Real-World Robot Control¶
2025/12/16 05:02 GTM
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in robotic manipulation,enabling robots to execute natural language commands through end-to-end learning from visual observations.However, deploying large-scale VLA models on affordable robotic platforms remains challenging due to computational constraints and the need for efficient adaptation to new robot embodiments. This paper presents an efficient fine-tuning methodology and real-world deployment analysis for adapting VLA models to low-cost robotic manipulation systems.We propose a resource-efficient fine-tuning strategy using Low-Rank Adaptation (LoRA) and quantization techniques that enable multi-billion parameter VLA models ( 3.1B parameters) to run on consumer-grade GPUs with 8GB VRAM. Our methodology addresses the critical challenge of adapting pre-trained VLA models to new robot embodiments with limited demonstration data, focusing on the trade-offs between frozen and unfrozen vision encoders. Through real-world deployment on the SO101 robotic arm for a button-pressing manipulation task, we demonstrate that our approach achieves effective manipulation performance while maintaining computational efficiency. We provide detailed analysis of deployment challenges, failure modes, and the relationship between training data quantity and real-world performance,trained on 200 demonstration episodes. Our results show that with proper fine-tuning methodology, VLA models can be successfully deployed on affordable robotic platforms,making advanced manipulation capabilities accessible beyond expensive research robots.
3.414Safe Learning for Contact-Rich Robot Tasks: A Survey from Classical Learning-Based Methods to Safe Foundation Models¶
2025/12/16 05:02 GTM
Contact-rich tasks pose significant challenges for robotic systems due to inherent uncertainty, complex dynamics, and the high risk of damage during interaction. Recent advances in learning-based control have shown great potential in enabling robots to acquire and generalize complex manipulation skills in such environments, but ensuring safety, both during exploration and execution, remains a critical bottleneck for reliable real-world deployment. This survey provides a comprehensive overview of safe learning-based methods for robot contact-rich tasks. We categorize existing approaches into two main domains: safe exploration and safe execution. We review key techniques, including constrained reinforcement learning, risk-sensitive optimization, uncertainty-aware modeling, control barrier functions, and model predictive safety shields, and highlight how these methods incorporate prior knowledge, task structure, and online adaptation to balance safety and efficiency. A particular emphasis of this survey is on how these safe learning principles extend to and interact with emerging robotic foundation models, especially vision-language models (VLMs) and vision-language-action models (VLAs), which unify perception, language, and control for contact-rich manipulation. We discuss both the new safety opportunities enabled by VLM/VLA-based methods, such as language-level specification of constraints and multimodal grounding of safety signals, and the amplified risks and evaluation challenges they introduce. Finally, we outline current limitations and promising future directions toward deploying reliable, safety-aligned, and foundation-model-enabled robots in complex contact-rich environments. More details and materials are available at our \href{ https://
3.415Aion: Towards Hierarchical 4D Scene Graphs with Temporal Flow Dynamics¶
2025/12/16 05:02 GTM
Autonomous navigation in dynamic environments requires spatial representations that capture both semantic structure and temporal evolution. 3D Scene Graphs (3DSGs) provide hierarchical multi-resolution abstractions that encode geometry and semantics, but existing extensions toward dynamics largely focus on individual objects or agents. In parallel, Maps of Dynamics (MoDs) model typical motion patterns and temporal regularities, yet are usually tied to grid-based discretizations that lack semantic awareness and do not scale well to large environments. In this paper we introduce Aion, a framework that embeds temporal flow dynamics directly within a hierarchical 3DSG, effectively incorporating the temporal dimension. Aion employs a graph-based sparse MoD representation to capture motion flows over arbitrary time intervals and attaches them to navigational nodes in the scene graph, yielding more interpretable and scalable predictions that improve planning and interaction in complex dynamic environments.
3.416Data-driven Interpretable Hybrid Robot Dynamics¶
2025/12/16 05:02 GTM
We study data-driven identification of interpretable hybrid robot dynamics, where an analytical rigid-body dynamics model is complemented by a learned residual torque term. Using symbolic regression and sparse identification of nonlinear dynamics (SINDy), we recover compact closed-form expressions for this residual from joint-space data. In simulation on a 7-DoF Franka arm with known dynamics, these interpretable models accurately recover inertial, Coriolis, gravity, and viscous effects with very small relative error and outperform neural-network baselines in both accuracy and generalization. On real data from a 7-DoF WAM arm, symbolic-regression residuals generalize substantially better than SINDy and neural networks, which tend to overfit, and suggest candidate new closed-form formulations that extend the nominal dynamics model for this robot. Overall, the results indicate that interpretable residual dynamics models provide compact, accurate, and physically meaningful alternatives to black-box function approximators for torque prediction.
