Generated at 2025-12-22 05:05:36
We have 187 news from different sources.
2paper¶
2.1Both Semantics and Reconstruction Matter: Making Representation Encoders Ready for Text-to-Image Generation and Editing¶
2025/12/22 05:04 GTM
Modern Latent Diffusion Models (LDMs) typically operate in low-level Variational Autoencoder (VAE) latent spaces that are primarily optimized for pixel-level reconstruction. To unify vision generation and understanding, a burgeoning trend is to adopt high-dimensional features from representation encoders as generative latents. However, we empirically identify two fundamental obstacles in this paradigm: (1) the discriminative feature space lacks compact regularization, making diffusion models prone to off-manifold latents that lead to inaccurate object structures; and (2) the encoder’s inherently weak pixel-level reconstruction hinders the generator from learning accurate fine-grained geometry and texture. In this paper, we propose a systematic framework to adapt understanding-oriented encoder features for generative tasks. We introduce a semantic-pixel reconstruction objective to regularize the latent space, enabling the compression of both semantic information and fine-grained details into a highly compact representation (96 channels with 16x16 spatial downsampling). This design ensures that the latent space remains semantically rich and achieves state-of-the-art image reconstruction, while remaining compact enough for accurate generation. Leveraging this representation, we design a unified Text-to-Image (T2I) and image editing model. Benchmarking against various feature spaces, we demonstrate that our approach achieves state-of-the-art reconstruction, faster convergence, and substantial performance gains in both T2I and editing tasks, validating that representation encoders can be effectively adapted into robust generative components.
2.2Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting¶
2025/12/22 05:04 GTM
Monocular depth estimation remains challenging as recent foundation models, such as Depth Anything V2 (DA-V2), struggle with real-world images that are far from the training distribution. We introduce Re-Depth Anything, a test-time self-supervision framework that bridges this domain gap by fusing DA-V2 with the powerful priors of large-scale 2D diffusion models. Our method performs label-free refinement directly on the input image by re-lighting predicted depth maps and augmenting the input. This re-synthesis method replaces classical photometric reconstruction by leveraging shape from shading (SfS) cues in a new, generative context with Score Distillation Sampling (SDS). To prevent optimization collapse, our framework employs a targeted optimization strategy: rather than optimizing depth directly or fine-tuning the full model, we freeze the encoder and only update intermediate embeddings while also fine-tuning the decoder. Across diverse benchmarks, Re-Depth Anything yields substantial gains in depth accuracy and realism over the DA-V2, showcasing new avenues for self-supervision by augmenting geometric reasoning.
2.3Dexterous World Models¶
2025/12/22 05:04 GTM
Recent progress in 3D reconstruction has made it easy to create realistic digital twins from everyday environments. However, current digital twins remain largely static and are limited to navigation and view synthesis without embodied interactivity. To bridge this gap, we introduce Dexterous World Model (DWM), a scene-action-conditioned video diffusion framework that models how dexterous human actions induce dynamic changes in static 3D scenes. Given a static 3D scene rendering and an egocentric hand motion sequence, DWM generates temporally coherent videos depicting plausible human-scene interactions. Our approach conditions video generation on (1) static scene renderings following a specified camera trajectory to ensure spatial consistency, and (2) egocentric hand mesh renderings that encode both geometry and motion cues to model action-conditioned dynamics directly. To train DWM, we construct a hybrid interaction video dataset. Synthetic egocentric interactions provide fully aligned supervision for joint locomotion and manipulation learning, while fixed-camera real-world videos contribute diverse and realistic object dynamics. Experiments demonstrate that DWM enables realistic and physically plausible interactions, such as grasping, opening, and moving objects, while maintaining camera and scene consistency. This framework represents a first step toward video diffusion-based interactive digital twins and enables embodied simulation from egocentric actions.
2.4Adversarial Robustness of Vision in Open Foundation Models¶
2025/12/22 05:04 GTM
With the increase in deep learning, it becomes increasingly difficult to understand the model in which AI systems can identify objects. Thus, an adversary could aim to modify an image by adding unseen elements, which will confuse the AI in its recognition of an entity. This paper thus investigates the adversarial robustness of LLaVA-1.5-13B and Meta’s Llama 3.2 Vision-8B-2. These are tested for untargeted PGD (Projected Gradient Descent) against the visual input modality, and empirically evaluated on the Visual Question Answering (VQA) v2 dataset subset. The results of these adversarial attacks are then quantified using the standard VQA accuracy metric. This evaluation is then compared with the accuracy degradation (accuracy drop) of LLaVA and Llama 3.2 Vision. A key finding is that Llama 3.2 Vision, despite a lower baseline accuracy in this setup, exhibited a smaller drop in performance under attack compared to LLaVA, particularly at higher perturbation levels. Overall, the findings confirm that the vision modality represents a viable attack vector for degrading the performance of contemporary open-weight VLMs, including Meta’s Llama 3.2 Vision. Furthermore, they highlight that adversarial robustness does not necessarily correlate directly with standard benchmark performance and may be influenced by underlying architectural and training factors.
2.5Diffusion Forcing for Multi-Agent Interaction Sequence Modeling¶
2025/12/22 05:04 GTM
Understanding and generating multi-person interactions is a fundamental challenge with broad implications for robotics and social computing. While humans naturally coordinate in groups, modeling such interactions remains difficult due to long temporal horizons, strong inter-agent dependencies, and variable group sizes. Existing motion generation methods are largely task-specific and do not generalize to flexible multi-agent generation. We introduce MAGNet (Multi-Agent Diffusion Forcing Transformer), a unified autoregressive diffusion framework for multi-agent motion generation that supports a wide range of interaction tasks through flexible conditioning and sampling. MAGNet performs dyadic prediction, partner inpainting, and full multi-agent motion generation within a single model, and can autoregressively generate ultra-long sequences spanning hundreds of v. Building on Diffusion Forcing, we introduce key modifications that explicitly model inter-agent coupling during autoregressive denoising, enabling coherent coordination across agents. As a result, MAGNet captures both tightly synchronized activities (e.g, dancing, boxing) and loosely structured social interactions. Our approach performs on par with specialized methods on dyadic benchmarks while naturally extending to polyadic scenarios involving three or more interacting people, enabled by a scalable architecture that is agnostic to the number of agents. We refer readers to the supplemental video, where the temporal dynamics and spatial coordination of generated interactions are best appreciated. Project page: https://
2.6RadarGen: Automotive Radar Point Cloud Generation from Cameras¶
2025/12/22 05:04 GTM
We present RadarGen, a diffusion model for synthesizing realistic automotive radar point clouds from multi-view camera imagery. RadarGen adapts efficient image-latent diffusion to the radar domain by representing radar measurements in bird’s-eye-view form that encodes spatial structure together with radar cross section (RCS) and Doppler attributes. A lightweight recovery step reconstructs point clouds from the generated maps. To better align generation with the visual scene, RadarGen incorporates BEV-aligned depth, semantic, and motion cues extracted from pretrained foundation models, which guide the stochastic generation process toward physically plausible radar patterns. Conditioning on images makes the approach broadly compatible, in principle, with existing visual datasets and simulation frameworks, offering a scalable direction for multimodal generative simulation. Evaluations on large-scale driving data show that RadarGen captures characteristic radar measurement distributions and reduces the gap to perception models trained on real data, marking a step toward unified generative simulation across sensing modalities.
2.7Keypoint Counting Classifiers: Turning Vision Transformers into Self-Explainable Models Without Training¶
2025/12/22 05:04 GTM
Current approaches for designing self-explainable models (SEMs) require complicated training procedures and specific architectures which makes them impractical. With the advance of general purpose foundation models based on Vision Transformers (ViTs), this impracticability becomes even more problematic. Therefore, new methods are necessary to provide transparency and reliability to ViT-based foundation models. In this work, we present a new method for turning any well-trained ViT-based model into a SEM without retraining, which we call Keypoint Counting Classifiers (KCCs). Recent works have shown that ViTs can automatically identify matching keypoints between images with high precision, and we build on these results to create an easily interpretable decision process that is inherently visualizable in the input. We perform an extensive evaluation which show that KCCs improve the human-machine communication compared to recent baselines. We believe that KCCs constitute an important step towards making ViT-based foundation models more transparent and reliable.
2.8Visually Prompted Benchmarks Are Surprisingly Fragile¶
2025/12/22 05:04 GTM
A key challenge in evaluating VLMs is testing models’ ability to analyze visual content independently from their textual priors. Recent benchmarks such as BLINK probe visual perception through visual prompting, where questions about visual content are paired with coordinates to which the question refers, with the coordinates explicitly marked in the image itself. While these benchmarks are an important part of VLM evaluation, we find that existing models are surprisingly fragile to seemingly irrelevant details of visual prompting: simply changing a visual marker from red to blue can completely change rankings among models on a leaderboard. By evaluating nine commonly-used open- and closed-source VLMs on two visually prompted tasks, we demonstrate how details in benchmark setup, including visual marker design and dataset size, have a significant influence on model performance and leaderboard rankings. These effects can even be exploited to lift weaker models above stronger ones; for instance, slightly increasing the size of the visual marker results in open-source InternVL3-8B ranking alongside or better than much larger proprietary models like Gemini 2.5 Pro. We further show that low-level inference choices that are often ignored in benchmarking, such as JPEG compression levels in API calls, can also cause model lineup changes. These details have substantially larger impacts on visually prompted benchmarks than on conventional semantic VLM evaluations. To mitigate this instability, we curate existing datasets to create VPBench, a larger visually prompted benchmark with 16 visual marker variants. VPBench and additional analysis tools are released at https://
2.9InSPECT: Invariant Spectral Features Preservation of Diffusion Models¶
2025/12/22 05:04 GTM
Modern diffusion models (DMs) have achieved state-of-the-art image generation. However, the fundamental design choice of diffusing data all the way to white noise and then reconstructing it leads to an extremely difficult and computationally intractable prediction task. To overcome this limitation, we propose InSPECT (Invariant Spectral Feature-Preserving Diffusion Model), a novel diffusion model that keeps invariant spectral features during both the forward and backward processes. At the end of the forward process, the Fourier coefficients smoothly converge to a specified random noise, enabling features preservation while maintaining diversity and randomness. By preserving invariant features, InSPECT demonstrates enhanced visual diversity, faster convergence rate, and a smoother diffusion process. Experiments on CIFAR-10, Celeb-A, and LSUN demonstrate that InSPECT achieves on average a 39.23% reduction in FID and 45.80% improvement in IS against DDPM for 10K iterations under specified parameter settings, which demonstrates the significant advantages of preserving invariant features: achieving superior generation quality and diversity, while enhancing computational efficiency and enabling faster convergence rate. To the best of our knowledge, this is the first attempt to analyze and preserve invariant spectral features in diffusion models.
2.10Interpretable Plant Leaf Disease Detection Using Attention-Enhanced CNN¶
2025/12/22 05:04 GTM
Plant diseases pose a significant threat to global food security, necessitating accurate and interpretable disease detection methods. This study introduces an interpretable attention-guided Convolutional Neural Network (CNN), CBAM-VGG16, for plant leaf disease detection. By integrating Convolution Block Attention Module (CBAM) at each convolutional stage, the model enhances feature extraction and disease localization. Trained on five diverse plant disease datasets, our approach outperforms recent techniques, achieving high accuracy (up to 98.87%) and demonstrating robust generalization. Here, we show the effectiveness of our method through comprehensive evaluation and interpretability analysis using CBAM attention maps, Grad-CAM, Grad-CAM++, and Layer-wise Relevance Propagation (LRP). This study advances the application of explainable AI in agricultural diagnostics, offering a transparent and reliable system for smart farming. The code of our proposed work is available at https://
2.11Simulation-Driven Deep Learning Framework for Raman Spectral Denoising Under Fluorescence-Dominant Conditions¶
2025/12/22 05:04 GTM
Raman spectroscopy enables non-destructive, label-free molecular analysis with high specificity, making it a powerful tool for biomedical diagnostics. However, its application to biological tissues is challenged by inherently weak Raman scattering and strong fluorescence background, which significantly degrade signal quality. In this study, we present a simulation-driven denoising framework that combines a statistically grounded noise model with deep learning to enhance Raman spectra acquired under fluorescence-dominated conditions. We comprehensively modeled major noise sources. Based on this model, we generated biologically realistic Raman spectra and used them to train a cascaded deep neural network designed to jointly suppress stochastic detector noise and fluorescence baseline interference. To evaluate the performance of our approach, we simulated human skin spectra derived from real experimental data as a validation case study. Our results demonstrate the potential of physics-informed learning to improve spectral quality and enable faster, more accurate Raman-based tissue analysis.
2.12InfSplign: Inference-Time Spatial Alignment of Text-to-Image Diffusion Models¶
2025/12/22 05:04 GTM
Text-to-image (T2I) diffusion models generate high-quality images but often fail to capture the spatial relations specified in text prompts. This limitation can be traced to two factors: lack of fine-grained spatial supervision in training data and inability of text embeddings to encode spatial semantics. We introduce InfSplign, a training-free inference-time method that improves spatial alignment by adjusting the noise through a compound loss in every denoising step. Proposed loss leverages different levels of cross-attention maps extracted from the backbone decoder to enforce accurate object placement and a balanced object presence during sampling. The method is lightweight, plug-and-play, and compatible with any diffusion backbone. Our comprehensive evaluations on VISOR and T2I-CompBench show that InfSplign establishes a new state-of-the-art (to the best of our knowledge), achieving substantial performance gains over the strongest existing inference-time baselines and even outperforming the fine-tuning-based methods. Codebase is available at GitHub.
2.13ReX-MLE: The Autonomous Agent Benchmark for Medical Imaging Challenges¶
2025/12/22 05:04 GTM
Autonomous coding agents built on large language models (LLMs) can now solve many general software and machine learning tasks, but they remain ineffective on complex, domain-specific scientific problems. Medical imaging is a particularly demanding domain, requiring long training cycles, high-dimensional data handling, and specialized preprocessing and validation pipelines, capabilities not fully measured in existing agent benchmarks. To address this gap, we introduce ReX-MLE, a benchmark of 20 challenges derived from high-impact medical imaging competitions spanning diverse modalities and task types. Unlike prior ML-agent benchmarks, ReX-MLE evaluates full end-to-end workflows, requiring agents to independently manage data preprocessing, model training, and submission under realistic compute and time constraints. Evaluating state-of-the-art agents (AIDE, ML-Master, R&D-Agent) with different LLM backends (GPT-5, Gemini, Claude), we observe a severe performance gap: most submissions rank in the 0th percentile compared to human experts. Failures stem from domain-knowledge and engineering limitations. ReX-MLE exposes these bottlenecks and provides a foundation for developing domain-aware autonomous AI systems.
2.14Chorus: Multi-Teacher Pretraining for Holistic 3D Gaussian Scene Encoding¶
2025/12/22 05:04 GTM
While 3DGS has emerged as a high-fidelity scene representation, encoding rich, general-purpose features directly from its primitives remains under-explored. We address this gap by introducing Chorus, a multi-teacher pretraining framework that learns a holistic feed-forward 3D Gaussian Splatting (3DGS) scene encoder by distilling complementary signals from 2D foundation models. Chorus employs a shared 3D encoder and teacher-specific projectors to learn from language-aligned, generalist, and object-aware teachers, encouraging a shared embedding space that captures signals from high-level semantics to fine-grained structure. We evaluate Chorus on a wide range of tasks: open-vocabulary semantic and instance segmentation, linear and decoder probing, as well as data-efficient supervision. Besides 3DGS, we also test Chorus on several benchmarks that only support point clouds by pretraining a variant using only Gaussians’ centers, colors, estimated normals as inputs. Interestingly, this encoder shows strong transfer and outperforms the point clouds baseline while using 39.9 times fewer training scenes. Finally, we propose a render-and-distill adaptation that facilitates out-of-domain finetuning. Our code and model will be released upon publication.
2.15Long-Range depth estimation using learning based Hybrid Distortion Model for CCTV cameras¶
2025/12/22 05:04 GTM
Accurate camera models are essential for photogrammetry applications such as 3D mapping and object localization, particularly for long distances. Various stereo-camera based 3D localization methods are available but are limited to few hundreds of meters’ range. This is majorly due to the limitation of the distortion models assumed for the non-linearities present in the camera lens. This paper presents a framework for modeling a suitable distortion model that can be used for localizing the objects at longer distances. It is well known that neural networks can be a better alternative to model a highly complex non-linear lens distortion function; on contrary, it is observed that a direct application of neural networks to distortion models fails to converge to estimate the camera parameters. To resolve this, a hybrid approach is presented in this paper where the conventional distortion models are initially extended to incorporate higher-order terms and then enhanced using neural network based residual correction model. This hybrid approach has substantially improved long-range localization performance and is capable of estimating the 3D position of objects at distances up to 5 kilometres. The estimated 3D coordinates are transformed to GIS coordinates and are plotted on a GIS map for visualization. Experimental validation demonstrates the robustness and effectiveness of proposed framework, offering a practical solution to calibrate CCTV cameras for long-range photogrammetry applications.
2.16UrbanDIFF: A Denoising Diffusion Model for Spatial Gap Filling of Urban Land Surface Temperature Under Dense Cloud Cover¶
2025/12/22 05:04 GTM
Satellite-derived Land Surface Temperature (LST) products are central to surface urban heat island (SUHI) monitoring due to their consistent grid-based coverage over large metropolitan regions. However, cloud contamination frequently obscures LST observations, limiting their usability for continuous SUHI analysis. Most existing LST reconstruction methods rely on multitemporal information or multisensor data fusion, requiring auxiliary observations that may be unavailable or unreliable under persistent cloud cover. Purely spatial gap-filling approaches offer an alternative, but traditional statistical methods degrade under large or spatially contiguous gaps, while many deep learning based spatial models deteriorate rapidly with increasing missingness. Recent advances in denoising diffusion based image inpainting models have demonstrated improved robustness under high missingness, motivating their adoption for spatial LST reconstruction. In this work, we introduce UrbanDIFF, a purely spatial denoising diffusion model for reconstructing cloud contaminated urban LST imagery. The model is conditioned on static urban structure information, including built-up surface data and a digital elevation model, and enforces strict consistency with revealed cloud free pixels through a supervised pixel guided refinement step during inference. UrbanDIFF is trained and evaluated using NASA MODIS Terra LST data from seven major United States metropolitan areas spanning 2002 to 2025. Experiments using synthetic cloud masks with 20 to 85 percent coverage show that UrbanDIFF consistently outperforms an interpolation baseline, particularly under dense cloud occlusion, achieving SSIM of 0.89, RMSE of 1.2 K, and R2 of 0.84 at 85 percent cloud coverage, while exhibiting slower performance degradation as cloud density increases.
2.17LiteGE: Lightweight Geodesic Embedding for Efficient Geodesics Computation and Non-Isometric Shape Correspondence¶
2025/12/22 05:04 GTM
Computing geodesic distances on 3D surfaces is fundamental to many tasks in 3D vision and geometry processing, with deep connections to tasks such as shape correspondence. Recent learning-based methods achieve strong performance but rely on large 3D backbones, leading to high memory usage and latency, which limit their use in interactive or resource-constrained settings. We introduce LiteGE, a lightweight approach that constructs compact, category-aware shape descriptors by applying PCA to unsigned distance field (UDFs) samples at informative voxels. This descriptor is efficient to compute and removes the need for high-capacity networks. LiteGE remains robust on sparse point clouds, supporting inputs with as few as 300 points, where prior methods fail. Extensive experiments show that LiteGE reduces memory usage and inference time by up to 300 compared to existing neural approaches. In addition, by exploiting the intrinsic relationship between geodesic distance and shape correspondence, LiteGE enables fast and accurate shape matching. Our method achieves up to 1000 speedup over state-of-the-art mesh-based approaches while maintaining comparable accuracy on non-isometric shape pairs, including evaluations on point-cloud inputs.
2.18MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Image Segmentation¶
2025/12/22 05:04 GTM
Large-scale supervised pretraining is rapidly reshaping 3D medical image segmentation. However, existing efforts focus primarily on increasing dataset size and overlook the question of whether the backbone network is an effective representation learner at scale. In this work, we address this gap by revisiting ConvNeXt-based architectures for volumetric segmentation and introducing MedNeXt-v2, a compound-scaled 3D ConvNeXt that leverages improved micro-architecture and data scaling to deliver state-of-the-art performance. First, we show that routinely used backbones in large-scale pretraining pipelines are often suboptimal. Subsequently, we use comprehensive backbone benchmarking prior to scaling and demonstrate that stronger from scratch performance reliably predicts stronger downstream performance after pretraining. Guided by these findings, we incorporate a 3D Global Response Normalization module and use depth, width, and context scaling to improve our architecture for effective representation learning. We pretrain MedNeXt-v2 on 18k CT volumes and demonstrate state-of-the-art performance when fine-tuning across six challenging CT and MR benchmarks (144 structures), showing consistent gains over seven publicly released pretrained models. Beyond improvements, our benchmarking of these models also reveals that stronger backbones yield better results on similar data, representation scaling disproportionately benefits pathological segmentation, and that modality-specific pretraining offers negligible benefit once full finetuning is applied. In conclusion, our results establish MedNeXt-v2 as a strong backbone for large-scale supervised representation learning in 3D Medical Image Segmentation. Our code and pretrained models are made available with the official nnUNet repository at: https://
2.19Pix2NPHM: Learning to Regress NPHM Reconstructions From a Single Image¶
2025/12/22 05:04 GTM
Neural Parametric Head Models (NPHMs) are a recent advancement over mesh-based 3d morphable models (3DMMs) to facilitate high-fidelity geometric detail. However, fitting NPHMs to visual inputs is notoriously challenging due to the expressive nature of their underlying latent space. To this end, we propose Pix2NPHM, a vision transformer (ViT) network that directly regresses NPHM parameters, given a single image as input. Compared to existing approaches, the neural parametric space allows our method to reconstruct more recognizable facial geometry and accurate facial expressions. For broad generalization, we exploit domain-specific ViTs as backbones, which are pretrained on geometric prediction tasks. We train Pix2NPHM on a mixture of 3D data, including a total of over 100K NPHM registrations that enable direct supervision in SDF space, and large-scale 2D video datasets, for which normal estimates serve as pseudo ground truth geometry. Pix2NPHM not only allows for 3D reconstructions at interactive frame rates, it is also possible to improve geometric fidelity by a subsequent inference-time optimization against estimated surface normals and canonical point maps. As a result, we achieve unprecedented face reconstruction quality that can run at scale on in-the-wild data.
2.20Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal MRI and Clinical Data¶
2025/12/22 05:04 GTM
Aim: This study investigates treatment response prediction to neoadjuvant chemotherapy (NACT) in breast cancer patients, using longitudinal contrast-enhanced magnetic resonance images (CE-MRI) and clinical data. The goal is to develop machine learning (ML) models to predict pathologic complete response (PCR binary classification) and 5-year relapse-free survival status (RFS binary classification). Method: The proposed framework includes tumour segmentation, image registration, feature extraction, and predictive modelling. Using the image registration method, MRI image features can be extracted and compared from the original tumour site at different time points, therefore monitoring the intratumor changes during NACT process. Four feature extractors, including one radiomics and three deep learning-based (MedicalNet, Segformer3D, SAM-Med3D) were implemented and compared. In combination with three feature selection methods and four ML models, predictive models are built and compared. Results: The proposed image registration-based feature extraction consistently improves the predictive models. In the PCR and RFS classification tasks logistic regression model trained on radiomic features performed the best with an AUC of 0.88 and classification accuracy of 0.85 for PCR classification, and AUC of 0.78 and classification accuracy of 0.72 for RFS classification. Conclusions: It is evidenced that the image registration method has significantly improved performance in longitudinal feature learning in predicting PCR and RFS. The radiomics feature extractor is more effective than the pre-trained deep learning feature extractors, with higher performance and better interpretability.
2.21AdaptPrompt: Parameter-Efficient Adaptation of VLMs for Generalizable Deepfake Detection¶
2025/12/22 05:04 GTM
Recent advances in image generation have led to the widespread availability of highly realistic synthetic media, increasing the difficulty of reliable deepfake detection. A key challenge is generalization, as detectors trained on a narrow class of generators often fail when confronted with unseen models. In this work, we address the pressing need for generalizable detection by leveraging large vision-language models, specifically CLIP, to identify synthetic content across diverse generative techniques. First, we introduce Diff-Gen, a large-scale benchmark dataset comprising 100k diffusion-generated fakes that capture broad spectral artifacts unlike traditional GAN datasets. Models trained on Diff-Gen demonstrate stronger cross-domain generalization, particularly on previously unseen image generators. Second, we propose AdaptPrompt, a parameter-efficient transfer learning framework that jointly learns task-specific textual prompts and visual adapters while keeping the CLIP backbone frozen. We further show via layer ablation that pruning the final transformer block of the vision encoder enhances the retention of high-frequency generative artifacts, significantly boosting detection accuracy. Our evaluation spans 25 challenging test sets, covering synthetic content generated by GANs, diffusion models, and commercial tools, establishing a new state-of-the-art in both standard and cross-domain scenarios. We further demonstrate the framework’s versatility through few-shot generalization (using as few as 320 images) and source attribution, enabling the precise identification of generator architectures in closed-set settings.
2.22MambaMIL+: Modeling Long-Term Contextual Patterns for Gigapixel Whole Slide Image¶
2025/12/22 05:04 GTM
Whole-slide images (WSIs) are an important data modality in computational pathology, yet their gigapixel resolution and lack of fine-grained annotations challenge conventional deep learning models. Multiple instance learning (MIL) offers a solution by treating each WSI as a bag of patch-level instances, but effectively modeling ultra-long sequences with rich spatial context remains difficult. Recently, Mamba has emerged as a promising alternative for long sequence learning, scaling linearly to thousands of tokens. However, despite its efficiency, it still suffers from limited spatial context modeling and memory decay, constraining its effectiveness to WSI analysis. To address these limitations, we propose MambaMIL+, a new MIL framework that explicitly integrates spatial context while maintaining long-range dependency modeling without memory forgetting. Specifically, MambaMIL+ introduces 1) overlapping scanning, which restructures the patch sequence to embed spatial continuity and instance correlations; 2) a selective stripe position encoder (S2PE) that encodes positional information while mitigating the biases of fixed scanning orders; and 3) a contextual token selection (CTS) mechanism, which leverages supervisory knowledge to dynamically enlarge the contextual memory for stable long-range modeling. Extensive experiments on 20 benchmarks across diagnostic classification, molecular prediction, and survival analysis demonstrate that MambaMIL+ consistently achieves state-of-the-art performance under three feature extractors (ResNet-50, PLIP, and CONCH), highlighting its effectiveness and robustness for large-scale computational pathology
2.23SAVeD: A First-Person Social Media Video Dataset for ADAS-equipped vehicle Near-Miss and Crash Event Analyses¶
2025/12/22 05:04 GTM
The advancement of safety-critical research in driving behavior in ADAS-equipped vehicles require real-world datasets that not only include diverse traffic scenarios but also capture high-risk edge cases such as near-miss events and system failures. However, existing datasets are largely limited to either simulated environments or human-driven vehicle data, lacking authentic ADAS (Advanced Driver Assistance System) vehicle behavior under risk conditions. To address this gap, this paper introduces SAVeD, a large-scale video dataset curated from publicly available social media content, explicitly focused on ADAS vehicle-related crashes, near-miss incidents, and disengagements. SAVeD features 2,119 first-person videos, capturing ADAS vehicle operations in diverse locations, lighting conditions, and weather scenarios. The dataset includes video frame-level annotations for collisions, evasive maneuvers, and disengagements, enabling analysis of both perception and decision-making failures. We demonstrate SAVeD’s utility through multiple analyses and contributions: (1) We propose a novel framework integrating semantic segmentation and monocular depth estimation to compute real-time Time-to-Collision (TTC) for dynamic objects. (2) We utilize the Generalized Extreme Value (GEV) distribution to model and quantify the extreme risk in crash and near-miss events across different roadway types. (3) We establish benchmarks for state-of-the-art VLLMs (VideoLLaMA2 and InternVL2.5 HiCo R16), showing that SAVeD’s detailed annotations significantly enhance model performance through domain adaptation in complex near-miss scenarios.
