Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

1 Daily News

Generated at 2025-12-04 05:01:48

We have 223 news from different sources.

2paper

2.1SimFlow: Simplified and End-to-End Training of Latent Normalizing Flows

arxiv html pdf kimi

2025/12/04 05:00 GTM

Normalizing Flows (NFs) learn invertible mappings between the data and a Gaussian distribution. Prior works usually suffer from two limitations. First, they add random noise to training samples or VAE latents as data augmentation, introducing complex pipelines including extra noising and denoising steps. Second, they use a pretrained and frozen VAE encoder, resulting in suboptimal reconstruction and generation quality. In this paper, we find that the two issues can be solved in a very simple way: just fixing the variance (which would otherwise be predicted by the VAE encoder) to a constant (e.g., 0.5). On the one hand, this method allows the encoder to output a broader distribution of tokens and the decoder to learn to reconstruct clean images from the augmented token distribution, avoiding additional noise or denoising design. On the other hand, fixed variance simplifies the VAE evidence lower bound, making it stable to train an NF with a VAE jointly. On the ImageNet 256×256256 \times 256 generation task, our model SimFlow obtains a gFID score of 2.15, outperforming the state-of-the-art method STARFlow (gFID 2.40). Moreover, SimFlow can be seamlessly integrated with the end-to-end representation alignment (REPA-E) method and achieves an improved gFID of 1.91, setting a new state of the art among NFs.

2.2SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs’ ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.

2.3Stable Signer: Hierarchical Sign Language Generative Model

arxiv html pdf kimi

2025/12/04 05:00 GTM

Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.

2.4RELIC: Interactive Video World Model with Long-Horizon Memory

arxiv html pdf kimi

2025/12/04 05:00 GTM

A truly interactive world model requires three key ingredients: real-time long-horizon streaming, consistent spatial memory, and precise user control. However, most existing approaches address only one of these aspects in isolation, as achieving all three simultaneously is highly challenging-for example, long-term memory mechanisms often degrade real-time performance. In this work, we present RELIC, a unified framework that tackles these three challenges altogether. Given a single image and a text description, RELIC enables memory-aware, long-duration exploration of arbitrary scenes in real time. Built upon recent autoregressive video-diffusion distillation techniques, our model represents long-horizon memory using highly compressed historical latent tokens encoded with both relative actions and absolute camera poses within the KV cache. This compact, camera-aware memory structure supports implicit 3D-consistent content retrieval and enforces long-term coherence with minimal computational overhead. In parallel, we fine-tune a bidirectional teacher video model to generate sequences beyond its original 5-second training horizon, and transform it into a causal student generator using a new memory-efficient self-forcing paradigm that enables full-context distillation over long-duration teacher as well as long student self-rollouts. Implemented as a 14B-parameter model and trained on a curated Unreal Engine-rendered dataset, RELIC achieves real-time generation at 16 FPS while demonstrating more accurate action following, more stable long-horizon streaming, and more robust spatial-memory retrieval compared with prior work. These capabilities establish RELIC as a strong foundation for the next generation of interactive world modeling.

2.5Fast & Efficient Normalizing Flows and Applications of Image Generative Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

This thesis presents novel contributions in two primary areas: advancing the efficiency of generative models, particularly normalizing flows, and applying generative models to solve real-world computer vision challenges. The first part introduce significant improvements to normalizing flow architectures through six key innovations: 1) Development of invertible 3x3 Convolution layers with mathematically proven necessary and sufficient conditions for invertibility, (2) introduction of a more efficient Quad-coupling layer, 3) Design of a fast and efficient parallel inversion algorithm for kxk convolutional layers, 4) Fast & efficient backpropagation algorithm for inverse of convolution, 5) Using inverse of convolution, in Inverse-Flow, for the forward pass and training it using proposed backpropagation algorithm, and 6) Affine-StableSR, a compact and efficient super-resolution model that leverages pre-trained weights and Normalizing Flow layers to reduce parameter count while maintaining performance. The second part: 1) An automated quality assessment system for agricultural produce using Conditional GANs to address class imbalance, data scarcity and annotation challenges, achieving good accuracy in seed purity testing; 2) An unsupervised geological mapping framework utilizing stacked autoencoders for dimensionality reduction, showing improved feature extraction compared to conventional methods; 3) We proposed a privacy preserving method for autonomous driving datasets using on face detection and image inpainting; 4) Utilizing Stable Diffusion based image inpainting for replacing the detected face and license plate to advancing privacy-preserving techniques and ethical considerations in the field.; and 5) An adapted diffusion model for art restoration that effectively handles multiple types of degradation through unified fine-tuning.

2.6Jina-VLM: Small Multilingual Vision Language Model

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Across standard VQA benchmarks and multilingual evaluations, Jina-VLM outperforms comparable models while preserving competitive text-only performance.

2.7PSA: Pyramid Sparse Attention for Efficient Video Understanding and Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Attention mechanisms are the core of foundation models, but their quadratic complexity remains a critical bottleneck for scaling. This challenge has driven the development of efficient attention mechanisms, with sparsity emerging as the dominant paradigm. Current methods typically retain or discard entire key-value blocks with binary masks, resulting in substantial information loss under high sparsity. To mitigate this gap, we present Pyramid Sparse Attention (PSA), a versatile module applicable to both video understanding and generation tasks. Instead of binary masking, PSA introduces multi-level pooled KV representations, enabling finer mask granularity. Specifically, each query block dynamically allocates lower pooling levels to critical KV blocks and higher levels to less important ones, creating an informative interpolation between full retention and complete pruning. This design, analogous to fixed-point quantization and classical feature pyramid networks in computer vision, effectively mitigates information loss while preserving computational efficiency under a low compute budget. It works with a native, hardware-friendly kernel that leverages decoupled block-tile design to ensure efficient execution. Across video understanding and generation benchmarks, PSA preserves contextual information and visual fidelity, consistently outperforming or achieving comparable performance over existing sparse attention baselines with superior efficiency-quality trade-offs. Our code and model weights are publicly available at: http://ziplab.co/PSA

2.8C3G: Learning Compact 3D Representations with 2K Gaussians

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reconstructing and understanding 3D scenes from unposed sparse views in a feed-forward manner remains as a challenging task in 3D computer vision. Recent approaches use per-pixel 3D Gaussian Splatting for reconstruction, followed by a 2D-to-3D feature lifting stage for scene understanding. However, they generate excessive redundant Gaussians, causing high memory overhead and sub-optimal multi-view feature aggregation, leading to degraded novel view synthesis and scene understanding performance. We propose C3G, a novel feed-forward framework that estimates compact 3D Gaussians only at essential spatial locations, minimizing redundancy while enabling effective feature lifting. We introduce learnable tokens that aggregate multi-view features through self-attention to guide Gaussian generation, ensuring each Gaussian integrates relevant visual features across views. We then exploit the learned attention patterns for Gaussian decoding to efficiently lift features. Extensive experiments on pose-free novel view synthesis, 3D open-vocabulary segmentation, and view-invariant feature aggregation demonstrate our approach’s effectiveness. Results show that a compact yet geometrically meaningful representation is sufficient for high-quality scene reconstruction and understanding, achieving superior memory efficiency and feature fidelity compared to existing methods.

2.9Ultra-lightweight Neural Video Representation Compression

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent works have demonstrated the viability of utilizing over-fitted implicit neural representations (INRs) as alternatives to autoencoder-based models for neural video compression. Among these INR-based video codecs, Neural Video Representation Compression (NVRC) was the first to adopt a fully end-to-end compression framework that compresses INRs, achieving state-of-the-art performance. Moreover, some recently proposed lightweight INRs have shown comparable performance to their baseline codecs with computational complexity lower than 10kMACs/pixel. In this work, we extend NVRC toward lightweight representations, and propose NVRC-Lite, which incorporates two key changes. Firstly, we integrated multi-scale feature grids into our lightweight neural representation, and the use of higher resolution grids significantly improves the performance of INRs at low complexity. Secondly, we address the issue that existing INRs typically leverage autoregressive models for entropy coding: these are effective but impractical due to their slow coding speed. In this work, we propose an octree-based context model for entropy coding high-dimensional feature grids, which accelerates the entropy coding module of the model. Our experimental results demonstrate that NVRC-Lite outperforms C3, one of the best lightweight INR-based video codecs, with up to 21.03% and 23.06% BD-rate savings when measured in PSNR and MS-SSIM, respectively, while achieving 8.4x encoding and 2.5x decoding speedup. The implementation of NVRC-Lite will be made available.

2.10Learning Group Actions In Disentangled Latent Image Representations

arxiv html pdf kimi

2025/12/04 05:00 GTM

Modeling group actions on latent representations enables controllable transformations of high-dimensional image data. Prior works applying group-theoretic priors or modeling transformations typically operate in the high-dimensional data space, where group actions apply uniformly across the entire input, making it difficult to disentangle the subspace that varies under transformations. While latent-space methods offer greater flexibility, they still require manual partitioning of latent variables into equivariant and invariant subspaces, limiting the ability to robustly learn and operate group actions within the representation space. To address this, we introduce a novel end-to-end framework that for the first time learns group actions on latent image manifolds, automatically discovering transformation-relevant structures without manual intervention. Our method uses learnable binary masks with straight-through estimation to dynamically partition latent representations into transformation-sensitive and invariant components. We formulate this within a unified optimization framework that jointly learns latent disentanglement and group transformation mappings. The framework can be seamlessly integrated with any standard encoder-decoder architecture. We validate our approach on five 2D/3D image datasets, demonstrating its ability to automatically learn disentangled latent factors for group actions in diverse data, while downstream classification tasks confirm the effectiveness of the learned representations. Our code is publicly available at https://github.com/farhanaswarnali/Learning-Group-Actions-In-Disentangled-Latent-Image-Representations .

2.11Emergent Outlier View Rejection in Visual Geometry Grounded Transformers

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reliable 3D reconstruction from in-the-wild image collections is often hindered by “noisy” images-irrelevant inputs with little or no view overlap with others. While traditional Structure-from-Motion pipelines handle such cases through geometric verification and outlier rejection, feed-forward 3D reconstruction models lack these explicit mechanisms, leading to degraded performance under in-the-wild conditions. In this paper, we discover that the existing feed-forward reconstruction model, e.g., VGGT, despite lacking explicit outlier-rejection mechanisms or noise-aware training, can inherently distinguish distractor images. Through an in-depth analysis under varying proportions of synthetic distractors, we identify a specific layer that naturally exhibits outlier-suppressing behavior. Further probing reveals that this layer encodes discriminative internal representations that enable an effective noise-filtering capability, which we simply leverage to perform outlier-view rejection in feed-forward 3D reconstruction without any additional fine-tuning or supervision. Extensive experiments on both controlled and in-the-wild datasets demonstrate that this implicit filtering mechanism is consistent and generalizes well across diverse scenarios.

2.12On the Temporality for Sketch Representation Learning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Sketches are simple human hand-drawn abstractions of complex scenes and real-world objects. Although the field of sketch representation learning has advanced significantly, there is still a gap in understanding the true relevance of the temporal aspect to the quality of these representations. This work investigates whether it is indeed justifiable to treat sketches as sequences, as well as which internal orders play a more relevant role. The results indicate that, although the use of traditional positional encodings is valid for modeling sketches as sequences, absolute coordinates consistently outperform relative ones. Furthermore, non-autoregressive decoders outperform their autoregressive counterparts. Finally, the importance of temporality was shown to depend on both the order considered and the task evaluated.

2.13Divide, then Ground: Adapting Frame Selection to Query Types for Long-Form Video Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

The application of Large Multimodal Models (LMMs) to long-form video understanding is constrained by limited context lengths and the computationally prohibitive cost of processing dense video tokens. Consequently, recent research has focused on query-aware frame selection, methods that often incur significant computational overhead. This paper challenges the assumption that such complex search mechanisms are universally necessary. We first identify and validate a query typology distinguishing between global query and localized query. We demonstrate that while uniform sampling is both effective and efficient for global queries, localized queries indeed necessitate query-aware selection for optimal performance. Building on this insight, we propose DIG, a training-free frame selection framework that adapts its strategy based on the query type. Specifically,DIG employs efficient uniform sampling for global queries while activating a specialized pipeline to extract query-relevant frames for localized queries. Experiments on three long-form video understanding benchmarks demonstrate that DIG consistently outperforms existing baselines and robustly improves LMM performance, even when scaling the input frame count to 256.

2.14Highly Efficient Test-Time Scaling for T2I Diffusion Models with Text Embedding Perturbation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Test-time scaling (TTS) aims to achieve better results by increasing random sampling and evaluating samples based on rules and metrics. However, in text-to-image(T2I) diffusion models, most related works focus on search strategies and reward models, yet the impact of the stochastic characteristic of noise in T2I diffusion models on the method’s performance remains unexplored. In this work, we analyze the effects of randomness in T2I diffusion models and explore a new format of randomness for TTS: text embedding perturbation, which couples with existing randomness like SDE-injected noise to enhance generative diversity and quality. We start with a frequency-domain analysis of these formats of randomness and their impact on generation, and find that these two randomness exhibit complementary behavior in the frequency domain: spatial noise favors low-frequency components (early steps), while text embedding perturbation enhances high-frequency details (later steps), thereby compensating for the potential limitations of spatial noise randomness in high-frequency manipulation. Concurrently, text embedding demonstrates varying levels of tolerance to perturbation across different dimensions of the generation process. Specifically, our method consists of two key designs: (1) Introducing step-based text embedding perturbation, combining frequency-guided noise schedules with spatial noise perturbation. (2) Adapting the perturbation intensity selectively based on their frequency-specific contributions to generation and tolerance to perturbation. Our approach can be seamlessly integrated into existing TTS methods and demonstrates significant improvements on multiple benchmarks with almost no additional computation. Code is available at \href{https://github.com/xuhang07/TEP-Diffusion}{https://github.com/xuhang07/TEP-Diffusion}.

2.15Artificial Microsaccade Compensation: Stable Vision for an Ornithopter

arxiv html pdf kimi

2025/12/04 05:00 GTM

Animals with foveated vision, including humans, experience microsaccades, small, rapid eye movements that they are not aware of. Inspired by this phenomenon, we develop a method for “Artificial Microsaccade Compensation”. It can stabilize video captured by a tailless ornithopter that has resisted attempts to use camera-based sensing because it shakes at 12-20 Hz. Our approach minimizes changes in image intensity by optimizing over 3D rotation represented in SO(3). This results in a stabilized video, computed in real time, suitable for human viewing, and free from distortion. When adapted to hold a fixed viewing orientation, up to occasional saccades, it can dramatically reduce inter-frame motion while also benefiting from an efficient recursive update. When compared to Adobe Premier Pro’s warp stabilizer, which is widely regarded as the best commercial video stabilization software available, our method achieves higher quality results while also running in real time.

2.16DIQ-H: Evaluating Hallucination Persistence in VLMs Under Temporal Visual Degradation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision-Language Models (VLMs) deployed in safety-critical applications such as autonomous driving must handle continuous visual streams under imperfect conditions. However, existing benchmarks focus on static, high-quality images and ignore temporal degradation and error propagation, which are critical failure modes where transient visual corruption induces hallucinations that persist across subsequent frames. We introduce DIQ-H, the first benchmark for evaluating VLM robustness under dynamic visual degradation in temporal sequences. DIQ-H applies physics-based corruptions including motion blur, sensor noise, and compression artifacts, and measures hallucination persistence, error recovery, and temporal consistency through multi-turn question-answering tasks. To enable scalable annotation, we propose Uncertainty-Guided Iterative Refinement (UIR), which generates reliable pseudo-ground-truth using lightweight VLMs with uncertainty filtering, achieving a 15.3 percent accuracy improvement. Experiments on 16 state-of-the-art VLMs reveal substantial robustness gaps: even advanced models such as GPT-4o achieve only a 78.5 percent recovery rate, while open-source models struggle with temporal consistency at less than 60 percent. DIQ-H provides a comprehensive platform for evaluating VLM reliability in real-world deployments.

2.17DirectDrag: High-Fidelity, Mask-Free, Prompt-Free Drag-based Image Editing via Readout-Guided Feature Alignment

arxiv html pdf kimi

2025/12/04 05:00 GTM

Drag-based image editing using generative models provides intuitive control over image structures. However, existing methods rely heavily on manually provided masks and textual prompts to preserve semantic fidelity and motion precision. Removing these constraints creates a fundamental trade-off: visual artifacts without masks and poor spatial control without prompts. To address these limitations, we propose DirectDrag, a novel mask- and prompt-free editing framework. DirectDrag enables precise and efficient manipulation with minimal user input while maintaining high image fidelity and accurate point alignment. DirectDrag introduces two key innovations. First, we design an Auto Soft Mask Generation module that intelligently infers editable regions from point displacement, automatically localizing deformation along movement paths while preserving contextual integrity through the generative model’s inherent capacity. Second, we develop a Readout-Guided Feature Alignment mechanism that leverages intermediate diffusion activations to maintain structural consistency during point-based edits, substantially improving visual fidelity. Despite operating without manual mask or prompt, DirectDrag achieves superior image quality compared to existing methods while maintaining competitive drag accuracy. Extensive experiments on DragBench and real-world scenarios demonstrate the effectiveness and practicality of DirectDrag for high-quality, interactive image manipulation. Project Page: https://frakw.github.io/DirectDrag/. Code is available at: https://github.com/frakw/DirectDrag.

2.18BlurDM: A Blur Diffusion Model for Image Deblurring

arxiv html pdf kimi

2025/12/04 05:00 GTM

Diffusion models show promise for dynamic scene deblurring; however, existing studies often fail to leverage the intrinsic nature of the blurring process within diffusion models, limiting their full potential. To address it, we present a Blur Diffusion Model (BlurDM), which seamlessly integrates the blur formation process into diffusion for image deblurring. Observing that motion blur stems from continuous exposure, BlurDM implicitly models the blur formation process through a dual-diffusion forward scheme, diffusing both noise and blur onto a sharp image. During the reverse generation process, we derive a dual denoising and deblurring formulation, enabling BlurDM to recover the sharp image by simultaneously denoising and deblurring, given pure Gaussian noise conditioned on the blurred image as input. Additionally, to efficiently integrate BlurDM into deblurring networks, we perform BlurDM in the latent space, forming a flexible prior generation network for deblurring. Extensive experiments demonstrate that BlurDM significantly and consistently enhances existing deblurring methods on four benchmark datasets. The source code is available at https://github.com/Jin-Ting-He/BlurDM.

2.19Training for Identity, Inference for Controllability: A Unified Approach to Tuning-Free Face Personalization

arxiv html pdf kimi

2025/12/04 05:00 GTM

Tuning-free face personalization methods have developed along two distinct paradigms: text embedding approaches that map facial features into the text embedding space, and adapter-based methods that inject features through auxiliary cross-attention layers. While both paradigms have shown promise, existing methods struggle to simultaneously achieve high identity fidelity and flexible text controllability. We introduce UniID, a unified tuning-free framework that synergistically integrates both paradigms. Our key insight is that when merging these approaches, they should mutually reinforce only identity-relevant information while preserving the original diffusion prior for non-identity attributes. We realize this through a principled training-inference strategy: during training, we employ an identity-focused learning scheme that guides both branches to capture identity features exclusively; at inference, we introduce a normalized rescaling mechanism that recovers the text controllability of the base diffusion model while enabling complementary identity signals to enhance each other. This principled design enables UniID to achieve high-fidelity face personalization with flexible text controllability. Extensive experiments against six state-of-the-art methods demonstrate that UniID achieves superior performance in both identity preservation and text controllability. Code will be available at https://github.com/lyuPang/UniID

2.20TempR1: Improving Temporal Understanding of MLLMs via Temporal-Aware Multi-Task Reinforcement Learning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Enhancing the temporal understanding of Multimodal Large Language Models (MLLMs) is essential for advancing long-form video analysis, enabling tasks such as temporal localization, action detection, and time-sensitive question answering. While reinforcement learning (RL) has recently been explored for improving temporal reasoning, existing approaches are often confined to limited task types and data, restricting their generalization across diverse temporal understanding scenarios. To address this challenge, we present TempR1, a temporal-aware multi-task reinforcement learning framework that systematically strengthens MLLMs’ temporal comprehension. We curate a multi-task corpus that exposes the model to diverse temporal structures and semantics, and build upon the Group Relative Policy Optimization (GRPO) algorithm to achieve stable and effective cross-task optimization. Specifically, we categorize temporal tasks into three correspondence types between predicted intervals and ground-truth instances, and design tailored localization rewards for each, enabling TempR1 to capture fine-grained temporal dependencies and adapt to different temporal patterns. Extensive experiments demonstrate that TempR1 attains state-of-the-art performance across multiple benchmarks. Moreover, its joint optimization over complementary tasks yields a strong synergistic effect, enhancing both generalization and single-task performance, establishing a scalable and principled paradigm for temporal reasoning in MLLMs.

2.21Tada-DIP: Input-adaptive Deep Image Prior for One-shot 3D Image Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

Deep Image Prior (DIP) has recently emerged as a promising one-shot neural-network based image reconstruction method. However, DIP has seen limited application to 3D image reconstruction problems. In this work, we introduce Tada-DIP, a highly effective and fully 3D DIP method for solving 3D inverse problems. By combining input-adaptation and denoising regularization, Tada-DIP produces high-quality 3D reconstructions while avoiding the overfitting phenomenon that is common in DIP. Experiments on sparse-view X-ray computed tomography reconstruction validate the effectiveness of the proposed method, demonstrating that Tada-DIP produces much better reconstructions than training-data-free baselines and achieves reconstruction performance on par with a supervised network trained using a large dataset with fully-sampled volumes.

2.22MUT3R: Motion-aware Updating Transformer for Dynamic 3D Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent stateful recurrent neural networks have achieved remarkable progress on static 3D reconstruction but remain vulnerable to motion-induced artifacts, where non-rigid regions corrupt attention propagation between the spatial memory and image feature. By analyzing the internal behaviors of the state and image token updating mechanism, we find that aggregating self-attention maps across layers reveals a consistent pattern: dynamic regions are naturally down-weighted, exposing an implicit motion cue that the pretrained transformer already encodes but never explicitly uses. Motivated by this observation, we introduce MUT3R, a training-free framework that applies the attention-derived motion cue to suppress dynamic content in the early layers of the transformer during inference. Our attention-level gating module suppresses the influence of dynamic regions before their artifacts propagate through the feature hierarchy. Notably, we do not retrain or fine-tune the model; we let the pretrained transformer diagnose its own motion cues and correct itself. This early regulation stabilizes geometric reasoning in streaming scenarios and leads to improvements in temporal consistency and camera pose robustness across multiple dynamic benchmarks, offering a simple and training-free pathway toward motion-aware streaming reconstruction.

2.23Beyond the Ground Truth: Enhanced Supervision for Image Restoration

arxiv html pdf kimi

2025/12/04 05:00 GTM

Deep learning-based image restoration has achieved significant success. However, when addressing real-world degradations, model performance is limited by the quality of ground-truth images in datasets due to practical constraints in data acquisition. To address this limitation, we propose a novel framework that enhances existing ground truth images to provide higher-quality supervision for real-world restoration. Our framework generates perceptually enhanced ground truth images using super-resolution by incorporating adaptive frequency masks, which are learned by a conditional frequency mask generator. These masks guide the optimal fusion of frequency components from the original ground truth and its super-resolved variants, yielding enhanced ground truth images. This frequency-domain mixup preserves the semantic consistency of the original content while selectively enriching perceptual details, preventing hallucinated artifacts that could compromise fidelity. The enhanced ground truth images are used to train a lightweight output refinement network that can be seamlessly integrated with existing restoration models. Extensive experiments demonstrate that our approach consistently improves the quality of restored images. We further validate the effectiveness of both supervision enhancement and output refinement through user studies. Code is available at https://github.com/dhryougit/Beyond-the-Ground-Truth.