3.417VLSA: Vision-Language-Action Models with Plug-and-Play Safety Constraint Layer¶
2025/12/16 05:02 GTM
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in generalizing across diverse robotic manipulation tasks. However, deploying these models in unstructured environments remains challenging due to the critical need for simultaneous task compliance and safety assurance, particularly in preventing potential collisions during physical interactions. In this work, we introduce a Vision-Language-Safe Action (VLSA) architecture, named AEGIS, which contains a plug-and-play safety constraint (SC) layer formulated via control barrier functions. AEGIS integrates directly with existing VLA models to improve safety with theoretical guarantees, while maintaining their original instruction-following performance. To evaluate the efficacy of our architecture, we construct a comprehensive safety-critical benchmark SafeLIBERO, spanning distinct manipulation scenarios characterized by varying degrees of spatial complexity and obstacle intervention. Extensive experiments demonstrate the superiority of our method over state-of-the-art baselines. Notably, AEGIS achieves a 59.16% improvement in obstacle avoidance rate while substantially increasing the task execution success rate by 17.25%. To facilitate reproducibility and future research, we make our code, models, and the benchmark datasets publicly available at https://
3.418Enabling Autonomous Navigation in a Snake Robot through Visual-Inertial Odometry and Closed-Loop Trajectory Tracking Control¶
2025/12/16 05:02 GTM
Snake robots offer exceptional mobility across extreme terrain inaccessible to conventional rovers, yet their highly articulated bodies present fundamental challenges for autonomous navigation in environments lacking external tracking infrastructure. This thesis develops a complete autonomy pipeline for COBRA, an 11 degree-of-freedom modular snake robot designed for planetary exploration. While the robot’s biologically inspired serpentine gaits achieve impressive mobility, prior work has relied entirely on open-loop teleoperation. This approach integrates onboard visual-inertial SLAM, reduced-order state estimation, and closed-loop trajectory tracking to enable autonomous waypoint navigation. A depth camera paired with edge computing performs real-time localization during dynamic locomotion, validated against motion-capture ground truth to characterize drift behavior and failure modes unique to snake robot platforms. A reduced-order framework estimates Center-of-Mass pose, driving a closed-loop controller that modulates CPG gait parameters through distance-dependent yaw error blending. Physical experiments validate the complete system, demonstrating accurate multi-waypoint tracking and establishing foundations for autonomous snake robot navigation.
3.419Traversability Aware Autonomous Navigation for Multi-Modal Mobility Morphobot (M4)¶
2025/12/16 05:02 GTM
Autonomous navigation in unstructured environments requires robots to assess terrain difficulty in real-time and plan paths that balance efficiency with safety. This thesis presents a traversability-aware navigation framework for the M4 robot platform that uses learned terrain analy- sis to generate energy-efficient paths avoiding difficult terrain.Our approach uses FAST-LIO for real- time localization, generating 2.5D elevation maps from LiDAR point clouds. A CNN-based model processes these elevation maps to estimate traversability scores, which are converted into navigation costs for path planning. A custom A* planner incorporates these costs alongside geometric distance and energy consumption to find paths that trade modest distance increases for substantial terrain quality improvements. Before system development, a platform-agnostic study compared LiDAR- based and camera-based SLAM using OptiTrack ground truth. Point cloud comparison through ICP alignment and cloud-to-mesh distance analysis demonstrated that LiDAR-based mapping achieves centimeter-level precision essential for elevation mapping, while camera-based approaches exhib- ited significantly higher geometric error. These findings directly resulted in the selection of LiDAR as the primary sensor to generate elevation maps. The complete pipeline integrates FAST-LIO localization, GPU-accelerated elevation mapping, CNN-based traversability estimation, and Nav2 navigation with a custom traversability-aware planner. Experimental results demonstrate that the system successfully avoids low traversability regions and accepts a few longer paths to achieve a reduction in terrain cost. This work establishes a foundation for intelligent terrain-aware navigation applicable to multi-modal robotic platforms.
3.420Audio-Based Tactile Human-Robot Interaction Recognition¶
2025/12/16 05:02 GTM
This study explores the use of microphones placed on a robot’s body to detect tactile interactions via sounds produced when the hard shell of the robot is touched. This approach is proposed as an alternative to traditional methods using joint torque sensors or 6-axis force/torque sensors. Two Adafruit I2S MEMS microphones integrated with a Raspberry Pi 4 were positioned on the torso of a Pollen Robotics Reachy robot to capture audio signals from various touch types on the robot arms (tapping, knocking, rubbing, stroking, scratching, and pressing). A convolutional neural network was trained for touch classification on a dataset of 336 pre-processed samples (48 samples per touch type). The model shows high classification accuracy between touch types with distinct acoustic dominant frequencies.