2.24FlexAvatar: Flexible Large Reconstruction Model for Animatable Gaussian Head Avatars with Detailed Deformation¶
2025/12/22 05:04 GTM
We present FlexAvatar, a flexible large reconstruction model for high-fidelity 3D head avatars with detailed dynamic deformation from single or sparse images, without requiring camera poses or expression labels. It leverages a transformer-based reconstruction model with structured head query tokens as canonical anchor to aggregate flexible input-number-agnostic, camera-pose-free and expression-free inputs into a robust canonical 3D representation. For detailed dynamic deformation, we introduce a lightweight UNet decoder conditioned on UV-space position maps, which can produce detailed expression-dependent deformations in real time. To better capture rare but critical expressions like wrinkles and bared teeth, we also adopt a data distribution adjustment strategy during training to balance the distribution of these expressions in the training set. Moreover, a lightweight 10-second refinement can further enhances identity-specific details in extreme identities without affecting deformation quality. Extensive experiments demonstrate that our FlexAvatar achieves superior 3D consistency, detailed dynamic realism compared with previous methods, providing a practical solution for animatable 3D avatar creation.
2.25An Empirical Study of Sampling Hyperparameters in Diffusion-Based Super-Resolution¶
2025/12/22 05:04 GTM
Diffusion models have shown strong potential for solving inverse problems such as single-image super-resolution, where a high-resolution image is recovered from a low-resolution observation using a pretrained unconditional prior. Conditioning methods, including Diffusion Posterior Sampling (DPS) and Manifold Constrained Gradient (MCG), can substantially improve reconstruction quality, but they introduce additional hyperparameters that require careful tuning. In this work, we conduct an empirical ablation study on FFHQ super-resolution to identify the dominant factors affecting performance when applying conditioning to pretrained diffusion models, and show that the conditioning step size has a significantly greater impact than the diffusion step count, with step sizes in the range of [2.0, 3.0] yielding the best overall performance in our experiments.
2.26Learning Spatio-Temporal Feature Representations for Video-Based Gaze Estimation¶
2025/12/22 05:04 GTM
Video-based gaze estimation methods aim to capture the inherently temporal dynamics of human eye gaze from multiple image frames. However, since models must capture both spatial and temporal relationships, performance is limited by the feature representations within a frame but also between multiple frames. We propose the Spatio-Temporal Gaze Network (ST-Gaze), a model that combines a CNN backbone with dedicated channel attention and self-attention modules to fuse eye and face features optimally. The fused features are then treated as a spatial sequence, allowing for the capture of an intra-frame context, which is then propagated through time to model inter-frame dynamics. We evaluated our method on the EVE dataset and show that ST-Gaze achieves state-of-the-art performance both with and without person-specific adaptation. Additionally, our ablation study provides further insights into the model performance, showing that preserving and modelling intra-frame spatial context with our spatio-temporal recurrence is fundamentally superior to premature spatial pooling. As such, our results pave the way towards more robust video-based gaze estimation using commonly available cameras.
2.27Bitbox: Behavioral Imaging Toolbox for Computational Analysis of Behavior from Videos¶
2025/12/22 05:04 GTM
Computational measurement of human behavior from video has recently become feasible due to major advances in AI. These advances now enable granular and precise quantification of facial expression, head movement, body action, and other behavioral modalities and are increasingly used in psychology, psychiatry, neuroscience, and mental health research. However, mainstream adoption remains slow. Most existing methods and software are developed for engineering audiences, require specialized software stacks, and fail to provide behavioral measurements at a level directly useful for hypothesis-driven research. As a result, there is a large barrier to entry for researchers who wish to use modern, AI-based tools in their work. We introduce Bitbox, an open-source toolkit designed to remove this barrier and make advanced computational analysis directly usable by behavioral scientists and clinical researchers. Bitbox is guided by principles of reproducibility, modularity, and interpretability. It provides a standardized interface for extracting high-level behavioral measurements from video, leveraging multiple face, head, and body processors. The core modules have been tested and validated on clinical samples and are designed so that new measures can be added with minimal effort. Bitbox is intended to serve both sides of the translational gap. It gives behavioral researchers access to robust, high-level behavioral metrics without requiring engineering expertise, and it provides computer scientists a practical mechanism for disseminating methods to domains where their impact is most needed. We expect that Bitbox will accelerate integration of computational behavioral measurement into behavioral, clinical, and mental health research. Bitbox has been designed from the beginning as a community-driven effort that will evolve through contributions from both method developers and domain scientists.
2.28Region-Constraint In-Context Generation for Instructional Video Editing¶
2025/12/22 05:04 GTM
The In-context generation paradigm recently has demonstrated strong power in instructional image editing with both data efficiency and synthesis quality. Nevertheless, shaping such in-context learning for instruction-based video editing is not trivial. Without specifying editing regions, the results can suffer from the problem of inaccurate editing regions and the token interference between editing and non-editing areas during denoising. To address these, we present ReCo, a new instructional video editing paradigm that novelly delves into constraint modeling between editing and non-editing regions during in-context generation. Technically, ReCo width-wise concatenates source and target video for joint denoising. To calibrate video diffusion learning, ReCo capitalizes on two regularization terms, i.e., latent and attention regularization, conducting on one-step backward denoised latents and attention maps, respectively. The former increases the latent discrepancy of the editing region between source and target videos while reducing that of non-editing areas, emphasizing the modification on editing area and alleviating outside unexpected content generation. The latter suppresses the attention of tokens in the editing region to the tokens in counterpart of the source video, thereby mitigating their interference during novel object generation in target video. Furthermore, we propose a large-scale, high-quality video editing dataset, i.e., ReCo-Data, comprising 500K instruction-video pairs to benefit model training. Extensive experiments conducted on four major instruction-based video editing tasks demonstrate the superiority of our proposal.
2.29Generative Human-Object Interaction Detection via Differentiable Cognitive Steering of Multi-modal LLMs¶
2025/12/22 05:04 GTM
Human-object interaction (HOI) detection aims to localize human-object pairs and the interactions between them. Existing methods operate under a closed-world assumption, treating the task as a classification problem over a small, predefined verb set, which struggles to generalize to the long-tail of unseen or ambiguous interactions in the wild. While recent multi-modal large language models (MLLMs) possess the rich world knowledge required for open-vocabulary understanding, they remain decoupled from existing HOI detectors since fine-tuning them is computationally prohibitive. To address these constraints, we propose \GRASP-HO}, a novel Generative Reasoning And Steerable Perception framework that reformulates HOI detection from the closed-set classification task to the open-vocabulary generation problem. To bridge the vision and cognitive, we first extract hybrid interaction representations, then design a lightweight learnable cognitive steering conduit (CSC) module to inject the fine-grained visual evidence into a frozen MLLM for effective reasoning. To address the supervision mismatch between classification-based HOI datasets and open-vocabulary generative models, we introduce a hybrid guidance strategy that coupling the language modeling loss and auxiliary classification loss, enabling discriminative grounding without sacrificing generative flexibility. Experiments demonstrate state-of-the-art closed-set performance and strong zero-shot generalization, achieving a unified paradigm that seamlessly bridges discriminative perception and generative reasoning for open-world HOI detection.
2.30PathFLIP: Fine-grained Language-Image Pretraining for Versatile Computational Pathology¶
2025/12/22 05:04 GTM
While Vision-Language Models (VLMs) have achieved notable progress in computational pathology (CPath), the gigapixel scale and spatial heterogeneity of Whole Slide Images (WSIs) continue to pose challenges for multimodal understanding. Existing alignment methods struggle to capture fine-grained correspondences between textual descriptions and visual cues across thousands of patches from a slide, compromising their performance on downstream tasks. In this paper, we propose PathFLIP (Pathology Fine-grained Language-Image Pretraining), a novel framework for holistic WSI interpretation. PathFLIP decomposes slide-level captions into region-level subcaptions and generates text-conditioned region embeddings to facilitate precise visual-language grounding. By harnessing Large Language Models (LLMs), PathFLIP can seamlessly follow diverse clinical instructions and adapt to varied diagnostic contexts. Furthermore, it exhibits versatile capabilities across multiple paradigms, efficiently handling slide-level classification and retrieval, fine-grained lesion localization, and instruction following. Extensive experiments demonstrate that PathFLIP outperforms existing large-scale pathological VLMs on four representative benchmarks while requiring significantly less training data, paving the way for fine-grained, instruction-aware WSI interpretation in clinical practice.
2.31StereoMV2D: A Sparse Temporal Stereo-Enhanced Framework for Robust Multi-View 3D Object Detection¶
2025/12/22 05:04 GTM
Multi-view 3D object detection is a fundamental task in autonomous driving perception, where achieving a balance between detection accuracy and computational efficiency remains crucial. Sparse query-based 3D detectors efficiently aggregate object-relevant features from multi-view images through a set of learnable queries, offering a concise and end-to-end detection paradigm. Building on this foundation, MV2D leverages 2D detection results to provide high-quality object priors for query initialization, enabling higher precision and recall. However, the inherent depth ambiguity in single-frame 2D detections still limits the accuracy of 3D query generation. To address this issue, we propose StereoMV2D, a unified framework that integrates temporal stereo modeling into the 2D detection-guided multi-view 3D detector. By exploiting cross-temporal disparities of the same object across adjacent frames, StereoMV2D enhances depth perception and refines the query priors, while performing all computations efficiently within 2D regions of interest (RoIs). Furthermore, a dynamic confidence gating mechanism adaptively evaluates the reliability of temporal stereo cues through learning statistical patterns derived from the inter-frame matching matrix together with appearance consistency, ensuring robust detection under object appearance and occlusion. Extensive experiments on the nuScenes and Argoverse 2 datasets demonstrate that StereoMV2D achieves superior detection performance without incurring significant computational overhead. Code will be available at https://
2.32Self-Supervised Weighted Image Guided Quantitative MRI Super-Resolution¶
2025/12/22 05:04 GTM
High-resolution (HR) quantitative MRI (qMRI) relaxometry provides objective tissue characterization but remains clinically underutilized due to lengthy acquisition times. We propose a physics-informed, self-supervised framework for qMRI super-resolution that uses routinely acquired HR weighted MRI (wMRI) scans as guidance, thus, removing the necessity for HR qMRI ground truth during training. We formulate super-resolution as Bayesian maximum a posteriori inference, minimizing two discrepancies: (1) between HR images synthesized from super-resolved qMRI maps and acquired wMRI guides via forward signal models, and (2) between acquired LR qMRI and downsampled predictions. This physics-informed objective allows the models to learn from clinical wMRI without HR qMRI supervision. To validate the concept, we generate training data by synthesizing wMRI guides from HR qMRI using signal equations, then degrading qMRI resolution via k-space truncation. A deep neural network learns the super-resolution mapping. Ablation experiments demonstrate that T1-weighted images primarily enhance T1 maps, T2-weighted images improve T2 maps, and combined guidance optimally enhances all parameters simultaneously. Validation on independently acquired in-vivo data from a different qMRI sequence confirms cross-qMRI sequence generalizability. Models trained on synthetic data can produce super-resolved maps from a 1-minute acquisition with quality comparable to a 5-minute reference scan, leveraging the scanner-independent nature of relaxometry parameters. By decoupling training from HR qMRI requirement, our framework enables fast qMRI acquisitions enhanced via routine clinical images, offering a practical pathway for integrating quantitative relaxometry into clinical workflows with acceptable additional scan time.
2.33Semi-Supervised 3D Segmentation for Type-B Aortic Dissection with Slim UNETR¶
2025/12/22 05:04 GTM
Convolutional neural networks (CNN) for multi-class segmentation of medical images are widely used today. Especially models with multiple outputs that can separately predict segmentation classes (regions) without relying on a probabilistic formulation of the segmentation of regions. These models allow for more precise segmentation by tailoring the network’s components to each class (region). They have a common encoder part of the architecture but branch out at the output layers, leading to improved accuracy. These methods are used to diagnose type B aortic dissection (TBAD), which requires accurate segmentation of aortic structures based on the ImageTBDA dataset, which contains 100 3D computed tomography angiography (CTA) images. These images identify three key classes: true lumen (TL), false lumen (FL), and false lumen thrombus (FLT) of the aorta, which is critical for diagnosis and treatment decisions. In the dataset, 68 examples have a false lumen, while the remaining 32 do not, creating additional complexity for pathology detection. However, implementing these CNN methods requires a large amount of high-quality labeled data. Obtaining accurate labels for the regions of interest can be an expensive and time-consuming process, particularly for 3D data. Semi-supervised learning methods allow models to be trained by using both labeled and unlabeled data, which is a promising approach for overcoming the challenge of obtaining accurate labels. However, these learning methods are not well understood for models with multiple outputs. This paper presents a semi-supervised learning method for models with multiple outputs. The method is based on the additional rotations and flipping, and does not assume the probabilistic nature of the model’s responses. This makes it a universal approach, which is especially important for architectures that involve separate segmentation.
2.34MGRegBench: A Novel Benchmark Dataset with Anatomical Landmarks for Mammography Image Registration¶
2025/12/22 05:04 GTM
Robust mammography registration is essential for clinical applications like tracking disease progression and monitoring longitudinal changes in breast tissue. However, progress has been limited by the absence of public datasets and standardized benchmarks. Existing studies are often not directly comparable, as they use private data and inconsistent evaluation frameworks. To address this, we present MGRegBench, a public benchmark dataset for mammogram registration. It comprises over 5,000 image pairs, with 100 containing manual anatomical landmarks and segmentation masks for rigorous evaluation. This makes MGRegBench one of the largest public 2D registration datasets with manual annotations. Using this resource, we benchmarked diverse registration methods including classical (ANTs), learning-based (VoxelMorph, TransMorph), implicit neural representation (IDIR), a classic mammography-specific approach, and a recent state-of-the-art deep learning method MammoRegNet. The implementations were adapted to this modality from the authors’ implementations or re-implemented from scratch. Our contributions are: (1) the first public dataset of this scale with manual landmarks and masks for mammography registration; (2) the first like-for-like comparison of diverse methods on this modality; and (3) an extensive analysis of deep learning-based registration. We publicly release our code and data to establish a foundational resource for fair comparisons and catalyze future research. The source code and data are at https://
2.35HeadHunt-VAD: Hunting Robust Anomaly-Sensitive Heads in MLLM for Tuning-Free Video Anomaly Detection¶
2025/12/22 05:04 GTM
Video Anomaly Detection (VAD) aims to locate events that deviate from normal patterns in videos. Traditional approaches often rely on extensive labeled data and incur high computational costs. Recent tuning-free methods based on Multimodal Large Language Models (MLLMs) offer a promising alternative by leveraging their rich world knowledge. However, these methods typically rely on textual outputs, which introduces information loss, exhibits normalcy bias, and suffers from prompt sensitivity, making them insufficient for capturing subtle anomalous cues. To address these constraints, we propose HeadHunt-VAD, a novel tuning-free VAD paradigm that bypasses textual generation by directly hunting robust anomaly-sensitive internal attention heads within the frozen MLLM. Central to our method is a Robust Head Identification module that systematically evaluates all attention heads using a multi-criteria analysis of saliency and stability, identifying a sparse subset of heads that are consistently discriminative across diverse prompts. Features from these expert heads are then fed into a lightweight anomaly scorer and a temporal locator, enabling efficient and accurate anomaly detection with interpretable outputs. Extensive experiments show that HeadHunt-VAD achieves state-of-the-art performance among tuning-free methods on two major VAD benchmarks while maintaining high efficiency, validating head-level probing in MLLMs as a powerful and practical solution for real-world anomaly detection.
2.36MAD-OOD: A Deep Learning Cluster-Driven Framework for an Out-of-Distribution Malware Detection and Classification¶
2025/12/22 05:04 GTM
Out of distribution (OOD) detection remains a critical challenge in malware classification due to the substantial intra family variability introduced by polymorphic and metamorphic malware variants. Most existing deep learning based malware detectors rely on closed world assumptions and fail to adequately model this intra class variation, resulting in degraded performance when confronted with previously unseen malware families. This paper presents MADOOD, a novel two stage, cluster driven deep learning framework for robust OOD malware detection and classification. In the first stage, malware family embeddings are modeled using class conditional spherical decision boundaries derived from Gaussian Discriminant Analysis (GDA), enabling statistically grounded separation of indistribution and OOD samples without requiring OOD data during training. Z score based distance analysis across multiple class centroids is employed to reliably identify anomalous samples in the latent space. In the second stage, a deep neural network integrates cluster based predictions, refined embeddings, and supervised classifier outputs to enhance final classification accuracy. Extensive evaluations on benchmark malware datasets comprising 25 known families and multiple novel OOD variants demonstrate that MADOOD significantly outperforms state of the art OOD detection methods, achieving an AUC of up to 0.911 on unseen malware families. The proposed framework provides a scalable, interpretable, and statistically principled solution for real world malware detection and anomaly identification in evolving cybersecurity environments.
2.37SkinGenBench: Generative Model and Preprocessing Effects for Synthetic Dermoscopic Augmentation in Melanoma Diagnosis¶
2025/12/22 05:04 GTM
This work introduces SkinGenBench, a systematic biomedical imaging benchmark that investigates how preprocessing complexity interacts with generative model choice for synthetic dermoscopic image augmentation and downstream melanoma diagnosis. Using a curated dataset of 14,116 dermoscopic images from HAM10000 and MILK10K across five lesion classes, we evaluate the two representative generative paradigms: StyleGAN2-ADA and Denoising Diffusion Probabilistic Models (DDPMs) under basic geometric augmentation and advanced artifact removal pipelines. Synthetic melanoma images are assessed using established perceptual and distributional metrics (FID, KID, IS), feature space analysis, and their impact on diagnostic performance across five downstream classifiers. Experimental results demonstrate that generative architecture choice has a stronger influence on both image fidelity and diagnostic utility than preprocessing complexity. StyleGAN2-ADA consistently produced synthetic images more closely aligned with real data distributions, achieving the lowest FID (~65.5) and KID (~0.05), while diffusion models generated higher variance samples at the cost of reduces perceptual fidelity and class anchoring. Advanced artifact removal yielded only marginal improvements in generative metrics and provided limited downstream diagnostic gains, suggesting possible suppression of clinically relevant texture cues. In contrast, synthetic data augmentation substantially improved melanoma detection with 8-15% absolute gains in melanoma F1-score, and ViT-B/16 achieving F1~0.88 and ROC-AUC~0.98, representing an improvement of approximately 14% over non-augmented baselines. Our code can be found at https://
2.38Medical Imaging AI Competitions Lack Fairness¶
2025/12/22 05:04 GTM
Benchmarking competitions are central to the development of artificial intelligence (AI) in medical imaging, defining performance standards and shaping methodological progress. However, it remains unclear whether these benchmarks provide data that are sufficiently representative, accessible, and reusable to support clinically meaningful AI. In this work, we assess fairness along two complementary dimensions: (1) whether challenge datasets are representative of real-world clinical diversity, and (2) whether they are accessible and legally reusable in line with the FAIR principles. To address this question, we conducted a large-scale systematic study of 241 biomedical image analysis challenges comprising 458 tasks across 19 imaging modalities. Our findings show substantial biases in dataset composition, including geographic location, modality-, and problem type-related biases, indicating that current benchmarks do not adequately reflect real-world clinical diversity. Despite their widespread influence, challenge datasets were frequently constrained by restrictive or ambiguous access conditions, inconsistent or non-compliant licensing practices, and incomplete documentation, limiting reproducibility and long-term reuse. Together, these shortcomings expose foundational fairness limitations in our benchmarking ecosystem and highlight a disconnect between leaderboard success and clinical relevance.
2.393One2: One-step Regression Plus One-step Diffusion for One-hot Modulation in Dual-path Video Snapshot Compressive Imaging¶
2025/12/22 05:04 GTM
Video snapshot compressive imaging (SCI) captures dynamic scene sequences through a two-dimensional (2D) snapshot, fundamentally relying on optical modulation for hardware compression and the corresponding software reconstruction. While mainstream video SCI using random binary modulation has demonstrated success, it inevitably results in temporal aliasing during compression. One-hot modulation, activating only one sub-frame per pixel, provides a promising solution for achieving perfect temporal decoupling, thereby alleviating issues associated with aliasing. However, no algorithms currently exist to fully exploit this potential. To bridge this gap, we propose an algorithm specifically designed for one-hot masks. First, leveraging the decoupling properties of one-hot modulation, we transform the reconstruction task into a generative video inpainting problem and introduce a stochastic differential equation (SDE) of the forward process that aligns with the hardware compression process. Next, we identify limitations of the pure diffusion method for video SCI and propose a novel framework that combines one-step regression initialization with one-step diffusion refinement. Furthermore, to mitigate the spatial degradation caused by one-hot modulation, we implement a dual optical path at the hardware level, utilizing complementary information from another path to enhance the inpainted video. To our knowledge, this is the first work integrating diffusion into video SCI reconstruction. Experiments conducted on synthetic datasets and real scenes demonstrate the effectiveness of our method.
2.40RoomEditor++: A Parameter-Sharing Diffusion Architecture for High-Fidelity Furniture Synthesis¶
2025/12/22 05:04 GTM
Virtual furniture synthesis, which seamlessly integrates reference objects into indoor scenes while maintaining geometric coherence and visual realism, holds substantial promise for home design and e-commerce applications. However, this field remains underexplored due to the scarcity of reproducible benchmarks and the limitations of existing image composition methods in achieving high-fidelity furniture synthesis while preserving background integrity. To overcome these challenges, we first present RoomBench++, a comprehensive and publicly available benchmark dataset tailored for this task. It consists of 112,851 training pairs and 1,832 testing pairs drawn from both real-world indoor videos and realistic home design renderings, thereby supporting robust training and evaluation under practical conditions. Then, we propose RoomEditor++, a versatile diffusion-based architecture featuring a parameter-sharing dual diffusion backbone, which is compatible with both U-Net and DiT architectures. This design unifies the feature extraction and inpainting processes for reference and background images. Our in-depth analysis reveals that the parameter-sharing mechanism enforces aligned feature representations, facilitating precise geometric transformations, texture preservation, and seamless integration. Extensive experiments validate that RoomEditor++ is superior over state-of-the-art approaches in terms of quantitative metrics, qualitative assessments, and human preference studies, while highlighting its strong generalization to unseen indoor scenes and general scenes without task-specific fine-tuning. The dataset and source code are available at \url{https://
2.41A unified FLAIR hyperintensity segmentation model for various CNS tumor types and acquisition time points¶
2025/12/22 05:04 GTM
T2-weighted fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) scans are important for diagnosis, treatment planning and monitoring of brain tumors. Depending on the brain tumor type, the FLAIR hyperintensity volume is an important measure to asses the tumor volume or surrounding edema, and an automatic segmentation of this would be useful in the clinic. In this study, around 5000 FLAIR images of various tumors types and acquisition time points from different centers were used to train a unified FLAIR hyperintensity segmentation model using an Attention U-Net architecture. The performance was compared against dataset specific models, and was validated on different tumor types, acquisition time points and against BraTS. The unified model achieved an average Dice score of 88.65% for pre-operative meningiomas, 80.08% for pre-operative metastasis, 90.92% for pre-operative and 84.60% for post-operative gliomas from BraTS, and 84.47% for pre-operative and 61.27% for post-operative lower grade gliomas. In addition, the results showed that the unified model achieved comparable segmentation performance to the dataset specific models on their respective datasets, and enables generalization across tumor types and acquisition time points, which facilitates the deployment in a clinical setting. The model is integrated into Raidionics, an open-source software for CNS tumor analysis.
2.42G3Splat: Geometrically Consistent Generalizable Gaussian Splatting¶
2025/12/22 05:04 GTM
3D Gaussians have recently emerged as an effective scene representation for real-time splatting and accurate novel-view synthesis, motivating several works to adapt multi-view structure prediction networks to regress per-pixel 3D Gaussians from images. However, most prior work extends these networks to predict additional Gaussian parameters -- orientation, scale, opacity, and appearance -- while relying almost exclusively on view-synthesis supervision. We show that a view-synthesis loss alone is insufficient to recover geometrically meaningful splats in this setting. We analyze and address the ambiguities of learning 3D Gaussian splats under self-supervision for pose-free generalizable splatting, and introduce G3Splat, which enforces geometric priors to obtain geometrically consistent 3D scene representations. Trained on RE10K, our approach achieves state-of-the-art performance in (i) geometrically consistent reconstruction, (ii) relative pose estimation, and (iii) novel-view synthesis. We further demonstrate strong zero-shot generalization on ScanNet, substantially outperforming prior work in both geometry recovery and relative pose estimation. Code and pretrained models are released on our project page (https://
2.43ClothHMR: 3D Mesh Recovery of Humans in Diverse Clothing from Single Image¶
2025/12/22 05:04 GTM
With 3D data rapidly emerging as an important form of multimedia information, 3D human mesh recovery technology has also advanced accordingly. However, current methods mainly focus on handling humans wearing tight clothing and perform poorly when estimating body shapes and poses under diverse clothing, especially loose garments. To this end, we make two key insights: (1) tailoring clothing to fit the human body can mitigate the adverse impact of clothing on 3D human mesh recovery, and (2) utilizing human visual information from large foundational models can enhance the generalization ability of the estimation. Based on these insights, we propose ClothHMR, to accurately recover 3D meshes of humans in diverse clothing. ClothHMR primarily consists of two modules: clothing tailoring (CT) and FHVM-based mesh recovering (MR). The CT module employs body semantic estimation and body edge prediction to tailor the clothing, ensuring it fits the body silhouette. The MR module optimizes the initial parameters of the 3D human mesh by continuously aligning the intermediate representations of the 3D mesh with those inferred from the foundational human visual model (FHVM). ClothHMR can accurately recover 3D meshes of humans wearing diverse clothing, precisely estimating their body shapes and poses. Experimental results demonstrate that ClothHMR significantly outperforms existing state-of-the-art methods across benchmark datasets and in-the-wild images. Additionally, a web application for online fashion and shopping powered by ClothHMR is developed, illustrating that ClothHMR can effectively serve real-world usage scenarios. The code and model for ClothHMR are available at: \url{https://
2.44FLEG: Feed-Forward Language Embedded Gaussian Splatting from Any Views¶
2025/12/22 05:04 GTM
We present FLEG, a feed-forward network that reconstructs language-embedded 3D Gaussians from any views. Previous straightforward solutions combine feed-forward reconstruction with Gaussian heads but suffer from fixed input views and insufficient 3D training data. In contrast, we propose a 3D-annotation-free training framework for 2D-to-3D lifting from arbitrary uncalibrated and unposed multi-view images. Since the framework does not require 3D annotations, we can leverage large-scale video data with easily obtained 2D instance information to enrich semantic embedding. We also propose an instance-guided contrastive learning to align 2D semantics with the 3D representations. In addition, to mitigate the high memory and computational cost of dense views, we further propose a geometry-semantic hierarchical sparsification strategy. Our FLEG efficiently reconstructs language-embedded 3D Gaussian representation in a feed-forward manner from arbitrary sparse or dense views, jointly producing accurate geometry, high-fidelity appearance, and language-aligned semantics. Extensive experiments show that it outperforms existing methods on various related tasks. Project page: https://
2.45Robust-R1: Degradation-Aware Reasoning for Robust Visual Understanding¶
2025/12/22 05:04 GTM
Multimodal Large Language Models struggle to maintain reliable performance under extreme real-world visual degradations, which impede their practical robustness. Existing robust MLLMs predominantly rely on implicit training/adaptation that focuses solely on visual encoder generalization, suffering from limited interpretability and isolated optimization. To overcome these limitations, we propose Robust-R1, a novel framework that explicitly models visual degradations through structured reasoning chains. Our approach integrates: (i) supervised fine-tuning for degradation-aware reasoning foundations, (ii) reward-driven alignment for accurately perceiving degradation parameters, and (iii) dynamic reasoning depth scaling adapted to degradation intensity. To facilitate this approach, we introduce a specialized 11K dataset featuring realistic degradations synthesized across four critical real-world visual processing stages, each annotated with structured chains connecting degradation parameters, perceptual influence, pristine semantic reasoning chain, and conclusion. Comprehensive evaluations demonstrate state-of-the-art robustness: Robust-R1 outperforms all general and robust baselines on the real-world degradation benchmark R-Bench, while maintaining superior anti-degradation performance under multi-intensity adversarial degradations on MMMB, MMStar, and RealWorldQA.