2.24UniMo: Unifying 2D Video and 3D Human Motion with an Autoregressive Framework

arxiv html pdf kimi

2025/12/04 05:00 GTM

We propose UniMo, an innovative autoregressive model for joint modeling of 2D human videos and 3D human motions within a unified framework, enabling simultaneous generation and understanding of these two modalities for the first time. Current methods predominantly focus on generating one modality given another as the condition or integrating either of them with other modalities such as text and audio. Unifying 2D videos and 3D motions for simultaneous optimization and generation remains largely unexplored, presenting significant challenges due to their substantial structural and distributional differences. Inspired by the LLM’s ability to unify different modalities, our method models videos and 3D motions as a unified tokens sequence, utilizing separate embedding layers to mitigate distribution gaps. Additionally, we devise a sequence modeling strategy that integrates two distinct tasks within a single framework, proving the effectiveness of unified modeling. Moreover, to efficiently align with visual tokens and preserve 3D spatial information, we design a novel 3D motion tokenizer with a temporal expansion strategy, using a single VQ-VAE to produce quantized motion tokens. It features multiple expert decoders that handle body shapes, translation, global orientation, and body poses for reliable 3D motion reconstruction. Extensive experiments demonstrate that our method simultaneously generates corresponding videos and motions while performing accurate motion capture. This work taps into the capacity of LLMs to fuse diverse data types, paving the way for integrating human-centric information into existing models and potentially enabling multimodal, controllable joint modeling of humans, objects, and scenes.

2.25Zero-Shot Video Translation and Editing with Frame Spatial-Temporal Correspondence

arxiv html pdf kimi

2025/12/04 05:00 GTM

The remarkable success in text-to-image diffusion models has motivated extensive investigation of their potential for video applications. Zero-shot techniques aim to adapt image diffusion models for videos without requiring further model training. Recent methods largely emphasize integrating inter-frame correspondence into attention mechanisms. However, the soft constraint applied to identify the valid features to attend is insufficient, which could lead to temporal inconsistency. In this paper, we present FRESCO, which integrates intra-frame correspondence with inter-frame correspondence to formulate a more robust spatial-temporal constraint. This enhancement ensures a consistent transformation of semantically similar content between frames. Our method goes beyond attention guidance to explicitly optimize features, achieving high spatial-temporal consistency with the input video, significantly enhancing the visual coherence of manipulated videos. We verify FRESCO adaptations on two zero-shot tasks of video-to-video translation and text-guided video editing. Comprehensive experiments demonstrate the effectiveness of our framework in generating high-quality, coherent videos, highlighting a significant advance over current zero-shot methods.

2.26Dual Cross-Attention Siamese Transformer for Rectal Tumor Regrowth Assessment in Watch-and-Wait Endoscopy

arxiv html pdf kimi

2025/12/04 05:00 GTM

Increasing evidence supports watch-and-wait (WW) surveillance for patients with rectal cancer who show clinical complete response (cCR) at restaging following total neoadjuvant treatment (TNT). However, objectively accurate methods to early detect local regrowth (LR) from follow-up endoscopy images during WW are essential to manage care and prevent distant metastases. Hence, we developed a Siamese Swin Transformer with Dual Cross-Attention (SSDCA) to combine longitudinal endoscopic images at restaging and follow-up and distinguish cCR from LR. SSDCA leverages pretrained Swin transformers to extract domain agnostic features and enhance robustness to imaging variations. Dual cross attention is implemented to emphasize features from the two scans without requiring any spatial alignment of images to predict response. SSDCA as well as Swin-based baselines were trained using image pairs from 135 patients and evaluated on a held-out set of image pairs from 62 patients. SSDCA produced the best balanced accuracy (81.76% ± 0.04), sensitivity (90.07% ± 0.08), and specificity (72.86% ± 0.05). Robustness analysis showed stable performance irrespective of artifacts including blood, stool, telangiectasia, and poor image quality. UMAP clustering of extracted features showed maximal inter-cluster separation (1.45 ± 0.18) and minimal intra-cluster dispersion (1.07 ± 0.19) with SSDCA, confirming discriminative representation learning.

2.27An Automated Framework for Large-Scale Graph-Based Cerebrovascular Analysis

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present CaravelMetrics, a computational framework for automated cerebrovascular analysis that models vessel morphology through skeletonization-derived graph representations. The framework integrates atlas-based regional parcellation, centerline extraction, and graph construction to compute fifteen morphometric, topological, fractal, and geometric features. The features can be estimated globally from the complete vascular network or regionally within arterial territories, enabling multiscale characterization of cerebrovascular organization. Applied to 570 3D TOF-MRA scans from the IXI dataset (ages 20-86), CaravelMetrics yields reproducible vessel graphs capturing age- and sex-related variations and education-associated increases in vascular complexity, consistent with findings reported in the literature. The framework provides a scalable and fully automated approach for quantitative cerebrovascular feature extraction, supporting normative modeling and population-level studies of vascular health and aging.

2.28Diminishing Returns in Self-Supervised Learning

arxiv html pdf kimi

2025/12/04 05:00 GTM

While transformer-based architectures have taken computer vision and NLP by storm, they often require a vast amount of parameters and training data to attain strong performance. In this work, we experiment with three distinct pre-training, intermediate fine-tuning, and downstream datasets and training objectives to explore their marginal benefits on a small 5M-parameter vision transformer. We find that while pre-training and fine-tuning always help our model but have diminishing returns, intermediate fine-tuning can actually show harmful impact on downstream performance, potentially due to dissimilarity in task mechanics. Taken together, our results suggest that small-scale ViTs benefit most from targeted pre-training and careful data selection, while indiscriminate stacking of intermediate tasks can waste compute and even degrade performance.

2.29Prostate biopsy whole slide image dataset from an underrepresented Middle Eastern population

arxiv html pdf kimi

2025/12/04 05:00 GTM

Artificial intelligence (AI) is increasingly used in digital pathology. Publicly available histopathology datasets remain scarce, and those that do exist predominantly represent Western populations. Consequently, the generalizability of AI models to populations from less digitized regions, such as the Middle East, is largely unknown. This motivates the public release of our dataset to support the development and validation of pathology AI models across globally diverse populations. We present 339 whole-slide images of prostate core needle biopsies from a consecutive series of 185 patients collected in Erbil, Iraq. The slides are associated with Gleason scores and International Society of Urological Pathology grades assigned independently by three pathologists. Scanning was performed using two high-throughput scanners (Leica and Hamamatsu) and one compact scanner (Grundium). All slides were de-identified and are provided in their native formats without further conversion. The dataset enables grading concordance analyses, color normalization, and cross-scanner robustness evaluations. Data will be deposited in the Bioimage Archive (BIA) under accession code: to be announced (TBA), and released under a CC BY 4.0 license.

2.30Traffic Image Restoration under Adverse Weather via Frequency-Aware Mamba

arxiv html pdf kimi

2025/12/04 05:00 GTM

Traffic image restoration under adverse weather conditions remains a critical challenge for intelligent transportation systems. Existing methods primarily focus on spatial-domain modeling but neglect frequency-domain priors. Although the emerging Mamba architecture excels at long-range dependency modeling through patch-wise correlation analysis, its potential for frequency-domain feature extraction remains unexplored. To address this, we propose Frequency-Aware Mamba (FAMamba), a novel framework that integrates frequency guidance with sequence modeling for efficient image restoration. Our architecture consists of two key components: (1) a Dual-Branch Feature Extraction Block (DFEB) that enhances local-global interaction via bidirectional 2D frequency-adaptive scanning, dynamically adjusting traversal paths based on sub-band texture distributions; and (2) a Prior-Guided Block (PGB) that refines texture details through wavelet-based high-frequency residual learning, enabling high-quality image reconstruction with precise details. Meanwhile, we design a novel Adaptive Frequency Scanning Mechanism (AFSM) for the Mamba architecture, which enables the Mamba to achieve frequency-domain scanning across distinct subgraphs, thereby fully leveraging the texture distribution characteristics inherent in subgraph structures. Extensive experiments demonstrate the efficiency and effectiveness of FAMamba.

2.31PULSE: A Unified Multi-Task Architecture for Cardiac Segmentation, Diagnosis, and Few-Shot Cross-Modality Clinical Adaptation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Cardiac image analysis remains fragmented across tasks: anatomical segmentation, disease classification, and grounded clinical report generation are typically handled by separate networks trained under different data regimes. No existing framework unifies these objectives within a single architecture while retaining generalization across imaging modalities and datasets. We introduce PULSE, a multi-task vision-language framework built on self-supervised representations and optimized through a composite supervision strategy that balances region overlap learning, pixel wise classification fidelity, and boundary aware IoU refinement. A multi-scale token reconstruction decoder enables anatomical segmentation, while shared global representations support disease classification and clinically grounded text output allowing the model to transition from pixels to structures and finally clinical reasoning within one architecture. Unlike prior task-specific pipelines, PULSE learns task-invariant cardiac priors, generalizes robustly across datasets, and can be adapted to new imaging modalities with minimal supervision. This moves the field closer to a scalable, foundation style cardiac analysis framework.

2.32CoDA: From Text-to-Image Diffusion Models to Training-Free Dataset Distillation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Prevailing Dataset Distillation (DD) methods leveraging generative models confront two fundamental limitations. First, despite pioneering the use of diffusion models in DD and delivering impressive performance, the vast majority of approaches paradoxically require a diffusion model pre-trained on the full target dataset, undermining the very purpose of DD and incurring prohibitive training costs. Second, although some methods turn to general text-to-image models without relying on such target-specific training, they suffer from a significant distributional mismatch, as the web-scale priors encapsulated in these foundation models fail to faithfully capture the target-specific semantics, leading to suboptimal performance. To tackle these challenges, we propose Core Distribution Alignment (CoDA), a framework that enables effective DD using only an off-the-shelf text-to-image model. Our key idea is to first identify the “intrinsic core distribution” of the target dataset using a robust density-based discovery mechanism. We then steer the generative process to align the generated samples with this core distribution. By doing so, CoDA effectively bridges the gap between general-purpose generative priors and target semantics, yielding highly representative distilled datasets. Extensive experiments suggest that, without relying on a generative model specifically trained on the target dataset, CoDA achieves performance on par with or even superior to previous methods with such reliance across all benchmarks, including ImageNet-1K and its subsets. Notably, it establishes a new state-of-the-art accuracy of 60.4% at the 50-images-per-class (IPC) setup on ImageNet-1K. Our code is available on the project webpage: https://github.com/zzzlt422/CoDA

2.33Heatmap Pooling Network for Action Recognition from RGB Videos

arxiv html pdf kimi

2025/12/04 05:00 GTM

Human action recognition (HAR) in videos has garnered widespread attention due to the rich information in RGB videos. Nevertheless, existing methods for extracting deep features from RGB videos face challenges such as information redundancy, susceptibility to noise and high storage costs. To address these issues and fully harness the useful information in videos, we propose a novel heatmap pooling network (HP-Net) for action recognition from videos, which extracts information-rich, robust and concise pooled features of the human body in videos through a feedback pooling module. The extracted pooled features demonstrate obvious performance advantages over the previously obtained pose data and heatmap features from videos. In addition, we design a spatial-motion co-learning module and a text refinement modulation module to integrate the extracted pooled features with other multimodal data, enabling more robust action recognition. Extensive experiments on several benchmarks namely NTU RGB+D 60, NTU RGB+D 120, Toyota-Smarthome and UAV-Human consistently verify the effectiveness of our HP-Net, which outperforms the existing human action recognition methods. Our code is publicly available at: https://github.com/liujf69/HPNet-Action.

2.34Lean Unet: A Compact Model for Image Segmentation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Unet and its variations have been standard in semantic image segmentation, especially for computer assisted radiology. Current Unet architectures iteratively downsample spatial resolution while increasing channel dimensions to preserve information content. Such a structure demands a large memory footprint, limiting training batch sizes and increasing inference latency. Channel pruning compresses Unet architecture without accuracy loss, but requires lengthy optimization and may not generalize across tasks and datasets. By investigating Unet pruning, we hypothesize that the final structure is the crucial factor, not the channel selection strategy of pruning. Based on our observations, we propose a lean Unet architecture (LUnet) with a compact, flat hierarchy where channels are not doubled as resolution is halved. We evaluate on a public MRI dataset allowing comparable reporting, as well as on two internal CT datasets. We show that a state-of-the-art pruning solution (STAMP) mainly prunes from the layers with the highest number of channels. Comparatively, simply eliminating a random channel at the pruning-identified layer or at the largest layer achieves similar or better performance. Our proposed LUnet with fixed architectures and over 30 times fewer parameters achieves performance comparable to both conventional Unet counterparts and data-adaptively pruned networks. The proposed lean Unet with constant channel count across layers requires far fewer parameters while achieving performance superior to standard Unet for the same total number of parameters. Skip connections allow Unet bottleneck channels to be largely reduced, unlike standard encoder-decoder architectures requiring increased bottleneck channels for information propagation.

2.35A Robust Camera-based Method for Breath Rate Measurement

arxiv html pdf kimi

2025/12/04 05:00 GTM

Proliferation of cheap and accessible cameras makes it possible to measure a subject’s breath rate from video footage alone. Recent works on this topic have proposed a variety of approaches for accurately measuring human breath rate, however they are either tested in near-ideal conditions, or produce results that are not sufficiently accurate. The present study proposes a more robust method to measure breath rate in humans with minimal hardware requirements using a combination of mathematical transforms with a relative deviation from the ground truth of less than 5%. The method was tested on videos taken from 14 volunteers with a total duration of over 2 hours 30 minutes. The obtained results were compared to reference data and the average mean absolute error was found to be at 0.57 respirations per minute, which is noticeably better than the results from previous works. The breath rate measurement method proposed in the present article is more resistant to distortions caused by subject movement and thus allows one to remotely measure the subject’s breath rate without any significant limitations on the subject’s behavior.

2.36HieroGlyphTranslator: Automatic Recognition and Translation of Egyptian Hieroglyphs to English

arxiv html pdf kimi

2025/12/04 05:00 GTM

Egyptian hieroglyphs, the ancient Egyptian writing system, are composed entirely of drawings. Translating these glyphs into English poses various challenges, including the fact that a single glyph can have multiple meanings. Deep learning translation applications are evolving rapidly, producing remarkable results that significantly impact our lives. In this research, we propose a method for the automatic recognition and translation of ancient Egyptian hieroglyphs from images to English. This study utilized two datasets for classification and translation: the Morris Franken dataset and the EgyptianTranslation dataset. Our approach is divided into three stages: segmentation (using Contour and Detectron2), mapping symbols to Gardiner codes, and translation (using the CNN model). The model achieved a BLEU score of 42.2, a significant result compared to previous research.

2.37LSRS: Latent Scale Rejection Sampling for Visual Autoregressive Modeling

arxiv html pdf kimi

2025/12/04 05:00 GTM

Visual Autoregressive (VAR) modeling approach for image generation proposes autoregressive processing across hierarchical scales, decoding multiple tokens per scale in parallel. This method achieves high-quality generation while accelerating synthesis. However, parallel token sampling within a scale may lead to structural errors, resulting in suboptimal generated images. To mitigate this, we propose Latent Scale Rejection Sampling (LSRS), a method that progressively refines token maps in the latent scale during inference to enhance VAR models. Our method uses a lightweight scoring model to evaluate multiple candidate token maps sampled at each scale, selecting the high-quality map to guide subsequent scale generation. By prioritizing early scales critical for structural coherence, LSRS effectively mitigates autoregressive error accumulation while maintaining computational efficiency. Experiments demonstrate that LSRS significantly improves VAR’s generation quality with minimal additional computational overhead. For the VAR-d30 model, LSRS increases the inference time by merely 1% while reducing its FID score from 1.95 to 1.78. When the inference time is increased by 15%, the FID score can be further reduced to 1.66. LSRS offers an efficient test-time scaling solution for enhancing VAR-based generation.

2.38AdaptVision: Efficient Vision-Language Models via Adaptive Visual Acquisition

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, an efficient VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.

2.39Research on Brain Tumor Classification Method Based on Improved ResNet34 Network

arxiv html pdf kimi

2025/12/04 05:00 GTM

Previously, image interpretation in radiology relied heavily on manual methods. However, manual classification of brain tumor medical images is time-consuming and labor-intensive. Even with shallow convolutional neural network models, the accuracy is not ideal. To improve the efficiency and accuracy of brain tumor image classification, this paper proposes a brain tumor classification model based on an improved ResNet34 network. This model uses the ResNet34 residual network as the backbone network and incorporates multi-scale feature extraction. It uses a multi-scale input module as the first layer of the ResNet34 network and an Inception v2 module as the residual downsampling layer. Furthermore, a channel attention mechanism module assigns different weights to different channels of the image from a channel domain perspective, obtaining more important feature information. The results after a five-fold crossover experiment show that the average classification accuracy of the improved network model is approximately 98.8%, which is not only 1% higher than ResNet34, but also only 80% of the number of parameters of the original model. Therefore, the improved network model not only improves accuracy but also reduces clutter, achieving a classification effect with fewer parameters and higher accuracy.

2.40Fully Unsupervised Self-debiasing of Text-to-Image Diffusion Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Text-to-image (T2I) diffusion models have achieved widespread success due to their ability to generate high-resolution, photorealistic images. These models are trained on large-scale datasets, like LAION-5B, often scraped from the internet. However, since this data contains numerous biases, the models inherently learn and reproduce them, resulting in stereotypical outputs. We introduce SelfDebias, a fully unsupervised test-time debiasing method applicable to any diffusion model that uses a UNet as its noise predictor. SelfDebias identifies semantic clusters in an image encoder’s embedding space and uses these clusters to guide the diffusion process during inference, minimizing the KL divergence between the output distribution and the uniform distribution. Unlike supervised approaches, SelfDebias does not require human-annotated datasets or external classifiers trained for each generated concept. Instead, it is designed to automatically identify semantic modes. Extensive experiments show that SelfDebias generalizes across prompts and diffusion model architectures, including both conditional and unconditional models. It not only effectively debiases images along key demographic dimensions while maintaining the visual fidelity of the generated images, but also more abstract concepts for which identifying biases is also challenging.

2.41Thinking with Programming Vision: Towards a Unified View for Thinking with Images

arxiv html pdf kimi

2025/12/04 05:00 GTM

Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.

2.42Dual-level Modality Debiasing Learning for Unsupervised Visible-Infrared Person Re-Identification

arxiv html pdf kimi

2025/12/04 05:00 GTM

Two-stage learning pipeline has achieved promising results in unsupervised visible-infrared person re-identification (USL-VI-ReID). It first performs single-modality learning and then operates cross-modality learning to tackle the modality discrepancy. Although promising, this pipeline inevitably introduces modality bias: modality-specific cues learned in the single-modality training naturally propagate into the following cross-modality learning, impairing identity discrimination and generalization. To address this issue, we propose a Dual-level Modality Debiasing Learning (DMDL) framework that implements debiasing at both the model and optimization levels. At the model level, we propose a Causality-inspired Adjustment Intervention (CAI) module that replaces likelihood-based modeling with causal modeling, preventing modality-induced spurious patterns from being introduced, leading to a low-biased model. At the optimization level, a Collaborative Bias-free Training (CBT) strategy is introduced to interrupt the propagation of modality bias across data, labels, and features by integrating modality-specific augmentation, label refinement, and feature alignment. Extensive experiments on benchmark datasets demonstrate that DMDL could enable modality-invariant feature learning and a more generalized model.

2.43Out-of-the-box: Black-box Causal Attacks on Object Detectors

arxiv html pdf kimi

2025/12/04 05:00 GTM

Adversarial perturbations are a useful way to expose vulnerabilities in object detectors. Existing perturbation methods are frequently white-box and architecture specific. More importantly, while they are often successful, it is rarely clear why they work. Insights into the mechanism of this success would allow developers to understand and analyze these attacks, as well as fine-tune the model to prevent them. This paper presents BlackCAtt, a black-box algorithm and a tool, which uses minimal, causally sufficient pixel sets to construct explainable, imperceptible, reproducible, architecture-agnostic attacks on object detectors. BlackCAtt combines causal pixels with bounding boxes produced by object detectors to create adversarial attacks that lead to the loss, modification or addition of a bounding box. BlackCAtt works across different object detectors of different sizes and architectures, treating the detector as a black box. We compare the performance of BlackCAtt with other black-box attack methods and show that identification of causal pixels leads to more precisely targeted and less perceptible attacks. On the COCO test dataset, our approach is 2.7 times better than the baseline in removing a detection, 3.86 times better in changing a detection, and 5.75 times better in triggering new, spurious, detections. The attacks generated by BlackCAtt are very close to the original image, and hence imperceptible, demonstrating the power of causal pixels.

2.44PosA-VLA: Enhancing Action Generation via Pose-Conditioned Anchor Attention

arxiv html pdf kimi

2025/12/04 05:00 GTM

The Vision-Language-Action (VLA) models have demonstrated remarkable performance on embodied tasks and shown promising potential for real-world applications. However, current VLAs still struggle to produce consistent and precise target-oriented actions, as they often generate redundant or unstable motions along trajectories, limiting their applicability in time-sensitive scenarios.In this work, we attribute these redundant actions to the spatially uniform perception field of existing VLAs, which causes them to be distracted by target-irrelevant objects, especially in complex environments.To address this issue, we propose an efficient PosA-VLA framework that anchors visual attention via pose-conditioned supervision, consistently guiding the model’s perception toward task-relevant regions. The pose-conditioned anchor attention mechanism enables the model to better align instruction semantics with actionable visual cues, thereby improving action generation precision and efficiency. Moreover, our framework adopts a lightweight architecture and requires no auxiliary perception modules (e.g., segmentation or grounding networks), ensuring efficient inference. Extensive experiments verify that our method executes embodied tasks with precise and time-efficient behavior across diverse robotic manipulation benchmarks and shows robust generalization in a variety of challenging environments.

2.45DINO-RotateMatch: A Rotation-Aware Deep Framework for Robust Image Matching in Large-Scale 3D Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

This paper presents DINO-RotateMatch, a deep-learning framework designed to address the chal lenges of image matching in large-scale 3D reconstruction from unstructured Internet images. The method integrates a dataset-adaptive image pairing strategy with rotation-aware keypoint extraction and matching. DINO is employed to retrieve semantically relevant image pairs in large collections, while rotation-based augmentation captures orientation-dependent local features using ALIKED and Light Glue. Experiments on the Kaggle Image Matching Challenge 2025 demonstrate consistent improve ments in mean Average Accuracy (mAA), achieving a Silver Award (47th of 943 teams). The results confirm that combining self-supervised global descriptors with rotation-enhanced local matching offers a robust and scalable solution for large-scale 3D reconstruction.

2.46Structured Uncertainty Similarity Score (SUSS): Learning a Probabilistic, Interpretable, Perceptual Metric Between Images

arxiv html pdf kimi

2025/12/04 05:00 GTM

Perceptual similarity scores that align with human vision are critical for both training and evaluating computer vision models. Deep perceptual losses, such as LPIPS, achieve good alignment but rely on complex, highly non-linear discriminative features with unknown invariances, while hand-crafted measures like SSIM are interpretable but miss key perceptual properties. We introduce the Structured Uncertainty Similarity Score (SUSS); it models each image through a set of perceptual components, each represented by a structured multivariate Normal distribution. These are trained in a generative, self-supervised manner to assign high likelihood to human-imperceptible augmentations. The final score is a weighted sum of component log-probabilities with weights learned from human perceptual datasets. Unlike feature-based methods, SUSS learns image-specific linear transformations of residuals in pixel space, enabling transparent inspection through decorrelated residuals and sampling. SUSS aligns closely with human perceptual judgments, shows strong perceptual calibration across diverse distortion types, and provides localized, interpretable explanations of its similarity assessments. We further demonstrate stable optimization behavior and competitive performance when using SUSS as a perceptual loss for downstream imaging tasks.