3.421WAM-Diff: A Masked Diffusion VLA Framework with MoE and Online Reinforcement Learning for Autonomous Driving¶
2025/12/16 05:02 GTM
End-to-end autonomous driving systems based on vision-language-action (VLA) models integrate multimodal sensor inputs and language instructions to generate planning and control signals. While autoregressive large language models and continuous diffusion policies are prevalent, the potential of discrete masked diffusion for trajectory generation remains largely unexplored. This paper presents WAM-Diff, a VLA framework that employs masked diffusion to iteratively refine a discrete sequence representing future ego-trajectories. Our approach features three key innovations: a systematic adaptation of masked diffusion for autonomous driving that supports flexible, non-causal decoding orders; scalable model capacity via a sparse MoE architecture trained jointly on motion prediction and driving-oriented visual question answering (VQA); and online reinforcement learning using Group Sequence Policy Optimization (GSPO) to optimize sequence-level driving rewards. Remarkably, our model achieves 91.0 PDMS on NAVSIM-v1 and 89.7 EPDMS on NAVSIM-v2, demonstrating the effectiveness of masked diffusion for autonomous driving. The approach provides a promising alternative to autoregressive and diffusion-based policies, supporting scenario-aware decoding strategies for trajectory generation. The code for this paper will be released publicly at: https://
3.422Explainable Adversarial-Robust Vision-Language-Action Model for Robotic Manipulation¶
2025/12/16 05:02 GTM
Smart farming has emerged as a key technology for advancing modern agriculture through automation and intelligent control. However, systems relying on RGB cameras for perception and robotic manipulators for control, common in smart farming, are vulnerable to photometric perturbations such as hue, illumination, and noise changes, which can cause malfunction under adversarial attacks. To address this issue, we propose an explainable adversarial-robust Vision-Language-Action model based on the OpenVLA-OFT framework. The model integrates an Evidence-3 module that detects photometric perturbations and generates natural language explanations of their causes and effects. Experiments show that the proposed model reduces Current Action L1 loss by 21.7% and Next Actions L1 loss by 18.4% compared to the baseline, demonstrating improved action prediction accuracy and explainability under adversarial conditions.
3.423Car-following Models and Congestion Control with Followerstopper on a Ring-Road under Known Delay -- Examining Limit Cycle¶
2025/12/16 05:02 GTM
This paper examines the IDM microscopic car-following model from a dynamical systems perspective, analyzing the effects of delay on congestion formation. Further, a case of mixed-autonomy is considered by controlling one car with Followerstopper in a ring road setting containing IDM vehicles as human drivers. Specifically, the stop-and-go waves phenomenon in idealized traffic from a dynamical systems perspective is examined. We show that Followerstopper-controlled vehicle is effective at eliminating emergent stop-and-go waves in the IDM traffic simulation. We show through simulation that the uniform flow manifold is unstable for the ring road simulation with IDM vehicles, and that replacing a single car with Followerstopper induces stability, allowing the cars to drive safely at a uniform speed. Additionally, the case of known delay is considered in a mixed-autonomy scenario. Our simulation result shows that while considering a known time delay, traffic waves emerge earlier than in the no-delay case. At the same time, a single-vehicle controlled using Followerstopper controller is able to prevent the emergence of traffic waves even in the presence of delay.
3.424ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision¶
2025/12/16 05:02 GTM
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves \SI{96.73}{\percent} grasp classification accuracy with sub-\SI{40.00}{\milli\second} end-to-end latency. Physical validation using standardized benchmarks shows \SI{82.71}{\percent} success on YCB object manipulation and reliable performance across \SI{27.00}{} Activities of Daily Living (ADL) tasks. With a total cost under $\SI{250.00}{} and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
3.425Benchmarking Tesla’s Traffic Light and Stop Sign Control: Field Dataset and Behavior Insights¶
2025/12/16 05:02 GTM
Understanding how Advanced Driver-Assistance Systems (ADAS) interact with Traffic Control Devices (TCDs) is critical for assessing their influence on traffic operations, yet this interaction has received little focused empirical study. This paper presents a field dataset and behavioral analysis of Tesla’s Traffic Light and Stop Sign Control (TLSSC), a mature ADAS that perceives traffic lights and stop signs. We design and execute experiments across varied speed limits and TCD types, collecting synchronized high-resolution vehicle trajectory data and driver-perspective video. From these data, we develop a taxonomy of TLSSC-TCD interaction behaviors (i.e., stopping, accelerating, and car following) and calibrate the Full Velocity Difference Model (FVDM) to quantitatively characterize each behavior mode. A novel empirical insight is the identification of a car-following threshold (~90 m). Calibration results reveal that stopping behavior is driven by strong responsiveness to both desired speed deviation and relative speed, whereas accelerating behavior is more conservative. Intersection car-following behavior exhibits smoother dynamics and tighter headways compared to standard car-following behaviors. The established dataset, behavior definitions, and model characterizations together provide a foundation for future simulation, safety evaluation, and design of ADAS-TCD interaction logic. Our dataset is available at GitHub.
- Li, P., Mavromatis, I., Ajith, S., Farnham, T., Aijaz, A., & Khan, A. (2025). Multi-Year Urban Streetlight Image Collection for Visual Monitoring and Drift Analysis (Part 1/2). Zenodo. 10.5281/ZENODO.17781192
- Li, P., Mavromatis, I., Ajith, S., Farnham, T., Aijaz, A., & Khan, A. (2025). Multi-Year Urban Streetlight Image Collection for Visual Monitoring and Drift Analysis (Part 2/2). Zenodo. 10.5281/ZENODO.17859120