2.46PathBench-MIL: A Comprehensive AutoML and Benchmarking Framework for Multiple Instance Learning in Histopathology¶
2025/12/22 05:04 GTM
We introduce PathBench-MIL, an open-source AutoML and benchmarking framework for multiple instance learning (MIL) in histopathology. The system automates end-to-end MIL pipeline construction, including preprocessing, feature extraction, and MIL-aggregation, and provides reproducible benchmarking of dozens of MIL models and feature extractors. PathBench-MIL integrates visualization tooling, a unified configuration system, and modular extensibility, enabling rapid experimentation and standardization across datasets and tasks. PathBench-MIL is publicly available at https://
2.47Foundation Model Priors Enhance Object Focus in Feature Space for Source-Free Object Detection¶
2025/12/22 05:04 GTM
Current state-of-the-art approaches in Source-Free Object Detection (SFOD) typically rely on Mean-Teacher self-labeling. However, domain shift often reduces the detector’s ability to maintain strong object-focused representations, causing high-confidence activations over background clutter. This weak object focus results in unreliable pseudo-labels from the detection head. While prior works mainly refine these pseudo-labels, they overlook the underlying need to strengthen the feature space itself. We propose FALCON-SFOD (Foundation-Aligned Learning with Clutter suppression and Noise robustness), a framework designed to enhance object-focused adaptation under domain shift. It consists of two complementary components. SPAR (Spatial Prior-Aware Regularization) leverages the generalization strength of vision foundation models to regularize the detector’s feature space. Using class-agnostic binary masks derived from OV-SAM, SPAR promotes structured and foreground-focused activations by guiding the network toward object regions. IRPL (Imbalance-aware Noise Robust Pseudo-Labeling) complements SPAR by promoting balanced and noise-tolerant learning under severe foreground-background imbalance. Guided by a theoretical analysis that connects these designs to tighter localization and classification error bounds, FALCON-SFOD achieves competitive performance across SFOD benchmarks.
2.48Adaptive Covariance and Quaternion-Focused Hybrid Error-State EKF/UKF for Visual-Inertial Odometry¶
2025/12/22 05:04 GTM
This study presents an innovative hybrid Visual-Inertial Odometry (VIO) method for Unmanned Aerial Vehicles (UAVs) that is resilient to environmental challenges and capable of dynamically assessing sensor reliability. Built upon a loosely coupled sensor fusion architecture, the system utilizes a novel hybrid Quaternion-focused Error-State EKF/UKF (Qf-ES-EKF/UKF) architecture to process inertial measurement unit (IMU) data. This architecture first propagates the entire state using an Error-State Extended Kalman Filter (ESKF) and then applies a targeted Scaled Unscented Kalman Filter (SUKF) step to refine only the orientation. This sequential process blends the accuracy of SUKF in quaternion estimation with the overall computational efficiency of ESKF. The reliability of visual measurements is assessed via a dynamic sensor confidence score based on metrics, such as image entropy, intensity variation, motion blur, and inference quality, adapting the measurement noise covariance to ensure stable pose estimation even under challenging conditions. Comprehensive experimental analyses on the EuRoC MAV dataset demonstrate key advantages: an average improvement of 49% in position accuracy in challenging scenarios, an average of 57% in rotation accuracy over ESKF-based methods, and SUKF-comparable accuracy achieved with approximately 48% lower computational cost than a full SUKF implementation. These findings demonstrate that the presented approach strikes an effective balance between computational efficiency and estimation accuracy, and significantly enhances UAV pose estimation performance in complex environments with varying sensor reliability.
2.49InsertAnywhere: Bridging 4D Scene Geometry and Diffusion Models for Realistic Video Object Insertion¶
2025/12/22 05:04 GTM
Recent advances in diffusion-based video generation have opened new possibilities for controllable video editing, yet realistic video object insertion (VOI) remains challenging due to limited 4D scene understanding and inadequate handling of occlusion and lighting effects. We present InsertAnywhere, a new VOI framework that achieves geometrically consistent object placement and appearance-faithful video synthesis. Our method begins with a 4D aware mask generation module that reconstructs the scene geometry and propagates user specified object placement across frames while maintaining temporal coherence and occlusion consistency. Building upon this spatial foundation, we extend a diffusion based video generation model to jointly synthesize the inserted object and its surrounding local variations such as illumination and shading. To enable supervised training, we introduce ROSE++, an illumination aware synthetic dataset constructed by transforming the ROSE object removal dataset into triplets of object removed video, object present video, and a VLM generated reference image. Through extensive experiments, we demonstrate that our framework produces geometrically plausible and visually coherent object insertions across diverse real world scenarios, significantly outperforming existing research and commercial models.
2.50Validation of Diagnostic Artificial Intelligence Models for Prostate Pathology in a Middle Eastern Cohort¶
2025/12/22 05:04 GTM
Background: Artificial intelligence (AI) is improving the efficiency and accuracy of cancer diagnostics. The performance of pathology AI systems has been almost exclusively evaluated on European and US cohorts from large centers. For global AI adoption in pathology, validation studies on currently under-represented populations - where the potential gains from AI support may also be greatest - are needed. We present the first study with an external validation cohort from the Middle East, focusing on AI-based diagnosis and Gleason grading of prostate cancer. Methods: We collected and digitised 339 prostate biopsy specimens from the Kurdistan region, Iraq, representing a consecutive series of 185 patients spanning the period 2013-2024. We evaluated a task-specific end-to-end AI model and two foundation models in terms of their concordance with pathologists and consistency across samples digitised on three scanner models (Hamamatsu, Leica, and Grundium). Findings: Grading concordance between AI and pathologists was similar to pathologist-pathologist concordance with Cohen’s quadratically weighted kappa 0.801 vs. 0.799 (p=0.9824). Cross-scanner concordance was high (quadratically weighted kappa > 0.90) for all AI models and scanner pairs, including low-cost compact scanner. Interpretation: AI models demonstrated pathologist-level performance in prostate histopathology assessment. Compact scanners can provide a route for validation studies in non-digitalised settings and enable cost-effective adoption of AI in laboratories with limited sample volumes. This first openly available digital pathology dataset from the Middle East supports further research into globally equitable AI pathology. Funding: SciLifeLab and Wallenberg Data Driven Life Science Program, Instrumentarium Science Foundation, Karolinska Institutet Research Foundation.
2.51GroundingME: Exposing the Visual Grounding Gap in MLLMs through Multi-Dimensional Evaluation¶
2025/12/22 05:04 GTM
Visual grounding, localizing objects from natural language descriptions, represents a critical bridge between language and vision understanding. While multimodal large language models (MLLMs) achieve impressive scores on existing benchmarks, a fundamental question remains: can MLLMs truly ground language in vision with human-like sophistication, or are they merely pattern-matching on simplified datasets? Current benchmarks fail to capture real-world complexity where humans effortlessly navigate ambiguous references and recognize when grounding is impossible. To rigorously assess MLLMs’ true capabilities, we introduce GroundingME, a benchmark that systematically challenges models across four critical dimensions: (1) Discriminative, distinguishing highly similar objects, (2) Spatial, understanding complex relational descriptions, (3) Limited, handling occlusions or tiny objects, and (4) Rejection, recognizing ungroundable queries. Through careful curation combining automated generation with human verification, we create 1,005 challenging examples mirroring real-world complexity. Evaluating 25 state-of-the-art MLLMs reveals a profound capability gap: the best model achieves only 45.1% accuracy, while most score 0% on rejection tasks, reflexively hallucinating objects rather than acknowledging their absence, raising critical safety concerns for deployment. We explore two strategies for improvements: (1) test-time scaling selects optimal response by thinking trajectory to improve complex grounding by up to 2.9%, and (2) data-mixture training teaches models to recognize ungroundable queries, boosting rejection accuracy from 0% to 27.9%. GroundingME thus serves as both a diagnostic tool revealing current limitations in MLLMs and a roadmap toward human-level visual grounding.
2.52MMLANDMARKS: a Cross-View Instance-Level Benchmark for Geo-Spatial Understanding¶
2025/12/22 05:04 GTM
Geo-spatial analysis of our world benefits from a multimodal approach, as every single geographic location can be described in numerous ways (images from various viewpoints, textual descriptions, and geographic coordinates). Current geo-spatial benchmarks have limited coverage across modalities, considerably restricting progress in the field, as current approaches cannot integrate all relevant modalities within a unified framework. We introduce the Multi-Modal Landmark dataset (MMLANDMARKS), a benchmark composed of four modalities: 197k highresolution aerial images, 329k ground-view images, textual information, and geographic coordinates for 18,557 distinct landmarks in the United States. The MMLANDMARKS dataset has a one-to-one correspondence across every modality, which enables training and benchmarking models for various geo-spatial tasks, including cross-view Ground-to-Satellite retrieval, ground and satellite geolocalization, Text-to-Image, and Text-to-GPS retrieval. We demonstrate broad generalization and competitive performance against off-the-shelf foundational models and specialized state-of-the-art models across different tasks by employing a simple CLIP-inspired baseline, illustrating the necessity for multimodal datasets to achieve broad geo-spatial understanding.
2.53LumiCtrl : Learning Illuminant Prompts for Lighting Control in Personalized Text-to-Image Models¶
2025/12/22 05:04 GTM
Current text-to-image (T2I) models have demonstrated remarkable progress in creative image generation, yet they still lack precise control over scene illuminants, which is a crucial factor for content designers aiming to manipulate the mood, atmosphere, and visual aesthetics of generated images. In this paper, we present an illuminant personalization method named LumiCtrl that learns an illuminant prompt given a single image of an object. LumiCtrl consists of three basic components: given an image of the object, our method applies (a) physics-based illuminant augmentation along the Planckian locus to create fine-tuning variants under standard illuminants; (b) edge-guided prompt disentanglement using a frozen ControlNet to ensure prompts focus on illumination rather than structure; and (c) a masked reconstruction loss that focuses learning on the foreground object while allowing the background to adapt contextually, enabling what we call contextual light adaptation. We qualitatively and quantitatively compare LumiCtrl against other T2I customization methods. The results show that our method achieves significantly better illuminant fidelity, aesthetic quality, and scene coherence compared to existing personalization baselines. A human preference study further confirms strong user preference for LumiCtrl outputs. The code and data will be released upon publication.
2.54TwinSegNet: A Digital Twin-Enabled Federated Learning Framework for Brain Tumor Analysis¶
2025/12/22 05:04 GTM
Brain tumor segmentation is critical in diagnosis and treatment planning for the disease. Yet, current deep learning methods rely on centralized data collection, which raises privacy concerns and limits generalization across diverse institutions. In this paper, we propose TwinSegNet, which is a privacy-preserving federated learning framework that integrates a hybrid ViT-UNet model with personalized digital twins for accurate and real-time brain tumor segmentation. Our architecture combines convolutional encoders with Vision Transformer bottlenecks to capture local and global context. Each institution fine-tunes the global model of private data to form its digital twin. Evaluated on nine heterogeneous MRI datasets, including BraTS 2019-2021 and custom tumor collections, TwinSegNet achieves high Dice scores (up to 0.90%) and sensitivity/specificity exceeding 90%, demonstrating robustness across non-independent and identically distributed (IID) client distributions. Comparative results against centralized models such as TumorVisNet highlight TwinSegNet’s effectiveness in preserving privacy without sacrificing performance. Our approach enables scalable, personalized segmentation for multi-institutional clinical settings while adhering to strict data confidentiality requirements.
2.553D-RE-GEN: 3D Reconstruction of Indoor Scenes with a Generative Framework¶
2025/12/22 05:04 GTM
Recent advances in 3D scene generation produce visually appealing output, but current representations hinder artists’ workflows that require modifiable 3D textured mesh scenes for visual effects and game development. Despite significant advances, current textured mesh scene reconstruction methods are far from artist ready, suffering from incorrect object decomposition, inaccurate spatial relationships, and missing backgrounds. We present 3D-RE-GEN, a compositional framework that reconstructs a single image into textured 3D objects and a background. We show that combining state of the art models from specific domains achieves state of the art scene reconstruction performance, addressing artists’ requirements. Our reconstruction pipeline integrates models for asset detection, reconstruction, and placement, pushing certain models beyond their originally intended domains. Obtaining occluded objects is treated as an image editing task with generative models to infer and reconstruct with scene level reasoning under consistent lighting and geometry. Unlike current methods, 3D-RE-GEN generates a comprehensive background that spatially constrains objects during optimization and provides a foundation for realistic lighting and simulation tasks in visual effects and games. To obtain physically realistic layouts, we employ a novel 4-DoF differentiable optimization that aligns reconstructed objects with the estimated ground plane. 3D-RE-GEN~achieves state of the art performance in single image 3D scene reconstruction, producing coherent, modifiable scenes through compositional generation guided by precise camera recovery and spatial optimization.
2.56MULTIAQUA: A multimodal maritime dataset and robust training strategies for multimodal semantic segmentation¶
2025/12/22 05:04 GTM
Unmanned surface vehicles can encounter a number of varied visual circumstances during operation, some of which can be very difficult to interpret. While most cases can be solved only using color camera images, some weather and lighting conditions require additional information. To expand the available maritime data, we present a novel multimodal maritime dataset MULTIAQUA (Multimodal Aquatic Dataset). Our dataset contains synchronized, calibrated and annotated data captured by sensors of different modalities, such as RGB, thermal, IR, LIDAR, etc. The dataset is aimed at developing supervised methods that can extract useful information from these modalities in order to provide a high quality of scene interpretation regardless of potentially poor visibility conditions. To illustrate the benefits of the proposed dataset, we evaluate several multimodal methods on our difficult nighttime test set. We present training approaches that enable multimodal methods to be trained in a more robust way, thus enabling them to retain reliable performance even in near-complete darkness. Our approach allows for training a robust deep neural network only using daytime images, thus significantly simplifying data acquisition, annotation, and the training process.
2.57LangDriveCTRL: Natural Language Controllable Driving Scene Editing with Multi-modal Agents¶
2025/12/22 05:04 GTM
LangDriveCTRL is a natural-language-controllable framework for editing real-world driving videos to synthesize diverse traffic scenarios. It leverages explicit 3D scene decomposition to represent driving videos as a scene graph, containing static background and dynamic objects. To enable fine-grained editing and realism, it incorporates an agentic pipeline in which an Orchestrator transforms user instructions into execution graphs that coordinate specialized agents and tools. Specifically, an Object Grounding Agent establishes correspondence between free-form text descriptions and target object nodes in the scene graph; a Behavior Editing Agent generates multi-object trajectories from language instructions; and a Behavior Reviewer Agent iteratively reviews and refines the generated trajectories. The edited scene graph is rendered and then refined using a video diffusion tool to address artifacts introduced by object insertion and significant view changes. LangDriveCTRL supports both object node editing (removal, insertion and replacement) and multi-object behavior editing from a single natural-language instruction. Quantitatively, it achieves nearly higher instruction alignment than the previous SoTA, with superior structural preservation, photorealism, and traffic realism. Project page is available at: https://
2.58Xiaomi MiMo-VL-Miloco Technical Report¶
2025/12/22 05:04 GTM
We open-source \textbf{MiMo-VL-Miloco-7B} and its quantized variant \textbf{MiMo-VL-Miloco-7B-GGUF}, a pair of home-centric vision-language models that achieve strong performance on both home-scenario understanding and general multimodal reasoning. Built on the MiMo-VL-7B backbone, MiMo-VL-Miloco-7B is specialized for smart-home environments, attaining leading F1 scores on gesture recognition and common home-scenario understanding, while also delivering consistent gains across video benchmarks such as Video-MME, Video-MMMU, and Charades-STA, as well as language understanding benchmarks including MMMU-Pro and MMLU-Pro. In our experiments, MiMo-VL-Miloco-7B outperforms strong closed-source and open-source baselines on home-scenario understanding and several multimodal reasoning benchmarks. To balance specialization and generality, we design a two-stage training pipeline that combines supervised fine-tuning with reinforcement learning based on Group Relative Policy Optimization, leveraging efficient multi-domain data. We further incorporate chain-of-thought supervision and token-budget-aware reasoning, enabling the model to learn knowledge in a data-efficient manner while also performing reasoning efficiently. Our analysis shows that targeted home-scenario training not only enhances activity and gesture understanding, but also improves text-only reasoning with only modest trade-offs on document-centric tasks. Model checkpoints, quantized GGUF weights, and our home-scenario evaluation toolkit are publicly available at \href{https://
2.59AIFloodSense: A Global Aerial Imagery Dataset for Semantic Segmentation and Understanding of Flooded Environments¶
2025/12/22 05:04 GTM
Accurate flood detection from visual data is a critical step toward improving disaster response and risk assessment, yet datasets for flood segmentation remain scarce due to the challenges of collecting and annotating large-scale imagery. Existing resources are often limited in geographic scope and annotation detail, hindering the development of robust, generalized computer vision methods. To bridge this gap, we introduce AIFloodSense, a comprehensive, publicly available aerial imagery dataset comprising 470 high-resolution images from 230 distinct flood events across 64 countries and six continents. Unlike prior benchmarks, AIFloodSense ensures global diversity and temporal relevance (2022-2024), supporting three complementary tasks: (i) Image Classification with novel sub-tasks for environment type, camera angle, and continent recognition; (ii) Semantic Segmentation providing precise pixel-level masks for flood, sky, and buildings; and (iii) Visual Question Answering (VQA) to enable natural language reasoning for disaster assessment. We establish baseline benchmarks for all tasks using state-of-the-art architectures, demonstrating the dataset’s complexity and its value in advancing domain-generalized AI tools for climate resilience.
2.60Beyond Occlusion: In Search for Near Real-Time Explainability of CNN-Based Prostate Cancer Classification¶
2025/12/22 05:04 GTM
Deep neural networks are starting to show their worth in critical applications such as assisted cancer diagnosis. However, for their outputs to get accepted in practice, the results they provide should be explainable in a way easily understood by pathologists. A well-known and widely used explanation technique is occlusion, which, however, can take a long time to compute, thus slowing the development and interaction with pathologists. In this work, we set out to find a faster replacement for occlusion in a successful system for detecting prostate cancer. Since there is no established framework for comparing the performance of various explanation methods, we first identified suitable comparison criteria and selected corresponding metrics. Based on the results, we were able to choose a different explanation method, which cut the previously required explanation time at least by a factor of 10, without any negative impact on the quality of outputs. This speedup enables rapid iteration in model development and debugging and brings us closer to adopting AI-assisted prostate cancer detection in clinical settings. We propose that our approach to finding the replacement for occlusion can be used to evaluate candidate methods in other related applications.
2.61RadImageNet-VQA: A Large-Scale CT and MRI Dataset for Radiologic Visual Question Answering¶
2025/12/22 05:04 GTM
In this work, we introduce RadImageNet-VQA, a large-scale dataset designed to advance radiologic visual question answering (VQA) on CT and MRI exams. Existing medical VQA datasets are limited in scale, dominated by X-ray imaging or biomedical illustrations, and often prone to text-based shortcuts. RadImageNet-VQA is built from expert-curated annotations and provides 750K images paired with 7.5M question-answer samples. It covers three key tasks - abnormality detection, anatomy recognition, and pathology identification - spanning eight anatomical regions and 97 pathology categories, and supports open-ended, closed-ended, and multiple-choice questions. Extensive experiments show that state-of-the-art vision-language models still struggle with fine-grained pathology identification, particularly in open-ended settings and even after fine-tuning. Text-only analysis further reveals that model performance collapses to near-random without image inputs, confirming that RadImageNet-VQA is free from linguistic shortcuts. The full dataset and benchmark are publicly available at https://
2.62Are Vision Language Models Cross-Cultural Theory of Mind Reasoners?¶
2025/12/22 05:04 GTM
Theory of Mind (ToM) -- the ability to attribute beliefs, desires, and emotions to others -- is fundamental for human social intelligence, yet remains a major challenge for artificial agents. Existing Vision-Language Models (VLMs) are increasingly applied in socially grounded tasks, but their capacity for cross-cultural ToM reasoning is largely unexplored. In this work, we introduce CulturalToM-VQA, a new evaluation benchmark containing 5095 questions designed to probe ToM reasoning across diverse cultural contexts through visual question answering. The dataset captures culturally grounded cues such as rituals, attire, gestures, and interpersonal dynamics, enabling systematic evaluation of ToM reasoning beyond Western-centric benchmarks. Our dataset is built through a VLM-assisted human-in-the-loop pipeline, where human experts first curate culturally rich images across traditions, rituals, and social interactions; a VLM then assist in generating structured ToM-focused scene descriptions, which are refined into question-answer pairs spanning a taxonomy of six ToM tasks and four graded complexity levels. The resulting dataset covers diverse theory of mind facets such as mental state attribution, false belief reasoning, non-literal communication, social norm violations, perspective coordination, and multi-agent reasoning.
2.63Towards Deeper Emotional Reflection: Crafting Affective Image Filters with Generative Priors¶
2025/12/22 05:04 GTM
Social media platforms enable users to express emotions by posting text with accompanying images. In this paper, we propose the Affective Image Filter (AIF) task, which aims to reflect visually-abstract emotions from text into visually-concrete images, thereby creating emotionally compelling results. We first introduce the AIF dataset and the formulation of the AIF models. Then, we present AIF-B as an initial attempt based on a multi-modal transformer architecture. After that, we propose AIF-D as an extension of AIF-B towards deeper emotional reflection, effectively leveraging generative priors from pre-trained large-scale diffusion models. Quantitative and qualitative experiments demonstrate that AIF models achieve superior performance for both content consistency and emotional fidelity compared to state-of-the-art methods. Extensive user study experiments demonstrate that AIF models are significantly more effective at evoking specific emotions. Based on the presented results, we comprehensively discuss the value and potential of AIF models.
2.64Beyond Semantic Features: Pixel-level Mapping for Generalized AI-Generated Image Detection¶
2025/12/22 05:04 GTM
The rapid evolution of generative technologies necessitates reliable methods for detecting AI-generated images. A critical limitation of current detectors is their failure to generalize to images from unseen generative models, as they often overfit to source-specific semantic cues rather than learning universal generative artifacts. To overcome this, we introduce a simple yet remarkably effective pixel-level mapping pre-processing step to disrupt the pixel value distribution of images and break the fragile, non-essential semantic patterns that detectors commonly exploit as shortcuts. This forces the detector to focus on more fundamental and generalizable high-frequency traces inherent to the image generation process. Through comprehensive experiments on GAN and diffusion-based generators, we show that our approach significantly boosts the cross-generator performance of state-of-the-art detectors. Extensive analysis further verifies our hypothesis that the disruption of semantic cues is the key to generalization.
2.65Multi-level distortion-aware deformable network for omnidirectional image super-resolution¶
2025/12/22 05:04 GTM
As augmented reality and virtual reality applications gain popularity, image processing for OmniDirectional Images (ODIs) has attracted increasing attention. OmniDirectional Image Super-Resolution (ODISR) is a promising technique for enhancing the visual quality of ODIs. Before performing super-resolution, ODIs are typically projected from a spherical surface onto a plane using EquiRectangular Projection (ERP). This projection introduces latitude-dependent geometric distortion in ERP images: distortion is minimal near the equator but becomes severe toward the poles, where image content is stretched across a wider area. However, existing ODISR methods have limited sampling ranges and feature extraction capabilities, which hinder their ability to capture distorted patterns over large areas. To address this issue, we propose a novel Multi-level Distortion-aware Deformable Network (MDDN) for ODISR, designed to expand the sampling range and receptive field. Specifically, the feature extractor in MDDN comprises three parallel branches: a deformable attention mechanism (serving as the dilation=1 path) and two dilated deformable convolutions with dilation rates of 2 and 3. This architecture expands the sampling range to include more distorted patterns across wider areas, generating dense and comprehensive features that effectively capture geometric distortions in ERP images. The representations extracted from these deformable feature extractors are adaptively fused in a multi-level feature fusion module. Furthermore, to reduce computational cost, a low-rank decomposition strategy is applied to dilated deformable convolutions. Extensive experiments on publicly available datasets demonstrate that MDDN outperforms state-of-the-art methods, underscoring its effectiveness and superiority in ODISR.
2.66SynergyWarpNet: Attention-Guided Cooperative Warping for Neural Portrait Animation¶
2025/12/22 05:04 GTM
Recent advances in neural portrait animation have demonstrated remarked potential for applications in virtual avatars, telepresence, and digital content creation. However, traditional explicit warping approaches often struggle with accurate motion transfer or recovering missing regions, while recent attention-based warping methods, though effective, frequently suffer from high complexity and weak geometric grounding. To address these issues, we propose SynergyWarpNet, an attention-guided cooperative warping framework designed for high-fidelity talking head synthesis. Given a source portrait, a driving image, and a set of reference images, our model progressively refines the animation in three stages. First, an explicit warping module performs coarse spatial alignment between the source and driving image using 3D dense optical flow. Next, a reference-augmented correction module leverages cross-attention across 3D keypoints and texture features from multiple reference images to semantically complete occluded or distorted regions. Finally, a confidence-guided fusion module integrates the warped outputs with spatially-adaptive fusing, using a learned confidence map to balance structural alignment and visual consistency. Comprehensive evaluations on benchmark datasets demonstrate state-of-the-art performance.
2.67Democratizing Pathology Co-Pilots: An Open Pipeline and Dataset for Whole-Slide Vision-Language Modelling¶
2025/12/22 05:04 GTM
Vision-language models (VLMs) have the potential to become co-pilots for pathologists. However, most VLMs either focus on small regions of interest within whole-slide images, provide only static slide-level outputs, or rely on data that is not publicly available, limiting reproducibility. Furthermore, training data containing WSIs paired with detailed clinical reports is scarce, restricting progress toward transparent and generalisable VLMs. We address these limitations with three main contributions. First, we introduce Polysome, a standardised tool for synthetic instruction generation. Second, we apply Polysome to the public HISTAI dataset, generating HISTAI-Instruct, a large whole-slide instruction tuning dataset spanning 24,259 slides and over 1.1 million instruction-response pairs. Finally, we use HISTAI-Instruct to train ANTONI-α, a VLM capable of visual-question answering (VQA). We show that ANTONI-α outperforms MedGemma on WSI-level VQA tasks of tissue identification, neoplasm detection, and differential diagnosis. We also compare the performance of multiple incarnations of ANTONI-α trained with different amounts of data. All methods, data, and code are publicly available.
2.68DESSERT: Diffusion-based Event-driven Single-frame Synthesis via Residual Training¶
2025/12/22 05:04 GTM
Video frame prediction extrapolates future frames from previous frames, but suffers from prediction errors in dynamic scenes due to the lack of information about the next frame. Event cameras address this limitation by capturing per-pixel brightness changes asynchronously with high temporal resolution. Prior research on event-based video frame prediction has leveraged motion information from event data, often by predicting event-based optical flow and reconstructing frames via pixel warping. However, such approaches introduce holes and blurring when pixel displacement is inaccurate. To overcome this limitation, we propose DESSERT, a diffusion-based event-driven single-frame synthesis framework via residual training. Leveraging a pre-trained Stable Diffusion model, our method is trained on inter-frame residuals to ensure temporal consistency. The training pipeline consists of two stages: (1) an Event-to-Residual Alignment Variational Autoencoder (ER-VAE) that aligns the event frame between anchor and target frames with the corresponding residual, and (2) a diffusion model that denoises the residual latent conditioned on event data. Furthermore, we introduce Diverse-Length Temporal (DLT) augmentation, which improves robustness by training on frame segments of varying temporal lengths. Experimental results demonstrate that our method outperforms existing event-based reconstruction, image-based video frame prediction, event-based video frame prediction, and one-sided event-based video frame interpolation methods, producing sharper and more temporally consistent frame synthesis.