2.47Active Visual Perception: Opportunities and Challenges

arxiv html pdf kimi

2025/12/04 05:00 GTM

Active visual perception refers to the ability of a system to dynamically engage with its environment through sensing and action, allowing it to modify its behavior in response to specific goals or uncertainties. Unlike passive systems that rely solely on visual data, active visual perception systems can direct attention, move sensors, or interact with objects to acquire more informative data. This approach is particularly powerful in complex environments where static sensing methods may not provide sufficient information. Active visual perception plays a critical role in numerous applications, including robotics, autonomous vehicles, human-computer interaction, and surveillance systems. However, despite its significant promise, there are several challenges that need to be addressed, including real-time processing of complex visual data, decision-making in dynamic environments, and integrating multimodal sensory inputs. This paper explores both the opportunities and challenges inherent in active visual perception, providing a comprehensive overview of its potential, current research, and the obstacles that must be overcome for broader adoption.

2.48GaussianBlender: Instant Stylization of 3D Gaussians with Disentangled Latent Spaces

arxiv html pdf kimi

2025/12/04 05:00 GTM

3D stylization is central to game development, virtual reality, and digital arts, where the demand for diverse assets calls for scalable methods that support fast, high-fidelity manipulation. Existing text-to-3D stylization methods typically distill from 2D image editors, requiring time-intensive per-asset optimization and exhibiting multi-view inconsistency due to the limitations of current text-to-image models, which makes them impractical for large-scale production. In this paper, we introduce GaussianBlender, a pioneering feed-forward framework for text-driven 3D stylization that performs edits instantly at inference. Our method learns structured, disentangled latent spaces with controlled information sharing for geometry and appearance from spatially-grouped 3D Gaussians. A latent diffusion model then applies text-conditioned edits on these learned representations. Comprehensive evaluations show that GaussianBlender not only delivers instant, high-fidelity, geometry-preserving, multi-view consistent stylization, but also surpasses methods that require per-instance test-time optimization - unlocking practical, democratized 3D stylization at scale.

2.49ConvRot: Rotation-Based Plug-and-Play 4-bit Quantization for Diffusion Transformers

arxiv html pdf kimi

2025/12/04 05:00 GTM

Diffusion transformers have demonstrated strong capabilities in generating high-quality images. However, as model size increases, the growing memory footprint and inference latency pose significant challenges for practical deployment. Recent studies in large language models (LLMs) show that rotation-based techniques can smooth outliers and enable 4-bit quantization, but these approaches often incur substantial overhead and struggle with row-wise outliers in diffusion transformers. To address these challenges, we propose ConvRot, a group-wise rotation-based quantization method that leverages regular Hadamard transform (RHT) to suppress both row-wise and column-wise outliers while reducing complexity from quadratic to linear. Building on this, we design ConvLinear4bit, a plug-and-play module that integrates rotation, quantization, GEMM, and dequantization, enabling W4A4 inference without retraining and preserving visual quality. Experiments on FLUX.1-dev demonstrate a 2.26×\times speedup and 4.05×\times memory reduction while maintaining image fidelity. To our knowledge, this is the first application of rotation-based quantization for plug-and-play W4A4 inference in diffusion transformers.

2.50Colon-X: Advancing Intelligent Colonoscopy from Multimodal Understanding to Clinical Reasoning

arxiv html pdf kimi

2025/12/04 05:00 GTM

In this study, we present Colon-X, an open initiative aimed at advancing multimodal intelligence in colonoscopy. We begin by constructing ColonVQA, the most comprehensive multimodal dataset ever built for colonoscopy, featuring over 1.1M+ visual question answering entries across 76 clinical findings and 18 multimodal tasks. Beyond serving as a community-wide data foundation, we further investigate a critical yet underexplored transition in colonoscopy - evolving from multimodal understanding to clinical reasoning: (a) To capture the current landscape of multimodal understanding behaviors, we systematically assess the generalizability of 22 multimodal large language models and examine their reliability under human-induced perturbations. The results reveal that clinical outputs from leading MLLMs remain far from robust and trustworthy. (b) To narrow this gap, we further explore reasoning-centric intelligence tailored for colonoscopy. Specifically, we curate ColonReason, a clinically grounded reasoning dataset annotated through a multi-expert debating pipeline, and develop ColonR1, the first R1-styled model incorporating task-adaptive rewarding and gradient-stable optimization techniques. Under data-scarce conditions, our ColonR1 achieves 56.61% overall accuracy, outperforming supervised fine-tuning by 25.22%, and sets a new reasoning-enabled baseline for multimodal colonoscopy analysis. All data and model resources are publicly available at https://github.com/ai4colonoscopy/Colon-X.

2.51ToG-Bench: Task-Oriented Spatio-Temporal Grounding in Egocentric Videos

arxiv html pdf kimi

2025/12/04 05:00 GTM

A core capability towards general embodied intelligence lies in localizing task-relevant objects from an egocentric perspective, formulated as Spatio-Temporal Video Grounding (STVG). Despite recent progress, existing STVG studies remain largely confined to object-centric and descriptive instructions, neglecting the task-oriented reasoning that is crucial for embodied agents to accomplish goal-directed interactions. To bridge this gap, we introduce \textbf{ToG-Bench}, the first task-oriented spatio-temporal video grounding benchmark for egocentric videos. ToG-Bench is characterized by three key features: (1) \textbf{Task-oriented Grounding}, which requires identifying and localizing objects based on intended tasks rather than straightforward descriptions; (2) \textbf{Explicit-Implicit Dual Grounding}, where target objects can be either explicitly mentioned or implicitly inferred by contextual reasoning; (3) \textbf{One-to-Many Grounding}, where a single instruction may correspond to multiple objects involved in task execution. Built upon videos sourced from ScanNet, ToG-Bench comprises 100 annotated clips with 2,704 task-oriented grounding instructions, constructed via a semi-automated pipeline that combines foundation model annotation and human refinement. In addition, we introduce a set of task-level evaluation metrics tailored for multi-object and explicit-implicit object grounding, and systematically benchmark seven state-of-the-art MLLMs. Extensive experiments reveal the intrinsic challenges of task-oriented STVG and substantial performance gaps across explicit-implicit and multi-object grounding, highlighting the difficulty of bridging perception and interaction in embodied scenarios. Data and code will be released at: \href{https://github.com/qaxuDev/ToG-Bench}{https://github.com/qaxuDev/ToG-Bench}..

2.52Multi-Scale Visual Prompting for Lightweight Small-Image Classification

arxiv html pdf kimi

2025/12/04 05:00 GTM

Visual prompting has recently emerged as an efficient strategy to adapt vision models using lightweight, learnable parameters injected into the input space. However, prior work mainly targets large Vision Transformers and high-resolution datasets such as ImageNet. In contrast, small-image benchmarks like MNIST, Fashion-MNIST, and CIFAR-10 remain widely used in education, prototyping, and research, yet have received little attention in the context of prompting. In this paper, we introduce \textbf{Multi-Scale Visual Prompting (MSVP)}, a simple and generic module that learns a set of global, mid-scale, and local prompt maps fused with the input image via a lightweight 1×11 \times 1 convolution. MSVP is backbone-agnostic, adds less than 0.02%0.02\% parameters, and significantly improves performance across CNN and Vision Transformer backbones. We provide a unified benchmark on MNIST, Fashion-MNIST, and CIFAR-10 using a simple CNN, ResNet-18, and a small Vision Transformer. Our method yields consistent improvements with negligible computational overhead. We further include ablations on prompt scales, fusion strategies, and backbone architectures, along with qualitative analyzes using prompt visualizations and Grad-CAM. Our results demonstrate that multi-scale prompting provides an effective inductive bias even on low-resolution images.

2.53Cyclical Temporal Encoding and Hybrid Deep Ensembles for Multistep Energy Forecasting

arxiv html pdf kimi

2025/12/04 05:00 GTM

Accurate electricity consumption forecasting is essential for demand management and smart grid operations. This paper introduces a unified deep learning framework that integrates cyclical temporal encoding with hybrid LSTM-CNN architectures to enhance multistep energy forecasting. We systematically transform calendar-based attributes using sine cosine encodings to preserve periodic structure and evaluate their predictive relevance through correlation analysis. To exploit both long-term seasonal effects and short-term local patterns, we employ an ensemble model composed of an LSTM, a CNN, and a meta-learner of MLP regressors specialized for each forecast horizon. Using a one year national consumption dataset, we conduct an extensive experimental study including ablation analyses with and without cyclical encodings and calendar features and comparisons with established baselines from the literature. Results demonstrate consistent improvements across all seven forecast horizons, with our hybrid model achieving lower RMSE and MAE than individual architectures and prior methods. These findings confirm the benefit of combining cyclical temporal representations with complementary deep learning structures. To our knowledge, this is the first work to jointly evaluate temporal encodings, calendar-based features, and hybrid ensemble architectures within a unified short-term energy forecasting framework.

2.54Optical Context Compression Is Just (Bad) Autoencoding

arxiv html pdf kimi

2025/12/04 05:00 GTM

DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR’s reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding

2.55MKSNet: Advanced Small Object Detection in Remote Sensing Imagery with Multi-Kernel and Dual Attention Mechanisms

arxiv html pdf kimi

2025/12/04 05:00 GTM

Deep convolutional neural networks (DCNNs) have substantially advanced object detection capabilities, particularly in remote sensing imagery. However, challenges persist, especially in detecting small objects where the high resolution of these images and the small size of target objects often result in a loss of critical information in the deeper layers of conventional CNNs. Additionally, the extensive spatial redundancy and intricate background details typical in remote-sensing images tend to obscure these small targets. To address these challenges, we introduce Multi-Kernel Selection Network (MKSNet), a novel network architecture featuring a novel Multi-Kernel Selection mechanism. The MKS mechanism utilizes large convolutional kernels to effectively capture an extensive range of contextual information. This innovative design allows for adaptive kernel size selection, significantly enhancing the network’s ability to dynamically process and emphasize crucial spatial details for small object detection. Furthermore, MKSNet also incorporates a dual attention mechanism, merging spatial and channel attention modules. The spatial attention module adaptively fine-tunes the spatial weights of feature maps, focusing more intensively on relevant regions while mitigating background noise. Simultaneously, the channel attention module optimizes channel information selection, improving feature representation and detection accuracy. Empirical evaluations on the DOTA-v1.0 and HRSC2016 benchmark demonstrate that MKSNet substantially surpasses existing state-of-the-art models in detecting small objects in remote sensing images. These results highlight MKSNet’s superior ability to manage the complexities associated with multi-scale and high-resolution image data, confirming its effectiveness and innovation in remote sensing object detection.

2.56FeatureLens: A Highly Generalizable and Interpretable Framework for Detecting Adversarial Examples Based on Image Features

arxiv html pdf kimi

2025/12/04 05:00 GTM

Although the remarkable performance of deep neural networks (DNNs) in image classification, their vulnerability to adversarial attacks remains a critical challenge. Most existing detection methods rely on complex and poorly interpretable architectures, which compromise interpretability and generalization. To address this, we propose FeatureLens, a lightweight framework that acts as a lens to scrutinize anomalies in image features. Comprising an Image Feature Extractor (IFE) and shallow classifiers (e.g., SVM, MLP, or XGBoost) with model sizes ranging from 1,000 to 30,000 parameters, FeatureLens achieves high detection accuracy ranging from 97.8% to 99.75% in closed-set evaluation and 86.17% to 99.6% in generalization evaluation across FGSM, PGD, CW, and DAmageNet attacks, using only 51 dimensional features. By combining strong detection performance with excellent generalization, interpretability, and computational efficiency, FeatureLens offers a practical pathway toward transparent and effective adversarial defense.

2.57ReCamDriving: LiDAR-Free Camera-Controlled Novel Trajectory Video Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

We propose ReCamDriving, a purely vision-based, camera-controlled novel-trajectory video generation framework. While repair-based methods fail to restore complex artifacts and LiDAR-based approaches rely on sparse and incomplete cues, ReCamDriving leverages dense and scene-complete 3DGS renderings for explicit geometric guidance, achieving precise camera-controllable generation. To mitigate overfitting to restoration behaviors when conditioned on 3DGS renderings, ReCamDriving adopts a two-stage training paradigm: the first stage uses camera poses for coarse control, while the second stage incorporates 3DGS renderings for fine-grained viewpoint and geometric guidance. Furthermore, we present a 3DGS-based cross-trajectory data curation strategy to eliminate the train-test gap in camera transformation patterns, enabling scalable multi-trajectory supervision from monocular videos. Based on this strategy, we construct the ParaDrive dataset, containing over 110K parallel-trajectory video pairs. Extensive experiments demonstrate that ReCamDriving achieves state-of-the-art camera controllability and structural consistency.

2.58LAMP: Language-Assisted Motion Planning for Controllable Video Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Video generation has achieved remarkable progress in visual fidelity and controllability, enabling conditioning on text, layout, or motion. Among these, motion control - specifying object dynamics and camera trajectories - is essential for composing complex, cinematic scenes, yet existing interfaces remain limited. We introduce LAMP that leverages large language models (LLMs) as motion planners to translate natural language descriptions into explicit 3D trajectories for dynamic objects and (relatively defined) cameras. LAMP defines a motion domain-specific language (DSL), inspired by cinematography conventions. By harnessing program synthesis capabilities of LLMs, LAMP generates structured motion programs from natural language, which are deterministically mapped to 3D trajectories. We construct a large-scale procedural dataset pairing natural text descriptions with corresponding motion programs and 3D trajectories. Experiments demonstrate LAMP’s improved performance in motion controllability and alignment with user intent compared to state-of-the-art alternatives establishing the first framework for generating both object and camera motions directly from natural language specifications.

2.59Motion4D: Learning 3D-Consistent Motion and Semantics for 4D Scene Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent advancements in foundation models for 2D vision have substantially improved the analysis of dynamic scenes from monocular videos. However, despite their strong generalization capabilities, these models often lack 3D consistency, a fundamental requirement for understanding scene geometry and motion, thereby causing severe spatial misalignment and temporal flickering in complex 3D environments. In this paper, we present Motion4D, a novel framework that addresses these challenges by integrating 2D priors from foundation models into a unified 4D Gaussian Splatting representation. Our method features a two-part iterative optimization framework: 1) Sequential optimization, which updates motion and semantic fields in consecutive stages to maintain local consistency, and 2) Global optimization, which jointly refines all attributes for long-term coherence. To enhance motion accuracy, we introduce a 3D confidence map that dynamically adjusts the motion priors, and an adaptive resampling process that inserts new Gaussians into under-represented regions based on per-pixel RGB and semantic errors. Furthermore, we enhance semantic coherence through an iterative refinement process that resolves semantic inconsistencies by alternately optimizing the semantic fields and updating prompts of SAM2. Extensive evaluations demonstrate that our Motion4D significantly outperforms both 2D foundation models and existing 3D-based approaches across diverse scene understanding tasks, including point-based tracking, video object segmentation, and novel view synthesis. Our code is available at https://hrzhou2.github.io/motion4d-web/.

2.60Memory-Guided Point Cloud Completion for Dental Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

Partial dental point clouds often suffer from large missing regions caused by occlusion and limited scanning views, which bias encoder-only global features and force decoders to hallucinate structures. We propose a retrieval-augmented framework for tooth completion that integrates a prototype memory into standard encoder--decoder pipelines. After encoding a partial input into a global descriptor, the model retrieves the nearest manifold prototype from a learnable memory and fuses it with the query feature through confidence-gated weighting before decoding. The memory is optimized end-to-end and self-organizes into reusable tooth-shape prototypes without requiring tooth-position labels, thereby providing structural priors that stabilize missing-region inference and free decoder capacity for detail recovery. The module is plug-and-play and compatible with common completion backbones, while keeping the same training losses. Experiments on a self-processed Teeth3DS benchmark demonstrate consistent improvements in Chamfer Distance, with visualizations showing sharper cusps, ridges, and interproximal transitions. Our approach provides a simple yet effective way to exploit cross-sample regularities for more accurate and faithful dental point-cloud completion.

2.61HBFormer: A Hybrid-Bridge Transformer for Microtumor and Miniature Organ Segmentation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Medical image segmentation is a cornerstone of modern clinical diagnostics. While Vision Transformers that leverage shifted window-based self-attention have established new benchmarks in this field, they are often hampered by a critical limitation: their localized attention mechanism struggles to effectively fuse local details with global context. This deficiency is particularly detrimental to challenging tasks such as the segmentation of microtumors and miniature organs, where both fine-grained boundary definition and broad contextual understanding are paramount. To address this gap, we propose HBFormer, a novel Hybrid-Bridge Transformer architecture. The ‘Hybrid’ design of HBFormer synergizes a classic U-shaped encoder-decoder framework with a powerful Swin Transformer backbone for robust hierarchical feature extraction. The core innovation lies in its ‘Bridge’ mechanism, a sophisticated nexus for multi-scale feature integration. This bridge is architecturally embodied by our novel Multi-Scale Feature Fusion (MFF) decoder. Departing from conventional symmetric designs, the MFF decoder is engineered to fuse multi-scale features from the encoder with global contextual information. It achieves this through a synergistic combination of channel and spatial attention modules, which are constructed from a series of dilated and depth-wise convolutions. These components work in concert to create a powerful feature bridge that explicitly captures long-range dependencies and refines object boundaries with exceptional precision. Comprehensive experiments on challenging medical image segmentation datasets, including multi-organ, liver tumor, and bladder tumor benchmarks, demonstrate that HBFormer achieves state-of-the-art results, showcasing its outstanding capabilities in microtumor and miniature organ segmentation. Code and models are available at: https://github.com/lzeeorno/HBFormer.

2.62CloseUpAvatar: High-Fidelity Animatable Full-Body Avatars with Mixture of Multi-Scale Textures

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present a CloseUpAvatar - a novel approach for articulated human avatar representation dealing with more general camera motions, while preserving rendering quality for close-up views. CloseUpAvatar represents an avatar as a set of textured planes with two sets of learnable textures for low and high-frequency detail. The method automatically switches to high-frequency textures only for cameras positioned close to the avatar’s surface and gradually reduces their impact as the camera moves farther away. Such parametrization of the avatar enables CloseUpAvatar to adjust rendering quality based on camera distance ensuring realistic rendering across a wider range of camera orientations than previous approaches. We provide experiments using the ActorsHQ dataset with high-resolution input images. CloseUpAvatar demonstrates both qualitative and quantitative improvements over existing methods in rendering from novel wide range camera positions, while maintaining high FPS by limiting the number of required primitives.

2.63Harnessing Hypergraphs in Geometric Deep Learning for 3D RNA Inverse Folding

arxiv html pdf kimi

2025/12/04 05:00 GTM

The RNA inverse folding problem, a key challenge in RNA design, involves identifying nucleotide sequences that can fold into desired secondary structures, which are critical for ensuring molecular stability and function. The inherent complexity of this task stems from the intricate relationship between sequence and structure, making it particularly challenging. In this paper, we propose a framework, named HyperRNA, a generative model with an encoder-decoder architecture that leverages hypergraphs to design RNA sequences. Specifically, our HyperRNA model consists of three main components: preprocessing, encoding and decoding. In the preprocessing stage, graph structures are constructed by extracting the atom coordinates of RNA backbone based on 3-bead coarse-grained representation. The encoding stage processes these graphs, capturing higher order dependencies and complex biomolecular interactions using an attention embedding module and a hypergraph-based encoder. Finally, the decoding stage generates the RNA sequence in an autoregressive manner. We conducted quantitative and qualitative experiments on the PDBBind and RNAsolo datasets to evaluate the inverse folding task for RNA sequence generation and RNA-protein complex sequence generation. The experimental results demonstrate that HyperRNA not only outperforms existing RNA design methods but also highlights the potential of leveraging hypergraphs in RNA engineering.

2.64Beyond Boundary Frames: Audio-Visual Semantic Guidance for Context-Aware Video Interpolation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Handling fast, complex, and highly non-linear motion patterns has long posed challenges for video frame interpolation. Although recent diffusion-based approaches improve upon traditional optical-flow-based methods, they still struggle to cover diverse application scenarios and often fail to produce sharp, temporally consistent frames in fine-grained motion tasks such as audio-visual synchronized interpolation. To address these limitations, we introduce BBF (Beyond Boundary Frames), a context-aware video frame interpolation framework, which could be guided by audio/visual semantics. First, we enhance the input design of the interpolation model so that it can flexibly handle multiple conditional modalities, including text, audio, images, and video. Second, we propose a decoupled multimodal fusion mechanism that sequentially injects different conditional signals into a DiT backbone. Finally, to maintain the generation abilities of the foundation model, we adopt a progressive multi-stage training paradigm, where the start-end frame difference embedding is used to dynamically adjust both the data sampling and the loss weighting. Extensive experimental results demonstrate that BBF outperforms specialized state-of-the-art methods on both generic interpolation and audio-visual synchronized interpolation tasks, establishing a unified framework for video frame interpolation under coordinated multi-channel conditioning.

2.65Dynamic Optical Test for Bot Identification (DOT-BI): A simple check to identify bots in surveys and online processes

arxiv html pdf kimi

2025/12/04 05:00 GTM

We propose the Dynamic Optical Test for Bot Identification (DOT-BI): a quick and easy method that uses human perception of motion to differentiate between human respondents and automated systems in surveys and online processes. In DOT-BI, a ‘hidden’ number is displayed with the same random black-and-white pixel texture as its background. Only the difference in motion and scale between the number and the background makes the number perceptible to humans across frames, while frame-by-frame algorithmic processing yields no meaningful signal. We conducted two preliminary assessments. Firstly, state-of-the-art, video-capable, multimodal models (GPT-5-Thinking and Gemini 2.5 Pro) fail to extract the correct value, even when given explicit instructions about the mechanism. Secondly, in an online survey (n=182), 99.5% (181/182) of participants solved the task, with an average end-to-end completion time of 10.7 seconds; a supervised lab study (n=39) found no negative effects on perceived ease-of-use or completion time relative to a control. We release code to generate tests and 100+ pre-rendered variants to facilitate adoption in surveys and online processes.

2.66Cross-Stain Contrastive Learning for Paired Immunohistochemistry and Histopathology Slide Representation Learning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Universal, transferable whole-slide image (WSI) representations are central to computational pathology. Incorporating multiple markers (e.g., immunohistochemistry, IHC) alongside H&E enriches H&E-based features with diverse, biologically meaningful information. However, progress is limited by the scarcity of well-aligned multi-stain datasets. Inter-stain misalignment shifts corresponding tissue across slides, hindering consistent patch-level features and degrading slide-level embeddings. To address this, we curated a slide-level aligned, five-stain dataset (H&E, HER2, KI67, ER, PGR) to enable paired H&E-IHC learning and robust cross-stain representation. Leveraging this dataset, we propose Cross-Stain Contrastive Learning (CSCL), a two-stage pretraining framework with a lightweight adapter trained using patch-wise contrastive alignment to improve the compatibility of H&E features with corresponding IHC-derived contextual cues, and slide-level representation learning with Multiple Instance Learning (MIL), which uses a cross-stain attention fusion module to integrate stain-specific patch features and a cross-stain global alignment module to enforce consistency among slide-level embeddings across different stains. Experiments on cancer subtype classification, IHC biomarker status classification, and survival prediction show consistent gains, yielding high-quality, transferable H&E slide-level representations. The code and data are available at https://github.com/lily-zyz/CSCL.

2.67UniComp: Rethinking Video Compression Through Informational Uniqueness

arxiv html pdf kimi

2025/12/04 05:00 GTM

Distinct from attention-based compression methods, this paper presents an information uniqueness driven video compression framework, termed UniComp, which aims to maximize the information fidelity of video representations under constrained computational budgets. Starting from the information-theoretic perspective, we formulate the vision compression as an optimization problem that minimizes conditional entropy (reconstruction error) between retained and full tokens. To achieve this, we introduce the notion of information uniqueness to measure intrinsic redundancy among tokens to link with reconstruction error. Based on uniqueness, we design three modules-Frame Group Fusion, Token Allocation, and Spatial Dynamic Compression-that progressively perform semantic frame grouping, adaptive resource allocation, and fine-grained spatial compression. Extensive experiments demonstrate that UniComp consistently outperforms existing compression methods in preserving essential visual tokens under limited computational budgets, highlighting the pivotal role of information uniqueness in token compression efficacy.

2.68Global-Local Aware Scene Text Editing

arxiv html pdf kimi

2025/12/04 05:00 GTM

Scene Text Editing (STE) involves replacing text in a scene image with new target text while preserving both the original text style and background texture. Existing methods suffer from two major challenges: inconsistency and length-insensitivity. They often fail to maintain coherence between the edited local patch and the surrounding area, and they struggle to handle significant differences in text length before and after editing. To tackle these challenges, we propose an end-to-end framework called Global-Local Aware Scene Text Editing (GLASTE), which simultaneously incorporates high-level global contextual information along with delicate local features. Specifically, we design a global-local combination structure, joint global and local losses, and enhance text image features to ensure consistency in text style within local patches while maintaining harmony between local and global areas. Additionally, we express the text style as a vector independent of the image size, which can be transferred to target text images of various sizes. We use an affine fusion to fill target text images into the editing patch while maintaining their aspect ratio unchanged. Extensive experiments on real-world datasets validate that our GLASTE model outperforms previous methods in both quantitative metrics and qualitative results and effectively mitigates the two challenges.

2.69GAOT: Generating Articulated Objects Through Text-Guided Diffusion Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Articulated object generation has seen increasing advancements, yet existing models often lack the ability to be conditioned on text prompts. To address the significant gap between textual descriptions and 3D articulated object representations, we propose GAOT, a three-phase framework that generates articulated objects from text prompts, leveraging diffusion models and hypergraph learning in a three-step process. First, we fine-tune a point cloud generation model to produce a coarse representation of objects from text prompts. Given the inherent connection between articulated objects and graph structures, we design a hypergraph-based learning method to refine these coarse representations, representing object parts as graph vertices. Finally, leveraging a diffusion model, the joints of articulated objects-represented as graph edges-are generated based on the object parts. Extensive qualitative and quantitative experiments on the PartNet-Mobility dataset demonstrate the effectiveness of our approach, achieving superior performance over previous methods.

2.70CartoMapQA: A Fundamental Benchmark Dataset Evaluating Vision-Language Models on Cartographic Map Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

The rise of Visual-Language Models (LVLMs) has unlocked new possibilities for seamlessly integrating visual and textual information. However, their ability to interpret cartographic maps remains largely unexplored. In this paper, we introduce CartoMapQA, a benchmark specifically designed to evaluate LVLMs’ understanding of cartographic maps through question-answering tasks. The dataset includes over 2000 samples, each composed of a cartographic map, a question (with open-ended or multiple-choice answers), and a ground-truth answer. These tasks span key low-, mid- and high-level map interpretation skills, including symbol recognition, embedded information extraction, scale interpretation, and route-based reasoning. Our evaluation of both open-source and proprietary LVLMs reveals persistent challenges: models frequently struggle with map-specific semantics, exhibit limited geospatial reasoning, and are prone to Optical Character Recognition (OCR)-related errors. By isolating these weaknesses, CartoMapQA offers a valuable tool for guiding future improvements in LVLM architectures. Ultimately, it supports the development of models better equipped for real-world applications that depend on robust and reliable map understanding, such as navigation, geographic search, and urban planning. Our source code and data are openly available to the research community at: https://github.com/ungquanghuy-kddi/CartoMapQA.git

2.71RoboScape-R: Unified Reward-Observation World Models for Generalizable Robotics Training via RL

arxiv html pdf kimi

2025/12/04 05:00 GTM

Achieving generalizable embodied policies remains a key challenge. Traditional policy learning paradigms, including both Imitation Learning (IL) and Reinforcement Learning (RL), struggle to cultivate generalizability across diverse scenarios. While IL policies often overfit to specific expert trajectories, RL suffers from the inherent lack of a unified and general reward signal necessary for effective multi-scene generalization. We posit that the world model is uniquely capable of serving as a universal environment proxy to address this limitation. However, current world models primarily focus on their ability to predict observations and still rely on task-specific, handcrafted reward functions, thereby failing to provide a truly general training environment. Toward this problem, we propose RoboScape-R, a framework leveraging the world model to serve as a versatile, general-purpose proxy for the embodied environment within the RL paradigm. We introduce a novel world model-based general reward mechanism that generates ‘‘endogenous’’ rewards derived from the model’s intrinsic understanding of real-world state transition dynamics. Extensive experiments demonstrate that RoboScape-R effectively addresses the limitations of traditional RL methods by providing an efficient and general training environment that substantially enhances the generalization capability of embodied policies. Our approach offers critical insights into utilizing the world model as an online training strategy and achieves an average 37.5% performance improvement over baselines under out-of-domain scenarios.

2.72Dynamic Content Moderation in Livestreams: Combining Supervised Classification with MLLM-Boosted Similarity Matching

arxiv html pdf kimi

2025/12/04 05:00 GTM

Content moderation remains a critical yet challenging task for large-scale user-generated video platforms, especially in livestreaming environments where moderation must be timely, multimodal, and robust to evolving forms of unwanted content. We present a hybrid moderation framework deployed at production scale that combines supervised classification for known violations with reference-based similarity matching for novel or subtle cases. This hybrid design enables robust detection of both explicit violations and novel edge cases that evade traditional classifiers. Multimodal inputs (text, audio, visual) are processed through both pipelines, with a multimodal large language model (MLLM) distilling knowledge into each to boost accuracy while keeping inference lightweight. In production, the classification pipeline achieves 67% recall at 80% precision, and the similarity pipeline achieves 76% recall at 80% precision. Large-scale A/B tests show a 6-8% reduction in user views of unwanted livestreams}. These results demonstrate a scalable and adaptable approach to multimodal content governance, capable of addressing both explicit violations and emerging adversarial behaviors.

2.73V-ITI: Mitigating Hallucinations in Multimodal Large Language Models via Visual Inference-Time Intervention

arxiv html pdf kimi

2025/12/04 05:00 GTM

Multimodal Large Language Models (MLLMs) excel in numerous vision-language tasks yet suffer from hallucinations, producing content inconsistent with input visuals, that undermine reliability in precision-sensitive domains. This issue stems from a fundamental problem of visual neglect, where models fail to adequately prioritize input images. Existing methods typically alleviate hallucinations by intervening in the attention score or output logits, focusing on “how to intervene” but overlooking the prerequisite “when to intervene”, which leads to the “over-intervention” problem and subsequently introduces new hallucinations and unnecessary computational overhead. To address this gap, we first investigate the mechanism of visual neglect and reveal it can be accurately detected via head-level activation patterns in MLLMs. We thus propose V-ITI, a lightweight visual inference-time intervention framework integrating a Visual Neglect Detector that identifies visual neglect via head-level discriminative probes and a Visual Recall Intervenor that modulates activations with prestored visual activation information only when the visual neglect is detected. Extensive experiments across eight benchmarks and different MLLM families demonstrate that V-ITI consistently mitigates vision-related hallucinations while preserving general task performance.

2.74CookAnything: A Framework for Flexible and Consistent Multi-Step Recipe Image Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Cooking is a sequential and visually grounded activity, where each step such as chopping, mixing, or frying carries both procedural logic and visual semantics. While recent diffusion models have shown strong capabilities in text-to-image generation, they struggle to handle structured multi-step scenarios like recipe illustration. Additionally, current recipe illustration methods are unable to adjust to the natural variability in recipe length, generating a fixed number of images regardless of the actual instructions structure. To address these limitations, we present CookAnything, a flexible and consistent diffusion-based framework that generates coherent, semantically distinct image sequences from textual cooking instructions of arbitrary length. The framework introduces three key components: (1) Step-wise Regional Control (SRC), which aligns textual steps with corresponding image regions within a single denoising process; (2) Flexible RoPE, a step-aware positional encoding mechanism that enhances both temporal coherence and spatial diversity; and (3) Cross-Step Consistency Control (CSCC), which maintains fine-grained ingredient consistency across steps. Experimental results on recipe illustration benchmarks show that CookAnything performs better than existing methods in training-based and training-free settings. The proposed framework supports scalable, high-quality visual synthesis of complex multi-step instructions and holds significant potential for broad applications in instructional media, and procedural content creation.

2.75Rethinking Prompt Design for Inference-time Scaling in Text-to-Visual Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Achieving precise alignment between user intent and generated visuals remains a central challenge in text-to-visual generation, as a single attempt often fails to produce the desired output. To handle this, prior approaches mainly scale the visual generation process (e.g., increasing sampling steps or seeds), but this quickly leads to a quality plateau. This limitation arises because the prompt, crucial for guiding generation, is kept fixed. To address this, we propose Prompt Redesign for Inference-time Scaling, coined PRIS, a framework that adaptively revises the prompt during inference in response to the scaled visual generations. The core idea of PRIS is to review the generated visuals, identify recurring failure patterns across visuals, and redesign the prompt accordingly before regenerating the visuals with the revised prompt. To provide precise alignment feedback for prompt revision, we introduce a new verifier, element-level factual correction, which evaluates the alignment between prompt attributes and generated visuals at a fine-grained level, achieving more accurate and interpretable assessments than holistic measures. Extensive experiments on both text-to-image and text-to-video benchmarks demonstrate the effectiveness of our approach, including a 15% gain on VBench 2.0. These results highlight that jointly scaling prompts and visuals is key to fully leveraging scaling laws at inference-time. Visualizations are available at the website: https://subin-kim-cv.github.io/PRIS.

2.76OpenTrack3D: Towards Accurate and Generalizable Open-Vocabulary 3D Instance Segmentation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Generalizing open-vocabulary 3D instance segmentation (OV-3DIS) to diverse, unstructured, and mesh-free environments is crucial for robotics and AR/VR, yet remains a significant challenge. We attribute this to two key limitations of existing methods: (1) proposal generation relies on dataset-specific proposal networks or mesh-based superpoints, rendering them inapplicable in mesh-free scenarios and limiting generalization to novel scenes; and (2) the weak textual reasoning of CLIP-based classifiers, which struggle to recognize compositional and functional user queries. To address these issues, we introduce OpenTrack3D, a generalizable and accurate framework. Unlike methods that rely on pre-generated proposals, OpenTrack3D employs a novel visual-spatial tracker to construct cross-view consistent object proposals online. Given an RGB-D stream, our pipeline first leverages a 2D open-vocabulary segmenter to generate masks, which are lifted to 3D point clouds using depth. Mask-guided instance features are then extracted using DINO feature maps, and our tracker fuses visual and spatial cues to maintain instance consistency. The core pipeline is entirely mesh-free, yet we also provide an optional superpoints refinement module to further enhance performance when scene mesh is available. Finally, we replace CLIP with a multi-modal large language model (MLLM), significantly enhancing compositional reasoning for complex user queries. Extensive experiments on diverse benchmarks, including ScanNet200, Replica, ScanNet++, and SceneFun3D, demonstrate state-of-the-art performance and strong generalization capabilities.

2.77MSG-Loc: Multi-Label Likelihood-based Semantic Graph Matching for Object-Level Global Localization

arxiv html pdf kimi

2025/12/04 05:00 GTM

Robots are often required to localize in environments with unknown object classes and semantic ambiguity. However, when performing global localization using semantic objects, high semantic ambiguity intensifies object misclassification and increases the likelihood of incorrect associations, which in turn can cause significant errors in the estimated pose. Thus, in this letter, we propose a multi-label likelihood-based semantic graph matching framework for object-level global localization. The key idea is to exploit multi-label graph representations, rather than single-label alternatives, to capture and leverage the inherent semantic context of object observations. Based on these representations, our approach enhances semantic correspondence across graphs by combining the likelihood of each node with the maximum likelihood of its neighbors via context-aware likelihood propagation. For rigorous validation, data association and pose estimation performance are evaluated under both closed-set and open-set detection configurations. In addition, we demonstrate the scalability of our approach to large-vocabulary object categories in both real-world indoor scenes and synthetic environments.

2.78FloodDiffusion: Tailored Diffusion Forcing for Streaming Motion Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present FloodDiffusion, a new framework for text-driven, streaming human motion generation. Given time-varying text prompts, FloodDiffusion generates text-aligned, seamless motion sequences with real-time latency. Unlike existing methods that rely on chunk-by-chunk or auto-regressive model with diffusion head, we adopt a diffusion forcing framework to model this time-series generation task under time-varying control events. We find that a straightforward implementation of vanilla diffusion forcing (as proposed for video models) fails to model real motion distributions. We demonstrate that to guarantee modeling the output distribution, the vanilla diffusion forcing must be tailored to: (i) train with a bi-directional attention instead of casual attention; (ii) implement a lower triangular time scheduler instead of a random one; (iii) utilize a continues time-varying way to introduce text conditioning. With these improvements, we demonstrate in the first time that the diffusion forcing-based framework achieves state-of-the-art performance on the streaming motion generation task, reaching an FID of 0.057 on the HumanML3D benchmark. Models, code, and weights are available. https://shandaai.github.io/FloodDiffusion/

2.79M3DR: Towards Universal Multilingual Multimodal Document Retrieval

arxiv html pdf kimi

2025/12/04 05:00 GTM

Multimodal document retrieval systems have shown strong progress in aligning visual and textual content for semantic search. However, most existing approaches remain heavily English-centric, limiting their effectiveness in multilingual contexts. In this work, we present M3DR (Multilingual Multimodal Document Retrieval), a framework designed to bridge this gap across languages, enabling applicability across diverse linguistic and cultural contexts. M3DR leverages synthetic multilingual document data and generalizes across different vision-language architectures and model sizes, enabling robust cross-lingual and cross-modal alignment. Using contrastive training, our models learn unified representations for text and document images that transfer effectively across languages. We validate this capability on 22 typologically diverse languages, demonstrating consistent performance and adaptability across linguistic and script variations. We further introduce a comprehensive benchmark that captures real-world multilingual scenarios, evaluating models under monolingual, multilingual, and mixed-language settings. M3DR generalizes across both single dense vector and ColBERT-style token-level multi-vector retrieval paradigms. Our models, NetraEmbed and ColNetraEmbed achieve state-of-the-art performance with ~150% relative improvements on cross-lingual retrieval.

2.80CSMapping: Scalable Crowdsourced Semantic Mapping and Topology Inference for Autonomous Driving

arxiv html pdf kimi

2025/12/04 05:00 GTM

Crowdsourcing enables scalable autonomous driving map construction, but low-cost sensor noise hinders quality from improving with data volume. We propose CSMapping, a system that produces accurate semantic maps and topological road centerlines whose quality consistently increases with more crowdsourced data. For semantic mapping, we train a latent diffusion model on HD maps (optionally conditioned on SD maps) to learn a generative prior of real-world map structure, without requiring paired crowdsourced/HD-map supervision. This prior is incorporated via constrained MAP optimization in latent space, ensuring robustness to severe noise and plausible completion in unobserved areas. Initialization uses a robust vectorized mapping module followed by diffusion inversion; optimization employs efficient Gaussian-basis reparameterization, projected gradient descent zobracket multi-start, and latent-space factor-graph for global consistency. For topological mapping, we apply confidence-weighted k-medoids clustering and kinematic refinement to trajectories, yielding smooth, human-like centerlines robust to trajectory variation. Experiments on nuScenes, Argoverse 2, and a large proprietary dataset achieve state-of-the-art semantic and topological mapping performance, with thorough ablation and scalability studies.

2.81AfroBeats Dance Movement Analysis Using Computer Vision: A Proof-of-Concept Framework Combining YOLO and Segment Anything Model

arxiv html pdf kimi

2025/12/04 05:00 GTM

This paper presents a preliminary investigation into automated dance movement analysis using contemporary computer vision techniques. We propose a proof-of-concept framework that integrates YOLOv8 and v11 for dancer detection with the Segment Anything Model (SAM) for precise segmentation, enabling the tracking and quantification of dancer movements in video recordings without specialized equipment or markers. Our approach identifies dancers within video frames, counts discrete dance steps, calculates spatial coverage patterns, and measures rhythm consistency across performance sequences. Testing this framework on a single 49-second recording of Ghanaian AfroBeats dance demonstrates technical feasibility, with the system achieving approximately 94% detection precision and 89% recall on manually inspected samples. The pixel-level segmentation provided by SAM, achieving approximately 83% intersection-over-union with visual inspection, enables motion quantification that captures body configuration changes beyond what bounding-box approaches can represent. Analysis of this preliminary case study indicates that the dancer classified as primary by our system executed 23% more steps with 37% higher motion intensity and utilized 42% more performance space compared to dancers classified as secondary. However, this work represents an early-stage investigation with substantial limitations including single-video validation, absence of systematic ground truth annotations, and lack of comparison with existing pose estimation methods. We present this framework to demonstrate technical feasibility, identify promising directions for quantitative dance metrics, and establish a foundation for future systematic validation studies.

2.82Exploiting Domain Properties in Language-Driven Domain Generalization for Semantic Segmentation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent domain generalized semantic segmentation (DGSS) studies have achieved notable improvements by distilling semantic knowledge from Vision-Language Models (VLMs). However, they overlook the semantic misalignment between visual and textual contexts, which arises due to the rigidity of a fixed context prompt learned on a single source domain. To this end, we present a novel domain generalization framework for semantic segmentation, namely Domain-aware Prompt-driven Masked Transformer (DPMFormer). Firstly, we introduce domain-aware prompt learning to facilitate semantic alignment between visual and textual cues. To capture various domain-specific properties with a single source dataset, we propose domain-aware contrastive learning along with the texture perturbation that diversifies the observable domains. Lastly, to establish a framework resilient against diverse environmental changes, we have proposed the domain-robust consistency learning which guides the model to minimize discrepancies of prediction from original and the augmented images. Through experiments and analyses, we demonstrate the superiority of the proposed framework, which establishes a new state-of-the-art on various DGSS benchmarks. The code is available at https://github.com/jone1222/DPMFormer.

2.83EEA: Exploration-Exploitation Agent for Long Video Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

Long-form video understanding requires efficient navigation of extensive visual data to pinpoint sparse yet critical information. Current approaches to longform video understanding either suffer from severe computational overhead due to dense preprocessing, or fail to effectively balance exploration and exploitation, resulting in incomplete information coverage and inefficiency. In this work, we introduce EEA, a novel video agent framework that archives exploration-exploitation balance through semantic guidance with hierarchical tree search process. EEA autonomously discovers and dynamically updates task-relevant semantic queries, and collects video frames closely matched to these queries as semantic anchors. During the tree search process, instead of uniform expansion, EEA preferentially explores semantically relevant frames while ensuring sufficient coverage within unknown segments. Moreover, EEA adaptively combines intrinsic rewards from visionlanguage models (VLMs) with semantic priors by explicitly modeling uncertainty to achieve stable and precise evaluation of video segments. Experiments across various long-video benchmarks validate the superior performance and computational efficiency of our proposed method.

2.84NAS-LoRA: Empowering Parameter-Efficient Fine-Tuning for Visual Foundation Models with Searchable Adaptation

arxiv html pdf kimi

2025/12/04 05:00 GTM

The Segment Anything Model (SAM) has emerged as a powerful visual foundation model for image segmentation. However, adapting SAM to specific downstream tasks, such as medical and agricultural imaging, remains a significant challenge. To address this, Low-Rank Adaptation (LoRA) and its variants have been widely employed to enhancing SAM’s adaptation performance on diverse domains. Despite advancements, a critical question arises: can we integrate inductive bias into the model? This is particularly relevant since the Transformer encoder in SAM inherently lacks spatial priors within image patches, potentially hindering the acquisition of high-level semantic information. In this paper, we propose NAS-LoRA, a new Parameter-Efficient Fine-Tuning (PEFT) method designed to bridge the semantic gap between pre-trained SAM and specialized domains. Specifically, NAS-LoRA incorporates a lightweight Neural Architecture Search (NAS) block between the encoder and decoder components of LoRA to dynamically optimize the prior knowledge integrated into weight updates. Furthermore, we propose a stage-wise optimization strategy to help the ViT encoder balance weight updates and architectural adjustments, facilitating the gradual learning of high-level semantic information. Various Experiments demonstrate our NAS-LoRA improves existing PEFT methods, while reducing training cost by 24.14% without increasing inference cost, highlighting the potential of NAS in enhancing PEFT for visual foundation models.

2.85Towards Object-centric Understanding for Instructional Videos

arxiv html pdf kimi

2025/12/04 05:00 GTM

Understanding procedural activities is crucial for developing future assistive AI that can reason about complex real-world tasks. Existing action-centric methods struggle with the flexibility of real procedures, where step order varies depending on object states. In this work, we propose to shift the focus to an object-centric paradigm by regarding actions as mechanisms that drive state transitions. To advance this direction, we introduce Object-IVQA, a long-form instructional video benchmark with 107 videos and 514 open-ended question-answer pairs annotated with temporally grounded evidence. The benchmark evaluates four dimensions of object-centric reasoning, including state evolution, precondition verification, counterfactual reasoning and mistake recognition. We further propose an agent framework that orchestrates object-centric planning, perception, analysis and generation tools, enabling explicit evidence retrieval and multi-hop reasoning across disjoint segments. Experiments show that existing large vision-language models struggle in object-level recognition and reasoning, whereas our framework achieves substantially improvement.

2.86Fairness-Aware Fine-Tuning of Vision-Language Models for Medical Glaucoma Diagnosis

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision-language models achieve expert-level performance on medical imaging tasks but exhibit significant diagnostic accuracy disparities across demographic groups. We introduce fairness-aware Low-Rank Adaptation for medical VLMs, combining parameter efficiency with explicit fairness optimization. Our key algorithmic contribution is a differentiable MaxAccGap loss that enables end-to-end optimization of accuracy parity across demographic groups. We propose three methods: FR-LoRA integrates MaxAccGap regularization into the training objective, GR-LoRA applies inverse frequency weighting to balance gradient contributions, and Hybrid-LoRA combines both mechanisms.Evaluated on 10,000 glaucoma fundus images, GR-LoRA reduces diagnostic accuracy disparities by 69% while maintaining 53.15% overall accuracy. Ablation studies reveal that strong regularization strength achieves optimal fairness with minimal accuracy trade-off, and race-specific optimization yields 60% disparity reduction. Our approach requires only 0.24% trainable parameters, enabling practical deployment of fair medical AI in resource-constrained healthcare settings.