2.69Rotterdam artery-vein segmentation (RAV) dataset¶
2025/12/22 05:04 GTM
Purpose: To provide a diverse, high-quality dataset of color fundus images (CFIs) with detailed artery-vein (A/V) segmentation annotations, supporting the development and evaluation of machine learning algorithms for vascular analysis in ophthalmology. Methods: CFIs were sampled from the longitudinal Rotterdam Study (RS), encompassing a wide range of ages, devices, and capture conditions. Images were annotated using a custom interface that allowed graders to label arteries, veins, and unknown vessels on separate layers, starting from an initial vessel segmentation mask. Connectivity was explicitly verified and corrected using connected component visualization tools. Results: The dataset includes 1024x1024-pixel PNG images in three modalities: original RGB fundus images, contrast-enhanced versions, and RGB-encoded A/V masks. Image quality varied widely, including challenging samples typically excluded by automated quality assessment systems, but judged to contain valuable vascular information. Conclusion: This dataset offers a rich and heterogeneous source of CFIs with high-quality segmentations. It supports robust benchmarking and training of machine learning models under real-world variability in image quality and acquisition settings. Translational Relevance: By including connectivity-validated A/V masks and diverse image conditions, this dataset enables the development of clinically applicable, generalizable machine learning tools for retinal vascular analysis, potentially improving automated screening and diagnosis of systemic and ocular diseases.
2.70EMMA: Concept Erasure Benchmark with Comprehensive Semantic Metrics and Diverse Categories¶
2025/12/22 05:04 GTM
The widespread adoption of text-to-image (T2I) generation has raised concerns about privacy, bias, and copyright violations. Concept erasure techniques offer a promising solution by selectively removing undesired concepts from pre-trained models without requiring full retraining. However, these methods are often evaluated on a limited set of concepts, relying on overly simplistic and direct prompts. To test the boundaries of concept erasure techniques, and assess whether they truly remove targeted concepts from model representations, we introduce EMMA, a benchmark that evaluates five key dimensions of concept erasure over 12 metrics. EMMA goes beyond standard metrics like image quality and time efficiency, testing robustness under challenging conditions, including indirect descriptions, visually similar non-target concepts, and potential gender and ethnicity bias, providing a socially aware analysis of method behavior. Using EMMA, we analyze five concept erasure methods across five domains (objects, celebrities, art styles, NSFW, and copyright). Our results show that existing methods struggle with implicit prompts (i.e., generating the erased concept when it is indirectly referenced) and visually similar non-target concepts (i.e., failing to generate non-targeted concepts resembling the erased one), while some amplify gender and ethnicity bias compared to the original model.
2.71A Benchmark for Ultra-High-Resolution Remote Sensing MLLMs¶
2025/12/22 05:04 GTM
Multimodal large language models (MLLMs) demonstrate strong perception and reasoning performance on existing remote sensing (RS) benchmarks. However, most prior benchmarks rely on low-resolution imagery, and some high-resolution benchmarks suffer from flawed reasoning-task designs. We show that text-only LLMs can perform competitively with multimodal vision-language models on RS reasoning tasks without access to images, revealing a critical mismatch between current benchmarks and the intended evaluation of visual understanding. To enable faithful assessment, we introduce RSHR-Bench, a super-high-resolution benchmark for RS visual understanding and reasoning. RSHR-Bench contains 5,329 full-scene images with a long side of at least 4,000 pixels, with up to about 3 x 10^8 pixels per image, sourced from widely used RS corpora and UAV collections. We design four task families: multiple-choice VQA, open-ended VQA, image captioning, and single-image evaluation. These tasks cover nine perception categories and four reasoning types, supporting multi-turn and multi-image dialog. To reduce reliance on language priors, we apply adversarial filtering with strong LLMs followed by rigorous human verification. Overall, we construct 3,864 VQA tasks, 3,913 image captioning tasks, and 500 fully human-written or verified single-image evaluation VQA pairs. Evaluations across open-source, closed-source, and RS-specific VLMs reveal persistent performance gaps in super-high-resolution scenarios. Code: https://
2.72Auxiliary Descriptive Knowledge for Few-Shot Adaptation of Vision-Language Model¶
2025/12/22 05:04 GTM
Despite the impressive zero-shot capabilities of Vision-Language Models (VLMs), they often struggle in downstream tasks with distribution shifts from the pre-training data. Few-Shot Adaptation (FSA-VLM) has emerged as a key solution, typically using Parameter-Efficient Fine-Tuning (PEFT) to adapt models with minimal data. However, these PEFT methods are constrained by their reliance on fixed, handcrafted prompts, which are often insufficient to understand the semantics of classes. While some studies have proposed leveraging image-induced prompts to provide additional clues for classification, they introduce prohibitive computational overhead at inference. Therefore, we introduce Auxiliary Descriptive Knowledge (ADK), a novel framework that efficiently enriches text representations without compromising efficiency. ADK first leverages a Large Language Model to generate a rich set of descriptive prompts for each class offline. These pre-computed features are then deployed in two ways: (1) as Compositional Knowledge, an averaged representation that provides rich semantics, especially beneficial when class names are ambiguous or unfamiliar to the VLM; and (2) as Instance-Specific Knowledge, where a lightweight, non-parametric attention mechanism dynamically selects the most relevant descriptions for a given image. This approach provides two additional types of knowledge alongside the handcrafted prompt, thereby facilitating category distinction across various domains. Also, ADK acts as a parameter-free, plug-and-play component that enhances existing PEFT methods. Extensive experiments demonstrate that ADK consistently boosts the performance of multiple PEFT baselines, setting a new state-of-the-art across various scenarios.
2.73CodeDance: A Dynamic Tool-integrated MLLM for Executable Visual Reasoning¶
2025/12/22 05:04 GTM
Recent releases such as o3 highlight human-like “thinking with images” reasoning that combines structured tool use with stepwise verification, yet most open-source approaches still rely on text-only chains, rigid visual schemas, or single-step pipelines, limiting flexibility, interpretability, and transferability on complex tasks. We introduce CodeDance, which explores executable code as a general solver for visual reasoning. Unlike fixed-schema calls (e.g., only predicting bounding-box coordinates), CodeDance defines, composes, and executes code to orchestrate multiple tools, compute intermediate results, and render visual artifacts (e.g., boxes, lines, plots) that support transparent, self-checkable reasoning. To guide this process, we introduce a reward for balanced and adaptive tool-call, which balances exploration with efficiency and mitigates tool overuse. Interestingly, beyond the expected capabilities taught by atomic supervision, we empirically observe novel emergent behaviors during RL training: CodeDance demonstrates novel tool invocations, unseen compositions, and cross-task transfer. These behaviors arise without task-specific fine-tuning, suggesting a general and scalable mechanism of executable visual reasoning. Extensive experiments across reasoning benchmarks (e.g., visual search, math, chart QA) show that CodeDance not only consistently outperforms schema-driven and text-only baselines, but also surpasses advanced closed models such as GPT-4o and larger open-source models.
2.74Deep But Reliable: Advancing Multi-turn Reasoning for Thinking with Images¶
2025/12/22 05:04 GTM
Recent advances in large Vision-Language Models (VLMs) have exhibited strong reasoning capabilities on complex visual tasks by thinking with images in their Chain-of-Thought (CoT), which is achieved by actively invoking tools to analyze visual inputs rather than merely perceiving them. However, existing models often struggle to reflect on and correct themselves when attempting incorrect reasoning trajectories. To address this limitation, we propose DRIM, a model that enables deep but reliable multi-turn reasoning when thinking with images in its multimodal CoT. Our pipeline comprises three stages: data construction, cold-start SFT and RL. Based on a high-resolution image dataset, we construct high-difficulty and verifiable visual question-answer pairs, where solving each task requires multi-turn tool calls to reach the correct answer. In the SFT stage, we collect tool trajectories as cold-start data, guiding a multi-turn reasoning pattern. In the RL stage, we introduce redundancy-penalized policy optimization, which incentivizes the model to develop a self-reflective reasoning pattern. The basic idea is to impose judgment on reasoning trajectories and penalize those that produce incorrect answers without sufficient multi-scale exploration. Extensive experiments demonstrate that DRIM achieves superior performance on visual understanding benchmarks.
2.75EMAG: Self-Rectifying Diffusion Sampling with Exponential Moving Average Guidance¶
2025/12/22 05:04 GTM
In diffusion and flow-matching generative models, guidance techniques are widely used to improve sample quality and consistency. Classifier-free guidance (CFG) is the de facto choice in modern systems and achieves this by contrasting conditional and unconditional samples. Recent work explores contrasting negative samples at inference using a weaker model, via strong/weak model pairs, attention-based masking, stochastic block dropping, or perturbations to the self-attention energy landscape. While these strategies refine the generation quality, they still lack reliable control over the granularity or difficulty of the negative samples, and target-layer selection is often fixed. We propose Exponential Moving Average Guidance (EMAG), a training-free mechanism that modifies attention at inference time in diffusion transformers, with a statistics-based, adaptive layer-selection rule. Unlike prior methods, EMAG produces harder, semantically faithful negatives (fine-grained degradations), surfacing difficult failure modes, enabling the denoiser to refine subtle artifacts, boosting the quality and human preference score (HPS) by +0.46 over CFG. We further demonstrate that EMAG naturally composes with advanced guidance techniques, such as APG and CADS, further improving HPS.
2.76MatLat: Material Latent Space for PBR Texture Generation¶
2025/12/22 05:04 GTM
We propose a generative framework for producing high-quality PBR textures on a given 3D mesh. As large-scale PBR texture datasets are scarce, our approach focuses on effectively leveraging the embedding space and diffusion priors of pretrained latent image generative models while learning a material latent space, MatLat, through targeted fine-tuning. Unlike prior methods that freeze the embedding network and thus lead to distribution shifts when encoding additional PBR channels and hinder subsequent diffusion training, we fine-tune the pretrained VAE so that new material channels can be incorporated with minimal latent distribution deviation. We further show that correspondence-aware attention alone is insufficient for cross-view consistency unless the latent-to-image mapping preserves locality. To enforce this locality, we introduce a regularization in the VAE fine-tuning that crops latent patches, decodes them, and aligns the corresponding image regions to maintain strong pixel-latent spatial correspondence. Ablation studies and comparison with previous baselines demonstrate that our framework improves PBR texture fidelity and that each component is critical for achieving state-of-the-art performance.
2.77ProCache: Constraint-Aware Feature Caching with Selective Computation for Diffusion Transformer Acceleration¶
2025/12/22 05:04 GTM
Diffusion Transformers (DiTs) have achieved state-of-the-art performance in generative modeling, yet their high computational cost hinders real-time deployment. While feature caching offers a promising training-free acceleration solution by exploiting temporal redundancy, existing methods suffer from two key limitations: (1) uniform caching intervals fail to align with the non-uniform temporal dynamics of DiT, and (2) naive feature reuse with excessively large caching intervals can lead to severe error accumulation. In this work, we analyze the evolution of DiT features during denoising and reveal that both feature changes and error propagation are highly time- and depth-varying. Motivated by this, we propose ProCache, a training-free dynamic feature caching framework that addresses these issues via two core components: (i) a constraint-aware caching pattern search module that generates non-uniform activation schedules through offline constrained sampling, tailored to the model’s temporal characteristics; and (ii) a selective computation module that selectively computes within deep blocks and high-importance tokens for cached segments to mitigate error accumulation with minimal overhead. Extensive experiments on PixArt-alpha and DiT demonstrate that ProCache achieves up to 1.96x and 2.90x acceleration with negligible quality degradation, significantly outperforming prior caching-based methods.
2.78Towards Pixel-Wise Anomaly Location for High-Resolution PCBA \ via Self-Supervised Image Reconstruction¶
2025/12/22 05:04 GTM
Automated defect inspection of assembled Printed Circuit Board Assemblies (PCBA) is quite challenging due to the insufficient labeled data, micro-defects with just a few pixels in visually-complex and high-resolution images. To address these challenges, we present HiSIR-Net, a High resolution, Self-supervised Reconstruction framework for pixel-wise PCBA localization. Our design combines two lightweight modules that make this practical on real 4K-resolution boards: (i) a Selective Input-Reconstruction Gate (SIR-Gate) that lets the model decide where to trust reconstruction versus the original input, thereby reducing irrelevant reconstruction artifacts and false alarms; and (ii) a Region-level Optimized Patch Selection (ROPS) scheme with positional cues to select overlapping patch reconstructions coherently across arbitrary resolutions. Organically integrating these mechanisms yields clean, high-resolution anomaly maps with low false positive (FP) rate. To bridge the gap in high-resolution PCBA datasets, we further contribute a self-collected dataset named SIPCBA-500 of 500 images. We conduct extensive experiments on our SIPCBA-500 as well as public benchmarks, demonstrating the superior localization performance of our method while running at practical speed. Full code and dataset will be made available upon acceptance.
2.79Vision-Language Model Guided Image Restoration¶
2025/12/22 05:04 GTM
Many image restoration (IR) tasks require both pixel-level fidelity and high-level semantic understanding to recover realistic photos with fine-grained details. However, previous approaches often struggle to effectively leverage both the visual and linguistic knowledge. Recent efforts have attempted to incorporate Vision-language models (VLMs), which excel at aligning visual and textual features, into universal IR. Nevertheless, these methods fail to utilize the linguistic priors to ensure semantic coherence during the restoration process. To address this issue, in this paper, we propose the Vision-Language Model Guided Image Restoration (VLMIR) framework, which leverages the rich vision-language priors of VLMs, such as CLIP, to enhance IR performance through improved visual perception and semantic understanding. Our approach consists of two stages: VLM-based feature extraction and diffusion-based image restoration. In the first stage, we extract complementary visual and linguistic representations of input images by condensing the visual perception and high-level semantic priors through VLMs. Specifically, we align the embeddings of captions from low-quality and high-quality images using a cosine similarity loss with LoRA fine-tuning, and employ a degradation predictor to decompose degradation and clean image content embeddings. These complementary visual and textual embeddings are then integrated into a diffusion-based model via cross-attention mechanisms for enhanced restoration. Extensive experiments and ablation studies demonstrate that VLMIR achieves superior performance across both universal and degradation-specific IR tasks, underscoring the critical role of integrated visual and linguistic knowledge from VLMs in advancing image restoration capabilities.
2.80Diagnostic Performance of Universal-Learning Ultrasound AI Across Multiple Organs and Tasks: the UUSIC25 Challenge¶
2025/12/22 05:04 GTM
IMPORTANCE: Current ultrasound AI remains fragmented into single-task tools, limiting clinical utility compared to versatile modern ultrasound systems. OBJECTIVE: To evaluate the diagnostic accuracy and efficiency of single general-purpose deep learning models for multi-organ classification and segmentation. DESIGN: The Universal UltraSound Image Challenge 2025 (UUSIC25) involved developing algorithms on 11,644 images (public/private). Evaluation used an independent, multi-center test set of 2,479 images, including data from a center completely unseen during training to assess generalization. OUTCOMES: Diagnostic performance (Dice Similarity Coefficient [DSC]; Area Under the Receiver Operating Characteristic Curve [AUC]) and computational efficiency (inference time, GPU memory). RESULTS: Of 15 valid algorithms, the top model (SMART) achieved a macro-averaged DSC of 0.854 across 5 segmentation tasks and AUC of 0.766 for binary classification. Models showed high capability in segmentation (e.g., fetal head DSC: 0.942) but variability in complex tasks subject to domain shift. Notably, in breast cancer molecular subtyping, the top model’s performance dropped from AUC 0.571 (internal) to 0.508 (unseen external center), highlighting generalization challenges. CONCLUSIONS: General-purpose AI models achieve high accuracy and efficiency across multiple tasks using a single architecture. However, performance degradation on unseen data suggests domain generalization is critical for future clinical deployment.
2.81WDFFU-Mamba: A Wavelet-guided Dual-attention Feature Fusion Mamba for Breast Tumor Segmentation in Ultrasound Images¶
2025/12/22 05:04 GTM
Breast ultrasound (BUS) image segmentation plays a vital role in assisting clinical diagnosis and early tumor screening. However, challenges such as speckle noise, imaging artifacts, irregular lesion morphology, and blurred boundaries severely hinder accurate segmentation. To address these challenges, this work aims to design a robust and efficient model capable of automatically segmenting breast tumors in BUS images.We propose a novel segmentation network named WDFFU-Mamba, which integrates wavelet-guided enhancement and dual-attention feature fusion within a U-shaped Mamba architecture. A Wavelet-denoised High-Frequency-guided Feature (WHF) module is employed to enhance low-level representations through noise-suppressed high-frequency cues. A Dual Attention Feature Fusion (DAFF) module is also introduced to effectively merge skip-connected and semantic features, improving contextual consistency.Extensive experiments on two public BUS datasets demonstrate that WDFFU-Mamba achieves superior segmentation accuracy, significantly outperforming existing methods in terms of Dice coefficient and 95th percentile Hausdorff Distance (HD95).The combination of wavelet-domain enhancement and attention-based fusion greatly improves both the accuracy and robustness of BUS image segmentation, while maintaining computational efficiency.The proposed WDFFU-Mamba model not only delivers strong segmentation performance but also exhibits desirable generalization ability across datasets, making it a promising solution for real-world clinical applications in breast tumor ultrasound analysis.
2.82AnyCXR: Human Anatomy Segmentation of Chest X-ray at Any Acquisition Position using Multi-stage Domain Randomized Synthetic Data with Imperfect Annota...¶
2025/12/22 05:04 GTM
Robust anatomical segmentation of chest X-rays (CXRs) remains challenging due to the scarcity of comprehensive annotations and the substantial variability of real-world acquisition conditions. We propose AnyCXR, a unified framework that enables generalizable multi-organ segmentation across arbitrary CXR projection angles using only synthetic supervision. The method combines a Multi-stage Domain Randomization (MSDR) engine, which generates over 100,000 anatomically faithful and highly diverse synthetic radiographs from 3D CT volumes, with a Conditional Joint Annotation Regularization (CAR) learning strategy that leverages partial and imperfect labels by enforcing anatomical consistency in a latent space. Trained entirely on synthetic data, AnyCXR achieves strong zero-shot generalization on multiple real-world datasets, providing accurate delineation of 54 anatomical structures in PA, lateral, and oblique views. The resulting segmentation maps support downstream clinical tasks, including automated cardiothoracic ratio estimation, spine curvature assessment, and disease classification, where the incorporation of anatomical priors improves diagnostic performance. These results demonstrate that AnyCXR establishes a scalable and reliable foundation for anatomy-aware CXR analysis and offers a practical pathway toward reducing annotation burdens while improving robustness across diverse imaging conditions.
2.83Mitty: Diffusion-based Human-to-Robot Video Generation¶
2025/12/22 05:04 GTM
Learning directly from human demonstration videos is a key milestone toward scalable and generalizable robot learning. Yet existing methods rely on intermediate representations such as keypoints or trajectories, introducing information loss and cumulative errors that harm temporal and visual consistency. We present Mitty, a Diffusion Transformer that enables video In-Context Learning for end-to-end Human2Robot video generation. Built on a pretrained video diffusion model, Mitty leverages strong visual-temporal priors to translate human demonstrations into robot-execution videos without action labels or intermediate abstractions. Demonstration videos are compressed into condition tokens and fused with robot denoising tokens through bidirectional attention during diffusion. To mitigate paired-data scarcity, we also develop an automatic synthesis pipeline that produces high-quality human-robot pairs from large egocentric datasets. Experiments on Human2Robot and EPIC-Kitchens show that Mitty delivers state-of-the-art results, strong generalization to unseen environments, and new insights for scalable robot learning from human observations.
2.84Video Detective: Seek Critical Clues Recurrently to Answer Question from Long Videos¶
2025/12/22 05:04 GTM
Long Video Question-Answering (LVQA) presents a significant challenge for Multi-modal Large Language Models (MLLMs) due to immense context and overloaded information, which could also lead to prohibitive memory consumption. While existing methods attempt to address these issues by reducing visual tokens or extending model’s context length, they may miss useful information or take considerable computation. In fact, when answering given questions, only a small amount of crucial information is required. Therefore, we propose an efficient question-aware memory mechanism, enabling MLLMs to recurrently seek these critical clues. Our approach, named VideoDetective, simplifies this task by iteratively processing video sub-segments. For each sub-segment, a question-aware compression strategy is employed by introducing a few special memory tokens to achieve purposefully compression. This allows models to effectively seek critical clues while reducing visual tokens. Then, due to history context could have a significant impact, we recurrently aggregate and store these memory tokens to update history context, which would be reused for subsequent sub-segments. Furthermore, to more effectively measure model’s long video understanding ability, we introduce GLVC (Grounding Long Video Clues), a long video question-answering dataset, which features grounding critical and concrete clues scattered throughout entire videos. Experimental results demonstrate our method enables MLLMs with limited context length of 32K to efficiently process 100K tokens (3600 frames, an hour-long video sampled at 1fps), requiring only 2 minutes and 37GB GPU memory usage. Evaluation results across multiple long video benchmarks illustrate our method can more effectively seek critical clues from massive information.
2.85Learning When to Look: A Disentangled Curriculum for Strategic Perception in Multimodal Reasoning¶
2025/12/22 05:04 GTM
Multimodal Large Language Models (MLLMs) demonstrate significant potential but remain brittle in complex, long-chain visual reasoning tasks. A critical failure mode is “visual forgetting”, where models progressively lose visual grounding as reasoning extends, a phenomenon aptly described as “think longer, see less”. We posit this failure stems from current training paradigms prematurely entangling two distinct cognitive skills: (1) abstract logical reasoning “how-to-think”) and (2) strategic visual perception (“when-to-look”). This creates a foundational cold-start deficiency -- weakening abstract reasoning -- and a strategic perception deficit, as models lack a policy for when to perceive. In this paper, we propose a novel curriculum-based framework to disentangle these skills. First, we introduce a disentangled Supervised Fine-Tuning (SFT) curriculum that builds a robust abstract reasoning backbone on text-only data before anchoring it to vision with a novel Perception-Grounded Chain-of-Thought (PG-CoT) paradigm. Second, we resolve the strategic perception deficit by formulating timing as a reinforcement learning problem. We design a Pivotal Perception Reward that teaches the model when to look by coupling perceptual actions to linguistic markers of cognitive uncertainty (e.g., “wait”, “verify”), thereby learning an autonomous grounding policy. Our contributions include the formalization of these two deficiencies and the development of a principled, two-stage framework to address them, transforming the model from a heuristic-driven observer to a strategic, grounded reasoner. \textbf{Code}: \url{https://
2.86Robust Scene Coordinate Regression via Geometrically-Consistent Global Descriptors¶
2025/12/22 05:04 GTM
Recent learning-based visual localization methods use global descriptors to disambiguate visually similar places, but existing approaches often derive these descriptors from geometric cues alone (e.g., covisibility graphs), limiting their discriminative power and reducing robustness in the presence of noisy geometric constraints. We propose an aggregator module that learns global descriptors consistent with both geometrical structure and visual similarity, ensuring that images are close in descriptor space only when they are visually similar and spatially connected. This corrects erroneous associations caused by unreliable overlap scores. Using a batch-mining strategy based solely on the overlap scores and a modified contrastive loss, our method trains without manual place labels and generalizes across diverse environments. Experiments on challenging benchmarks show substantial localization gains in large-scale environments while preserving computational and memory efficiency. Code is available at \href{https://
2.87Any-Optical-Model: A Universal Foundation Model for Optical Remote Sensing¶
2025/12/22 05:04 GTM
Optical satellites, with their diverse band layouts and ground sampling distances, supply indispensable evidence for tasks ranging from ecosystem surveillance to emergency response. However, significant discrepancies in band composition and spatial resolution across different optical sensors present major challenges for existing Remote Sensing Foundation Models (RSFMs). These models are typically pretrained on fixed band configurations and resolutions, making them vulnerable to real world scenarios involving missing bands, cross sensor fusion, and unseen spatial scales, thereby limiting their generalization and practical deployment. To address these limitations, we propose Any Optical Model (AOM), a universal RSFM explicitly designed to accommodate arbitrary band compositions, sensor types, and resolution scales. To preserve distinctive spectral characteristics even when bands are missing or newly introduced, AOM introduces a spectrum-independent tokenizer that assigns each channel a dedicated band embedding, enabling explicit encoding of spectral identity. To effectively capture texture and contextual patterns from sub-meter to hundred-meter imagery, we design a multi-scale adaptive patch embedding mechanism that dynamically modulates the receptive field. Furthermore, to maintain global semantic consistency across varying resolutions, AOM incorporates a multi-scale semantic alignment mechanism alongside a channel-wise self-supervised masking and reconstruction pretraining strategy that jointly models spectral-spatial relationships. Extensive experiments on over 10 public datasets, including those from Sentinel-2, Landsat, and HLS, demonstrate that AOM consistently achieves state-of-the-art (SOTA) performance under challenging conditions such as band missing, cross sensor, and cross resolution settings.
2.88DAVE: A VLM Vision Encoder for Document Understanding and Web Agents¶
2025/12/22 05:04 GTM
While Vision-language models (VLMs) have demonstrated remarkable performance across multi-modal tasks, their choice of vision encoders presents a fundamental weakness: their low-level features lack the robust structural and spatial information essential for document understanding and web agents. To bridge this gap, we introduce DAVE, a vision encoder purpose-built for VLMs and tailored for these tasks. Our training pipeline is designed to leverage abundant unlabeled data to bypass the need for costly large-scale annotations for document and web images. We begin with a self-supervised pretraining stage on unlabeled images, followed by a supervised autoregressive pretraining stage, where the model learns tasks like parsing and localization from limited, high-quality data. Within the supervised stage, we adopt two strategies to improve our encoder’s alignment with both general visual knowledge and diverse document and web agentic tasks: (i) We introduce a novel model-merging scheme, combining encoders trained with different text decoders to ensure broad compatibility with different web agentic architectures. (ii) We use ensemble training to fuse features from pretrained generalist encoders (e.g., SigLIP2) with our own document and web-specific representations. Extensive experiments on classic document tasks, VQAs, web localization, and agent-based benchmarks validate the effectiveness of our approach, establishing DAVE as a strong vision encoder for document and web applications.
2.89CheXPO-v2: Preference Optimization for Chest X-ray VLMs with Knowledge Graph Consistency¶
2025/12/22 05:04 GTM
Medical Vision-Language Models (VLMs) are prone to hallucinations, compromising clinical reliability. While reinforcement learning methods like Group Relative Policy Optimization (GRPO) offer a low-cost alignment solution, their reliance on sparse, outcome-based rewards inadvertently encourages models to “overthink” -- generating verbose, convoluted, and unverifiable Chain-of-Thought reasoning to justify answers. This focus on outcomes obscures factual errors and poses significant safety risks. To address this, we propose CheXPO-v2, a novel alignment framework that shifts from outcome to process supervision. Our core innovation is a Knowledge Graph Consistency Reward mechanism driven by Entity-Relation Matching. By explicitly parsing reasoning steps into structured “Disease, Relation, Anatomy” triplets, we provide fine-grained supervision that penalizes incoherent logic and hallucinations at the atomic level. Integrating this with a hard-example mining strategy, our approach significantly outperforms GRPO and state-of-the-art models on benchmarks like MIMIC-CXR-VQA. Crucially, CheXPO-v2 achieves new state-of-the-art accuracy using only 5k samples, demonstrating exceptional data efficiency while producing clinically sound and verifiable reasoning. The project source code is publicly available at: https://
2.90Reasoning Palette: Modulating Reasoning via Latent Contextualization for Controllable Exploration for (V)LMs¶
2025/12/22 05:04 GTM
Exploration capacity shapes both inference-time performance and reinforcement learning (RL) training for large (vision-) language models, as stochastic sampling often yields redundant reasoning paths with little high-level diversity. This paper proposes Reasoning Palette, a novel latent-modulation framework that endows the model with a stochastic latent variable for strategic contextualization, guiding its internal planning prior to token generation. This latent context is inferred from the mean-pooled embedding of a question-answer pair via a variational autoencoder (VAE), where each sampled latent potentially encodes a distinct reasoning context. During inference, a sampled latent is decoded into learnable token prefixes and prepended to the input prompt, modulating the model’s internal reasoning trajectory. In this way, the model performs internal sampling over reasoning strategies prior to output generation, which shapes the style and structure of the entire response sequence. A brief supervised fine-tuning (SFT) warm-up phase allows the model to adapt to this latent conditioning. Within RL optimization, Reasoning Palette facilitates structured exploration by enabling on-demand injection for diverse reasoning modes, significantly enhancing exploration efficiency and sustained learning capability. Experiments across multiple reasoning benchmarks demonstrate that our method enables interpretable and controllable control over the (vision-) language model’s strategic behavior, thereby achieving consistent performance gains over standard RL methods.
2.91Fose: Fusion of One-Step Diffusion and End-to-End Network for Pansharpening¶
2025/12/22 05:04 GTM
Pansharpening is a significant image fusion task that fuses low-resolution multispectral images (LRMSI) and high-resolution panchromatic images (PAN) to obtain high-resolution multispectral images (HRMSI). The development of the diffusion models (DM) and the end-to-end models (E2E model) has greatly improved the frontier of pansharping. DM takes the multi-step diffusion to obtain an accurate estimation of the residual between LRMSI and HRMSI. However, the multi-step process takes large computational power and is time-consuming. As for E2E models, their performance is still limited by the lack of prior and simple structure. In this paper, we propose a novel four-stage training strategy to obtain a lightweight network Fose, which fuses one-step DM and an E2E model. We perform one-step distillation on an enhanced SOTA DM for pansharping to compress the inference process from 50 steps to only 1 step. Then we fuse the E2E model with one-step DM with lightweight ensemble blocks. Comprehensive experiments are conducted to demonstrate the significant improvement of the proposed Fose on three commonly used benchmarks. Moreover, we achieve a 7.42 speedup ratio compared to the baseline DM while achieving much better performance. The code and model are released at https://
2.92Anatomical Region-Guided Contrastive Decoding: A Plug-and-Play Strategy for Mitigating Hallucinations in Medical VLMs¶
2025/12/22 05:04 GTM
Medical Vision-Language Models (MedVLMs) show immense promise in clinical applicability. However, their reliability is hindered by hallucinations, where models often fail to derive answers from visual evidence, instead relying on learned textual priors. Existing mitigation strategies for MedVLMs have distinct limitations: training-based methods rely on costly expert annotations, limiting scalability, while training-free interventions like contrastive decoding, though data-efficient, apply a global, untargeted correction whose effects in complex real-world clinical settings can be unreliable. To address these challenges, we introduce Anatomical Region-Guided Contrastive Decoding (ARCD), a plug-and-play strategy that mitigates hallucinations by providing targeted, region-specific guidance. Our module leverages an anatomical mask to direct a three-tiered contrastive decoding process. By dynamically re-weighting at the token, attention, and logits levels, it verifiably steers the model’s focus onto specified regions, reinforcing anatomical understanding and suppressing factually incorrect outputs. Extensive experiments across diverse datasets, including chest X-ray, CT, brain MRI, and ocular ultrasound, demonstrate our method’s effectiveness in improving regional understanding, reducing hallucinations, and enhancing overall diagnostic accuracy.
2.93Globally Optimal Solution to the Generalized Relative Pose Estimation Problem using Affine Correspondences¶
2025/12/22 05:04 GTM
Mobile devices equipped with a multi-camera system and an inertial measurement unit (IMU) are widely used nowadays, such as self-driving cars. The task of relative pose estimation using visual and inertial information has important applications in various fields. To improve the accuracy of relative pose estimation of multi-camera systems, we propose a globally optimal solver using affine correspondences to estimate the generalized relative pose with a known vertical direction. First, a cost function about the relative rotation angle is established after decoupling the rotation matrix and translation vector, which minimizes the algebraic error of geometric constraints from affine correspondences. Then, the global optimization problem is converted into two polynomials with two unknowns based on the characteristic equation and its first derivative is zero. Finally, the relative rotation angle can be solved using the polynomial eigenvalue solver, and the translation vector can be obtained from the eigenvector. Besides, a new linear solution is proposed when the relative rotation is small. The proposed solver is evaluated on synthetic data and real-world datasets. The experiment results demonstrate that our method outperforms comparable state-of-the-art methods in accuracy.
2.94It is not always greener on the other side: Greenery perception across demographics and personalities in multiple cities¶
2025/12/22 05:04 GTM
Quantifying and assessing urban greenery is consequential for planning and development, reflecting the everlasting importance of green spaces for multiple climate and well-being dimensions of cities. Evaluation can be broadly grouped into objective (e.g., measuring the amount of greenery) and subjective (e.g., polling the perception of people) approaches, which may differ -- what people see and feel about how green a place is might not match the measurements of the actual amount of vegetation. In this work, we advance the state of the art by measuring such differences and explaining them through human, geographic, and spatial dimensions. The experiments rely on contextual information extracted from street view imagery and a comprehensive urban visual perception survey collected from 1,000 people across five countries with their extensive demographic and personality information. We analyze the discrepancies between objective measures (e.g., Green View Index (GVI)) and subjective scores (e.g., pairwise ratings), examining whether they can be explained by a variety of human and visual factors such as age group and spatial variation of greenery in the scene. The findings reveal that such discrepancies are comparable around the world and that demographics and personality do not play a significant role in perception. Further, while perceived and measured greenery correlate consistently across geographies (both where people and where imagery are from), where people live plays a significant role in explaining perceptual differences, with these two, as the top among seven, features that influences perceived greenery the most. This location influence suggests that cultural, environmental, and experiential factors substantially shape how individuals observe greenery in cities.
2.95ABE-CLIP: Training-Free Attribute Binding Enhancement for Compositional Image-Text Matching¶
2025/12/22 05:04 GTM
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable performance in various multimodal tasks. However, it still struggles with compositional image-text matching, particularly in accurately associating objects with their corresponding attributes, because its inherent global representation often overlooks fine-grained semantics for attribute binding. Existing methods often require additional training or extensive hard negative sampling, yet they frequently show limited generalization to novel compositional concepts and fail to fundamentally address the drawbacks of global representations. In this paper, we propose ABE-CLIP, a novel training-free Attribute Binding Enhancement method designed to strengthen attribute-object binding in CLIP-like models. Specifically, we employ a Semantic Refinement Mechanism to refine token embeddings for both object and attribute phrases in the text, thereby mitigating attribute confusion and improving semantic precision. We further introduce a Local Token-Patch Alignment strategy that computes similarity scores between refined textual tokens and their most relevant image patches. By aggregating localized similarity scores, ABE-CLIP computes the final image-text similarity. Experiments on multiple datasets demonstrate that ABE-CLIP significantly improves attribute-object binding performance, even surpassing methods that require extensive training.
2.96Can Synthetic Images Serve as Effective and Efficient Class Prototypes?¶
2025/12/22 05:04 GTM
Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.
2.97PhysFire-WM: A Physics-Informed World Model for Emulating Fire Spread Dynamics¶
2025/12/22 05:04 GTM
Fine-grained fire prediction plays a crucial role in emergency response. Infrared images and fire masks provide complementary thermal and boundary information, yet current methods are predominantly limited to binary mask modeling with inherent signal sparsity, failing to capture the complex dynamics of fire. While world models show promise in video generation, their physical inconsistencies pose significant challenges for fire forecasting. This paper introduces PhysFire-WM, a Physics-informed World Model for emulating Fire spread dynamics. Our approach internalizes combustion dynamics by encoding structured priors from a Physical Simulator to rectify physical discrepancies, coupled with a Cross-task Collaborative Training strategy (CC-Train) that alleviates the issue of limited information in mask-based modeling. Through parameter sharing and gradient coordination, CC-Train effectively integrates thermal radiation dynamics and spatial boundary delineation, enhancing both physical realism and geometric accuracy. Extensive experiments on a fine-grained multimodal fire dataset demonstrate the superior accuracy of PhysFire-WM in fire spread prediction. Validation underscores the importance of physical priors and cross-task collaboration, providing new insights for applying physics-informed world models to disaster prediction.
2.98Text-Conditioned Background Generation for Editable Multi-Layer Documents¶
2025/12/22 05:04 GTM
We present a framework for document-centric background generation with multi-page editing and thematic continuity. To ensure text regions remain readable, we employ a \emph{latent masking} formulation that softly attenuates updates in the diffusion space, inspired by smooth barrier functions in physics and numerical optimization. In addition, we introduce \emph{Automated Readability Optimization (ARO)}, which automatically places semi-transparent, rounded backing shapes behind text regions. ARO determines the minimal opacity needed to satisfy perceptual contrast standards (WCAG 2.2) relative to the underlying background, ensuring readability while maintaining aesthetic harmony without human intervention. Multi-page consistency is maintained through a summarization-and-instruction process, where each page is distilled into a compact representation that recursively guides subsequent generations. This design reflects how humans build continuity by retaining prior context, ensuring that visual motifs evolve coherently across an entire document. Our method further treats a document as a structured composition in which text, figures, and backgrounds are preserved or regenerated as separate layers, allowing targeted background editing without compromising readability. Finally, user-provided prompts allow stylistic adjustments in color and texture, balancing automated consistency with flexible customization. Our training-free framework produces visually coherent, text-preserving, and thematically aligned documents, bridging generative modeling with natural design workflows.
2.99Pro-Pose: Unpaired Full-Body Portrait Synthesis via Canonical UV Maps¶
2025/12/22 05:04 GTM
Photographs of people taken by professional photographers typically present the person in beautiful lighting, with an interesting pose, and flattering quality. This is unlike common photos people can take of themselves. In this paper, we explore how to create a professional'' version of a person's photograph, i.e., in a chosen pose, in a simple environment, with good lighting, and standard black top/bottom clothing. A key challenge is to preserve the person's unique identity, face and body features while transforming the photo. If there would exist a large paired dataset of the same person photographed both in the wild’’ and by a professional photographer, the problem would potentially be easier to solve. However, such data does not exist, especially for a large variety of identities. To that end, we propose two key insights: 1) Our method transforms the input photo and person’s face to a canonical UV space, which is further coupled with reposing methodology to model occlusions and novel view synthesis. Operating in UV space allows us to leverage existing unpaired datasets. 2) We personalize the output photo via multi image finetuning. Our approach yields high-quality, reposed portraits and achieves strong qualitative and quantitative performance on real-world imagery.
2.100SDUM: A Scalable Deep Unrolled Model for Universal MRI Reconstruction¶
2025/12/22 05:04 GTM
Clinical MRI encompasses diverse imaging protocols--spanning anatomical targets (cardiac, brain, knee), contrasts (T1, T2, mapping), sampling patterns (Cartesian, radial, spiral, kt-space), and acceleration factors--yet current deep learning reconstructions are typically protocol-specific, hindering generalization and deployment. We introduce Scalable Deep Unrolled Model (SDUM), a universal framework combining a Restormer-based reconstructor, a learned coil sensitivity map estimator (CSME), sampling-aware weighted data consistency (SWDC), universal conditioning (UC) on cascade index and protocol metadata, and progressive cascade expansion training. SDUM exhibits foundation-model-like scaling behavior: reconstruction quality follows PSNR log(parameters) with correlation () up to 18 cascades, demonstrating predictable performance gains with model depth. A single SDUM trained on heterogeneous data achieves state-of-the-art results across all four CMRxRecon2025 challenge tracks--multi-center, multi-disease, 5T, and pediatric--without task-specific fine-tuning, surpassing specialized baselines by up to ~dB. On CMRxRecon2024, SDUM outperforms the winning method PromptMR+ by ~dB; on fastMRI brain, it exceeds PC-RNN by ~dB. Ablations validate each component: SWDC ~dB over standard DC, per-cascade CSME ~dB, UC ~dB. These results establish SDUM as a practical path toward universal, scalable MRI reconstruction.
2.101Predictive Modeling of Maritime Radar Data Using Transformer Architecture¶
2025/12/22 05:04 GTM
Maritime autonomous systems require robust predictive capabilities to anticipate vessel motion and environmental dynamics. While transformer architectures have revolutionized AIS-based trajectory prediction and demonstrated feasibility for sonar frame forecasting, their application to maritime radar frame prediction remains unexplored, creating a critical gap given radar’s all-weather reliability for navigation. This survey systematically reviews predictive modeling approaches relevant to maritime radar, with emphasis on transformer architectures for spatiotemporal sequence forecasting, where existing representative methods are analyzed according to data type, architecture, and prediction horizon. Our review shows that, while the literature has demonstrated transformer-based frame prediction for sonar sensing, no prior work addresses transformer-based maritime radar frame prediction, thereby defining a clear research gap and motivating a concrete research direction for future work in this area.
2.102DGH: Dynamic Gaussian Hair¶
2025/12/22 05:04 GTM
The creation of photorealistic dynamic hair remains a major challenge in digital human modeling because of the complex motions, occlusions, and light scattering. Existing methods often resort to static capture and physics-based models that do not scale as they require manual parameter fine-tuning to handle the diversity of hairstyles and motions, and heavy computation to obtain high-quality appearance. In this paper, we present Dynamic Gaussian Hair (DGH), a novel framework that efficiently learns hair dynamics and appearance. We propose: (1) a coarse-to-fine model that learns temporally coherent hair motion dynamics across diverse hairstyles; (2) a strand-guided optimization module that learns a dynamic 3D Gaussian representation for hair appearance with support for differentiable rendering, enabling gradient-based learning of view-consistent appearance under motion. Unlike prior simulation-based pipelines, our approach is fully data-driven, scales with training data, and generalizes across various hairstyles and head motion sequences. Additionally, DGH can be seamlessly integrated into a 3D Gaussian avatar framework, enabling realistic, animatable hair for high-fidelity avatar representation. DGH achieves promising geometry and appearance results, providing a scalable, data-driven alternative to physics-based simulation and rendering.
2.103Interpretable Similarity of Synthetic Image Utility¶
2025/12/22 05:04 GTM
Synthetic medical image data can unlock the potential of deep learning (DL)-based clinical decision support (CDS) systems through the creation of large scale, privacy-preserving, training sets. Despite the significant progress in this field, there is still a largely unanswered research question: “How can we quantitatively assess the similarity of a synthetically generated set of images with a set of real images in a given application domain?”. Today, answers to this question are mainly provided via user evaluation studies, inception-based measures, and the classification performance achieved on synthetic images. This paper proposes a novel measure to assess the similarity between synthetically generated and real sets of images, in terms of their utility for the development of DL-based CDS systems. Inspired by generalized neural additive models, and unlike inception-based measures, the proposed measure is interpretable (Interpretable Utility Similarity, IUS), explaining why a synthetic dataset could be more useful than another one in the context of a CDS system based on clinically relevant image features. The experimental results on publicly available datasets from various color medical imaging modalities including endoscopic, dermoscopic and fundus imaging, indicate that selecting synthetic images of high utility similarity using IUS can result in relative improvements of up to 54.6% in terms of classification performance. The generality of IUS for synthetic data assessment is demonstrated also for greyscale X-ray and ultrasound imaging modalities. IUS implementation is available at https://
2.104Infinite-Homography as Robust Conditioning for Camera-Controlled Video Generation¶
2025/12/22 05:04 GTM
Recent progress in video diffusion models has spurred growing interest in camera-controlled novel-view video generation for dynamic scenes, aiming to provide creators with cinematic camera control capabilities in post-production. A key challenge in camera-controlled video generation is ensuring fidelity to the specified camera pose, while maintaining view consistency and reasoning about occluded geometry from limited observations. To address this, existing methods either train trajectory-conditioned video generation model on trajectory-video pair dataset, or estimate depth from the input video to reproject it along a target trajectory and generate the unprojected regions. Nevertheless, existing methods struggle to generate camera-pose-faithful, high-quality videos for two main reasons: (1) reprojection-based approaches are highly susceptible to errors caused by inaccurate depth estimation; and (2) the limited diversity of camera trajectories in existing datasets restricts learned models. To address these limitations, we present InfCam, a depth-free, camera-controlled video-to-video generation framework with high pose fidelity. The framework integrates two key components: (1) infinite homography warping, which encodes 3D camera rotations directly within the 2D latent space of a video diffusion model. Conditioning on this noise-free rotational information, the residual parallax term is predicted through end-to-end training to achieve high camera-pose fidelity; and (2) a data augmentation pipeline that transforms existing synthetic multiview datasets into sequences with diverse trajectories and focal lengths. Experimental results demonstrate that InfCam outperforms baseline methods in camera-pose accuracy and visual fidelity, generalizing well from synthetic to real-world data. Link to our project page:https://
2.105FORMSpoT: A Decade of Tree-Level, Country-Scale Forest Monitoring¶
2025/12/22 05:04 GTM
The recent decline of the European forest carbon sink highlights the need for spatially explicit and frequently updated forest monitoring tools. Yet, existing satellite-based disturbance products remain too coarse to detect changes at the scale of individual trees, typically below 100 m. Here, we introduce FORMSpoT (Forest Mapping with SPOT Time series), a decade-long (2014-2024) nationwide mapping of forest canopy height at 1.5 m resolution, together with annual disturbance polygons (FORMSpoT-) covering mainland France. Canopy heights were derived from annual SPOT-6/7 composites using a hierarchical transformer model (PVTv2) trained on high-resolution airborne laser scanning (ALS) data. To enable robust change detection across heterogeneous acquisitions, we developed a dedicated post-processing pipeline combining co-registration and spatio-temporal total variation denoising. Validation against ALS revisits across 19 sites and 5,087 National Forest Inventory plots shows that FORMSpoT- substantially outperforms existing disturbance products. In mountainous forests, where disturbances are small and spatially fragmented, FORMSpoT- achieves an F1-score of 0.44, representing an order of magnitude higher than existing benchmarks. By enabling tree-level monitoring of forest dynamics at national scale, FORMSpoT- provides a unique tool to analyze management practices, detect early signals of forest decline, and better quantify carbon losses from subtle disturbances such as thinning or selective logging. These results underscore the critical importance of sustaining very high-resolution satellite missions like SPOT and open-data initiatives such as DINAMIS for monitoring forests under climate change.
2.1064D-RGPT: Toward Region-level 4D Understanding via Perceptual Distillation¶
2025/12/22 05:04 GTM
Despite advances in Multimodal LLMs (MLLMs), their ability to reason over 3D structures and temporal dynamics remains limited, constrained by weak 4D perception and temporal understanding. Existing 3D and 4D Video Question Answering (VQA) benchmarks also emphasize static scenes and lack region-level prompting. We tackle these issues by introducing: (a) 4D-RGPT, a specialized MLLM designed to capture 4D representations from video inputs with enhanced temporal perception; (b) Perceptual 4D Distillation (P4D), a training framework that transfers 4D representations from a frozen expert model into 4D-RGPT for comprehensive 4D perception; and (c) R4D-Bench, a benchmark for depth-aware dynamic scenes with region-level prompting, built via a hybrid automated and human-verified pipeline. Our 4D-RGPT achieves notable improvements on both existing 4D VQA benchmarks and the proposed R4D-Bench benchmark.
2.107A Benchmark and Agentic Framework for Omni-Modal Reasoning and Tool Use in Long Videos¶
2025/12/22 05:04 GTM
Long-form multimodal video understanding requires integrating vision, speech, and ambient audio with coherent long-range reasoning. Existing benchmarks emphasize either temporal length or multimodal richness, but rarely both and while some incorporate open-ended questions and advanced metrics, they mostly rely on single-score accuracy, obscuring failure modes. We introduce LongShOTBench, a diagnostic benchmark with open-ended, intent-driven questions; single- and multi-turn dialogues; and tasks requiring multimodal reasoning and agentic tool use across video, audio, and speech. Each item includes a reference answer and graded rubric for interpretable, and traceable evaluation. LongShOTBench is produced via a scalable, human-validated pipeline to ensure coverage and reproducibility. All samples in our LongShOTBench are human-verified and corrected. Furthermore, we present LongShOTAgent, an agentic system that analyzes long videos via preprocessing, search, and iterative refinement. On LongShOTBench, state-of-the-art MLLMs show large gaps: Gemini-2.5-Flash achieves 52.95%, open-source models remain below 30%, and LongShOTAgent attains 44.66%. These results underscore the difficulty of real-world long-form video understanding. LongShOTBench provides a practical, reproducible foundation for evaluating and improving MLLMs. All resources are available on GitHub: https://
2.108Animate Any Character in Any World¶
2025/12/22 05:04 GTM
Recent advances in world models have greatly enhanced interactive environment simulation. Existing methods mainly fall into two categories: (1) static world generation models, which construct 3D environments without active agents, and (2) controllable-entity models, which allow a single entity to perform limited actions in an otherwise uncontrollable environment. In this work, we introduce AniX, leveraging the realism and structural grounding of static world generation while extending controllable-entity models to support user-specified characters capable of performing open-ended actions. Users can provide a 3DGS scene and a character, then direct the character through natural language to perform diverse behaviors from basic locomotion to object-centric interactions while freely exploring the environment. AniX synthesizes temporally coherent video clips that preserve visual fidelity with the provided scene and character, formulated as a conditional autoregressive video generation problem. Built upon a pre-trained video generator, our training strategy significantly enhances motion dynamics while maintaining generalization across actions and characters. Our evaluation covers a broad range of aspects, including visual quality, character consistency, action controllability, and long-horizon coherence.
2.109Endo-SemiS: Towards Robust Semi-Supervised Image Segmentation for Endoscopic Video¶
2025/12/22 05:04 GTM
In this paper, we present Endo-SemiS, a semi-supervised segmentation framework for providing reliable segmentation of endoscopic video frames with limited annotation. EndoSemiS uses 4 strategies to improve performance by effectively utilizing all available data, particularly unlabeled data: (1) Cross-supervision between two individual networks that supervise each other; (2) Uncertainty-guided pseudo-labels from unlabeled data, which are generated by selecting high-confidence regions to improve their quality; (3) Joint pseudolabel supervision, which aggregates reliable pixels from the pseudo-labels of both networks to provide accurate supervision for unlabeled data; and (4) Mutual learning, where both networks learn from each other at the feature and image levels, reducing variance and guiding them toward a consistent solution. Additionally, a separate corrective network that utilizes spatiotemporal information from endoscopy video to improve segmentation performance. Endo-SemiS is evaluated on two clinical applications: kidney stone laser lithotomy from ureteroscopy and polyp screening from colonoscopy. Compared to state-of-the-art segmentation methods, Endo-SemiS substantially achieves superior results on both datasets with limited labeled data. The code is publicly available at https://
2.110InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression¶
2025/12/22 05:04 GTM
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon’s information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
2.111Colormap-Enhanced Vision Transformers for MRI-Based Multiclass (4-Class) Alzheimer’s Disease Classification¶
2025/12/22 05:04 GTM
Magnetic Resonance Imaging (MRI) plays a pivotal role in the early diagnosis and monitoring of Alzheimer’s disease (AD). However, the subtle structural variations in brain MRI scans often pose challenges for conventional deep learning models to extract discriminative features effectively. In this work, we propose PseudoColorViT-Alz, a colormap-enhanced Vision Transformer framework designed to leverage pseudo-color representations of MRI images for improved Alzheimer’s disease classification. By combining colormap transformations with the global feature learning capabilities of Vision Transformers, our method amplifies anatomical texture and contrast cues that are otherwise subdued in standard grayscale MRI scans. We evaluate PseudoColorViT-Alz on the OASIS-1 dataset using a four-class classification setup (non-demented, moderate dementia, mild dementia, and very mild dementia). Our model achieves a state-of-the-art accuracy of 99.79% with an AUC of 100%, surpassing the performance of recent 2024--2025 methods, including CNN-based and Siamese-network approaches, which reported accuracies ranging from 96.1% to 99.68%. These results demonstrate that pseudo-color augmentation combined with Vision Transformers can significantly enhance MRI-based Alzheimer’s disease classification. PseudoColorViT-Alz offers a robust and interpretable framework that outperforms current methods, providing a promising tool to support clinical decision-making and early detection of Alzheimer’s disease.
2.112Lights, Camera, Consistency: A Multistage Pipeline for Character-Stable AI Video Stories¶
2025/12/22 05:04 GTM
Generating long, cohesive video stories with consistent characters is a significant challenge for current text-to-video AI. We introduce a method that approaches video generation in a filmmaker-like manner. Instead of creating a video in one step, our proposed pipeline first uses a large language model to generate a detailed production script. This script guides a text-to-image model in creating consistent visuals for each character, which then serve as anchors for a video generation model to synthesize each scene individually. Our baseline comparisons validate the necessity of this multi-stage decomposition; specifically, we observe that removing the visual anchoring mechanism results in a catastrophic drop in character consistency scores (from 7.99 to 0.55), confirming that visual priors are essential for identity preservation. Furthermore, we analyze cultural disparities in current models, revealing distinct biases in subject consistency and dynamic degree between Indian vs Western-themed generations.
2.113Enhancing Tree Species Classification: Insights from YOLOv8 and Explainable AI Applied to TLS Point Cloud Projections¶
2025/12/22 05:04 GTM
Classifying tree species has been a core research area in forest remote sensing for decades. New sensors and classification approaches like TLS and deep learning achieve state-of-the art accuracy but their decision processes remain unclear. Methods such as Finer-CAM (Class Activation Mapping) can highlight features in TLS projections that contribute to the classification of a target species, yet are uncommon in similar looking contrastive tree species. We propose a novel method linking Finer-CAM explanations to segments of TLS projections representing structural tree features to systemically evaluate which features drive species discrimination. Using TLS data from 2,445 trees across seven European tree species, we trained and validated five YOLOv8 models with cross-validation, reaching a mean accuracy of 96% (SD = 0.24%). Analysis of 630 saliency maps shows the models primarily rely on crown features in TLS projections for species classification. While this result is pronounced in Silver Birch, European Beech, English oak, and Norway spruce, stem features contribute more frequently to the differentiation of European ash, Scots pine, and Douglas fir. Particularly representations of finer branches contribute to the decisions of the models. The models consider those tree species similar to each other which a human expert would also regard as similar. Furthermore, our results highlight the need for an improved understanding of the decision processes of tree species classification models to help reveal data set and model limitations, biases, and to build confidence in model predictions.
2.114AVM: Towards Structure-Preserving Neural Response Modeling in the Visual Cortex Across Stimuli and Individuals¶
2025/12/22 05:04 GTM
While deep learning models have shown strong performance in simulating neural responses, they often fail to clearly separate stable visual encoding from condition-specific adaptation, which limits their ability to generalize across stimuli and individuals. We introduce the Adaptive Visual Model (AVM), a structure-preserving framework that enables condition-aware adaptation through modular subnetworks, without modifying the core representation. AVM keeps a Vision Transformer-based encoder frozen to capture consistent visual features, while independently trained modulation paths account for neural response variations driven by stimulus content and subject identity. We evaluate AVM in three experimental settings, including stimulus-level variation, cross-subject generalization, and cross-dataset adaptation, all of which involve structured changes in inputs and individuals. Across two large-scale mouse V1 datasets, AVM outperforms the state-of-the-art V1T model by approximately 2% in predictive correlation, demonstrating robust generalization, interpretable condition-wise modulation, and high architectural efficiency. Specifically, AVM achieves a 9.1% improvement in explained variance (FEVE) under the cross-dataset adaptation setting. These results suggest that AVM provides a unified framework for adaptive neural modeling across biological and experimental conditions, offering a scalable solution under structural constraints. Its design may inform future approaches to cortical modeling in both neuroscience and biologically inspired AI systems.