2.87Procedural Mistake Detection via Action Effect Modeling

arxiv html pdf kimi

2025/12/04 05:00 GTM

Mistake detection in procedural tasks is essential for building intelligent systems that support learning and task execution. Existing approaches primarily analyze how an action is performed, while overlooking what it produces, i.e., the \textbf{action effect}. Yet many errors manifest not in the execution itself but in the resulting outcome, such as an unintended object state or incorrect spatial arrangement. To address this gap, we propose Action Effect Modeling (AEM), a unified framework that jointly captures action execution and its outcomes through a probabilistic formulation. AEM first identifies the outcome of an action by selecting the most informative effect frame based on semantic relevance and visual quality. It then extracts complementary cues from visual grounding and symbolic scene graphs, aligning them in a shared latent space to form robust effect-aware representations. To detect mistakes, we further design a prompt-based detector that incorporates task-specific prompts and aligns each action segment with its intended execution semantics. Our approach achieves state-of-the-art performance on the EgoPER and CaptainCook4D benchmarks under the challenging one-class classification (OCC) setting. These results demonstrate that modeling both execution and outcome yields more reliable mistake detection, and highlight the potential of effect-aware representations to benefit a broader range of downstream applications.

2.88Difference Decomposition Networks for Infrared Small Target Detection

arxiv html pdf kimi

2025/12/04 05:00 GTM

Infrared small target detection (ISTD) faces two major challenges: a lack of discernible target texture and severe background clutter, which results in the background obscuring the target. To enhance targets and suppress backgrounds, we propose the Basis Decomposition Module (BDM) as an extensible and lightweight module based on basis decomposition, which decomposes a complex feature into several basis features and enhances certain information while eliminating redundancy. Extending BDM leads to a series of modules, including the Spatial Difference Decomposition Module (SD2^\mathrm{2}M), Spatial Difference Decomposition Downsampling Module (SD3^\mathrm{3}M), and Temporal Difference Decomposition Module (TD2^\mathrm{2}M). Based on these modules, we develop the Spatial Difference Decomposition Network (SD2^\mathrm{2}Net) for single-frame ISTD (SISTD) and the Spatiotemporal Difference Decomposition Network (STD2^\mathrm{2}Net) for multi-frame ISTD (MISTD). SD2^\mathrm{2}Net integrates SD2^\mathrm{2}M and SD3^\mathrm{3}M within an adapted U-shaped architecture. We employ TD2^\mathrm{2}M to introduce motion information, which transforms SD2^\mathrm{2}Net into STD2^\mathrm{2}Net. Extensive experiments on SISTD and MISTD datasets demonstrate state-of-the-art (SOTA) performance. On the SISTD task, SD2^\mathrm{2}Net performs well compared to most established networks. On the MISTD datasets, STD2^\mathrm{2}Net achieves a mIoU of 87.68%, outperforming SD2^\mathrm{2}Net, which achieves a mIoU of 64.97%. Our codes are available: https://github.com/greekinRoma/IRSTD_HC_Platform.

2.89Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent large vision-language models (LVLMs) have been applied to diverse VQA tasks. However, achieving practical performance typically requires task-specific fine-tuning with large numbers of image-text pairs, which are costly to collect. In this work, we study text-centric training, a setting where only textual descriptions are available and no real images are provided, as a paradigm for low-cost data scaling. Unlike images, whose collection is often restricted by privacy constraints and scarcity in niche domains, text is widely available. Moreover, text is easily editable, enabling automatic diversification and expansion with LLMs at minimal human effort. While this offers clear advantages over image collection in terms of scalability and cost, training on raw text without images still yields limited gains on VQA tasks because of the image-text modality gap. To address this issue, we propose a Text-Printed Image (TPI), which generates synthetic images by directly rendering the given textual description on a plain white canvas. This simple rendering projects text into the image modality and can be integrated into arbitrary existing LVLM training pipelines at low cost. Moreover, TPI preserves the semantics of the text, whereas text-to-image models often fail to do. Across four models and seven benchmarks, our systematic experiments show that TPI enables more effective text-centric training than synthetic images generated by a diffusion model. We further explore TPI as a low-cost data-augmentation strategy and demonstrate its practical utility. Overall, our findings highlight the significant potential of text-centric training and, more broadly, chart a path toward fully automated data generation for LVLMs.

2.90Think Before You Drive: World Model-Inspired Multimodal Grounding for Autonomous Vehicles

arxiv html pdf kimi

2025/12/04 05:00 GTM

Interpreting natural-language commands to localize target objects is critical for autonomous driving (AD). Existing visual grounding (VG) methods for autonomous vehicles (AVs) typically struggle with ambiguous, context-dependent instructions, as they lack reasoning over 3D spatial relations and anticipated scene evolution. Grounded in the principles of world models, we propose ThinkDeeper, a framework that reasons about future spatial states before making grounding decisions. At its core is a Spatial-Aware World Model (SA-WM) that learns to reason ahead by distilling the current scene into a command-aware latent state and rolling out a sequence of future latent states, providing forward-looking cues for disambiguation. Complementing this, a hypergraph-guided decoder then hierarchically fuses these states with the multimodal input, capturing higher-order spatial dependencies for robust localization. In addition, we present DrivePilot, a multi-source VG dataset in AD, featuring semantic annotations generated by a Retrieval-Augmented Generation (RAG) and Chain-of-Thought (CoT)-prompted LLM pipeline. Extensive evaluations on six benchmarks, ThinkDeeper ranks #1 on the Talk2Car leaderboard and surpasses state-of-the-art baselines on DrivePilot, MoCAD, and RefCOCO/+/g benchmarks. Notably, it shows strong robustness and efficiency in challenging scenes (long-text, multi-agent, ambiguity) and retains superior performance even when trained on 50% of the data.

2.91GeoVideo: Introducing Geometric Regularization into Video Generation Model

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent advances in video generation have enabled the synthesis of high-quality and visually realistic clips using diffusion transformer models. However, most existing approaches operate purely in the 2D pixel space and lack explicit mechanisms for modeling 3D structures, often resulting in temporally inconsistent geometries, implausible motions, and structural artifacts. In this work, we introduce geometric regularization losses into video generation by augmenting latent diffusion models with per-frame depth prediction. We adopted depth as the geometric representation because of the great progress in depth prediction and its compatibility with image-based latent encoders. Specifically, to enforce structural consistency over time, we propose a multi-view geometric loss that aligns the predicted depth maps across frames within a shared 3D coordinate system. Our method bridges the gap between appearance generation and 3D structure modeling, leading to improved spatio-temporal coherence, shape consistency, and physical plausibility. Experiments across multiple datasets show that our approach produces significantly more stable and geometrically consistent results than existing baselines.

2.92GalaxyDiT: Efficient Video Generation with Guidance Alignment and Adaptive Proxy in Diffusion Transformers

arxiv html pdf kimi

2025/12/04 05:00 GTM

Diffusion models have revolutionized video generation, becoming essential tools in creative content generation and physical simulation. Transformer-based architectures (DiTs) and classifier-free guidance (CFG) are two cornerstones of this success, enabling strong prompt adherence and realistic video quality. Despite their versatility and superior performance, these models require intensive computation. Each video generation requires dozens of iterative steps, and CFG doubles the required compute. This inefficiency hinders broader adoption in downstream applications. We introduce GalaxyDiT, a training-free method to accelerate video generation with guidance alignment and systematic proxy selection for reuse metrics. Through rank-order correlation analysis, our technique identifies the optimal proxy for each video model, across model families and parameter scales, thereby ensuring optimal computational reuse. We achieve 1.87×1.87\times and 2.37×2.37\times speedup on Wan2.1-1.3B and Wan2.1-14B with only 0.97% and 0.72% drops on the VBench-2.0 benchmark. At high speedup rates, our approach maintains superior fidelity to the base model, exceeding prior state-of-the-art approaches by 5 to 10 dB in peak signal-to-noise ratio (PSNR).

2.93KeyPointDiffuser: Unsupervised 3D Keypoint Learning via Latent Diffusion Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Understanding and representing the structure of 3D objects in an unsupervised manner remains a core challenge in computer vision and graphics. Most existing unsupervised keypoint methods are not designed for unconditional generative settings, restricting their use in modern 3D generative pipelines; our formulation explicitly bridges this gap. We present an unsupervised framework for learning spatially structured 3D keypoints from point cloud data. These keypoints serve as a compact and interpretable representation that conditions an Elucidated Diffusion Model (EDM) to reconstruct the full shape. The learned keypoints exhibit repeatable spatial structure across object instances and support smooth interpolation in keypoint space, indicating that they capture geometric variation. Our method achieves strong performance across diverse object categories, yielding a 6 percentage-point improvement in keypoint consistency compared to prior approaches.

2.94LM-CartSeg: Automated Segmentation of Lateral and Medial Cartilage and Subchondral Bone for Radiomics Analysis

arxiv html pdf kimi

2025/12/04 05:00 GTM

Background and Objective: Radiomics of knee MRI requires robust, anatomically meaningful regions of interest (ROIs) that jointly capture cartilage and subchondral bone. Most existing work relies on manual ROIs and rarely reports quality control (QC). We present LM-CartSeg, a fully automatic pipeline for cartilage/bone segmentation, geometric lateral/medial (L/M) compartmentalisation and radiomics analysis. Methods: Two 3D nnU-Net models were trained on SKM-TEA (138 knees) and OAIZIB-CM (404 knees). At test time, zero-shot predictions were fused and refined by simple geometric rules: connected-component cleaning, construction of 10 mm subchondral bone bands in physical space, and a data-driven tibial L/M split based on PCA and k-means. Segmentation was evaluated on an OAIZIB-CM test set (103 knees) and on SKI-10 (100 knees). QC used volume and thickness signatures. From 10 ROIs we extracted 4 650 non-shape radiomic features to study inter-compartment similarity, dependence on ROI size, and OA vs. non-OA classification on OAIZIB-CM Results: Post-processing improved macro ASSD on OAIZIB-CM from 2.63 to 0.36 mm and HD95 from 25.2 to 3.35 mm, with DSC 0.91; zero-shot DSC on SKI-10 was 0.80. The geometric L/M rule produced stable compartments across datasets, whereas a direct L/M nnU-Net showed domain-dependent side swaps. Only 6 to 12 percent of features per ROI were strongly correlated with volume or thickness. Radiomics-based models models restricted to size-linked features. Conclusions: LM-CartSeg yields automatic, QCd ROIs and radiomic features that carry discriminative information beyond simple morphometry, providing a practical foundation for multi-centre knee OA radiomics studies.

2.95Multi-Aspect Knowledge-Enhanced Medical Vision-Language Pretraining with Multi-Agent Data Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision-language pretraining (VLP) has emerged as a powerful paradigm in medical image analysis, enabling representation learning from large-scale image-text pairs without relying on expensive manual annotations. However, existing methods often struggle with the noise inherent in web-collected data and the complexity of unstructured long medical texts. To address these challenges, we propose a novel VLP framework integrating a Multi-Agent data GENeration (MAGEN) system and Ontology-based Multi-Aspect Knowledge-Enhanced (O-MAKE) pretraining. First, MAGEN enhances data quality by synthesizing knowledge-enriched descriptions via a foundation model-assisted captioning and retrieval-based verification pipeline. Second, O-MAKE addresses the difficulty of learning from long, unstructured texts by decomposing them into distinct knowledge aspects. This facilitates fine-grained alignment at both global and patch levels, while explicitly modeling medical concept relationships through ontology-guided mechanisms. We validate our framework in the field of dermatology, where comprehensive experiments demonstrate the effectiveness of each component. Our approach achieves state-of-the-art zero-shot performance on disease classification and cross-modal retrieval tasks across eight datasets. Our code and the augmented dataset Derm1M-AgentAug, comprising over 400k skin-image-text pairs, will be released at https://github.com/SiyuanYan1/Derm1M.

2.96Label-Efficient Hyperspectral Image Classification via Spectral FiLM Modulation of Low-Level Pretrained Diffusion Features

arxiv html pdf kimi

2025/12/04 05:00 GTM

Hyperspectral imaging (HSI) enables detailed land cover classification, yet low spatial resolution and sparse annotations pose significant challenges. We present a label-efficient framework that leverages spatial features from a frozen diffusion model pretrained on natural images. Our approach extracts low-level representations from high-resolution decoder layers at early denoising timesteps, which transfer effectively to the low-texture structure of HSI. To integrate spectral and spatial information, we introduce a lightweight FiLM-based fusion module that adaptively modulates frozen spatial features using spectral cues, enabling robust multimodal learning under sparse supervision. Experiments on two recent hyperspectral datasets demonstrate that our method outperforms state-of-the-art approaches using only the provided sparse training labels. Ablation studies further highlight the benefits of diffusion-derived features and spectral-aware fusion. Overall, our results indicate that pretrained diffusion models can support domain-agnostic, label-efficient representation learning for remote sensing and broader scientific imaging tasks.

2.97Generalization Evaluation of Deep Stereo Matching Methods for UAV-Based Forestry Applications

arxiv html pdf kimi

2025/12/04 05:00 GTM

Autonomous UAV forestry operations require robust depth estimation methods with strong cross-domain generalization. However, existing evaluations focus on urban and indoor scenarios, leaving a critical gap for specialized vegetation-dense environments. We present the first systematic zero-shot evaluation of eight state-of-the-art stereo methods--RAFT-Stereo, IGEV, IGEV++, BridgeDepth, StereoAnywhere, DEFOM (plus baseline methods ACVNet, PSMNet, TCstereo)--spanning iterative refinement, foundation model, and zero-shot adaptation paradigms. All methods are trained exclusively on Scene Flow and evaluated without fine-tuning on four standard benchmarks (ETH3D, KITTI 2012/2015, Middlebury) plus a novel 5,313-pair Canterbury forestry dataset captured with ZED Mini camera (1920x1080). Performance reveals scene-dependent patterns: foundation models excel on structured scenes (BridgeDepth: 0.23 px on ETH3D, 0.83-1.07 px on KITTI; DEFOM: 0.35-4.65 px across benchmarks), while iterative methods maintain cross-domain robustness (IGEV++: 0.36-6.77 px; IGEV: 0.33-21.91 px). Critical finding: RAFT-Stereo exhibits catastrophic ETH3D failure (26.23 px EPE, 98 percent error rate) due to negative disparity predictions, while performing normally on KITTI (0.90-1.11 px). Qualitative evaluation on Canterbury forestry dataset identifies DEFOM as the optimal gold-standard baseline for vegetation depth estimation, exhibiting superior depth smoothness, occlusion handling, and cross-domain consistency compared to IGEV++, despite IGEV++'s finer detail preservation.

2.98DM3D: Deformable Mamba via Offset-Guided Gaussian Sequencing for Point Cloud Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

State Space Models (SSMs) demonstrate significant potential for long-sequence modeling, but their reliance on input order conflicts with the irregular nature of point clouds. Existing approaches often rely on predefined serialization strategies, which cannot adjust based on diverse geometric structures. To overcome this limitation, we propose \textbf{DM3D}, a deformable Mamba architecture for point cloud understanding. Specifically, DM3D introduces an offset-guided Gaussian sequencing mechanism that unifies local resampling and global reordering within a deformable scan. The Gaussian-based KNN Resampling (GKR) enhances structural awareness by adaptively reorganizing neighboring points, while the Gaussian-based Differentiable Reordering (GDR) enables end-to-end optimization of serialization order. Furthermore, a Tri-Path Frequency Fusion module enhances feature complementarity and reduces aliasing. Together, these components enable structure-adaptive serialization of point clouds. Extensive experiments on benchmark datasets show that DM3D achieves state-of-the-art performance in classification, few-shot learning, and part segmentation, demonstrating that adaptive serialization effectively unlocks the potential of SSMs for point cloud understanding.

2.99What Is The Best 3D Scene Representation for Robotics? From Geometric to Foundation Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

In this paper, we provide a comprehensive overview of existing scene representation methods for robotics, covering traditional representations such as point clouds, voxels, signed distance functions (SDF), and scene graphs, as well as more recent neural representations like Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and the emerging Foundation Models. While current SLAM and localization systems predominantly rely on sparse representations like point clouds and voxels, dense scene representations are expected to play a critical role in downstream tasks such as navigation and obstacle avoidance. Moreover, neural representations such as NeRF, 3DGS, and foundation models are well-suited for integrating high-level semantic features and language-based priors, enabling more comprehensive 3D scene understanding and embodied intelligence. In this paper, we categorized the core modules of robotics into five parts (Perception, Mapping, Localization, Navigation, Manipulation). We start by presenting the standard formulation of different scene representation methods and comparing the advantages and disadvantages of scene representation across different modules. This survey is centered around the question: What is the best 3D scene representation for robotics? We then discuss the future development trends of 3D scene representations, with a particular focus on how the 3D Foundation Model could replace current methods as the unified solution for future robotic applications. The remaining challenges in fully realizing this model are also explored. We aim to offer a valuable resource for both newcomers and experienced researchers to explore the future of 3D scene representations and their application in robotics. We have published an open-source project on GitHub and will continue to add new works and technologies to this project.

2.100YOLOA: Real-Time Affordance Detection via LLM Adapter

arxiv html pdf kimi

2025/12/04 05:00 GTM

Affordance detection aims to jointly address the fundamental “what-where-how” challenge in embodied AI by understanding “what” an object is, “where” the object is located, and “how” it can be used. However, most affordance learning methods focus solely on “how” objects can be used while neglecting the “what” and “where” aspects. Other affordance detection methods treat object detection and affordance learning as two independent tasks, lacking effective interaction and real-time capability. To overcome these limitations, we introduce YOLO Affordance (YOLOA), a real-time affordance detection model that jointly handles these two tasks via a large language model (LLM) adapter. Specifically, YOLOA employs a lightweight detector consisting of object detection and affordance learning branches refined through the LLM Adapter. During training, the LLM Adapter interacts with object and affordance preliminary predictions to refine both branches by generating more accurate class priors, box offsets, and affordance gates. Experiments on our relabeled ADG-Det and IIT-Heat benchmarks demonstrate that YOLOA achieves state-of-the-art accuracy (52.8 / 73.1 mAP on ADG-Det / IIT-Heat) while maintaining real-time performance (up to 89.77 FPS, and up to 846.24 FPS for the lightweight variant). This indicates that YOLOA achieves an excellent trade-off between accuracy and efficiency.

2.101ViDiC: Video Difference Captioning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Understanding visual differences between dynamic scenes requires the comparative perception of compositional, spatial, and temporal changes--a capability that remains underexplored in existing vision-language systems. While prior work on Image Difference Captioning (IDC) has enabled models to describe semantic changes between static images, these approaches fail to capture motion continuity, event evolution, or editing consistency over time. We introduce the ViDiC (Video Difference Captioning) task and its corresponding ViDiC-1K dataset, designed to evaluate the ability of Multimodal Large Language Models (MLLMs) to provide fine-grained descriptions of similarities and differences between video pairs. ViDiC-1K comprises 1,000 curated video pairs annotated with over 4,000 comparative checklist items, covering seven categories: subject, style, background, cinematography, motion, location, and playback techniques. To ensure reliable evaluation, we propose a dual-checklist framework that measures the accuracy of similarity and difference separately, based on the LLM-as-a-Judge protocol. Experiments on nineteen representative multimodal models reveal a significant performance gap in their comparative description and difference perception abilities. We hope ViDiC-1K can be a challenging benchmark that lays a solid foundation for advancing video understanding, edit awareness, and comparative reasoning in multimodal intelligence.

2.102MOS: Mitigating Optical-SAR Modality Gap for Cross-Modal Ship Re-Identification

arxiv html pdf kimi

2025/12/04 05:00 GTM

Cross-modal ship re-identification (ReID) between optical and synthetic aperture radar (SAR) imagery has recently emerged as a critical yet underexplored task in maritime intelligence and surveillance. However, the substantial modality gap between optical and SAR images poses a major challenge for robust identification. To address this issue, we propose MOS, a novel framework designed to mitigate the optical-SAR modality gap and achieve modality-consistent feature learning for optical-SAR cross-modal ship ReID. MOS consists of two core components: (1) Modality-Consistent Representation Learning (MCRL) applies denoise SAR image procession and a class-wise modality alignment loss to align intra-identity feature distributions across modalities. (2) Cross-modal Data Generation and Feature fusion (CDGF) leverages a brownian bridge diffusion model to synthesize cross-modal samples, which are subsequently fused with original features during inference to enhance alignment and discriminability. Extensive experiments on the HOSS ReID dataset demonstrate that MOS significantly surpasses state-of-the-art methods across all evaluation protocols, achieving notable improvements of +3.0%, +6.2%, and +16.4% in R1 accuracy under the ALL to ALL, Optical to SAR, and SAR to Optical settings, respectively. The code and trained models will be released upon publication.

2.103ShelfGaussian: Shelf-Supervised Open-Vocabulary Gaussian-based 3D Scene Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

We introduce ShelfGaussian, an open-vocabulary multi-modal Gaussian-based 3D scene understanding framework supervised by off-the-shelf vision foundation models (VFMs). Gaussian-based methods have demonstrated superior performance and computational efficiency across a wide range of scene understanding tasks. However, existing methods either model objects as closed-set semantic Gaussians supervised by annotated 3D labels, neglecting their rendering ability, or learn open-set Gaussian representations via purely 2D self-supervision, leading to degraded geometry and limited to camera-only settings. To fully exploit the potential of Gaussians, we propose a Multi-Modal Gaussian Transformer that enables Gaussians to query features from diverse sensor modalities, and a Shelf-Supervised Learning Paradigm that efficiently optimizes Gaussians with VFM features jointly at 2D image and 3D scene levels. We evaluate ShelfGaussian on various perception and planning tasks. Experiments on Occ3D-nuScenes demonstrate its state-of-the-art zero-shot semantic occupancy prediction performance. ShelfGaussian is further evaluated on an unmanned ground vehicle (UGV) to assess its in the-wild performance across diverse urban scenarios. Project website: https://lunarlab-gatech.github.io/ShelfGaussian/.

2.104FireSentry: A Multi-Modal Spatio-temporal Benchmark Dataset for Fine-Grained Wildfire Spread Forecasting

arxiv html pdf kimi

2025/12/04 05:00 GTM

Fine-grained wildfire spread prediction is crucial for enhancing emergency response efficacy and decision-making precision. However, existing research predominantly focuses on coarse spatiotemporal scales and relies on low-resolution satellite data, capturing only macroscopic fire states while fundamentally constraining high-precision localized fire dynamics modeling capabilities. To bridge this gap, we present FireSentry, a provincial-scale multi-modal wildfire dataset characterized by sub-meter spatial and sub-second temporal resolution. Collected using synchronized UAV platforms, FireSentry provides visible and infrared video streams, in-situ environmental measurements, and manually validated fire masks. Building on FireSentry, we establish a comprehensive benchmark encompassing physics-based, data-driven, and generative models, revealing the limitations of existing mask-only approaches. Our analysis proposes FiReDiff, a novel dual-modality paradigm that first predicts future video sequences in the infrared modality, and then precisely segments fire masks in the mask modality based on the generated dynamics. FiReDiff achieves state-of-the-art performance, with video quality gains of 39.2% in PSNR, 36.1% in SSIM, 50.0% in LPIPS, 29.4% in FVD, and mask accuracy gains of 3.3% in AUPRC, 59.1% in F1 score, 42.9% in IoU, and 62.5% in MSE when applied to generative models. The FireSentry benchmark dataset and FiReDiff paradigm collectively advance fine-grained wildfire forecasting and dynamic disaster simulation. The processed benchmark dataset is publicly available at: https://github.com/Munan222/FireSentry-Benchmark-Dataset.