2.115Comparison of deep learning models: CNN and VGG-16 in identifying pornographic content¶
2025/12/22 05:04 GTM
In 2020, a total of 59,741 websites were blocked by the Indonesian government due to containing negative content, including pornography, with 14,266 websites falling into this category. However, these blocked websites could still be accessed by the public using virtual private networks (VPNs). This prompted the research idea to quickly identify pornographic content. This study aims to develop a system capable of identifying websites suspected of containing pornographic image content, using a deep learning approach with convolutional neural network (CNN) and visual geometry group 16 (VGG-16) model. The two models were then explored comprehensively and holistically to determine which model was most effective in detecting pornographic content quickly. Based on the findings of the comparison between testing the CNN and VGG-16 models, research results showed that the best test results were obtained in the eighth experiment using the CNN model at an epoch value level of 50 and a learning rate of 0.001 of 0.9487 or 94.87%. This can be interpreted that the CNN model is more effective in detecting pornographic content quickly and accurately compared to using the VGG-16 model.
2.116V-Agent: An Interactive Video Search System Using Vision-Language Models¶
2025/12/22 05:04 GTM
We introduce V-Agent, a novel multi-agent platform designed for advanced video search and interactive user-system conversations. By fine-tuning a vision-language model (VLM) with a small video preference dataset and enhancing it with a retrieval vector from an image-text retrieval model, we overcome the limitations of traditional text-based retrieval systems in multimodal scenarios. The VLM-based retrieval model independently embeds video frames and audio transcriptions from an automatic speech recognition (ASR) module into a shared multimodal representation space, enabling V-Agent to interpret both visual and spoken content for context-aware video search. This system consists of three agents-a routing agent, a search agent, and a chat agent-that work collaboratively to address user intents by refining search outputs and communicating with users. The search agent utilizes the VLM-based retrieval model together with an additional re-ranking module to further enhance video retrieval quality. Our proposed framework demonstrates state-of-the-art zero-shot performance on the MultiVENT 2.0 benchmark, highlighting its potential for both academic research and real-world applications.
2.117When Reasoning Meets Its Laws¶
2025/12/22 05:04 GTM
Despite the superior performance of Large Reasoning Models (LRMs), their reasoning behaviors are often counterintuitive, leading to suboptimal reasoning capabilities. To theoretically formalize the desired reasoning behaviors, this paper presents the Laws of Reasoning (LoRe), a unified framework that characterizes intrinsic reasoning patterns in LRMs. We first propose compute law with the hypothesis that the reasoning compute should scale linearly with question complexity. Beyond compute, we extend LoRe with a supplementary accuracy law. Since the question complexity is difficult to quantify in practice, we examine these hypotheses by two properties of the laws, monotonicity and compositionality. We therefore introduce LoRe-Bench, a benchmark that systematically measures these two tractable properties for large reasoning models. Evaluation shows that most reasoning models exhibit reasonable monotonicity but lack compositionality. In response, we develop an effective finetuning approach that enforces compute-law compositionality. Extensive empirical studies demonstrate that better compliance with compute laws yields consistently improved reasoning performance on multiple benchmarks, and uncovers synergistic effects across properties and laws. Project page: https://
2.118ShareChat: A Dataset of Chatbot Conversations in the Wild¶
2025/12/22 05:04 GTM
While Large Language Models (LLMs) have evolved into distinct platforms with unique interface designs and capabilities, existing public datasets treat models as generic text generators, stripping away the interface context that actively shapes user interaction. To address this limitation, we present ShareChat, a large-scale, cross-platform corpus comprising 142,808 conversations and over 660,000 turns collected from publicly shared URLs across five major platforms: ChatGPT, Claude, Gemini, Perplexity, and Grok. ShareChat distinguishes itself by preserving native platform affordances often lost in standard logs, including reasoning traces, source links, and code artifacts, while spanning 101 languages over the period from April 2023 to October 2025. Furthermore, ShareChat offers substantially longer context windows and greater interaction depth than prior datasets. We demonstrate the dataset’s multifaceted utility through three representative analyses: (1) analyzing conversation completeness to measure user intent satisfaction; (2) evaluating source citation behaviors in content generation; and (3) conducting temporal analysis to track evolving usage patterns. This work provides the community with a vital and timely resource for understanding authentic user-LLM chatbot interactions in the wild.
2.119DEER: A Comprehensive and Reliable Benchmark for Deep-Research Expert Reports¶
2025/12/22 05:04 GTM
As large language models (LLMs) advance, deep research systems can generate expert-level reports via multi-step reasoning and evidence-based synthesis, but evaluating such reports remains challenging. Existing benchmarks often lack systematic criteria for expert reporting, evaluations that rely heavily on LLM judges can fail to capture issues that require expert judgment, and source verification typically covers only a limited subset of explicitly cited statements rather than report-wide factual reliability. We introduce DEER, a benchmark for evaluating expert-level deep research reports. DEER comprises 50 report-writing tasks spanning 13 domains and an expert-grounded evaluation taxonomy (7 dimensions, 25 sub-dimension) operationalized into 130 fine-grained rubric items. DEER further provides task-specific expert guidance to help LLM judges assess expert-level report quality more consistently. Complementing rubric-based assessment, we propose a document-level fact-checking architecture that extracts and verifies all claims across the entire report, including both cited and uncited ones, and quantifies external-evidence quality. DEER correlates closely with human expert judgments and yields interpretable diagnostics of system strengths and weaknesses.
2.120Bangla MedER: Multi-BERT Ensemble Approach for the Recognition of Bangla Medical Entity¶
2025/12/22 05:04 GTM
Medical Entity Recognition (MedER) is an essential NLP task for extracting meaningful entities from the medical corpus. Nowadays, MedER-based research outcomes can remarkably contribute to the development of automated systems in the medical sector, ultimately enhancing patient care and outcomes. While extensive research has been conducted on MedER in English, low-resource languages like Bangla remain underexplored. Our work aims to bridge this gap. For Bangla medical entity recognition, this study first examined a number of transformer models, including BERT, DistilBERT, ELECTRA, and RoBERTa. We also propose a novel Multi-BERT Ensemble approach that outperformed all baseline models with the highest accuracy of 89.58%. Notably, it provides an 11.80% accuracy improvement over the single-layer BERT model, demonstrating its effectiveness for this task. A major challenge in MedER for low-resource languages is the lack of annotated datasets. To address this issue, we developed a high-quality dataset tailored for the Bangla MedER task. The dataset was used to evaluate the effectiveness of our model through multiple performance metrics, demonstrating its robustness and applicability. Our findings highlight the potential of Multi-BERT Ensemble models in improving MedER for Bangla and set the foundation for further advancements in low-resource medical NLP.
2.121AncientBench: Towards Comprehensive Evaluation on Excavated and Transmitted Chinese Corpora¶
2025/12/22 05:04 GTM
Comprehension of ancient texts plays an important role in archaeology and understanding of Chinese history and civilization. The rapid development of large language models needs benchmarks that can evaluate their comprehension of ancient characters. Existing Chinese benchmarks are mostly targeted at modern Chinese and transmitted documents in ancient Chinese, but the part of excavated documents in ancient Chinese is not covered. To meet this need, we propose the AncientBench, which aims to evaluate the comprehension of ancient characters, especially in the scenario of excavated documents. The AncientBench is divided into four dimensions, which correspond to the four competencies of ancient character comprehension: glyph comprehension, pronunciation comprehension, meaning comprehension, and contextual comprehension. The benchmark also contains ten tasks, including radical, phonetic radical, homophone, cloze, translation, and more, providing a comprehensive framework for evaluation. We convened archaeological researchers to conduct experimental evaluations, proposed an ancient model as baseline, and conducted extensive experiments on the currently best-performing large language models. The experimental results reveal the great potential of large language models in ancient textual scenarios as well as the gap with humans. Our research aims to promote the development and application of large language models in the field of archaeology and ancient Chinese language.
2.122Affect, Body, Cognition, Demographics, and Emotion: The ABCDE of Text Features for Computational Affective Science¶
2025/12/22 05:04 GTM
Work in Computational Affective Science and Computational Social Science explores a wide variety of research questions about people, emotions, behavior, and health. Such work often relies on language data that is first labeled with relevant information, such as the use of emotion words or the age of the speaker. Although many resources and algorithms exist to enable this type of labeling, discovering, accessing, and using them remains a substantial impediment, particularly for practitioners outside of computer science. Here, we present the ABCDE dataset (Affect, Body, Cognition, Demographics, and Emotion), a large-scale collection of over 400 million text utterances drawn from social media, blogs, books, and AI-generated sources. The dataset is annotated with a wide range of features relevant to computational affective and social science. ABCDE facilitates interdisciplinary research across numerous fields, including affective science, cognitive science, the digital humanities, sociology, political science, and computational linguistics.
2.123When the Gold Standard isn’t Necessarily Standard: Challenges of Evaluating the Translation of User-Generated Content¶
2025/12/22 05:04 GTM
User-generated content (UGC) is characterised by frequent use of non-standard language, from spelling errors to expressive choices such as slang, character repetitions, and emojis. This makes evaluating UGC translation particularly challenging: what counts as a “good” translation depends on the level of standardness desired in the output. To explore this, we examine the human translation guidelines of four UGC datasets, and derive a taxonomy of twelve non-standard phenomena and five translation actions (NORMALISE, COPY, TRANSFER, OMIT, CENSOR). Our analysis reveals notable differences in how UGC is treated, resulting in a spectrum of standardness in reference translations. Through a case study on large language models (LLMs), we show that translation scores are highly sensitive to prompts with explicit translation instructions for UGC, and that they improve when these align with the dataset’s guidelines. We argue that when preserving UGC style is important, fair evaluation requires both models and metrics to be aware of translation guidelines. Finally, we call for clear guidelines during dataset creation and for the development of controllable, guideline-aware evaluation frameworks for UGC translation.
2.124Toward Ethical AI Through Bayesian Uncertainty in Neural Question Answering¶
2025/12/22 05:04 GTM
We explore Bayesian reasoning as a means to quantify uncertainty in neural networks for question answering. Starting with a multilayer perceptron on the Iris dataset, we show how posterior inference conveys confidence in predictions. We then extend this to language models, applying Bayesian inference first to a frozen head and finally to LoRA-adapted transformers, evaluated on the CommonsenseQA benchmark. Rather than aiming for state-of-the-art accuracy, we compare Laplace approximations against maximum a posteriori (MAP) estimates to highlight uncertainty calibration and selective prediction. This allows models to abstain when confidence is low. An ``I don’t know’’ response not only improves interpretability but also illustrates how Bayesian methods can contribute to more responsible and ethical deployment of neural question-answering systems.
2.125Peeking Into The Future For Contextual Biasing¶
2025/12/22 05:04 GTM
While end-to-end (E2E) automatic speech recognition (ASR) models excel at general transcription, they struggle to recognize rare or unseen named entities (e.g., contact names, locations), which are critical for downstream applications like virtual assistants. In this paper, we propose a contextual biasing method for attention based encoder decoder (AED) models using a list of candidate named entities. Instead of predicting only the next token, we simultaneously predict multiple future tokens, enabling the model to “peek into the future” and score potential candidate entities in the entity list. Moreover, our approach leverages the multi-token prediction logits directly without requiring additional entity encoders or cross-attention layers, significantly reducing architectural complexity. Experiments on Librispeech demonstrate that our approach achieves up to 50.34% relative improvement in named entity word error rate compared to the baseline AED model.
2.126Simulstream: Open-Source Toolkit for Evaluation and Demonstration of Streaming Speech-to-Text Translation Systems¶
2025/12/22 05:04 GTM
Streaming Speech-to-Text Translation (StreamST) requires producing translations concurrently with incoming speech, imposing strict latency constraints and demanding models that balance partial-information decision-making with high translation quality. Research efforts on the topic have so far relied on the SimulEval repository, which is no longer maintained and does not support systems that revise their outputs. In addition, it has been designed for simulating the processing of short segments, rather than long-form audio streams, and it does not provide an easy method to showcase systems in a demo. As a solution, we introduce simulstream, the first open-source framework dedicated to unified evaluation and demonstration of StreamST systems. Designed for long-form speech processing, it supports not only incremental decoding approaches, but also re-translation methods, enabling for their comparison within the same framework both in terms of quality and latency. In addition, it also offers an interactive web interface to demo any system built within the tool.
2.127Linear Personality Probing and Steering in LLMs: A Big Five Study¶
2025/12/22 05:04 GTM
Large language models (LLMs) exhibit distinct and consistent personalities that greatly impact trust and engagement. While this means that personality frameworks would be highly valuable tools to characterize and control LLMs’ behavior, current approaches remain either costly (post-training) or brittle (prompt engineering). Probing and steering via linear directions has recently emerged as a cheap and efficient alternative. In this paper, we investigate whether linear directions aligned with the Big Five personality traits can be used for probing and steering model behavior. Using Llama 3.3 70B, we generate descriptions of 406 fictional characters and their Big Five trait scores. We then prompt the model with these descriptions and questions from the Alpaca questionnaire, allowing us to sample hidden activations that vary along personality traits in known, quantifiable ways. Using linear regression, we learn a set of per-layer directions in activation space, and test their effectiveness for probing and steering model behavior. Our results suggest that linear directions aligned with trait-scores are effective probes for personality detection, while their steering capabilities strongly depend on context, producing reliable effects in forced-choice tasks but limited influence in open-ended generation or when additional context is present in the prompt.
2.128Confidence-Credibility Aware Weighted Ensembles of Small LLMs Outperform Large LLMs in Emotion Detection¶
2025/12/22 05:04 GTM
This paper introduces a confidence-weighted, credibility-aware ensemble framework for text-based emotion detection, inspired by Condorcet’s Jury Theorem (CJT). Unlike conventional ensembles that often rely on homogeneous architectures, our approach combines architecturally diverse small transformer-based large language models (sLLMs) - BERT, RoBERTa, DistilBERT, DeBERTa, and ELECTRA, each fully fine-tuned for emotion classification. To preserve error diversity, we minimize parameter convergence while taking advantage of the unique biases of each model. A dual-weighted voting mechanism integrates both global credibility (validation F1 score) and local confidence (instance-level probability) to dynamically weight model contributions. Experiments on the DAIR-AI dataset demonstrate that our credibility-confidence ensemble achieves a macro F1 score of 93.5 percent, surpassing state-of-the-art benchmarks and significantly outperforming large-scale LLMs, including Falcon, Mistral, Qwen, and Phi, even after task-specific Low-Rank Adaptation (LoRA). With only 595M parameters in total, our small LLMs ensemble proves more parameter-efficient and robust than models up to 7B parameters, establishing that carefully designed ensembles of small, fine-tuned models can outperform much larger LLMs in specialized natural language processing (NLP) tasks such as emotion detection.
2.129Computational analysis reveals historical trajectory of East-Polynesian lunar calendars¶
2025/12/22 05:04 GTM
We investigate a type of lunar calendar known as lists of the ‘nights of the moon’, found throughout East Polynesia, including Rapa Nui (Easter Island). Using computational methods, we analyzed the lexical and structural divergence of 49 calendric lists from all major archipelagos, each containing about 30 night names. Our results, presented as a rooted phylogenetic tree, show a clear split into two main groups: one including lists from Rapa Nui, Mangareva, and the Marquesas; the other comprising lists from New Zealand, Hawaii, the Cook Islands, the Austral Islands, Tahiti, and the Tuamotu. This pattern aligns with a recent alternative classification of East Polynesian languages into ‘Distal’ (Marquesan, Mangarevan, Rapanui) and ‘Proximal’ (Maori, Hawaiian, Tahitian, etc.) subgroups. Since both language and lunar calendars are symbolic systems passed down and changed within communities - and given the geographic isolation of many archipelagos - we interpret this correspondence as evidence that the early divergence of East Polynesian lunar calendars mirrors early population movements and language splits in the region.
2.130SWE-Bench++: A Framework for the Scalable Generation of Software Engineering Benchmarks from Open-Source Repositories¶
2025/12/22 05:04 GTM
Benchmarks like SWE-bench have standardized the evaluation of Large Language Models (LLMs) on repository-level software engineering tasks. However, these efforts remain limited by manual curation, static datasets, and a focus on Python-based bug fixes. We introduce SWE-Bench++, an automated framework that generates repository-level coding tasks from open-source GitHub projects. Unlike synthetic approaches, our pipeline harvests live pull requests to cover both bug fixes and feature requests across 11 languages. SWE-Bench++ turns GitHub pull requests (PRs) into reproducible, execution-based tasks via four stages: programmatic sourcing, environment synthesis, test oracle extraction, and quality assurance. A final hint-guided trajectory synthesis step converts instances that strong models fail on into training trajectories. Our initial benchmark consists of 11,133 instances from 3,971 repositories across 11 languages. On a subset of 1,782 instances of this benchmark, today’s strongest models perform as follows: claude-sonnet-4.5 achieves 36.20% pass@10, gpt-5-2025-08-07 34.57%, gemini/gemini-2.5-pro 24.92%, and gpt-4o 16.89%. We further demonstrate the utility of our dataset by showing that fine-tuning on SWE-Bench++ instances yields measurable improvements on the SWE-bench Multilingual benchmark. SWE-Bench++ provides a scalable, multilingual benchmark for evaluating and improving repository-level code generation.
2.131RadImageNet-VQA: A Large-Scale CT and MRI Dataset for Radiologic Visual Question Answering¶
2025/12/22 05:04 GTM
In this work, we introduce RadImageNet-VQA, a large-scale dataset designed to advance radiologic visual question answering (VQA) on CT and MRI exams. Existing medical VQA datasets are limited in scale, dominated by X-ray imaging or biomedical illustrations, and often prone to text-based shortcuts. RadImageNet-VQA is built from expert-curated annotations and provides 750K images paired with 7.5M question-answer samples. It covers three key tasks - abnormality detection, anatomy recognition, and pathology identification - spanning eight anatomical regions and 97 pathology categories, and supports open-ended, closed-ended, and multiple-choice questions. Extensive experiments show that state-of-the-art vision-language models still struggle with fine-grained pathology identification, particularly in open-ended settings and even after fine-tuning. Text-only analysis further reveals that model performance collapses to near-random without image inputs, confirming that RadImageNet-VQA is free from linguistic shortcuts. The full dataset and benchmark are publicly available at https://
2.132Are Vision Language Models Cross-Cultural Theory of Mind Reasoners?¶
2025/12/22 05:04 GTM
Theory of Mind (ToM) -- the ability to attribute beliefs, desires, and emotions to others -- is fundamental for human social intelligence, yet remains a major challenge for artificial agents. Existing Vision-Language Models (VLMs) are increasingly applied in socially grounded tasks, but their capacity for cross-cultural ToM reasoning is largely unexplored. In this work, we introduce CulturalToM-VQA, a new evaluation benchmark containing 5095 questions designed to probe ToM reasoning across diverse cultural contexts through visual question answering. The dataset captures culturally grounded cues such as rituals, attire, gestures, and interpersonal dynamics, enabling systematic evaluation of ToM reasoning beyond Western-centric benchmarks. Our dataset is built through a VLM-assisted human-in-the-loop pipeline, where human experts first curate culturally rich images across traditions, rituals, and social interactions; a VLM then assist in generating structured ToM-focused scene descriptions, which are refined into question-answer pairs spanning a taxonomy of six ToM tasks and four graded complexity levels. The resulting dataset covers diverse theory of mind facets such as mental state attribution, false belief reasoning, non-literal communication, social norm violations, perspective coordination, and multi-agent reasoning.
2.133CIFE: Code Instruction-Following Evaluation¶
2025/12/22 05:04 GTM
Large Language Models (LLMs) are increasingly applied to real-world code generation, where functional correctness alone is insufficient for reliable deployment, developers also expect adherence to explicit requirements for robustness, formatting, and security. Existing benchmarks primarily assess correctness through test-case execution, offering limited insight into how reliably models follow such constraints. We introduce a benchmark of 1,000 Python tasks, each paired with an average of 7 developer-specified constraints spanning 13 categories. Constraints are curated through a four-stage human-LLM pipeline to ensure they are atomic, relevant, and objective. We evaluate 14 open- and closed-source models using complementary adherence metrics and propose the C2A Score, a composite measure that jointly captures correctness and constraint compliance. Results reveal a substantial gap between partial and strict satisfaction, while strong models achieve over 90% partial adherence, strict adherence remains between 39-66%. These findings highlight that trustworthy code generation requires not only correctness but also consistent adherence to developer intent.
2.134UCoder: Unsupervised Code Generation by Internal Probing of Large Language Models¶
2025/12/22 05:04 GTM
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, their effectiveness heavily relies on supervised training with extensive labeled (e.g., question-answering pairs) or unlabeled datasets (e.g., code snippets), which are often expensive and difficult to obtain at scale. To address this limitation, this paper introduces a method IPC, an unsupervised framework that leverages Internal Probing of LLMs for Code generation without any external corpus, even unlabeled code snippets. We introduce the problem space probing, test understanding probing, solution space probing, and knowledge consolidation and reinforcement to probe the internal knowledge and confidence patterns existing in LLMs. Further, IPC identifies reliable code candidates through self-consistency mechanisms and representation-based quality estimation to train UCoder (coder with unsupervised learning). We validate the proposed approach across multiple code benchmarks, demonstrating that unsupervised methods can achieve competitive performance compared to supervised approaches while significantly reducing the dependency on labeled data and computational resources. Analytic experiments reveal that internal model states contain rich signals about code quality and correctness, and that properly harnessing these signals enables effective unsupervised learning for code generation tasks, opening new directions for training code LLMs in resource-constrained scenarios.
2.135AdvJudge-Zero: Binary Decision Flips in LLM-as-a-Judge via Adversarial Control Tokens¶
2025/12/22 05:04 GTM
Reward models and LLM-as-a-Judge systems are central to modern post-training pipelines such as RLHF, DPO, and RLAIF, where they provide scalar feedback and binary decisions that guide model selection and RL-based fine-tuning. We show that these judge systems exhibit a recurring vulnerability: short sequences of low-perplexity control tokens can flip many binary evaluations from correct No'' judgments to incorrect Yes’’ judgments by steering the last-layer logit gap. These control tokens are patterns that a policy model could plausibly generate during post-training, and thus represent realistic reward-hacking risks rather than worst-case adversarial strings. Our method, AdvJudge-Zero, uses the model’s next-token distribution and beam-search exploration to discover diverse control-token sequences from scratch, and our analysis shows that the induced hidden-state perturbations concentrate in a low-rank ``soft mode’’ that is anti-aligned with the judge’s refusal direction. Empirically, these tokens cause very high false positive rates when large open-weight and specialized judge models score incorrect answers on math and reasoning benchmarks. Finally, we show that LoRA-based adversarial training on small sets of control-token-augmented examples can markedly reduce these false positives while preserving evaluation quality.
2.136Physics of Language Models: Part 4.1, Architecture Design and the Magic of Canon Layers¶
2025/12/22 05:04 GTM
Understanding architectural differences in language models is challenging, especially at academic-scale pretraining (e.g., 1.3B parameters, 100B tokens), where results are often dominated by noise and randomness. To overcome this, we introduce controlled synthetic pretraining tasks that isolate and evaluate core model capabilities. Within this framework, we discover CANON LAYERS: lightweight architectural components -- named after the musical term “canon” -- that promote horizontal information flow across neighboring tokens. Canon layers compute weighted sums of nearby token representations and integrate seamlessly into Transformers, linear attention, state-space models, or any sequence architecture. We present 12 key results. This includes how Canon layers enhance reasoning depth (e.g., by ), reasoning breadth, knowledge manipulation, etc. They lift weak architectures like NoPE to match RoPE, and linear attention to rival SOTA linear models like Mamba2/GDN -- validated both through synthetic tasks and real-world academic-scale pretraining. This synthetic playground offers an economical, principled path to isolate core model capabilities often obscured at academic scales. Equipped with infinite high-quality data, it may even PREDICT how future architectures will behave as training pipelines improve -- e.g., through better data curation or RL-based post-training -- unlocking deeper reasoning and hierarchical inference.
2.137Stakeholder Suite: A Unified AI Framework for Mapping Actors, Topics and Arguments in Public Debates¶
2025/12/22 05:04 GTM
Public debates surrounding infrastructure and energy projects involve complex networks of stakeholders, arguments, and evolving narratives. Understanding these dynamics is crucial for anticipating controversies and informing engagement strategies, yet existing tools in media intelligence largely rely on descriptive analytics with limited transparency. This paper presents Stakeholder Suite, a framework deployed in operational contexts for mapping actors, topics, and arguments within public debates. The system combines actor detection, topic modeling, argument extraction and stance classification in a unified pipeline. Tested on multiple energy infrastructure projects as a case study, the approach delivers fine-grained, source-grounded insights while remaining adaptable to diverse domains. The framework achieves strong retrieval precision and stance accuracy, producing arguments judged relevant in 75% of pilot use cases. Beyond quantitative metrics, the tool has proven effective for operational use: helping project teams visualize networks of influence, identify emerging controversies, and support evidence-based decision-making.
2.138Governance-Aware Hybrid Fine-Tuning for Multilingual Large Language Models¶
2025/12/22 05:04 GTM
We present a governance-aware hybrid fine-tuning framework for multilingual, low-resource adaptation of large language models. The core algorithm combines gradient-aligned low-rank updates with structured orthogonal transformations through layer-wise mixing and introduces unitary constraints in selected sub-layers to stabilize deep optimization. In tandem with lightweight, label-free data governance steps, including language identification, near-duplicate removal, and quality filtering, the framework targets accuracy, calibration, and cross-language parity under tight compute budgets. Across XNLI and FLORES, the hybrid approach delivers consistent gains over strong PEFT baselines while maintaining directional balance and improving probability calibration, as shown in Tables II and III. It is more resilient to lightweight orthographic variants, as shown in Table IV, and benefits additively from simple governance steps, as shown in Table V. Training footprint measurements indicate modest overhead and a favorable cost-quality frontier, as shown in Table VI and Figure 2. Together, these results show that hybrid and unitary PEFT provide a stable and accessible path to resource-efficient multilingual adaptation when paired with practical data governance.
2.139Task Schema and Binding: A Double Dissociation Study of In-Context Learning¶
2025/12/22 05:04 GTM
We provide causal mechanistic validation that in-context learning (ICL) decomposes into two separable mechanisms: Task Schema (abstract task type recognition) and Binding (specific input-output associations). Through activation patching experiments across 9 models from 7 Transformer families plus Mamba (370M-13B parameters), we establish three key findings: 1. Double dissociation: Task Schema transfers at 100% via late MLP patching; Binding transfers at 62% via residual stream patching -- proving separable mechanisms 2. Prior-Schema trade-off: Schema reliance inversely correlates with prior knowledge (Spearman rho = -0.596, p < 0.001, N=28 task-model pairs) 3. Architecture generality: The mechanism operates across all tested architectures including the non-Transformer Mamba These findings offer a mechanistic account of the ICL puzzle that contrasts with prior views treating ICL as a monolithic mechanism (whether retrieval-based, gradient descent-like, or purely Bayesian). By establishing that Schema and Binding are neurally dissociable -- not merely behavioral modes -- we provide causal evidence for dual-process theories of ICL. Models rely on Task Schema when prior knowledge is absent, but prior knowledge interferes through attentional mis-routing (72.7% recency bias) rather than direct output competition (0%). This explains why arbitrary mappings succeed (zero prior leads to full Schema reliance) while factual overrides fail -- and reveals that the true bottleneck is attentional, not output-level. Practical implications: Understanding these dual mechanisms enables more efficient prompt engineering -- reliable schema transfer reduces required demonstrations for novel tasks, while prior-aware design can mitigate the 38% binding failure rate in high-prior scenarios, improving ICL system reliability in production deployments.