2.105A Hybrid Deep Learning Framework with Explainable AI for Lung Cancer Classification with DenseNet169 and SVM

arxiv html pdf kimi

2025/12/04 05:00 GTM

Lung cancer is a very deadly disease worldwide, and its early diagnosis is crucial for increasing patient survival rates. Computed tomography (CT) scans are widely used for lung cancer diagnosis as they can give detailed lung structures. However, manual interpretation is time-consuming and prone to human error. To surmount this challenge, the study proposes a deep learning-based automatic lung cancer classification system to enhance detection accuracy and interpretability. The IQOTHNCCD lung cancer dataset is utilized, which is a public CT scan dataset consisting of cases categorized into Normal, Benign, and Malignant and used DenseNet169, which includes Squeezeand-Excitation blocks for attention-based feature extraction, Focal Loss for handling class imbalance, and a Feature Pyramid Network (FPN) for multi-scale feature fusion. In addition, an SVM model was developed using MobileNetV2 for feature extraction, improving its classification performance. For model interpretability enhancement, the study integrated Grad-CAM for the visualization of decision-making regions in CT scans and SHAP (Shapley Additive Explanations) for explanation of feature contributions within the SVM model. Intensive evaluation was performed, and it was found that both DenseNet169 and SVM models achieved 98% accuracy, suggesting their robustness for real-world medical practice. These results open up the potential for deep learning to improve the diagnosis of lung cancer by a higher level of accuracy, transparency, and robustness.

2.106SeeU: Seeing the Unseen World via 4D Dynamics-aware Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Images and videos are discrete 2D projections of the 4D world (3D space + time). Most visual understanding, prediction, and generation operate directly on 2D observations, leading to suboptimal performance. We propose SeeU, a novel approach that learns the continuous 4D dynamics and generate the unseen visual contents. The principle behind SeeU is a new 2D\to4D\to2D learning framework. SeeU first reconstructs the 4D world from sparse and monocular 2D frames (2D\to4D). It then learns the continuous 4D dynamics on a low-rank representation and physical constraints (discrete 4D\tocontinuous 4D). Finally, SeeU rolls the world forward in time, re-projects it back to 2D at sampled times and viewpoints, and generates unseen regions based on spatial-temporal context awareness (4D\to2D). By modeling dynamics in 4D, SeeU achieves continuous and physically-consistent novel visual generation, demonstrating strong potentials in multiple tasks including unseen temporal generation, unseen spatial generation, and video editing.

2.107Hierarchical Attention for Sparse Volumetric Anomaly Detection in Subclinical Keratoconus

arxiv html pdf kimi

2025/12/04 05:00 GTM

The detection of weak, spatially distributed anomalies in volumetric medical imaging remains a major challenge. The subtle, non-adjacent nature of early disease signals is often lost due to suboptimal architectural inductive biases: 2D/3D CNNs impose strong locality, while ViTs diffuse unconstrained global attention. This conflict leaves the optimal inductive structure for robust, sparse volumetric pattern recognition unresolved. This study presents a controlled comparison of sixteen modern deep learning architectures spanning 2D/3D convolutional, hybrid, and volumetric transformer families for subclinical keratoconus (SKC) detection from 3D anterior segment OCT volumes. We demonstrate that hierarchical attention models offer a superior and more parameter-efficient inductive bias, surpassing the performance of both 2D and 3D CNNs and ViTs. Our results show 21-23% higher sensitivity and specificity in the sparse anomaly (subclinical) regime. Mechanistic analyses reveal that this advantage stems from precise spatial scale alignment: hierarchical windowing produces effective receptive fields matched to the intermediate, multi-slice extent of subclinical abnormalities. This avoids excessive CNN locality and diffuse global attention. Attention-distance measurements confirm a key insight into architectural adaptation: the required spatial integration length shifts significantly based on the signal strength, with subclinical cases necessitating longer integration compared to both healthy and manifest disease states. Representational similarity and auxiliary age/sex prediction tasks further support the generalizability of these inductive principles. The findings provide design guidance for future volumetric anomaly detection systems, establishing hierarchical attention as a principled and effective approach for early pathological change analysis in 3D medical imaging.

2.108HalluGen: Synthesizing Realistic and Controllable Hallucinations for Evaluating Image Restoration

arxiv html pdf kimi

2025/12/04 05:00 GTM

Generative models are prone to hallucinations: plausible but incorrect structures absent in the ground truth. This issue is problematic in image restoration for safety-critical domains such as medical imaging, industrial inspection, and remote sensing, where such errors undermine reliability and trust. For example, in low-field MRI, widely used in resource-limited settings, restoration models are essential for enhancing low-quality scans, yet hallucinations can lead to serious diagnostic errors. Progress has been hindered by a circular dependency: evaluating hallucinations requires labeled data, yet such labels are costly and subjective. We introduce HalluGen, a diffusion-based framework that synthesizes realistic hallucinations with controllable type, location, and severity, producing perceptually realistic but semantically incorrect outputs (segmentation IoU drops from 0.86 to 0.36). Using HalluGen, we construct the first large-scale hallucination dataset comprising 4,350 annotated images derived from 1,450 brain MR images for low-field enhancement, enabling systematic evaluation of hallucination detection and mitigation. We demonstrate its utility in two applications: (1) benchmarking image quality metrics and developing Semantic Hallucination Assessment via Feature Evaluation (SHAFE), a feature-based metric with soft-attention pooling that improves hallucination sensitivity over traditional metrics; and (2) training reference-free hallucination detectors that generalize to real restoration failures. Together, HalluGen and its open dataset establish the first scalable foundation for evaluating hallucinations in safety-critical image restoration.

2.109ProtoEFNet: Dynamic Prototype Learning for Inherently Interpretable Ejection Fraction Estimation in Echocardiography

arxiv html pdf kimi

2025/12/04 05:00 GTM

Ejection fraction (EF) is a crucial metric for assessing cardiac function and diagnosing conditions such as heart failure. Traditionally, EF estimation requires manual tracing and domain expertise, making the process time-consuming and subject to interobserver variability. Most current deep learning methods for EF prediction are black-box models with limited transparency, which reduces clinical trust. Some post-hoc explainability methods have been proposed to interpret the decision-making process after the prediction is made. However, these explanations do not guide the model’s internal reasoning and therefore offer limited reliability in clinical applications. To address this, we introduce ProtoEFNet, a novel video-based prototype learning model for continuous EF regression. The model learns dynamic spatiotemporal prototypes that capture clinically meaningful cardiac motion patterns. Additionally, the proposed Prototype Angular Separation (PAS) loss enforces discriminative representations across the continuous EF spectrum. Our experiments on the EchonetDynamic dataset show that ProtoEFNet can achieve accuracy on par with its non-interpretable counterpart while providing clinically relevant insight. The ablation study shows that the proposed loss boosts performance with a 2% increase in F1 score from 77.67±2.68 to 79.64±2.10. Our source code is available at: https://github.com/DeepRCL/ProtoEF

2.110Step-by-step Layered Design Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Design generation, in its essence, is a step-by-step process where designers progressively refine and enhance their work through careful modifications. Despite this fundamental characteristic, existing approaches mainly treat design synthesis as a single-step generation problem, significantly underestimating the inherent complexity of the creative process. To bridge this gap, we propose a novel problem setting called Step-by-Step Layered Design Generation, which tasks a machine learning model with generating a design that adheres to a sequence of instructions from a designer. Leveraging recent advancements in multi-modal LLMs, we propose SLEDGE: Step-by-step LayEred Design GEnerator to model each update to a design as an atomic, layered change over its previous state, while being grounded in the instruction. To complement our new problem setting, we introduce a new evaluation suite, including a dataset and a benchmark. Our exhaustive experimental analysis and comparison with state-of-the-art approaches tailored to our new setup demonstrate the efficacy of our approach. We hope our work will attract attention to this pragmatic and under-explored research area.

arxiv html pdf kimi

2025/12/04 05:00 GTM

Accurate environmental representations are essential for autonomous driving, providing the foundation for safe and efficient navigation. Traditionally, high-definition (HD) maps are providing this representation of the static road infrastructure to the autonomous system a priori. However, because the real world is constantly changing, such maps must be constructed online from on-board sensor data. Navigation-grade standard-definition (SD) maps are widely available, but their resolution is insufficient for direct deployment. Instead, they can be used as coarse prior to guide the online map construction process. We propose NavMapFusion, a diffusion-based framework that performs iterative denoising conditioned on high-fidelity sensor data and on low-fidelity navigation maps. This paper strives to answer: (1) How can coarse, potentially outdated navigation maps guide online map construction? (2) What advantages do diffusion models offer for map fusion? We demonstrate that diffusion-based map construction provides a robust framework for map fusion. Our key insight is that discrepancies between the prior map and online perception naturally correspond to noise within the diffusion process; consistent regions reinforce the map construction, whereas outdated segments are suppressed. On the nuScenes benchmark, NavMapFusion conditioned on coarse road lines from OpenStreetMap data reaches a 21.4% relative improvement on 100 m, and even stronger improvements on larger perception ranges, while maintaining real-time capabilities. By fusing low-fidelity priors with high-fidelity sensor data, the proposed method generates accurate and up-to-date environment representations, guiding towards safer and more reliable autonomous driving. The code is available at https://github.com/tmonnin/navmapfusion

2.112SpatialReasoner: Active Perception for Large-Scale 3D Scene Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

Spatial reasoning in large-scale 3D environments remains challenging for current vision-language models, which are typically constrained to room-scale scenarios. We introduce H2^2U3D (Holistic House Understanding in 3D), a 3D visual question answering dataset designed for house-scale scene understanding. H2^2U3D features multi-floor environments spanning up to three floors and 10-20 rooms, covering more than 300 m2^2. Through an automated annotation pipeline, it constructs hierarchical coarse-to-fine visual representations and generates diverse question-answer pairs with chain-of-thought annotations. We further propose SpatialReasoner, an active perception framework that autonomously invokes spatial tools to explore 3D scenes based on textual queries. SpatialReasoner is trained through a two-stage strategy: a supervised cold start followed by reinforcement learning with an adaptive exploration reward that promotes efficient exploration while discouraging redundant operations. Extensive experiments demonstrate that SpatialReasoner achieves state-of-the-art performance on H2^2U3D, outperforming strong baselines including GPT-4o and Gemini-2.5-Pro. Notably, our method attains superior results while using only 3-4 images in total on average, compared to baselines requiring 16+ images, highlighting the effectiveness of our coarse-to-fine active exploration paradigm.

2.113PyroFocus: A Deep Learning Approach to Real-Time Wildfire Detection in Multispectral Remote Sensing Imagery

arxiv html pdf kimi

2025/12/04 05:00 GTM

Rapid and accurate wildfire detection is crucial for emergency response and environmental management. In airborne and spaceborne missions, real-time algorithms must distinguish between no fire, active fire, and post-fire conditions, and estimate fire intensity. Multispectral and hyperspectral thermal imagers provide rich spectral information, but high data dimensionality and limited onboard resources make real-time processing challenging. As wildfires increase in frequency and severity, the need for low-latency and computationally efficient onboard detection methods is critical. We present a systematic evaluation of multiple deep learning architectures, including custom Convolutional Neural Networks (CNNs) and Transformer-based models, for multi-class fire classification. We also introduce PyroFocus, a two-stage pipeline that performs fire classification followed by fire radiative power (FRP) regression or segmentation to reduce inference time and computational cost for onboard deployment. Using data from NASA’s MODIS/ASTER Airborne Simulator (MASTER), which is similar to a next-generation fire detection sensor, we compare accuracy, inference latency, and resource efficiency. Experimental results show that the proposed two-stage pipeline achieves strong trade-offs between speed and accuracy, demonstrating significant potential for real-time edge deployment in future wildfire monitoring missions.

2.114PixPerfect: Seamless Latent Diffusion Local Editing with Discriminative Pixel-Space Refinement

arxiv html pdf kimi

2025/12/04 05:00 GTM

Latent Diffusion Models (LDMs) have markedly advanced the quality of image inpainting and local editing. However, the inherent latent compression often introduces pixel-level inconsistencies, such as chromatic shifts, texture mismatches, and visible seams along editing boundaries. Existing remedies, including background-conditioned latent decoding and pixel-space harmonization, usually fail to fully eliminate these artifacts in practice and do not generalize well across different latent representations or tasks. We introduce PixPerfect, a pixel-level refinement framework that delivers seamless, high-fidelity local edits across diverse LDM architectures and tasks. PixPerfect leverages (i) a differentiable discriminative pixel space that amplifies and suppresses subtle color and texture discrepancies, (ii) a comprehensive artifact simulation pipeline that exposes the refiner to realistic local editing artifacts during training, and (iii) a direct pixel-space refinement scheme that ensures broad applicability across diverse latent representations and tasks. Extensive experiments on inpainting, object removal, and insertion benchmarks demonstrate that PixPerfect substantially enhances perceptual fidelity and downstream editing performance, establishing a new standard for robust and high-fidelity localized image editing.

2.1152-Shots in the Dark: Low-Light Denoising with Minimal Data Acquisition

arxiv html pdf kimi

2025/12/04 05:00 GTM

Raw images taken in low-light conditions are very noisy due to low photon count and sensor noise. Learning-based denoisers have the potential to reconstruct high-quality images. For training, however, these denoisers require large paired datasets of clean and noisy images, which are difficult to collect. Noise synthesis is an alternative to large-scale data acquisition: given a clean image, we can synthesize a realistic noisy counterpart. In this work, we propose a general and practical noise synthesis method that requires only one single noisy image and one single dark frame per ISO setting. We represent signal-dependent noise with a Poisson distribution and introduce a Fourier-domain spectral sampling algorithm to accurately model signal-independent noise. The latter generates diverse noise realizations that maintain the spatial and statistical properties of real sensor noise. As opposed to competing approaches, our method neither relies on simplified parametric models nor on large sets of clean-noisy image pairs. Our synthesis method is not only accurate and practical, it also leads to state-of-the-art performances on multiple low-light denoising benchmarks.

2.116LLM-Guided Material Inference for 3D Point Clouds

arxiv html pdf kimi

2025/12/04 05:00 GTM

Most existing 3D shape datasets and models focus solely on geometry, overlooking the material properties that determine how objects appear. We introduce a two-stage large language model (LLM) based method for inferring material composition directly from 3D point clouds with coarse segmentations. Our key insight is to decouple reasoning about what an object is from what it is made of. In the first stage, an LLM predicts the object’s semantic; in the second stage, it assigns plausible materials to each geometric segment, conditioned on the inferred semantics. Both stages operate in a zero-shot manner, without task-specific training. Because existing datasets lack reliable material annotations, we evaluate our method using an LLM-as-a-Judge implemented in DeepEval. Across 1,000 shapes from Fusion/ABS and ShapeNet, our method achieves high semantic and material plausibility. These results demonstrate that language models can serve as general-purpose priors for bridging geometric reasoning and material understanding in 3D data.

2.117Object Counting with GPT-4o and GPT-5: A Comparative Study

arxiv html pdf kimi

2025/12/04 05:00 GTM

Zero-shot object counting attempts to estimate the number of object instances belonging to novel categories that the vision model performing the counting has never encountered during training. Existing methods typically require large amount of annotated data and often require visual exemplars to guide the counting process. However, large language models (LLMs) are powerful tools with remarkable reasoning and data understanding abilities, which suggest the possibility of utilizing them for counting tasks without any supervision. In this work we aim to leverage the visual capabilities of two multi-modal LLMs, GPT-4o and GPT-5, to perform object counting in a zero-shot manner using only textual prompts. We evaluate both models on the FSC-147 and CARPK datasets and provide a comparative analysis. Our findings show that the models achieve performance comparable to the state-of-the-art zero-shot approaches on FSC-147, in some cases, even surpass them.

2.118Kaleidoscopic Scintillation Event Imaging

arxiv html pdf kimi

2025/12/04 05:00 GTM

Scintillators are transparent materials that interact with high-energy particles and emit visible light as a result. They are used in state of the art methods of measuring high-energy particles and radiation sources. Most existing methods use fast single-pixel detectors to detect and time scintillation events. Cameras provide spatial resolution but can only capture an average over many events, making it difficult to image the events associated with an individual particle. Emerging single-photon avalanche diode cameras combine speed and spatial resolution to enable capturing images of individual events. This allows us to use machine vision techniques to analyze events, enabling new types of detectors. The main challenge is the very low brightness of the events. Techniques have to work with a very limited number of photons. We propose a kaleidoscopic scintillator to increase light collection in a single-photon camera while preserving the event’s spatial information. The kaleidoscopic geometry creates mirror reflections of the event in known locations for a given event location that are captured by the camera. We introduce theory for imaging an event in a kaleidoscopic scintillator and an algorithm to estimate the event’s 3D position. We find that the kaleidoscopic scintillator design provides sufficient light collection to perform high-resolution event measurements for advanced radiation imaging techniques using a commercial CMOS single-photon camera. Code and data are available at https://github.com/bocchs/kaleidoscopic_scintillator.

2.119Flux4D: Flow-based Unsupervised 4D Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reconstructing large-scale dynamic scenes from visual observations is a fundamental challenge in computer vision, with critical implications for robotics and autonomous systems. While recent differentiable rendering methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have achieved impressive photorealistic reconstruction, they suffer from scalability limitations and require annotations to decouple actor motion. Existing self-supervised methods attempt to eliminate explicit annotations by leveraging motion cues and geometric priors, yet they remain constrained by per-scene optimization and sensitivity to hyperparameter tuning. In this paper, we introduce Flux4D, a simple and scalable framework for 4D reconstruction of large-scale dynamic scenes. Flux4D directly predicts 3D Gaussians and their motion dynamics to reconstruct sensor observations in a fully unsupervised manner. By adopting only photometric losses and enforcing an “as static as possible” regularization, Flux4D learns to decompose dynamic elements directly from raw data without requiring pre-trained supervised models or foundational priors simply by training across many scenes. Our approach enables efficient reconstruction of dynamic scenes within seconds, scales effectively to large datasets, and generalizes well to unseen environments, including rare and unknown objects. Experiments on outdoor driving datasets show Flux4D significantly outperforms existing methods in scalability, generalization, and reconstruction quality.

2.120Does Head Pose Correction Improve Biometric Facial Recognition?

arxiv html pdf kimi

2025/12/04 05:00 GTM

Biometric facial recognition models often demonstrate significant decreases in accuracy when processing real-world images, often characterized by poor quality, non-frontal subject poses, and subject occlusions. We investigate whether targeted, AI-driven, head-pose correction and image restoration can improve recognition accuracy. Using a model-agnostic, large-scale, forensic-evaluation pipeline, we assess the impact of three restoration approaches: 3D reconstruction (NextFace), 2D frontalization (CFR-GAN), and feature enhancement (CodeFormer). We find that naive application of these techniques substantially degrades facial recognition accuracy. However, we also find that selective application of CFR-GAN combined with CodeFormer yields meaningful improvements.

2.121Drainage: A Unifying Framework for Addressing Class Uncertainty

arxiv html pdf kimi

2025/12/04 05:00 GTM

Modern deep learning faces significant challenges with noisy labels, class ambiguity, as well as the need to robustly reject out-of-distribution or corrupted samples. In this work, we propose a unified framework based on the concept of a "drainage node’’ which we add at the output of the network. The node serves to reallocate probability mass toward uncertainty, while preserving desirable properties such as end-to-end training and differentiability. This mechanism provides a natural escape route for highly ambiguous, anomalous, or noisy samples, particularly relevant for instance-dependent and asymmetric label noise. In systematic experiments involving the addition of varying proportions of instance-dependent noise or asymmetric noise to CIFAR-10/100 labels, our drainage formulation achieves an accuracy increase of up to 9% over existing approaches in the high-noise regime. Our results on real-world datasets, such as mini-WebVision, mini-ImageNet and Clothing-1M, match or surpass existing state-of-the-art methods. Qualitative analysis reveals a denoising effect, where the drainage neuron consistently absorbs corrupt, mislabeled, or outlier data, leading to more stable decision boundaries. Furthermore, our drainage formulation enables applications well beyond classification, with immediate benefits for web-scale, semi-supervised dataset cleaning, and open-set applications.

2.122Culture Affordance Atlas: Reconciling Object Diversity Through Functional Mapping

arxiv html pdf kimi

2025/12/04 05:00 GTM

Culture shapes the objects people use and for what purposes, yet mainstream Vision-Language (VL) datasets frequently exhibit cultural biases, disproportionately favoring higher-income, Western contexts. This imbalance reduces model generalizability and perpetuates performance disparities, especially impacting lower-income and non-Western communities. To address these disparities, we propose a novel function-centric framework that categorizes objects by the functions they fulfill, across diverse cultural and economic contexts. We implement this framework by creating the Culture Affordance Atlas, a re-annotated and culturally grounded restructuring of the Dollar Street dataset spanning 46 functions and 288 objects publicly available at https://lit.eecs.umich.edu/CultureAffordance-Atlas/index.html. Through extensive empirical analyses using the CLIP model, we demonstrate that function-centric labels substantially reduce socioeconomic performance gaps between high- and low-income groups by a median of 6 pp (statistically significant), improving model effectiveness for lower-income contexts. Furthermore, our analyses reveals numerous culturally essential objects that are frequently overlooked in prominent VL datasets. Our contributions offer a scalable pathway toward building inclusive VL datasets and equitable AI systems.

2.123Multi-Agent Reinforcement Learning and Real-Time Decision-Making in Robotic Soccer for Virtual Environments

arxiv html pdf kimi

2025/12/04 05:00 GTM

The deployment of multi-agent systems in dynamic, adversarial environments like robotic soccer necessitates real-time decision-making, sophisticated cooperation, and scalable algorithms to avoid the curse of dimensionality. While Reinforcement Learning (RL) offers a promising framework, existing methods often struggle with the multi-granularity of tasks (long-term strategy vs. instant actions) and the complexity of large-scale agent interactions. This paper presents a unified Multi-Agent Reinforcement Learning (MARL) framework that addresses these challenges. First, we establish a baseline using Proximal Policy Optimization (PPO) within a client-server architecture for real-time action scheduling, with PPO demonstrating superior performance (4.32 avg. goals, 82.9% ball control). Second, we introduce a Hierarchical RL (HRL) structure based on the options framework to decompose the problem into a high-level trajectory planning layer (modeled as a Semi-Markov Decision Process) and a low-level action execution layer, improving global strategy (avg. goals increased to 5.26). Finally, to ensure scalability, we integrate mean-field theory into the HRL framework, simplifying many-agent interactions into a single agent vs. the population average. Our mean-field actor-critic method achieves a significant performance boost (5.93 avg. goals, 89.1% ball control, 92.3% passing accuracy) and enhanced training stability. Extensive simulations of 4v4 matches in the Webots environment validate our approach, demonstrating its potential for robust, scalable, and cooperative behavior in complex multi-agent domains.

2.124Hierarchical Process Reward Models are Symbolic Vision Learners

arxiv html pdf kimi

2025/12/04 05:00 GTM

Symbolic computer vision represents diagrams through explicit logical rules and structured representations, enabling interpretable understanding in machine vision. This requires fundamentally different learning paradigms from pixel-based visual models. Symbolic visual learners parse diagrams into geometric primitives-points, lines, and shapes-whereas pixel-based learners operate on textures and colors. We propose a novel self-supervised symbolic auto-encoder that encodes diagrams into structured primitives and their interrelationships within the latent space, and decodes them through our executable engine to reconstruct the input diagrams. Central to this architecture is Symbolic Hierarchical Process Reward Modeling, which applies hierarchical step-level parsing rewards to enforce point-on-line, line-on-shape, and shape-on-relation consistency. Since vanilla reinforcement learning exhibits poor exploration in the policy space during diagram reconstruction; we thus introduce stabilization mechanisms to balance exploration and exploitation. We fine-tune our symbolic encoder on downstream tasks, developing a neuro-symbolic system that integrates the reasoning capabilities of neural networks with the interpretability of symbolic models through reasoning-grounded visual rewards. Evaluations across reconstruction, perception, and reasoning tasks demonstrate the effectiveness of our approach: achieving a 98.2% reduction in MSE for geometric diagram reconstruction, surpassing GPT-4o by 0.6% with a 7B model on chart reconstruction, and improving by +13% on the MathGlance perception benchmark, and by +3% on MathVerse and GeoQA reasoning benchmarks.

2.125PanFoMa: A Lightweight Foundation Model and Benchmark for Pan-Cancer

arxiv html pdf kimi

2025/12/04 05:00 GTM

Single-cell RNA sequencing (scRNA-seq) is essential for decoding tumor heterogeneity. However, pan-cancer research still faces two key challenges: learning discriminative and efficient single-cell representations, and establishing a comprehensive evaluation benchmark. In this paper, we introduce PanFoMa, a lightweight hybrid neural network that combines the strengths of Transformers and state-space models to achieve a balance between performance and efficiency. PanFoMa consists of a front-end local-context encoder with shared self-attention layers to capture complex, order-independent gene interactions; and a back-end global sequential feature decoder that efficiently integrates global context using a linear-time state-space model. This modular design preserves the expressive power of Transformers while leveraging the scalability of Mamba to enable transcriptome modeling, effectively capturing both local and global regulatory signals. To enable robust evaluation, we also construct a large-scale pan-cancer single-cell benchmark, PanFoMaBench, containing over 3.5 million high-quality cells across 33 cancer subtypes, curated through a rigorous preprocessing pipeline. Experimental results show that PanFoMa outperforms state-of-the-art models on our pan-cancer benchmark (+4.0%) and across multiple public tasks, including cell type annotation (+7.4%), batch integration (+4.0%) and multi-omics integration (+3.1%). The code is available at https://github.com/Xiaoshui-Huang/PanFoMa.

2.126Energy-Efficient Federated Learning via Adaptive Encoder Freezing for MRI-to-CT Conversion: A Green AI-Guided Research

arxiv html pdf kimi

2025/12/04 05:00 GTM

Federated Learning (FL) holds the potential to advance equality in health by enabling diverse institutions to collaboratively train deep learning (DL) models, even with limited data. However, the significant resource requirements of FL often exclude centres with limited computational infrastructure, further widening existing healthcare disparities. To address this issue, we propose a Green AI-oriented adaptive layer-freezing strategy designed to reduce energy consumption and computational load while maintaining model performance. We tested our approach using different federated architectures for Magnetic Resonance Imaging (MRI)-to-Computed Tomography (CT) conversion. The proposed adaptive strategy optimises the federated training by selectively freezing the encoder weights based on the monitored relative difference of the encoder weights from round to round. A patience-based mechanism ensures that freezing only occurs when updates remain consistently minimal. The energy consumption and CO2eq emissions of the federation were tracked using the CodeCarbon library. Compared to equivalent non-frozen counterparts, our approach reduced training time, total energy consumption and CO2eq emissions by up to 23%. At the same time, the MRI-to-CT conversion performance was maintained, with only small variations in the Mean Absolute Error (MAE). Notably, for three out of the five evaluated architectures, no statistically significant differences were observed, while two architectures exhibited statistically significant improvements. Our work aligns with a research paradigm that promotes DL-based frameworks meeting clinical requirements while ensuring climatic, social, and economic sustainability. It lays the groundwork for novel FL evaluation frameworks, advancing privacy, equity and, more broadly, justice in AI-driven healthcare.

2.127LATTICE: Democratize High-Fidelity 3D Generation at Scale

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present LATTICE, a new framework for high-fidelity 3D asset generation that bridges the quality and scalability gap between 3D and 2D generative models. While 2D image synthesis benefits from fixed spatial grids and well-established transformer architectures, 3D generation remains fundamentally more challenging due to the need to predict both spatial structure and detailed geometric surfaces from scratch. These challenges are exacerbated by the computational complexity of existing 3D representations and the lack of structured and scalable 3D asset encoding schemes. To address this, we propose VoxSet, a semi-structured representation that compresses 3D assets into a compact set of latent vectors anchored to a coarse voxel grid, enabling efficient and position-aware generation. VoxSet retains the simplicity and compression advantages of prior VecSet methods while introducing explicit structure into the latent space, allowing positional embeddings to guide generation and enabling strong token-level test-time scaling. Built upon this representation, LATTICE adopts a two-stage pipeline: first generating a sparse voxelized geometry anchor, then producing detailed geometry using a rectified flow transformer. Our method is simple at its core, but supports arbitrary resolution decoding, low-cost training, and flexible inference schemes, achieving state-of-the-art performance on various aspects, and offering a significant step toward scalable, high-quality 3D asset creation.

2.128SkillFactory: Self-Distillation For Learning Cognitive Behaviors

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reasoning models leveraging long chains of thought employ various cognitive skills, such as verification of their answers, backtracking, retrying by an alternate method, and more. Previous work has shown that when a base language model exhibits these skills, training that model further with reinforcement learning (RL) can learn to leverage them. How can we get models to leverage skills that aren’t exhibited by base models? Our work, SkillFactory, is a method for fine-tuning models to roughly learn these skills during a supervised fine-tuning (SFT) stage prior to RL. Our approach does not rely on distillation from a stronger model, but instead uses samples from the model itself, rearranged to provide training data in the format of those skills. These “silver” SFT traces may be imperfect, but are nevertheless effective for priming a model to acquire skills during RL. Our evaluation shows that (1) starting from SkillFactory SFT initialization helps a model to generalize to harder variants of a task post-RL, despite lower performance pre-RL; (2) cognitive skills are indeed used by the model; (3) RLed SkillFactory models are more robust to regression on out-of-domain tasks than RLed base models. Our work suggests that inductive biases learned prior to RL help models learn robust cognitive skill use.

2.129Stable Signer: Hierarchical Sign Language Generative Model

arxiv html pdf kimi

2025/12/04 05:00 GTM

Sign Language Production (SLP) is the process of converting the complex input text into a real video. Most previous works focused on the Text2Gloss, Gloss2Pose, Pose2Vid stages, and some concentrated on Prompt2Gloss and Text2Avatar stages. However, this field has made slow progress due to the inaccuracy of text conversion, pose generation, and the rendering of poses into real human videos in these stages, resulting in gradually accumulating errors. Therefore, in this paper, we streamline the traditional redundant structure, simplify and optimize the task objective, and design a new sign language generative model called Stable Signer. It redefines the SLP task as a hierarchical generation end-to-end task that only includes text understanding (Prompt2Gloss, Text2Gloss) and Pose2Vid, and executes text understanding through our proposed new Sign Language Understanding Linker called SLUL, and generates hand gestures through the named SLP-MoE hand gesture rendering expert block to end-to-end generate high-quality and multi-style sign language videos. SLUL is trained using the newly developed Semantic-Aware Gloss Masking Loss (SAGM Loss). Its performance has improved by 48.6% compared to the current SOTA generation methods.

2.130Jina-VLM: Small Multilingual Vision Language Model

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present Jina-VLM, a 2.4B parameter vision-language model that achieves state-of-the-art multilingual visual question answering among open 2B-scale VLMs. The model couples a SigLIP2 vision encoder with a Qwen3 language backbone through an attention-pooling connector that enables token-efficient processing of arbitrary-resolution images. Across standard VQA benchmarks and multilingual evaluations, Jina-VLM outperforms comparable models while preserving competitive text-only performance.

2.131AugServe: Adaptive Request Scheduling for Augmented Large Language Model Inference Serving

arxiv html pdf kimi

2025/12/04 05:00 GTM

As augmented large language models (LLMs) with external tools become increasingly popular in web applications, improving augmented LLM inference serving efficiency and optimizing service-level objectives (SLOs) are critical for enhancing user experience. To achieve this, inference systems must maximize request handling within latency constraints, referred to as increasing effective throughput. However, existing systems face two major challenges: (i) reliance on first-come-first-served (FCFS) scheduling causes severe head-of-line blocking, leading to queuing delays exceeding the SLOs for many requests; and (ii) static batch token limit, which fails to adapt to fluctuating loads and hardware conditions. Both of these factors degrade effective throughput and service quality. This paper presents AugServe, an efficient inference framework designed to reduce queueing latency and enhance effective throughput for augmented LLM inference services. The core idea of AugServe is a two-stage adaptive request scheduling strategy. Specifically, AugServe combines the inference features of augmented LLM requests to optimize the order of scheduling decisions (stage I). These decisions are continuously refined with runtime information (stage II), adapting to both request characteristics and system capabilities. In addition, AugServe dynamically adjusts the token batching mechanism based on hardware status and real-time load, further enhancing throughput performance. Experimental results show that AugServe achieves 4.7-33.1x and 3.3-13.2x higher effective throughput than vLLM and InferCept, while reducing time-to-first-token (TTFT) by up to 96.3% and 95.0%, respectively.

2.132Teaching Old Tokenizers New Words: Efficient Tokenizer Adaptation for Pre-trained Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Tokenizer adaptation plays an important role in transferring pre-trained language models to new domains or languages. In this work, we address two complementary aspects of this process: vocabulary extension and pruning. The common approach to extension trains a new tokenizer on domain-specific text and appends the tokens that do not overlap with the existing vocabulary, which often results in many tokens that are unreachable or never used. We propose continued BPE training, which adapts a pre-trained tokenizer by continuing the BPE merge learning process on new data. Experiments across multiple languages and model families show that this approach improves tokenization efficiency and leads to better utilization of added vocabulary. We also introduce leaf-based vocabulary pruning, which removes redundant tokens while preserving model quality. Together, these methods provide practical tools for controlled vocabulary modification, which we release as an open-source package.

2.133Adapting Large Language Models to Low-Resource Tibetan: A Two-Stage Continual and Supervised Fine-Tuning Study

arxiv html pdf kimi

2025/12/04 05:00 GTM

Adapting large language models (LLMs) to low-resource languages remains a major challenge due to data scarcity and cross-lingual drift. This work presents a two-stage adaptation of Qwen2.5-3B to Tibetan, a morphologically rich and underrepresented language. We employ Continual Pretraining (CPT) to establish Tibetan linguistic grounding, followed by Supervised Fine-Tuning (SFT) for task and translation specialization. Empirical evaluations demonstrate a consistent decrease in perplexity (from 2.98 \rightarrow 1.54) and substantial improvements in Chinese\rightarrowTibetan translation quality (BLEU: 0.046 \rightarrow 0.261; chrF: 2.2 \rightarrow 6.6). Layer-wise analysis across 435 layers in Qwen3-4B reveals that adaptation primarily concentrates on embedding and output heads, with mid--late MLP projections encoding domain-specific transformations. Our findings suggest that CPT constructs a Tibetan semantic manifold while SFT sharpens task alignment with minimal representational disruption. This study provides the first quantitative exploration of Tibetan adaptation dynamics for LLMs, and offers an open, reproducible framework for extending multilingual foundation models to low-resource settings.

2.134Is Lying Only Sinful in Islam? Exploring Religious Bias in Multilingual Large Language Models Across Major Religions

arxiv html pdf kimi

2025/12/04 05:00 GTM

While recent developments in large language models have improved bias detection and classification, sensitive subjects like religion still present challenges because even minor errors can result in severe misunderstandings. In particular, multilingual models often misrepresent religions and have difficulties being accurate in religious contexts. To address this, we introduce BRAND: Bilingual Religious Accountable Norm Dataset, which focuses on the four main religions of South Asia: Buddhism, Christianity, Hinduism, and Islam, containing over 2,400 entries, and we used three different types of prompts in both English and Bengali. Our results indicate that models perform better in English than in Bengali and consistently display bias toward Islam, even when answering religion-neutral questions. These findings highlight persistent bias in multilingual models when similar questions are asked in different languages. We further connect our findings to the broader issues in HCI regarding religion and spirituality.

2.135BERnaT: Basque Encoders for Representing Natural Textual Diversity

arxiv html pdf kimi

2025/12/04 05:00 GTM

Language models depend on massive text corpora that are often filtered for quality, a process that can unintentionally exclude non-standard linguistic varieties, reduce model robustness and reinforce representational biases. In this paper, we argue that language models should aim to capture the full spectrum of language variation (dialectal, historical, informal, etc.) rather than relying solely on standardized text. Focusing on Basque, a morphologically rich and low-resource language, we construct new corpora combining standard, social media, and historical sources, and pre-train the BERnaT family of encoder-only models in three configurations: standard, diverse, and combined. We further propose an evaluation framework that separates Natural Language Understanding (NLU) tasks into standard and diverse subsets to assess linguistic generalization. Results show that models trained on both standard and diverse data consistently outperform those trained on standard corpora, improving performance across all task types without compromising standard benchmark accuracy. These findings highlight the importance of linguistic diversity in building inclusive, generalizable language models.

2.136Reconstructing KV Caches with Cross-layer Fusion For Enhanced Transformers

arxiv html pdf kimi

2025/12/04 05:00 GTM

Transformer decoders have achieved strong results across tasks, but the memory required for the KV cache becomes prohibitive at long sequence lengths. Although Cross-layer KV Cache sharing (e.g., YOCO, CLA) offers a path to mitigate KV Cache bottleneck, it typically underperforms within-layer methods like GQA. To understand the root cause, we investigate the information flow of keys and values of the top-layers. Our preliminary reveals a clear distribution: values are predominantly derived from the bottom layer, while keys draw more information from both bottom and middle layers. Building upon this, we propose FusedKV, whose top-layer KV caches are a learnable fusion of the most informative ones from the bottom and middle layers. This fusion operates directly on post-RoPE keys, preserving relative positional information without the computational cost of re-applying rotary embeddings. To further improve efficiency, we propose FusedKV-Lite, an cross-layer sharing approach, where top-layer KV caches are directly derived from the bottom-layer values and the middle-layer keys. Compared to FusedKV, FusedKV-Lite reduces I/O overhead at the cost of a slight increase in perplexity. In experiments on LLMs ranging from 332M to 4B parameters, our proposed method reduce 50% cache memory while achieving lower validation perplexity than the standard Transformer decoder, establishing it as a memory-efficient, high-performance architectural alternative.

2.137Training and Evaluation of Guideline-Based Medical Reasoning in LLMs

arxiv html pdf kimi

2025/12/04 05:00 GTM

Machine learning for early prediction in medicine has recently shown breakthrough performance, however, the focus on improving prediction accuracy has led to a neglect of faithful explanations that are required to gain the trust of medical practitioners. The goal of this paper is to teach LLMs to follow medical consensus guidelines step-by-step in their reasoning and prediction process. Since consensus guidelines are ubiquitous in medicine, instantiations of verbalized medical inference rules to electronic health records provide data for fine-tuning LLMs to learn consensus rules and possible exceptions thereof for many medical areas. Consensus rules also enable an automatic evaluation of the model’s inference process regarding its derivation correctness (evaluating correct and faithful deduction of a conclusion from given premises) and value correctness (comparing predicted values against real-world measurements). We exemplify our work using the complex Sepsis-3 consensus definition. Our experiments show that small fine-tuned models outperform one-shot learning of considerably larger LLMs that are prompted with the explicit definition and models that are trained on medical texts including consensus definitions. Since fine-tuning on verbalized rule instantiations of a specific medical area yields nearly perfect derivation correctness for rules (and exceptions) on unseen patient data in that area, the bottleneck for early prediction is not out-of-distribution generalization, but the orthogonal problem of generalization into the future by forecasting sparsely and irregularly sampled clinical variables. We show that the latter results can be improved by integrating the output representations of a time series forecasting model with the LLM in a multimodal setup.

2.138Improving Alignment Between Human and Machine Codes: An Empirical Assessment of Prompt Engineering for Construct Identification in Psychology

arxiv html pdf kimi

2025/12/04 05:00 GTM

Due to their architecture and vast pre-training data, large language models (LLMs) demonstrate strong text classification performance. However, LLM output - here, the category assigned to a text - depends heavily on the wording of the prompt. While literature on prompt engineering is expanding, few studies focus on classification tasks, and even fewer address domains like psychology, where constructs have precise, theory-driven definitions that may not be well represented in pre-training data. We present an empirical framework for optimizing LLM performance for identifying constructs in texts via prompt engineering. We experimentally evaluate five prompting strategies --codebook-guided empirical prompt selection, automatic prompt engineering, persona prompting, chain-of-thought reasoning, and explanatory prompting - with zero-shot and few-shot classification. We find that persona, chain-of-thought, and explanations do not fully address performance loss accompanying a badly worded prompt. Instead, the most influential features of a prompt are the construct definition, task framing, and, to a lesser extent, the examples provided. Across three constructs and two models, the classifications most aligned with expert judgments resulted from a few-shot prompt combining codebook-guided empirical prompt selection with automatic prompt engineering. Based on our findings, we recommend that researchers generate and evaluate as many prompt variants as feasible, whether human-crafted, automatically generated, or ideally both, and select prompts and examples based on empirical performance in a training dataset, validating the final approach in a holdout set. This procedure offers a practical, systematic, and theory-driven method for optimizing LLM prompts in settings where alignment with expert judgment is critical.

2.139Enhancing Instruction-Following Capabilities in Seq2Seq Models: DoLA Adaptations for T5

arxiv html pdf kimi

2025/12/04 05:00 GTM

Contrastive decoding is a lightweight and effective inference-time method that improves the quality of text generation in Large Language Models. However, algorithms such as DoLa (Decoding by Contrastive Layers) have only been implemented in decoder-only architectures and studied for their impact on improving factuality. This work adapts DoLa for the T5 and FLAN-T5 model families and evaluates its impact on the models’ instruction following capabilities, which to our knowledge is the first implementation of a contrastive decoding strategy in an encoder-decoder architecture. Our results show that DoLa improves the faithfulness of text generation for certain categories of tasks and harms others. To understand these results, we present a layer-by-layer analysis of logit evolution in a FLAN-T5 model to quantify DoLa’s impact on token output probabilities.

2.140AdaptVision: Efficient Vision-Language Models via Adaptive Visual Acquisition

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision-Language Models (VLMs) have achieved remarkable success in visual question answering tasks, but their reliance on large numbers of visual tokens introduces significant computational overhead. While existing efficient VLM approaches reduce visual tokens through fixed-ratio compression, they operate passively and lack the ability to adapt to varying task requirements. This motivates a fundamental question: Can VLMs autonomously determine the minimum number of visual tokens required for each sample? Inspired by human active vision mechanisms, we introduce AdaptVision, an efficient VLM paradigm that enables adaptive visual token acquisition through a coarse-to-fine approach. Our model initially processes compressed visual tokens from low-resolution images and selectively acquires additional visual information by invoking a bounding box tool to crop key regions when necessary. We train AdaptVision using a reinforcement learning framework that carefully balances accuracy and efficiency. Central to our approach is Decoupled Turn Policy Optimization (DTPO), which decouples the learning objective into two components: (1) tool learning, which optimizes correct tool utilization, and (2) accuracy improvement, which refines the generated responses to improve answer correctness. Based on this formulation, we further decouple advantage estimation by computing separate advantages for tokens associated with each objective. This formulation enables more effective optimization for AdaptVision compared to vanilla GRPO. Comprehensive experiments across multiple VQA benchmarks demonstrate that AdaptVision achieves superior performance while consuming substantially fewer visual tokens than state-of-the-art efficient VLM methods.

2.141In-Context Representation Hijacking

arxiv html pdf kimi

2025/12/04 05:00 GTM

We introduce \textbf{Doublespeak}, a simple \emph{in-context representation hijacking} attack against large language models (LLMs). The attack works by systematically replacing a harmful keyword (e.g., \textit{bomb}) with a benign token (e.g., \textit{carrot}) across multiple in-context examples, provided a prefix to a harmful request. We demonstrate that this substitution leads to the internal representation of the benign token converging toward that of the harmful one, effectively embedding the harmful semantics under a euphemism. As a result, superficially innocuous prompts (e.g., How to build a carrot?'') are internally interpreted as disallowed instructions (e.g., How to build a bomb?‘’), thereby bypassing the model’s safety alignment. We use interpretability tools to show that this semantic overwrite emerges layer by layer, with benign meanings in early layers converging into harmful semantics in later ones. Doublespeak is optimization-free, broadly transferable across model families, and achieves strong success rates on closed-source and open-source systems, reaching 74% ASR on Llama-3.3-70B-Instruct with a single-sentence context override. Our findings highlight a new attack surface in the latent space of LLMs, revealing that current alignment strategies are insufficient and should instead operate at the representation level.

2.142Principled RL for Diffusion LLMs Emerges from a Sequence-Level Perspective

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reinforcement Learning (RL) has proven highly effective for autoregressive language models, but adapting these methods to diffusion large language models (dLLMs) presents fundamental challenges. The core difficulty lies in likelihood approximation: while autoregressive models naturally provide token-level conditional probabilities essential for token-level RL objectives (e.g., GRPO), dLLMs generate sequences through iterative non-autoregressive denoising steps that lack this factorization. To address this fundamental mismatch, we propose ELBO-based Sequence-level Policy Optimization (ESPO), a principled RL framework that treats entire sequence generation as a single action and uses the ELBO as a tractable sequence-level likelihood proxy. Our method incorporates per-token normalization of importance ratios and robust KL-divergence estimation to ensure stable large-scale training. Extensive experiments on mathematical reasoning, coding, and planning tasks demonstrate that ESPO significantly outperforms token-level baselines, achieving dramatic improvements of 20-40 points on the Countdown task, while maintaining consistent gains on math and coding benchmarks. Our approach establishes sequence-level optimization as a principled and empirically effective paradigm for RL in dLLMs. Our code is available at https://github.com/ML-GSAI/ESPO.

2.143Thinking with Programming Vision: Towards a Unified View for Thinking with Images

arxiv html pdf kimi

2025/12/04 05:00 GTM

Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.

2.144AR-Med: Automated Relevance Enhancement in Medical Search via LLM-Driven Information Augmentation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Accurate and reliable search on online healthcare platforms is critical for user safety and service efficacy. Traditional methods, however, often fail to comprehend complex and nuanced user queries, limiting their effectiveness. Large language models (LLMs) present a promising solution, offering powerful semantic understanding to bridge this gap. Despite their potential, deploying LLMs in this high-stakes domain is fraught with challenges, including factual hallucinations, specialized knowledge gaps, and high operational costs. To overcome these barriers, we introduce \textbf{AR-Med}, a novel framework for \textbf{A}utomated \textbf{R}elevance assessment for \textbf{Med}ical search that has been successfully deployed at scale on the Online Medical Delivery Platforms. AR-Med grounds LLM reasoning in verified medical knowledge through a retrieval-augmented approach, ensuring high accuracy and reliability. To enable efficient online service, we design a practical knowledge distillation scheme that compresses large teacher models into compact yet powerful student models. We also introduce LocalQSMed, a multi-expert annotated benchmark developed to guide model iteration and ensure strong alignment between offline and online performance. Extensive experiments show AR-Med achieves an offline accuracy of over 93%, a 24% absolute improvement over the original online system, and delivers significant gains in online relevance and user satisfaction. Our work presents a practical and scalable blueprint for developing trustworthy, LLM-powered systems in real-world healthcare applications.