2.140Large Language Models as Pokémon Battle Agents: Strategic Play and Content Generation¶
2025/12/22 05:04 GTM
Strategic decision-making in Pokémon battles presents a unique testbed for evaluating large language models. Pokémon battles demand reasoning about type matchups, statistical trade-offs, and risk assessment, skills that mirror human strategic thinking. This work examines whether Large Language Models (LLMs) can serve as competent battle agents, capable of both making tactically sound decisions and generating novel, balanced game content. We developed a turn-based Pokémon battle system where LLMs select moves based on battle state rather than pre-programmed logic. The framework captures essential Pokémon mechanics: type effectiveness multipliers, stat-based damage calculations, and multi-Pokémon team management. Through systematic evaluation across multiple model architectures we measured win rates, decision latency, type-alignment accuracy, and token efficiency. These results suggest LLMs can function as dynamic game opponents without domain-specific training, offering a practical alternative to reinforcement learning for turn-based strategic games. The dual capability of tactical reasoning and content creation, positions LLMs as both players and designers, with implications for procedural generation and adaptive difficulty systems in interactive entertainment.
2.141Subjective Question Generation and Answer Evaluation using NLP¶
2025/12/22 05:04 GTM
Natural Language Processing (NLP) is one of the most revolutionary technologies today. It uses artificial intelligence to understand human text and spoken words. It is used for text summarization, grammar checking, sentiment analysis, and advanced chatbots and has many more potential use cases. Furthermore, it has also made its mark on the education sector. Much research and advancements have already been conducted on objective question generation; however, automated subjective question generation and answer evaluation are still in progress. An automated system to generate subjective questions and evaluate the answers can help teachers assess student work and enhance the student’s learning experience by allowing them to self-assess their understanding after reading an article or a chapter of a book. This research aims to improve current NLP models or make a novel one for automated subjective question generation and answer evaluation from text input.
2.142Understanding Generalization in Role-Playing Models via Information Theory¶
2025/12/22 05:04 GTM
Role-playing models (RPMs) are widely used in real-world applications but underperform when deployed in the wild. This degradation can be attributed to distribution shifts, including user, character, and dialogue compositional shifts. Existing methods like LLM-as-a-judge fall short in providing a fine-grained diagnosis of how these shifts affect RPM generalization, and thus there lack formal frameworks to characterize RPM generalization behaviors. To bridge these gaps, we introduce an information-theoretic metric, named reasoning-based effective mutual information difference (R-EMID), to measure RPM performance degradation in an interpretable way. We also derive an upper bound on R-EMID to predict the worst-case generalization performance of RPMs and theoretically reveal how various shifts contribute to the RPM performance degradation. Moreover, we propose a co-evolving reinforcement learning framework to adaptively model the connection among user, character, and dialogue context and thus enhance the estimation of dialogue response generation probability, which is critical for calculating R-EMID. Finally, we evaluate the generalization performance of various RPMs using R-EMID, finding that user shift poses the highest risk among all shifts and reinforcement learning is the most effective approach for enhancing RPM generalization.
2.143AutoMetrics: Approximate Human Judgements with Automatically Generated Evaluators¶
2025/12/22 05:04 GTM
Evaluating user-facing AI applications remains a central challenge, especially in open-ended domains such as travel planning, clinical note generation, or dialogue. The gold standard is user feedback (e.g., thumbs up/down) or behavioral signals (e.g., retention), but these are often scarce in prototypes and research projects, or too-slow to use for system optimization. We present AutoMetrics, a framework for synthesizing evaluation metrics under low-data constraints. AutoMetrics combines retrieval from MetricBank, a collection of 48 metrics we curate, with automatically generated LLM-as-a-Judge criteria informed by lightweight human feedback. These metrics are composed via regression to maximize correlation with human signal. AutoMetrics takes you from expensive measures to interpretable automatic metrics. Across 5 diverse tasks, AutoMetrics improves Kendall correlation with human ratings by up to 33.4% over LLM-as-a-Judge while requiring fewer than 100 feedback points. We show that AutoMetrics can be used as a proxy reward to equal effect as a verifiable reward. We release the full AutoMetrics toolkit and MetricBank to accelerate adaptive evaluation of LLM applications.
2.144Seed-Prover 1.5: Mastering Undergraduate-Level Theorem Proving via Learning from Experience¶
2025/12/22 05:04 GTM
Large language models have recently made significant progress to generate rigorous mathematical proofs. In contrast, utilizing LLMs for theorem proving in formal languages (such as Lean) remains challenging and computationally expensive, particularly when addressing problems at the undergraduate level and beyond. In this work, we present \textbf{Seed-Prover 1.5}, a formal theorem-proving model trained via large-scale agentic reinforcement learning, alongside an efficient test-time scaling (TTS) workflow. Through extensive interactions with Lean and other tools, the model continuously accumulates experience during the RL process, substantially enhancing the capability and efficiency of formal theorem proving. Furthermore, leveraging recent advancements in natural language proving, our TTS workflow efficiently bridges the gap between natural and formal languages. Compared to state-of-the-art methods, Seed-Prover 1.5 achieves superior performance with a smaller compute budget. It solves \textbf{88% of PutnamBench} (undergraduate-level), \textbf{80% of Fate-H} (graduate-level), and \textbf{33% of Fate-X} (PhD-level) problems. Notably, using our system, we solved \textbf{11 out of 12 problems} from Putnam 2025 within 9 hours. Our findings suggest that scaling learning from experience, driven by high-quality formal feedback, holds immense potential for the future of formal mathematical reasoning.
2.145Incorporating Error Level Noise Embedding for Improving LLM-Assisted Robustness in Persian Speech Recognition¶
2025/12/22 05:04 GTM
Automatic Speech Recognition (ASR) systems suffer significant performance degradation in noisy environments, a challenge that is especially severe for low-resource languages such as Persian. Even state-of-the-art models such as Whisper struggle to maintain accuracy under varying signal-to-noise ratios (SNRs). This study presents a robust noise-sensitive ASR error correction framework that combines multiple hypotheses and noise-aware modeling. Using noisy Persian speech, we generate 5-best hypotheses from a modified Whisper-large decoder. Error Level Noise (ELN) is introduced as a representation that captures semantic- and token-level disagreement across hypotheses, quantifying the linguistic distortions caused by noise. ELN thus provides a direct measure of noise-induced uncertainty, enabling the LLM to reason about the reliability of each hypothesis during correction. Three models are evaluated: (1) a base LLaMA-2-7B model without fine-tuning, (2) a fine-tuned variant trained on text-only hypotheses, and (3) a noise-conditioned model integrating ELN embeddings at both sentence and word levels. Experimental results demonstrate that the ELN-conditioned model achieves substantial reductions in Word Error Rate (WER). Specifically, on the challenging Mixed Noise test set, the proposed Fine-tuned + ELN (Ours) model reduces the WER from a baseline of 31.10% (Raw Whisper) to 24.84%, significantly surpassing the Fine-tuned (No ELN) text-only baseline of 30.79%, whereas the original LLaMA-2-7B model increased the WER to 64.58%, demonstrating that it is unable to correct Persian errors on its own. This confirms the effectiveness of combining multiple hypotheses with noise-aware embeddings for robust Persian ASR in noisy real-world scenarios.
2.146Mindscape-Aware Retrieval Augmented Generation for Improved Long Context Understanding¶
2025/12/22 05:04 GTM
Humans understand long and complex texts by relying on a holistic semantic representation of the content. This global view helps organize prior knowledge, interpret new information, and integrate evidence dispersed across a document, as revealed by the Mindscape-Aware Capability of humans in psychology. Current Retrieval-Augmented Generation (RAG) systems lack such guidance and therefore struggle with long-context tasks. In this paper, we propose Mindscape-Aware RAG (MiA-RAG), the first approach that equips LLM-based RAG systems with explicit global context awareness. MiA-RAG builds a mindscape through hierarchical summarization and conditions both retrieval and generation on this global semantic representation. This enables the retriever to form enriched query embeddings and the generator to reason over retrieved evidence within a coherent global context. We evaluate MiA-RAG across diverse long-context and bilingual benchmarks for evidence-based understanding and global sense-making. It consistently surpasses baselines, and further analysis shows that it aligns local details with a coherent global representation, enabling more human-like long-context retrieval and reasoning.
2.147Enhancing Long Document Long Form Summarisation with Self-Planning¶
2025/12/22 05:04 GTM
We introduce a novel approach for long context summarisation, highlight-guided generation, that leverages sentence-level information as a content plan to improve the traceability and faithfulness of generated summaries. Our framework applies self-planning methods to identify important content and then generates a summary conditioned on the plan. We explore both an end-to-end and two-stage variants of the approach, finding that the two-stage pipeline performs better on long and information-dense documents. Experiments on long-form summarisation datasets demonstrate that our method consistently improves factual consistency while preserving relevance and overall quality. On GovReport, our best approach has improved ROUGE-L by 4.1 points and achieves about 35% gains in SummaC scores. Qualitative analysis shows that highlight-guided summarisation helps preserve important details, leading to more accurate and insightful summaries across domains.
2.148A Solver-in-the-Loop Framework for Improving LLMs on Answer Set Programming for Logic Puzzle Solving¶
2025/12/22 05:04 GTM
The rise of large language models (LLMs) has sparked interest in coding assistants. While general-purpose programming languages are well supported, generating code for domain-specific languages remains a challenging problem for LLMs. In this paper, we focus on the LLM-based generation of code for Answer Set Programming (ASP), a particularly effective approach for finding solutions to combinatorial search problems. The effectiveness of LLMs in ASP code generation is currently hindered by the limited number of examples seen during their initial pre-training phase. In this paper, we introduce a novel ASP-solver-in-the-loop approach for solver-guided instruction-tuning of LLMs to addressing the highly complex semantic parsing task inherent in ASP code generation. Our method only requires problem specifications in natural language and their solutions. Specifically, we sample ASP statements for program continuations from LLMs for unriddling logic puzzles. Leveraging the special property of declarative ASP programming that partial encodings increasingly narrow down the solution space, we categorize them into chosen and rejected instances based on solver feedback. We then apply supervised fine-tuning to train LLMs on the curated data and further improve robustness using a solver-guided search that includes best-of-N sampling. Our experiments demonstrate consistent improvements in two distinct prompting settings on two datasets.
2.149Data Augmentation Supporting a Conversational Agent Designed for Smoking Cessation Support Groups¶
2025/12/22 05:04 GTM
Online support groups for smoking cessation are economical and accessible, yet they often face challenges with low user engagement and stigma. The use of an automatic conversational agent would improve engagement by ensuring that all user comments receive a timely response.). We address the challenge of insufficient high-quality data by employing a two-level data augmentation strategy: synthetic data augmentation and real data augmentation. First, we fine-tuned an open source LLM to classify posts from our existing smoking cessation support groups and identify intents with low F1 (precision+recall) scores. Then, for these intents, we generate additional synthetic data using prompt engineering with the GPT model, with an average of 87% of the generated synthetic posts deemed high quality by human annotators. Overall, the synthetic augmentation process resulted in 43% of the original posts being selected for augmentation, followed by 140% synthetic expansion of these posts. Additionally, we scraped more than 10,000 real posts from a related online support context, of which 73% were validated as good quality by human annotators. Each synthetic or scraped post underwent rigorous validation involving human reviewers to ensure quality and relevance. The validated new data, combined with the original support group posts, formed an augmented dataset used to retrain the intent classifier. Performance evaluation of the retrained model demonstrated a 32% improvement in F1, confirming the effectiveness of our data augmentation approach. Synthetic and real post augmentation led to similar performance improvements. This study provides a replicable framework for enhancing conversational agent performance in domains where data scarcity is a critical issue.
2.150When F1 Fails: Granularity-Aware Evaluation for Dialogue Topic Segmentation¶
2025/12/22 05:04 GTM
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of prior work, evaluation practice in dialogue topic segmentation remains dominated by strict boundary matching and F1-based metrics, even as modern LLM-based conversational systems increasingly rely on segmentation to manage conversation history beyond the model’s fixed context window, where unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation objective for dialogue topic segmentation that treats boundary density and segment coherence as primary criteria, alongside window-tolerant F1 (W-F1). Through extensive cross-dataset empirical evaluation, we show that reported performance differences across dialogue segmentation benchmarks are driven not by model quality, but by annotation granularity mismatches and sparse boundary labels. This indicates that many reported improvements arise from evaluation artifacts rather than improved boundary detection. We evaluated multiple, structurally distinct dialogue segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Across these settings, we observe high segment coherence combined with extreme oversegmentation relative to sparse labels, producing misleadingly low exact-match F1 scores. We show that topic segmentation is best understood as selecting an appropriate granularity rather than predicting a single correct boundary set. We operationalize this view by explicitly separating boundary scoring from boundary selection.
2.151Perturb Your Data: Paraphrase-Guided Training Data Watermarking¶
2025/12/22 05:04 GTM
Training data detection is critical for enforcing copyright and data licensing, as Large Language Models (LLM) are trained on massive text corpora scraped from the internet. We present SPECTRA, a watermarking approach that makes training data reliably detectable even when it comprises less than 0.001% of the training corpus. SPECTRA works by paraphrasing text using an LLM and assigning a score based on how likely each paraphrase is, according to a separate scoring model. A paraphrase is chosen so that its score closely matches that of the original text, to avoid introducing any distribution shifts. To test whether a suspect model has been trained on the watermarked data, we compare its token probabilities against those of the scoring model. We demonstrate that SPECTRA achieves a consistent p-value gap of over nine orders of magnitude when detecting data used for training versus data not used for training, which is greater than all baselines tested. SPECTRA equips data owners with a scalable, deploy-before-release watermark that survives even large-scale LLM training.
2.152XLM: A Python package for non-autoregressive language models¶
2025/12/22 05:04 GTM
In recent years, there has been a resurgence of interest in non-autoregressive text generation in the context of general language modeling. Unlike the well-established autoregressive language modeling paradigm, which has a plethora of standard training and inference libraries, implementations of non-autoregressive language modeling have largely been bespoke making it difficult to perform systematic comparisons of different methods. Moreover, each non-autoregressive language model typically requires it own data collation, loss, and prediction logic, making it challenging to reuse common components. In this work, we present the XLM python package, which is designed to make implementing small non-autoregressive language models faster with a secondary goal of providing a suite of small pre-trained models (through a companion xlm-models package) that can be used by the research community. The code is available at https://
2.153Knowledge Distillation with Structured Chain-of-Thought for Text-to-SQL¶
2025/12/22 05:04 GTM
Deploying accurate Text-to-SQL systems at the enterprise level faces a difficult trilemma involving cost, security and performance. Current solutions force enterprises to choose between expensive, proprietary Large Language Models (LLMs) and low-performing Small Language Models (SLMs). Efforts to improve SLMs often rely on distilling reasoning from large LLMs using unstructured Chain-of-Thought (CoT) traces, a process that remains inherently ambiguous. Instead, we hypothesize that a formal, structured reasoning representation provides a clearer, more reliable teaching signal, as the Text-to-SQL task requires explicit and precise logical steps. To evaluate this hypothesis, we propose Struct-SQL, a novel Knowledge Distillation (KD) framework that trains an SLM to emulate a powerful large LLM. Consequently, we adopt a query execution plan as a formal blueprint to derive this structured reasoning. Our SLM, distilled with structured CoT, achieves an absolute improvement of 8.1% over an unstructured CoT distillation baseline. A detailed error analysis reveals that a key factor in this gain is a marked reduction in syntactic errors. This demonstrates that teaching a model to reason using a structured logical blueprint is beneficial for reliable SQL generation in SLMs.
2.154A Women’s Health Benchmark for Large Language Models¶
2025/12/22 05:04 GTM
As large language models (LLMs) become primary sources of health information for millions, their accuracy in women’s health remains critically unexamined. We introduce the Women’s Health Benchmark (WHB), the first benchmark evaluating LLM performance specifically in women’s health. Our benchmark comprises 96 rigorously validated model stumps covering five medical specialties (obstetrics and gynecology, emergency medicine, primary care, oncology, and neurology), three query types (patient query, clinician query, and evidence/policy query), and eight error types (dosage/medication errors, missing critical information, outdated guidelines/treatment recommendations, incorrect treatment advice, incorrect factual information, missing/incorrect differential diagnosis, missed urgency, and inappropriate recommendations). We evaluated 13 state-of-the-art LLMs and revealed alarming gaps: current models show approximately 60% failure rates on the women’s health benchmark, with performance varying dramatically across specialties and error types. Notably, models universally struggle with “missed urgency” indicators, while newer models like GPT-5 show significant improvements in avoiding inappropriate recommendations. Our findings underscore that AI chatbots are not yet fully able of providing reliable advice in women’s health.
2.155PAACE: A Plan-Aware Automated Agent Context Engineering Framework¶
2025/12/22 05:04 GTM
Large Language Model (LLM) agents are increasingly deployed in complex, multi-step workflows involving planning, tool use, reflection, and interaction with external knowledge systems. These workflows generate rapidly expanding contexts that must be curated, transformed, and compressed to maintain fidelity, avoid attention dilution, and reduce inference cost. Prior work on summarization and query-aware compression largely ignores the multi-step, plan-aware nature of agentic reasoning. In this work, we introduce PAACE (Plan-Aware Automated Context Engineering), a unified framework for optimizing the evolving state of LLM agents through next-k-task relevance modeling, plan-structure analysis, instruction co-refinement, and function-preserving compression. PAACE comprises (1) PAACE-Syn, a large-scale generator of synthetic agent workflows annotated with stepwise compression supervision, and (2) PAACE-FT, a family of distilled, plan-aware compressors trained from successful teacher demonstrations. Experiments on long-horizon benchmarks (AppWorld, OfficeBench, and 8-Objective QA) demonstrate that PAACE consistently improves agent correctness while substantially reducing context load. On AppWorld, PAACE achieves higher accuracy than all baselines while lowering peak context and cumulative dependency. On OfficeBench and multi-hop QA, PAACE improves both accuracy and F1, achieving fewer steps, lower peak tokens, and reduced attention dependency. Distilled PAACE-FT retains 97 percent of the teacher’s performance while reducing inference cost by over an order of magnitude, enabling practical deployment of plan-aware compression with compact models.
2.156Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows¶
2025/12/22 05:04 GTM
Despite advances in scientific AI, a coherent framework for Scientific General Intelligence (SGI)-the ability to autonomously conceive, investigate, and reason across scientific domains-remains lacking. We present an operational SGI definition grounded in the Practical Inquiry Model (PIM: Deliberation, Conception, Action, Perception) and operationalize it via four scientist-aligned tasks: deep research, idea generation, dry/wet experiments, and experimental reasoning. SGI-Bench comprises over 1,000 expert-curated, cross-disciplinary samples inspired by Science’s 125 Big Questions, enabling systematic evaluation of state-of-the-art LLMs. Results reveal gaps: low exact match (10--20%) in deep research despite step-level alignment; ideas lacking feasibility and detail; high code executability but low execution result accuracy in dry experiments; low sequence fidelity in wet protocols; and persistent multimodal comparative-reasoning challenges. We further introduce Test-Time Reinforcement Learning (TTRL), which optimizes retrieval-augmented novelty rewards at inference, enhancing hypothesis novelty without reference answer. Together, our PIM-grounded definition, workflow-centric benchmark, and empirical insights establish a foundation for AI systems that genuinely participate in scientific discovery.
2.157Diffusion Forcing for Multi-Agent Interaction Sequence Modeling¶
2025/12/22 05:04 GTM
Understanding and generating multi-person interactions is a fundamental challenge with broad implications for robotics and social computing. While humans naturally coordinate in groups, modeling such interactions remains difficult due to long temporal horizons, strong inter-agent dependencies, and variable group sizes. Existing motion generation methods are largely task-specific and do not generalize to flexible multi-agent generation. We introduce MAGNet (Multi-Agent Diffusion Forcing Transformer), a unified autoregressive diffusion framework for multi-agent motion generation that supports a wide range of interaction tasks through flexible conditioning and sampling. MAGNet performs dyadic prediction, partner inpainting, and full multi-agent motion generation within a single model, and can autoregressively generate ultra-long sequences spanning hundreds of v. Building on Diffusion Forcing, we introduce key modifications that explicitly model inter-agent coupling during autoregressive denoising, enabling coherent coordination across agents. As a result, MAGNet captures both tightly synchronized activities (e.g, dancing, boxing) and loosely structured social interactions. Our approach performs on par with specialized methods on dyadic benchmarks while naturally extending to polyadic scenarios involving three or more interacting people, enabled by a scalable architecture that is agnostic to the number of agents. We refer readers to the supplemental video, where the temporal dynamics and spatial coordination of generated interactions are best appreciated. Project page: https://
2.158RadarGen: Automotive Radar Point Cloud Generation from Cameras¶
2025/12/22 05:04 GTM
We present RadarGen, a diffusion model for synthesizing realistic automotive radar point clouds from multi-view camera imagery. RadarGen adapts efficient image-latent diffusion to the radar domain by representing radar measurements in bird’s-eye-view form that encodes spatial structure together with radar cross section (RCS) and Doppler attributes. A lightweight recovery step reconstructs point clouds from the generated maps. To better align generation with the visual scene, RadarGen incorporates BEV-aligned depth, semantic, and motion cues extracted from pretrained foundation models, which guide the stochastic generation process toward physically plausible radar patterns. Conditioning on images makes the approach broadly compatible, in principle, with existing visual datasets and simulation frameworks, offering a scalable direction for multimodal generative simulation. Evaluations on large-scale driving data show that RadarGen captures characteristic radar measurement distributions and reduces the gap to perception models trained on real data, marking a step toward unified generative simulation across sensing modalities.
2.159AnyTask: an Automated Task and Data Generation Framework for Advancing Sim-to-Real Policy Learning¶
2025/12/22 05:04 GTM
Generalist robot learning remains constrained by data: large-scale, diverse, and high-quality interaction data are expensive to collect in the real world. While simulation has become a promising way for scaling up data collection, the related tasks, including simulation task design, task-aware scene generation, expert demonstration synthesis, and sim-to-real transfer, still demand substantial human effort. We present AnyTask, an automated framework that pairs massively parallel GPU simulation with foundation models to design diverse manipulation tasks and synthesize robot data. We introduce three AnyTask agents for generating expert demonstrations aiming to solve as many tasks as possible: 1) ViPR, a novel task and motion planning agent with VLM-in-the-loop Parallel Refinement; 2) ViPR-Eureka, a reinforcement learning agent with generated dense rewards and LLM-guided contact sampling; 3) ViPR-RL, a hybrid planning and learning approach that jointly produces high-quality demonstrations with only sparse rewards. We train behavior cloning policies on generated data, validate them in simulation, and deploy them directly on real robot hardware. The policies generalize to novel object poses, achieving 44% average success across a suite of real-world pick-and-place, drawer opening, contact-rich pushing, and long-horizon manipulation tasks. Our project website is at https://
2.160Planning as Descent: Goal-Conditioned Latent Trajectory Synthesis in Learned Energy Landscapes¶
2025/12/22 05:04 GTM
We present Planning as Descent (PaD), a framework for offline goal-conditioned reinforcement learning that grounds trajectory synthesis in verification. Instead of learning a policy or explicit planner, PaD learns a goal-conditioned energy function over entire latent trajectories, assigning low energy to feasible, goal-consistent futures. Planning is realized as gradient-based refinement in this energy landscape, using identical computation during training and inference to reduce train-test mismatch common in decoupled modeling pipelines. PaD is trained via self-supervised hindsight goal relabeling, shaping the energy landscape around the planning dynamics. At inference, multiple trajectory candidates are refined under different temporal hypotheses, and low-energy plans balancing feasibility and efficiency are selected. We evaluate PaD on OGBench cube manipulation tasks. When trained on narrow expert demonstrations, PaD achieves state-of-the-art 95% success, strongly outperforming prior methods that peak at 68%. Remarkably, training on noisy, suboptimal data further improves success and plan efficiency, highlighting the benefits of verification-driven planning. Our results suggest learning to evaluate and refine trajectories provides a robust alternative to direct policy learning for offline, reward-free planning.
2.161UniStateDLO: Unified Generative State Estimation and Tracking of Deformable Linear Objects Under Occlusion for Constrained Manipulation¶
2025/12/22 05:04 GTM
Perception of deformable linear objects (DLOs), such as cables, ropes, and wires, is the cornerstone for successful downstream manipulation. Although vision-based methods have been extensively explored, they remain highly vulnerable to occlusions that commonly arise in constrained manipulation environments due to surrounding obstacles, large and varying deformations, and limited viewpoints. Moreover, the high dimensionality of the state space, the lack of distinctive visual features, and the presence of sensor noises further compound the challenges of reliable DLO perception. To address these open issues, this paper presents UniStateDLO, the first complete DLO perception pipeline with deep-learning methods that achieves robust performance under severe occlusion, covering both single-frame state estimation and cross-frame state tracking from partial point clouds. Both tasks are formulated as conditional generative problems, leveraging the strong capability of diffusion models to capture the complex mapping between highly partial observations and high-dimensional DLO states. UniStateDLO effectively handles a wide range of occlusion patterns, including initial occlusion, self-occlusion, and occlusion caused by multiple objects. In addition, it exhibits strong data efficiency as the entire network is trained solely on a large-scale synthetic dataset, enabling zero-shot sim-to-real generalization without any real-world training data. Comprehensive simulation and real-world experiments demonstrate that UniStateDLO outperforms all state-of-the-art baselines in both estimation and tracking, producing globally smooth yet locally precise DLO state predictions in real time, even under substantial occlusions. Its integration as the front-end module in a closed-loop DLO manipulation system further demonstrates its ability to support stable feedback control in complex, constrained 3-D environments.
2.162A Dual Quaternion based RRT* Path Planning Approach for Satellite Rendezvous and Docking¶
2025/12/22 05:04 GTM
This paper proposes a sampling-based motion planner that employs a dual quaternion representation to generate smooth, collision-free six-degree-of-freedom pose trajectories for satellite rendezvous and docking under keep-out zone constraints. The proposed planner integrates the dual quaternion algebra directly into an RRT* framework, thereby enabling natural screw motion interpolation in SE(3). The dual quaternion-based RRT* has been implemented in Python and demonstrated on a representative multi-obstacle scenario. A comparison with a standard RRT* using separate translation and quaternion steering highlights the enhanced pose continuity and obstacle avoidance of the proposed method. The present approach is purely kinematic in nature and does not take into account relative orbital dynamics. Consequently, the resulting path provides a preliminary estimate for a subsequent optimisation-based trajectory planner, which will refine the motion with dynamic constraints for the purpose of practical satellite rendezvous and docking missions.
2.163Vidarc: Embodied Video Diffusion Model for Closed-loop Control¶
2025/12/22 05:04 GTM
Robotic arm manipulation in data-scarce settings is a highly challenging task due to the complex embodiment dynamics and diverse contexts. Recent video-based approaches have shown great promise in capturing and transferring the temporal and physical interactions by pre-training on Internet-scale video data. However, such methods are often not optimized for the embodiment-specific closed-loop control, typically suffering from high latency and insufficient grounding. In this paper, we present Vidarc (Video Diffusion for Action Reasoning and Closed-loop Control), a novel autoregressive embodied video diffusion approach augmented by a masked inverse dynamics model. By grounding video predictions with action-relevant masks and incorporating real-time feedback through cached autoregressive generation, Vidarc achieves fast, accurate closed-loop control. Pre-trained on one million cross-embodiment episodes, Vidarc surpasses state-of-the-art baselines, achieving at least a 15% higher success rate in real-world deployment and a 91% reduction in latency. We also highlight its robust generalization and error correction capabilities across previously unseen robotic platforms.
2.164Learning Safe Autonomous Driving Policies Using Predictive Safety Representations¶
2025/12/22 05:04 GTM
Safe reinforcement learning (SafeRL) is a prominent paradigm for autonomous driving, where agents are required to optimize performance under strict safety requirements. This dual objective creates a fundamental tension, as overly conservative policies limit driving efficiency while aggressive exploration risks safety violations. The Safety Representations for Safer Policy Learning (SRPL) framework addresses this challenge by equipping agents with a predictive model of future constraint violations and has shown promise in controlled environments. This paper investigates whether SRPL extends to real-world autonomous driving scenarios. Systematic experiments on the Waymo Open Motion Dataset (WOMD) and NuPlan demonstrate that SRPL can improve the reward-safety tradeoff, achieving statistically significant improvements in success rate (effect sizes r = 0.65-0.86) and cost reduction (effect sizes r = 0.70-0.83), with p < 0.05 for observed improvements. However, its effectiveness depends on the underlying policy optimizer and the dataset distribution. The results further show that predictive safety representations play a critical role in improving robustness to observation noise. Additionally, in zero-shot cross-dataset evaluation, SRPL-augmented agents demonstrate improved generalization compared to non-SRPL methods. These findings collectively demonstrate the potential of predictive safety representations to strengthen SafeRL for autonomous driving.
2.165Optimized Scheduling and Positioning of Mobile Manipulators in Collaborative Applications¶
2025/12/22 05:04 GTM
The growing integration of mobile robots in shared workspaces requires efficient path planning and coordination between the agents, accounting for safety and productivity. In this work, we propose a digital model-based optimization framework for mobile manipulators in human-robot collaborative environments, in order to determine the sequence of robot base poses and the task scheduling for the robot. The complete problem is treated as black-box, and Particle Swarm Optimization (PSO) is employed to balance conflicting Key-Performance Indicators (KPIs). We demonstrate improvements in cycle time, task sequencing, and adaptation to human presence in a collaborative box-packing scenario.
2.166On Using Neural Networks to Learn Safety Speed Reduction in Human-Robot Collaboration: A Comparative Analysis¶
2025/12/22 05:04 GTM
In Human-Robot Collaboration, safety mechanisms such as Speed and Separation Monitoring and Power and Force Limitation dynamically adjust the robot’s speed based on human proximity. While essential for risk reduction, these mechanisms introduce slowdowns that makes cycle time estimation a hard task and impact job scheduling efficiency. Existing methods for estimating cycle times or designing schedulers often rely on predefined safety models, which may not accurately reflect real-world safety implementations, as these depend on case-specific risk assessments. In this paper, we propose a deep learning approach to predict the robot’s safety scaling factor directly from process execution data. We analyze multiple neural network architectures and demonstrate that a simple feed-forward network effectively estimates the robot’s slowdown. This capability is crucial for improving cycle time predictions and designing more effective scheduling algorithms in collaborative robotic environments.
2.167Kinematics-Aware Diffusion Policy with Consistent 3D Observation and Action Space for Whole-Arm Robotic Manipulation¶
2025/12/22 05:04 GTM
Whole-body control of robotic manipulators with awareness of full-arm kinematics is crucial for many manipulation scenarios involving body collision avoidance or body-object interactions, which makes it insufficient to consider only the end-effector poses in policy learning. The typical approach for whole-arm manipulation is to learn actions in the robot’s joint space. However, the unalignment between the joint space and actual task space (i.e., 3D space) increases the complexity of policy learning, as generalization in task space requires the policy to intrinsically understand the non-linear arm kinematics, which is difficult to learn from limited demonstrations. To address this issue, this letter proposes a kinematics-aware imitation learning framework with consistent task, observation, and action spaces, all represented in the same 3D space. Specifically, we represent both robot states and actions using a set of 3D points on the arm body, naturally aligned with the 3D point cloud observations. This spatially consistent representation improves the policy’s sample efficiency and spatial generalizability while enabling full-body control. Built upon the diffusion policy, we further incorporate kinematics priors into the diffusion processes to guarantee the kinematic feasibility of output actions. The joint angle commands are finally calculated through an optimization-based whole-body inverse kinematics solver for execution. Simulation and real-world experimental results demonstrate higher success rates and stronger spatial generalizability of our approach compared to existing methods in body-aware manipulation policy learning.
2.168Learning-Based Safety-Aware Task Scheduling for Efficient Human-Robot Collaboration¶
2025/12/22 05:04 GTM
Ensuring human safety in collaborative robotics can compromise efficiency because traditional safety measures increase robot cycle time when human interaction is frequent. This paper proposes a safety-aware approach to mitigate efficiency losses without assuming prior knowledge of safety logic. Using a deep-learning model, the robot learns the relationship between system state and safety-induced speed reductions based on execution data. Our framework does not explicitly predict human motions but directly models the interaction effects on robot speed, simplifying implementation and enhancing generalizability to different safety logics. At runtime, the learned model optimizes task selection to minimize cycle time while adhering to safety requirements. Experiments on a pick-and-packaging scenario demonstrated significant reductions in cycle times.
2.169Deep Learning-based Robust Autonomous Navigation of Aerial Robots in Dense Forests¶
2025/12/22 05:04 GTM
Autonomous aerial navigation in dense natural environments remains challenging due to limited visibility, thin and irregular obstacles, GNSS-denied operation, and frequent perceptual degradation. This work presents an improved deep learning-based navigation framework that integrates semantically enhanced depth encoding with neural motion-primitive evaluation for robust flight in cluttered forests. Several modules are incorporated on top of the original sevae-ORACLE algorithm to address limitations observed during real-world deployment, including lateral control for sharper maneuvering, a temporal consistency mechanism to suppress oscillatory planning decisions, a stereo-based visual-inertial odometry solution for drift-resilient state estimation, and a supervisory safety layer that filters unsafe actions in real time. A depth refinement stage is included to improve the representation of thin branches and reduce stereo noise, while GPU optimization increases onboard inference throughput from 4 Hz to 10 Hz. The proposed approach is evaluated against several existing learning-based navigation methods under identical environmental conditions and hardware constraints. It demonstrates higher success rates, more stable trajectories, and improved collision avoidance, particularly in highly cluttered forest settings. The system is deployed on a custom quadrotor in three boreal forest environments, achieving fully autonomous completion in all flights in moderate and dense clutter, and 12 out of 15 flights in highly dense underbrush. These results demonstrate improved reliability and safety over existing navigation methods in complex natural environments.
2.170Adaptive Covariance and Quaternion-Focused Hybrid Error-State EKF/UKF for Visual-Inertial Odometry¶
2025/12/22 05:04 GTM
This study presents an innovative hybrid Visual-Inertial Odometry (VIO) method for Unmanned Aerial Vehicles (UAVs) that is resilient to environmental challenges and capable of dynamically assessing sensor reliability. Built upon a loosely coupled sensor fusion architecture, the system utilizes a novel hybrid Quaternion-focused Error-State EKF/UKF (Qf-ES-EKF/UKF) architecture to process inertial measurement unit (IMU) data. This architecture first propagates the entire state using an Error-State Extended Kalman Filter (ESKF) and then applies a targeted Scaled Unscented Kalman Filter (SUKF) step to refine only the orientation. This sequential process blends the accuracy of SUKF in quaternion estimation with the overall computational efficiency of ESKF. The reliability of visual measurements is assessed via a dynamic sensor confidence score based on metrics, such as image entropy, intensity variation, motion blur, and inference quality, adapting the measurement noise covariance to ensure stable pose estimation even under challenging conditions. Comprehensive experimental analyses on the EuRoC MAV dataset demonstrate key advantages: an average improvement of 49% in position accuracy in challenging scenarios, an average of 57% in rotation accuracy over ESKF-based methods, and SUKF-comparable accuracy achieved with approximately 48% lower computational cost than a full SUKF implementation. These findings demonstrate that the presented approach strikes an effective balance between computational efficiency and estimation accuracy, and significantly enhances UAV pose estimation performance in complex environments with varying sensor reliability.
2.171ImagineNav++: Prompting Vision-Language Models as Embodied Navigator through Scene Imagination¶
2025/12/22 05:04 GTM
Visual navigation is a fundamental capability for autonomous home-assistance robots, enabling long-horizon tasks such as object search. While recent methods have leveraged Large Language Models (LLMs) to incorporate commonsense reasoning and improve exploration efficiency, their planning remains constrained by textual representations, which cannot adequately capture spatial occupancy or scene geometry--critical factors for navigation decisions. We explore whether Vision-Language Models (VLMs) can achieve mapless visual navigation using only onboard RGB/RGB-D streams, unlocking their potential for spatial perception and planning. We achieve this through an imagination-powered navigation framework, ImagineNav++, which imagines future observation images from candidate robot views and translates navigation planning into a simple best-view image selection problem for VLMs. First, a future-view imagination module distills human navigation preferences to generate semantically meaningful viewpoints with high exploration potential. These imagined views then serve as visual prompts for the VLM to identify the most informative viewpoint. To maintain spatial consistency, we develop a selective foveation memory mechanism, which hierarchically integrates keyframe observations via a sparse-to-dense framework, constructing a compact yet comprehensive memory for long-term spatial reasoning. This approach transforms goal-oriented navigation into a series of tractable point-goal navigation tasks. Extensive experiments on open-vocabulary object and instance navigation benchmarks show that ImagineNav++ achieves SOTA performance in mapless settings, even surpassing most map-based methods, highlighting the importance of scene imagination and memory in VLM-based spatial reasoning.
2.172Personalized Gait Patterns During Exoskeleton-Aided Training May Have Minimal Effect on User Experience. Insights from a Pilot Study¶
2025/12/22 05:04 GTM
Robot-aided gait rehabilitation facilitates high-intensity and repeatable therapy. However, most exoskeletons rely on pre-recorded, non-personalized gait trajectories constrained to the sagittal plane, potentially limiting movement naturalness and user comfort. We present a data-driven gait personalization framework for an exoskeleton that supports multi-planar motion, including hip abduction/adduction and pelvic translation and rotation. Personalized trajectories to individual participants were generated using regression models trained on anthropometric, demographic, and walking speed data from a normative database. In a within-subject experiment involving ten unimpaired participants, these personalized trajectories were evaluated in regard to comfort, naturalness, and overall experience and compared against two standard patterns from the same database: one averaging all the trajectories, and one randomly selected. We did not find relevant differences across pattern conditions, despite all trajectories being executed with high accuracy thanks to a stiff position-derivative controller. We found, however, that pattern conditions in later trials were rated as more comfortable and natural than those in the first trial, suggesting that participants might have adapted to walking within the exoskeleton, regardless of the enforced gait pattern. Our findings highlight the importance of integrating subjective feedback when designing personalized gait controllers and accounting for user adaptation during experimentation.
2.173TakeAD: Preference-based Post-optimization for End-to-end Autonomous Driving with Expert Takeover Data¶
2025/12/22 05:04 GTM
Existing end-to-end autonomous driving methods typically rely on imitation learning (IL) but face a key challenge: the misalignment between open-loop training and closed-loop deployment. This misalignment often triggers driver-initiated takeovers and system disengagements during closed-loop execution. How to leverage those expert takeover data from disengagement scenarios and effectively expand the IL policy’s capability presents a valuable yet unexplored challenge. In this paper, we propose TakeAD, a novel preference-based post-optimization framework that fine-tunes the pre-trained IL policy with this disengagement data to enhance the closed-loop driving performance. First, we design an efficient expert takeover data collection pipeline inspired by human takeover mechanisms in real-world autonomous driving systems. Then, this post optimization framework integrates iterative Dataset Aggregation (DAgger) for imitation learning with Direct Preference Optimization (DPO) for preference alignment. The DAgger stage equips the policy with fundamental capabilities to handle disengagement states through direct imitation of expert interventions. Subsequently, the DPO stage refines the policy’s behavior to better align with expert preferences in disengagement scenarios. Through multiple iterations, the policy progressively learns recovery strategies for disengagement states, thereby mitigating the open-loop gap. Experiments on the closed-loop Bench2Drive benchmark demonstrate our method’s effectiveness compared with pure IL methods, with comprehensive ablations confirming the contribution of each component.
2.174Flying in Clutter on Monocular RGB by Learning in 3D Radiance Fields with Domain Adaptation¶
2025/12/22 05:04 GTM
Modern autonomous navigation systems predominantly rely on lidar and depth cameras. However, a fundamental question remains: Can flying robots navigate in clutter using solely monocular RGB images? Given the prohibitive costs of real-world data collection, learning policies in simulation offers a promising path. Yet, deploying such policies directly in the physical world is hindered by the significant sim-to-real perception gap. Thus, we propose a framework that couples the photorealism of 3D Gaussian Splatting (3DGS) environments with Adversarial Domain Adaptation. By training in high-fidelity simulation while explicitly minimizing feature discrepancy, our method ensures the policy relies on domain-invariant cues. Experimental results demonstrate that our policy achieves robust zero-shot transfer to the physical world, enabling safe and agile flight in unstructured environments with varying illumination.
2.175Neuro-Symbolic Control with Large Language Models for Language-Guided Spatial Tasks¶
2025/12/22 05:04 GTM
Although large language models (LLMs) have recently become effective tools for language-conditioned control in embodied systems, instability, slow convergence, and hallucinated actions continue to limit their direct application to continuous control. A modular neuro-symbolic control framework that clearly distinguishes between low-level motion execution and high-level semantic reasoning is proposed in this work. While a lightweight neural delta controller performs bounded, incremental actions in continuous space, a locally deployed LLM interprets symbolic tasks. We assess the suggested method in a planar manipulation setting with spatial relations between objects specified by language. Numerous tasks and local language models, such as Mistral, Phi, and LLaMA-3.2, are used in extensive experiments to compare LLM-only control, neural-only control, and the suggested LLM+DL framework. In comparison to LLM-only baselines, the results show that the neuro-symbolic integration consistently increases both success rate and efficiency, achieving average step reductions exceeding 70% and speedups of up to 8.83x while remaining robust to language model quality. The suggested framework enhances interpretability, stability, and generalization without any need of reinforcement learning or costly rollouts by controlling the LLM to symbolic outputs and allocating uninterpreted execution to a neural controller trained on artificial geometric data. These outputs show empirically that neuro-symbolic decomposition offers a scalable and principled way to integrate language understanding with ongoing control, this approach promotes the creation of dependable and effective language-guided embodied systems.
2.176RecipeMasterLLM: Revisiting RoboEarth in the Era of Large Language Models¶
2025/12/22 05:04 GTM
RoboEarth was a pioneering initiative in cloud robotics, establishing a foundational framework for robots to share and exchange knowledge about actions, objects, and environments through a standardized knowledge graph. Initially, this knowledge was predominantly hand-crafted by engineers using RDF triples within OWL Ontologies, with updates, such as changes in an object’s pose, being asserted by the robot’s control and perception routines. However, with the advent and rapid development of Large Language Models (LLMs), we believe that the process of knowledge acquisition can be significantly automated. To this end, we propose RecipeMasterLLM, a high-level planner, that generates OWL action ontologies based on a standardized knowledge graph in response to user prompts. This architecture leverages a fine-tuned LLM specifically trained to understand and produce action descriptions consistent with the RoboEarth standardized knowledge graph. Moreover, during the Retrieval-Augmented Generation (RAG) phase, environmental knowledge is supplied to the LLM to enhance its contextual understanding and improve the accuracy of the generated action descriptions.
2.177A Service Robot’s Guide to Interacting with Busy Customers¶
2025/12/22 05:04 GTM
The growing use of service robots in hospitality highlights the need to understand how to effectively communicate with pre-occupied customers. This study investigates the efficacy of commonly used communication modalities by service robots, namely, acoustic/speech, visual display, and micromotion gestures in capturing attention and communicating intention with a user in a simulated restaurant scenario. We conducted a two-part user study (N=24) using a Temi robot to simulate delivery tasks, with participants engaged in a typing game (MonkeyType) to emulate a state of busyness. The participants’ engagement in the typing game is measured by words per minute (WPM) and typing accuracy. In Part 1, we compared non-verbal acoustic cue versus baseline conditions to assess attention capture during a single-cup delivery task. In Part 2, we evaluated the effectiveness of speech, visual display, micromotion and their multimodal combination in conveying specific intentions (correct cup selection) during a two-cup delivery task. The results indicate that, while speech is highly effective in capturing attention, it is less successful in clearly communicating intention. Participants rated visual as the most effective modality for intention clarity, followed by speech, with micromotion being the lowest ranked.These findings provide insights into optimizing communication strategies for service robots, highlighting the distinct roles of attention capture and intention communication in enhancing user experience in dynamic hospitality settings.
2.178Research on Dead Reckoning Algorithm for Self-Propelled Pipeline Robots in Three-Dimensional Complex Pipelines¶
2025/12/22 05:04 GTM
In the field of gas pipeline location, existing pipeline location methods mostly rely on pipeline location instruments. However, when faced with complex and curved pipeline scenarios, these methods often fail due to problems such as cable entanglement and insufficient equipment flexibility. To address this pain point, we designed a self-propelled pipeline robot. This robot can autonomously complete the location work of complex and curved pipelines in complex pipe networks without external dragging. In terms of pipeline mapping technology, traditional visual mapping and laser mapping methods are easily affected by lighting conditions and insufficient features in the confined space of pipelines, resulting in mapping drift and divergence problems. In contrast, the pipeline location method that integrates inertial navigation and wheel odometers is less affected by pipeline environmental factors. Based on this, this paper proposes a pipeline robot location method based on extended Kalman filtering (EKF). Firstly, the body attitude angle is initially obtained through an inertial measurement unit (IMU). Then, the extended Kalman filtering algorithm is used to improve the accuracy of attitude angle estimation. Finally, high-precision pipeline location is achieved by combining wheel odometers. During the testing phase, the roll wheels of the pipeline robot needed to fit tightly against the pipe wall to reduce slippage. However, excessive tightness would reduce the flexibility of motion control due to excessive friction. Therefore, a balance needed to be struck between the robot’s motion capability and positioning accuracy. Experiments were conducted using the self-propelled pipeline robot in a rectangular loop pipeline, and the results verified the effectiveness of the proposed dead reckoning algorithm.
2.179Design and Research of a Self-Propelled Pipeline Robot Based on Force Analysis and Dynamic Simulation¶
2025/12/22 05:04 GTM
In pipeline inspection, traditional tethered inspection robots are severely constrained by cable length and weight, which greatly limit their travel range and accessibility. To address these issues, this paper proposes a self-propelled pipeline robot design based on force analysis and dynamic simulation, with a specific focus on solving core challenges including vertical climbing failure and poor passability in T-branch pipes. Adopting a wheeled configuration and modular design, the robot prioritizes the core demand of body motion control. Specifically, 3D modeling of the robot was first completed using SolidWorks. Subsequently, the model was imported into ADAMS for dynamic simulation, which provided a basis for optimizing the drive module and motion control strategy.To verify the robot’s dynamic performance, an experimental platform with acrylic pipes was constructed. Through adjusting its body posture to surmount obstacles and select directions, the robot has demonstrated its ability to stably traverse various complex pipeline scenarios. Notably, this work offers a technical feasibility reference for the application of pipeline robots in the inspection of medium and low-pressure urban gas pipelines.
2.180Semantic Co-Speech Gesture Synthesis and Real-Time Control for Humanoid Robots¶
2025/12/22 05:04 GTM
We present an innovative end-to-end framework for synthesizing semantically meaningful co-speech gestures and deploying them in real-time on a humanoid robot. This system addresses the challenge of creating natural, expressive non-verbal communication for robots by integrating advanced gesture generation techniques with robust physical control. Our core innovation lies in the meticulous integration of a semantics-aware gesture synthesis module, which derives expressive reference motions from speech input by leveraging a generative retrieval mechanism based on large language models (LLMs) and an autoregressive Motion-GPT model. This is coupled with a high-fidelity imitation learning control policy, the MotionTracker, which enables the Unitree G1 humanoid robot to execute these complex motions dynamically and maintain balance. To ensure feasibility, we employ a robust General Motion Retargeting (GMR) method to bridge the embodiment gap between human motion data and the robot platform. Through comprehensive evaluation, we demonstrate that our combined system produces semantically appropriate and rhythmically coherent gestures that are accurately tracked and executed by the physical robot. To our knowledge, this work represents a significant step toward general real-world use by providing a complete pipeline for automatic, semantic-aware, co-speech gesture generation and synchronized real-time physical deployment on a humanoid robot.
2.181Conservative Bias in Multi-Teacher Learning: Why Agents Prefer Low-Reward Advisors¶
2025/12/22 05:04 GTM
Interactive reinforcement learning (IRL) has shown promise in enabling autonomous agents and robots to learn complex behaviours from human teachers, yet the dynamics of teacher selection remain poorly understood. This paper reveals an unexpected phenomenon in IRL: when given a choice between teachers with different reward structures, learning agents overwhelmingly prefer conservative, low-reward teachers (93.16% selection rate) over those offering 20x higher rewards. Through 1,250 experimental runs in navigation tasks with multiple expert teachers, we discovered: (1) Conservative bias dominates teacher selection: agents systematically choose the lowest-reward teacher, prioritising consistency over optimality; (2) Critical performance thresholds exist at teacher availability rho >= 0.6 and accuracy omega >= 0.6, below which the framework fails catastrophically; (3) The framework achieves 159% improvement over baseline Q-learning under concept drift. These findings challenge fundamental assumptions about optimal teaching in RL and suggest potential implications for human-robot collaboration, where human preferences for safety and consistency may align with the observed agent selection behaviour, potentially informing training paradigms for safety-critical robotic applications.
2.182Towards Senior-Robot Interaction: Reactive Robot Dog Gestures¶
2025/12/22 05:04 GTM
As the global population ages, many seniors face the problem of loneliness. Companion robots offer a potential solution. However, current companion robots often lack advanced functionality, while task-oriented robots are not designed for social interaction, limiting their suitability and acceptance by seniors. Our work introduces a senior-oriented system for quadruped robots that allows for more intuitive user input and provides more socially expressive output. For user input, we implemented a MediaPipe-based module for hand gesture and head movement recognition, enabling control without a remote. For output, we designed and trained robotic dog gestures using curriculum-based reinforcement learning in Isaac Gym, progressing from simple standing to three-legged balancing and leg extensions, and more. The final tests achieved over 95% success on average in simulation, and we validated a key social gesture (the paw-lift) on a Unitree robot. Real-world tests demonstrated the feasibility and social expressiveness of this framework, while also revealing sim-to-real challenges in joint compliance, load distribution, and balance control. These contributions advance the development of practical quadruped robots as social companions for the senior and outline pathways for sim-to-real adaptation and inform future user studies.
2.183DiffeoMorph: Learning to Morph 3D Shapes Using Differentiable Agent-Based Simulations¶
2025/12/22 05:04 GTM
Biological systems can form complex three-dimensional structures through the collective behavior of identical agents -- cells that follow the same internal rules and communicate without central control. How such distributed control gives rise to precise global patterns remains a central question not only in developmental biology but also in distributed robotics, programmable matter, and multi-agent learning. Here, we introduce DiffeoMorph, an end-to-end differentiable framework for learning a morphogenesis protocol that guides a population of agents to morph into a target 3D shape. Each agent updates its position and internal state using an attention-based SE(3)-equivariant graph neural network, based on its own internal state and signals received from other agents. To train this system, we introduce a new shape-matching loss based on the 3D Zernike polynomials, which compares the predicted and target shapes as continuous spatial distributions, not as discrete point clouds, and is invariant to agent ordering, number of agents, and rigid-body transformations. To enforce full SO(3) invariance -- invariant to rotations yet sensitive to reflections, we include an alignment step that optimally rotates the predicted Zernike spectrum to match the target before computing the loss. This results in a bilevel problem, with the inner loop optimizing a unit quaternion for the best alignment and the outer loop updating the agent model. We compute gradients through the alignment step using implicit differentiation. We perform systematic benchmarking to establish the advantages of our shape-matching loss over other standard distance metrics for shape comparison tasks. We then demonstrate that DiffeoMorph can form a range of shapes -- from simple ellipsoids to complex morphologies -- using only minimal spatial cues.
2.184Learning to Plan, Planning to Learn: Adaptive Hierarchical RL-MPC for Sample-Efficient Decision Making¶
2025/12/22 05:04 GTM
We propose a new approach for solving planning problems with a hierarchical structure, fusing reinforcement learning and MPC planning. Our formulation tightly and elegantly couples the two planning paradigms. It leverages reinforcement learning actions to inform the MPPI sampler, and adaptively aggregates MPPI samples to inform the value estimation. The resulting adaptive process leverages further MPPI exploration where value estimates are uncertain, and improves training robustness and the overall resulting policies. This results in a robust planning approach that can handle complex planning problems and easily adapts to different applications, as demonstrated over several domains, including race driving, modified Acrobot, and Lunar Lander with added obstacles. Our results in these domains show better data efficiency and overall performance in terms of both rewards and task success, with up to a 72% increase in success rate compared to existing approaches, as well as accelerated convergence (x2.1) compared to non-adaptive sampling.
2.185Lang2Manip: A Tool for LLM-Based Symbolic-to-Geometric Planning for Manipulation¶
2025/12/22 05:04 GTM
Simulation is essential for developing robotic manipulation systems, particularly for task and motion planning (TAMP), where symbolic reasoning interfaces with geometric, kinematic, and physics-based execution. Recent advances in Large Language Models (LLMs) enable robots to generate symbolic plans from natural language, yet executing these plans in simulation often requires robot-specific engineering or planner-dependent integration. In this work, we present a unified pipeline that connects an LLM-based symbolic planner with the Kautham motion planning framework to achieve generalizable, robot-agnostic symbolic-to-geometric manipulation. Kautham provides ROS-compatible support for a wide range of industrial manipulators and offers geometric, kinodynamic, physics-driven, and constraint-based motion planning under a single interface. Our system converts language instructions into symbolic actions and computes and executes collision-free trajectories using any of Kautham’s planners without additional coding. The result is a flexible and scalable tool for language-driven TAMP that is generalized across robots, planning modalities, and manipulation tasks.
2.186Mr.MSTE: Multi-robot Multi-Source Term Estimation with Wind-Aware Coverage Control¶
2025/12/22 05:04 GTM
This paper presents a Multi-Robot Multi-Source Term Estimation (MRMSTE) framework that enables teams of mobile robots to collaboratively sample gas concentrations and infer the parameters of an unknown number of airborne releases. The framework is built on a hybrid Bayesian inference scheme that represents the joint multi-source probability density and incorporates physics-informed state transitions, including source birth, removal, and merging induced by atmospheric dispersion. A superposition-based measurement model is naturally accommodated, allowing sparse concentration measurements to be exploited efficiently. To guide robot deployment, we introduce a wind-aware coverage control (WCC) strategy that integrates the evolving multi-source belief with local wind information to prioritize regions of high detection likelihood. Unlike conventional coverage control or information-theoretic planners, WCC explicitly accounts for anisotropic plume transport when modelling sensor performance, leading to more effective sensor placement for multi-source estimation. Monte Carlo studies demonstrate faster convergence and improved separation of individual source beliefs compared to traditional coverage-based strategies and small-scale static sensor networks. Real-world experiments with CO2 releases using TurtleBot platforms further validate the proposed approach, demonstrating its practicality for scalable multi-robot gas-sensing applications.
2.187Fixed-Priority and EDF Schedules for ROS2 Graphs on Uniprocessor¶
2025/12/22 05:04 GTM
This paper addresses limitations of current scheduling methods in the Robot Operating System (ROS)2, focusing on scheduling tasks beyond simple chains and analyzing arbitrary Directed Acyclic Graphs (DAGs). While previous research has focused mostly on chain-based scheduling with ad-hoc response time analyses, we propose a novel approach using the events executor to implement fixed-job-level-priority schedulers for arbitrary ROS2 graphs on uniprocessor systems. We demonstrate that ROS 2 applications can be abstracted as forests of trees, enabling the mapping of ROS 2 applications to traditional real-time DAG task models. Our usage of the events executor requires a special implementation of the events queue and a communication middleware that supports LIFO-ordered message delivery, features not yet standard in ROS2. We show that our implementation generates the same schedules as a conventional fixed-priority DAG task scheduler, in spite of lacking access to the precedence information that usually is required. This further closes the gap between established real-time systems theory and ROS2 scheduling analyses.