2.145DZ-TDPO: Non-Destructive Temporal Alignment for Mutable State Tracking in Long-Context Dialogue

arxiv html pdf kimi

2025/12/04 05:00 GTM

Long-context dialogue systems suffer from State Inertia, where static constraints prevent models from resolving conflicts between evolving user intents and established historical context. To address this, we propose DZ-TDPO, a non-destructive alignment framework that synergizes conflict-aware dynamic KL constraints with a learnable temporal attention bias. Experiments on the Multi-Session Chat (MSC) dataset demonstrate that DZ-TDPO achieves state-of-the-art win rates (86.2% on Phi-3.5) while maintaining robust zero-shot generalization. Crucially, our scaling analysis reveals a “Capacity-Stability Trade-off”: while smaller models incur an “alignment tax” (perplexity surge) to overcome historical inertia, the larger Qwen2.5-7B model achieves near-perfect alignment (99.4% win rate) with negligible perplexity overhead. This confirms that TAI can be alleviated via precise attention regulation rather than destructive weight updates, preserving general capabilities (MMLU) across model scales. Code and data are available: https://github.com/lyj20071013/DZ-TDPO

2.146AITutor-EvalKit: Exploring the Capabilities of AI Tutors

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present AITutor-EvalKit, an application that uses language technology to evaluate the pedagogical quality of AI tutors, provides software for demonstration and evaluation, as well as model inspection and data visualization. This tool is aimed at education stakeholders as well as *ACL community at large, as it supports learning and can also be used to collect user feedback and annotations.

2.147Different types of syntactic agreement recruit the same units within large language models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large language models (LLMs) can reliably distinguish grammatical from ungrammatical sentences, but how grammatical knowledge is represented within the models remains an open question. We investigate whether different syntactic phenomena recruit shared or distinct components in LLMs. Using a functional localization approach inspired by cognitive neuroscience, we identify the LLM units most responsive to 67 English syntactic phenomena in seven open-weight models. These units are consistently recruited across sentences containing the phenomena and causally support the models’ syntactic performance. Critically, different types of syntactic agreement (e.g., subject-verb, anaphor, determiner-noun) recruit overlapping sets of units, suggesting that agreement constitutes a meaningful functional category for LLMs. This pattern holds in English, Russian, and Chinese; and further, in a cross-lingual analysis of 57 diverse languages, structurally more similar languages share more units for subject-verb agreement. Taken together, these findings reveal that syntactic agreement-a critical marker of syntactic dependencies-constitutes a meaningful category within LLMs’ representational spaces.

2.148Evaluating Hydro-Science and Engineering Knowledge of Large Language Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Hydro-Science and Engineering (Hydro-SE) is a critical and irreplaceable domain that secures human water supply, generates clean hydropower energy, and mitigates flood and drought disasters. Featuring multiple engineering objectives, Hydro-SE is an inherently interdisciplinary domain that integrates scientific knowledge with engineering expertise. This integration necessitates extensive expert collaboration in decision-making, which poses difficulties for intelligence. With the rapid advancement of large language models (LLMs), their potential application in the Hydro-SE domain is being increasingly explored. However, the knowledge and application abilities of LLMs in Hydro-SE have not been sufficiently evaluated. To address this issue, we propose the Hydro-SE LLM evaluation benchmark (Hydro-SE Bench), which contains 4,000 multiple-choice questions. Hydro-SE Bench covers nine subfields and enables evaluation of LLMs in aspects of basic conceptual knowledge, engineering application ability, and reasoning and calculation ability. The evaluation results on Hydro-SE Bench show that the accuracy values vary among 0.74 to 0.80 for commercial LLMs, and among 0.41 to 0.68 for small-parameter LLMs. While LLMs perform well in subfields closely related to natural and physical sciences, they struggle with domain-specific knowledge such as industry standards and hydraulic structures. Model scaling mainly improves reasoning and calculation abilities, but there is still great potential for LLMs to better handle problems in practical engineering application. This study highlights the strengths and weaknesses of LLMs for Hydro-SE tasks, providing model developers with clear training targets and Hydro-SE researchers with practical guidance for applying LLMs.

2.149Generative AI Practices, Literacy, and Divides: An Empirical Analysis in the Italian Context

arxiv html pdf kimi

2025/12/04 05:00 GTM

The rise of Artificial Intelligence (AI) language technologies, particularly generative AI (GenAI) chatbots accessible via conversational interfaces, is transforming digital interactions. While these tools hold societal promise, they also risk widening digital divides due to uneven adoption and low awareness of their limitations. This study presents the first comprehensive empirical mapping of GenAI adoption, usage patterns, and literacy in Italy, based on newly collected survey data from 1,906 Italian-speaking adults. Our findings reveal widespread adoption for both work and personal use, including sensitive tasks like emotional support and medical advice. Crucially, GenAI is supplanting other technologies to become a primary information source: this trend persists despite low user digital literacy, posing a risk as users struggle to recognize errors or misinformation. Moreover, we identify a significant gender divide -- particularly pronounced in older generations -- where women are half as likely to adopt GenAI and use it less frequently than men. While we find literacy to be a key predictor of adoption, it only partially explains this disparity, suggesting that other barriers are at play. Overall, our data provide granular insights into the multipurpose usage of GenAI, highlighting the dual need for targeted educational initiatives and further investigation into the underlying barriers to equitable participation that competence alone cannot explain.

2.150Optical Context Compression Is Just (Bad) Autoencoding

arxiv html pdf kimi

2025/12/04 05:00 GTM

DeepSeek-OCR demonstrates that rendered text can be reconstructed with high fidelity from a small number of vision tokens. This finding has sparked excitement about vision-based context compression for language models. But the evaluation stops at reconstruction; whether these representations help language modeling remains untested. We test two assumptions implicit in the optical-compression narrative: that vision-based compression provides unique advantages for text reconstruction from compressed representations, and that DeepSeek-OCR’s reconstruction results are evidence that vision-based compression will be useful for language modeling. Comparing their vision encoder against simple alternatives--parameter-free mean pooling and a learned hierarchical encoder--we find that these simple approaches match or surpass vision for reconstruction at matched compression ratios, and outperform it for language modeling--where vision-based compression fails to beat truncation. The excitement around optical context compression outpaces the evidence. Code and checkpoints are available at https://github.com/ivnle/bad-autoencoding

2.151AlignCheck: a Semantic Open-Domain Metric for Factual Consistency Assessment

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large Language Models have significantly advanced natural language processing tasks, but remain prone to generating incorrect or misleading but plausible arguments. This issue, known as hallucination, is particularly concerning in high-stakes domains like clinical applications, where factual inaccuracies can have severe consequences. Existing evaluation metrics fail to adequately assess factual consistency and lack interpretability, making diagnosing and mitigating errors difficult. We propose an interpretable framework for factual consistency assessment for in-domain and open-domain texts to address these limitations. Our approach decomposes text into atomic facts and introduces a flexible, schema-free methodology. Unlike previous methods with an absolute metric, we incorporate a weighted metric to enhance factual evaluation. Additionally, we propose a mechanism to control assessment complexity in intricate domains. We benchmark our approach on popular general and clinical datasets and release our code to support fact-aware model training in future research.

2.152SELF: A Robust Singular Value and Eigenvalue Approach for LLM Fingerprinting

arxiv html pdf kimi

2025/12/04 05:00 GTM

The protection of Intellectual Property (IP) in Large Language Models (LLMs) represents a critical challenge in contemporary AI research. While fingerprinting techniques have emerged as a fundamental mechanism for detecting unauthorized model usage, existing methods -- whether behavior-based or structural -- suffer from vulnerabilities such as false claim attacks or susceptible to weight manipulations. To overcome these limitations, we propose SELF, a novel intrinsic weight-based fingerprinting scheme that eliminates dependency on input and inherently resists false claims. SELF achieves robust IP protection through two key innovations: 1) unique, scalable and transformation-invariant fingerprint extraction via singular value and eigenvalue decomposition of LLM attention weights, and 2) effective neural network-based fingerprint similarity comparison based on few-shot learning and data augmentation. Experimental results demonstrate SELF maintains high IP infringement detection accuracy while showing strong robustness against various downstream modifications, including quantization, pruning, and fine-tuning attacks. Our code is available at https://github.com/HanxiuZhang/SELF_v2.

2.153Fine-grained Narrative Classification in Biased News Articles

arxiv html pdf kimi

2025/12/04 05:00 GTM

Narratives are the cognitive and emotional scaffolds of propaganda. They organize isolated persuasive techniques into coherent stories that justify actions, attribute blame, and evoke identification with ideological camps. In this paper, we propose a novel fine-grained narrative classification in biased news articles. We also explore article-bias classification as the precursor task to narrative classification and fine-grained persuasive technique identification. We develop INDI-PROP, the first ideologically grounded fine-grained narrative dataset with multi-level annotation for analyzing propaganda in Indian news media. Our dataset INDI-PROP comprises 1,266 articles focusing on two polarizing socio-political events in recent times: CAA and the Farmers’ protest. Each article is annotated at three hierarchical levels: (i) ideological article-bias (pro-government, pro-opposition, neutral), (ii) event-specific fine-grained narrative frames anchored in ideological polarity and communicative intent, and (iii) persuasive techniques. We propose FANTA and TPTC, two GPT-4o-mini guided multi-hop prompt-based reasoning frameworks for the bias, narrative, and persuasive technique classification. FANTA leverages multi-layered communicative phenomena by integrating information extraction and contextual framing for hierarchical reasoning. On the other hand, TPTC adopts systematic decomposition of persuasive cues via a two-stage approach. Our evaluation suggests substantial improvement over underlying baselines in each case.

2.154CartoMapQA: A Fundamental Benchmark Dataset Evaluating Vision-Language Models on Cartographic Map Understanding

arxiv html pdf kimi

2025/12/04 05:00 GTM

The rise of Visual-Language Models (LVLMs) has unlocked new possibilities for seamlessly integrating visual and textual information. However, their ability to interpret cartographic maps remains largely unexplored. In this paper, we introduce CartoMapQA, a benchmark specifically designed to evaluate LVLMs’ understanding of cartographic maps through question-answering tasks. The dataset includes over 2000 samples, each composed of a cartographic map, a question (with open-ended or multiple-choice answers), and a ground-truth answer. These tasks span key low-, mid- and high-level map interpretation skills, including symbol recognition, embedded information extraction, scale interpretation, and route-based reasoning. Our evaluation of both open-source and proprietary LVLMs reveals persistent challenges: models frequently struggle with map-specific semantics, exhibit limited geospatial reasoning, and are prone to Optical Character Recognition (OCR)-related errors. By isolating these weaknesses, CartoMapQA offers a valuable tool for guiding future improvements in LVLM architectures. Ultimately, it supports the development of models better equipped for real-world applications that depend on robust and reliable map understanding, such as navigation, geographic search, and urban planning. Our source code and data are openly available to the research community at: https://github.com/ungquanghuy-kddi/CartoMapQA.git

2.155M3DR: Towards Universal Multilingual Multimodal Document Retrieval

arxiv html pdf kimi

2025/12/04 05:00 GTM

Multimodal document retrieval systems have shown strong progress in aligning visual and textual content for semantic search. However, most existing approaches remain heavily English-centric, limiting their effectiveness in multilingual contexts. In this work, we present M3DR (Multilingual Multimodal Document Retrieval), a framework designed to bridge this gap across languages, enabling applicability across diverse linguistic and cultural contexts. M3DR leverages synthetic multilingual document data and generalizes across different vision-language architectures and model sizes, enabling robust cross-lingual and cross-modal alignment. Using contrastive training, our models learn unified representations for text and document images that transfer effectively across languages. We validate this capability on 22 typologically diverse languages, demonstrating consistent performance and adaptability across linguistic and script variations. We further introduce a comprehensive benchmark that captures real-world multilingual scenarios, evaluating models under monolingual, multilingual, and mixed-language settings. M3DR generalizes across both single dense vector and ColBERT-style token-level multi-vector retrieval paradigms. Our models, NetraEmbed and ColNetraEmbed achieve state-of-the-art performance with ~150% relative improvements on cross-lingual retrieval.

2.156Understanding LLM Reasoning for Abstractive Summarization

arxiv html pdf kimi

2025/12/04 05:00 GTM

While the reasoning capabilities of Large Language Models (LLMs) excel in analytical tasks such as mathematics and code generation, their utility for abstractive summarization remains widely assumed but largely unverified. To bridge this gap, we first tailor general reasoning strategies to the summarization domain. We then conduct a systematic, large scale comparative study of 8 reasoning strategies and 3 Large Reasoning Models (LRMs) across 8 diverse datasets, assessing both summary quality and faithfulness. Our findings show that reasoning is not a universal solution and its effectiveness is highly dependent on the specific strategy and context. Specifically, we observe a trade-off between summary quality and factual faithfulness: explicit reasoning strategies tend to improve fluency at the expense of factual grounding, while implicit reasoning in LRMs exhibits the inverse pattern. Furthermore, increasing an LRM’s internal reasoning budget does not improve, and can even hurt, factual consistency, suggesting that effective summarization demands faithful compression rather than creative over-thinking.

2.157NAS-LoRA: Empowering Parameter-Efficient Fine-Tuning for Visual Foundation Models with Searchable Adaptation

arxiv html pdf kimi

2025/12/04 05:00 GTM

The Segment Anything Model (SAM) has emerged as a powerful visual foundation model for image segmentation. However, adapting SAM to specific downstream tasks, such as medical and agricultural imaging, remains a significant challenge. To address this, Low-Rank Adaptation (LoRA) and its variants have been widely employed to enhancing SAM’s adaptation performance on diverse domains. Despite advancements, a critical question arises: can we integrate inductive bias into the model? This is particularly relevant since the Transformer encoder in SAM inherently lacks spatial priors within image patches, potentially hindering the acquisition of high-level semantic information. In this paper, we propose NAS-LoRA, a new Parameter-Efficient Fine-Tuning (PEFT) method designed to bridge the semantic gap between pre-trained SAM and specialized domains. Specifically, NAS-LoRA incorporates a lightweight Neural Architecture Search (NAS) block between the encoder and decoder components of LoRA to dynamically optimize the prior knowledge integrated into weight updates. Furthermore, we propose a stage-wise optimization strategy to help the ViT encoder balance weight updates and architectural adjustments, facilitating the gradual learning of high-level semantic information. Various Experiments demonstrate our NAS-LoRA improves existing PEFT methods, while reducing training cost by 24.14% without increasing inference cost, highlighting the potential of NAS in enhancing PEFT for visual foundation models.

2.158A Preliminary Study on the Promises and Challenges of Native Top-kk Sparse Attention

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large Language Models (LLMs) are increasingly prevalent in the field of long-context modeling, however, their inference computational costs have become a critical bottleneck hindering the advancement of tasks such as agents and multimodal applications. This report conducts a preliminary investigation into the effectiveness and theoretical mechanisms of the Top-kk Attention mechanism during both the decoding and training phases. First, we validate the effectiveness of exact Top-kk Decoding through extensive experimentation. Experiments demonstrate that retaining only the pivotal Keys with the highest similarity to the Query as the context window during the decoding stage achieves performance comparable to, or even surpassing, full attention on downstream tasks such as HELMET and LongBench v2. Second, we further explore the native Top-kk Attention training strategy. Experiments confirm that ensuring the consistency between training and inference regarding Top-kk Attention operations facilitates the further unlocking of Top-kk Decoding’s potential, thereby significantly enhancing model performance. Furthermore, considering the high computational complexity of exact Top-kk Attention, we investigate the impact of approximate Top-kk algorithm precision on downstream tasks. Our research confirms a positive correlation between downstream task performance and approximation fidelity, and we provide statistical evaluations of the Lightning Indexer’s precision within the DeepSeek-V3.2-Exp model. Finally, this report provides a theoretical interpretation from the perspective of Entropy. Experimental observations indicate that models subjected to Top-kk Attention SFT exhibit a distinct phenomenon of entropy reduction in downstream tasks, which validates the hypothesis that low-entropy states are better adapted to Top-kk Decoding.

arxiv html pdf kimi

2025/12/04 05:00 GTM

In this study, we more rigorously evaluated our attack script TraceTarnish\textit{TraceTarnish}, which leverages adversarial stylometry principles to anonymize the authorship of text-based messages. To ensure the efficacy and utility of our attack, we sourced, processed, and analyzed Reddit comments--comments that were later alchemized into TraceTarnish\textit{TraceTarnish} data--to gain valuable insights. The transformed TraceTarnish\textit{TraceTarnish} data was then further augmented by StyloMetrix\textit{StyloMetrix} to manufacture stylometric features--features that were culled using the Information Gain criterion, leaving only the most informative, predictive, and discriminative ones. Our results found that function words and function word types (L_FUNC_AL\_FUNC\_A &\& L_FUNC_TL\_FUNC\_T); content words and content word types (L_CONT_AL\_CONT\_A &\& L_CONT_TL\_CONT\_T); and the Type-Token Ratio (ST_TYPE_TOKEN_RATIO_LEMMASST\_TYPE\_TOKEN\_RATIO\_LEMMAS) yielded significant Information-Gain readings. The identified stylometric cues--function-word frequencies, content-word distributions, and the Type-Token Ratio--serve as reliable indicators of compromise (IoCs), revealing when a text has been deliberately altered to mask its true author. Similarly, these features could function as forensic beacons, alerting defenders to the presence of an adversarial stylometry attack; granted, in the absence of the original message, this signal may go largely unnoticed, as it appears to depend on a pre- and post-transformation comparison. “In trying to erase a trace, you often imprint a larger one.” Armed with this understanding, we framed TraceTarnish\textit{TraceTarnish}'s operations and outputs around these five isolated features, using them to conceptualize and implement enhancements that further strengthen the attack.

2.160Text-Printed Image: Bridging the Image-Text Modality Gap for Text-centric Training of Large Vision-Language Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent large vision-language models (LVLMs) have been applied to diverse VQA tasks. However, achieving practical performance typically requires task-specific fine-tuning with large numbers of image-text pairs, which are costly to collect. In this work, we study text-centric training, a setting where only textual descriptions are available and no real images are provided, as a paradigm for low-cost data scaling. Unlike images, whose collection is often restricted by privacy constraints and scarcity in niche domains, text is widely available. Moreover, text is easily editable, enabling automatic diversification and expansion with LLMs at minimal human effort. While this offers clear advantages over image collection in terms of scalability and cost, training on raw text without images still yields limited gains on VQA tasks because of the image-text modality gap. To address this issue, we propose a Text-Printed Image (TPI), which generates synthetic images by directly rendering the given textual description on a plain white canvas. This simple rendering projects text into the image modality and can be integrated into arbitrary existing LVLM training pipelines at low cost. Moreover, TPI preserves the semantics of the text, whereas text-to-image models often fail to do. Across four models and seven benchmarks, our systematic experiments show that TPI enables more effective text-centric training than synthetic images generated by a diffusion model. We further explore TPI as a low-cost data-augmentation strategy and demonstrate its practical utility. Overall, our findings highlight the significant potential of text-centric training and, more broadly, chart a path toward fully automated data generation for LVLMs.

2.161PretrainZero: Reinforcement Active Pretraining

arxiv html pdf kimi

2025/12/04 05:00 GTM

Mimicking human behavior to actively learning from general experience and achieve artificial general intelligence has always been a human dream. Recent reinforcement learning (RL) based large-thinking models demonstrate impressive expert-level abilities, i.e., software and math, but still rely heavily on verifiable rewards in specific domains, placing a significant bottleneck to extend the performance boundary of general reasoning capabilities. In this work, we propose PretrainZero, a reinforcement active learning framework built on the pretraining corpus to extend RL from domain-specific post-training to general pretraining. PretrainZero features the following characteristics: 1) Active pretraining: inspired by the active learning ability of humans, PretrainZero learns a unified reasoning policy to actively identify reasonable and informative contents from pretraining corpus, and reason to predict these contents by RL. 2) Self-supervised learning: without any verifiable labels, pretrained reward models, or supervised fine-tuning, we directly pretrain reasoners from 3 to 30B base models on the general Wikipedia corpus using RL, significantly breaking the verification data-wall for general reasoning. 3) Verification scaling: by tackling increasingly challenging masked spans, PretrainZero substantially enhances the general reasoning abilities of pretrained base models. In reinforcement pretraining, PretrainZero improves Qwen3-4B-Base for 8.43, 5.96 and 10.60 on MMLU-Pro, SuperGPQA and math average benchmarks. In post-training, the pretrained models can also serve as reasoning foundation models for downstream RLVR tasks.

2.162Dual LoRA: Enhancing LoRA with Magnitude and Direction Updates

arxiv html pdf kimi

2025/12/04 05:00 GTM

Low-rank adaptation (LoRA) is one of the most popular methods among parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large language models (LLMs) to specific downstream tasks. However, the model trained based on LoRA often has an unsatisfactory performance due to its low-rank assumption. In this paper, we propose a novel method called Dual LoRA to improve the performance by incorporating an inductive bias into the original LoRA. Specifically, we separate low-rank matrices into two groups: the magnitude group to control whether or not and how far we should update a parameter and the direction group to decide whether this parameter should move forward or backward, to better simulate the parameter updating process of the full fine-tuning based on gradient-based optimization algorithms. We show that this can be simply achieved by adding a ReLU function to the magnitude group and a sign function to the direction group. We conduct several experiments over a wide range of NLP tasks, including natural language generation (NLG), understanding (NLU), and commonsense reasoning datasets on GPT-2, RoBERTa, DeBERTa, and LLaMA-1/2/3 as baseline models. The results show that we consistently outperform LoRA and its state-of-the-art variants with the same number of trainable parameters.

2.163Characterizing Language Use in a Collaborative Situated Game

arxiv html pdf kimi

2025/12/04 05:00 GTM

Cooperative video games, where multiple participants must coordinate by communicating and reasoning under uncertainty in complex environments, yield a rich source of language data. We collect the Portal Dialogue Corpus: a corpus of 11.5 hours of spoken human dialogue in the co-op mode of the popular Portal 2 virtual puzzle game, comprising 24.5K total utterances. We analyze player language and behavior, identifying a number of linguistic phenomena that rarely appear in most existing chitchat or task-oriented dialogue corpora, including complex spatial reference, clarification and repair, and ad-hoc convention formation. To support future analyses of language use in complex, situated, collaborative problem-solving scenarios, we publicly release the corpus, which comprises player videos, audio, transcripts, game state data, and both manual and automatic annotations of language data.

2.164Nexus: Higher-Order Attention Mechanisms in Transformers

arxiv html pdf kimi

2025/12/04 05:00 GTM

Transformers have achieved significant success across various domains, relying on self-attention to capture dependencies. However, the standard first-order attention mechanism is often limited by a low-rank bottleneck, struggling to capture intricate, multi-hop relationships within a single layer. In this paper, we propose the \textbf{Higher-Order Attention Network (Hon)}, a novel architecture designed to enhance representational power through a recursive framework. Unlike standard approaches that use static linear projections for Queries and Keys, Hon dynamically refines these representations via nested self-attention mechanisms. Specifically, the Query and Key vectors are themselves outputs of inner attention loops, allowing tokens to aggregate global context and model high-order correlations \textit{prior} to the final attention computation. We enforce a parameter-efficient weight-sharing strategy across recursive steps, ensuring that this enhanced expressivity incurs O(1)\mathcal{O}(1) additional parameters. We provide theoretical analysis demonstrating that our method breaks the linear bottleneck of standard attention. Empirically, Hon outperforms standard Transformers on multiple benchmarks.

2.165LLM-Generated Ads: From Personalization Parity to Persuasion Superiority

arxiv html pdf kimi

2025/12/04 05:00 GTM

As large language models (LLMs) become increasingly capable of generating persuasive content, understanding their effectiveness across different advertising strategies becomes critical. This paper presents a two-part investigation examining LLM-generated advertising through complementary lenses: (1) personality-based and (2) psychological persuasion principles. In our first study (n=400), we tested whether LLMs could generate personalized advertisements tailored to specific personality traits (openness and neuroticism) and how their performance compared to human experts. Results showed that LLM-generated ads achieved statistical parity with human-written ads (51.1% vs. 48.9%, p > 0.05), with no significant performance differences for matched personalities. Building on these insights, our second study (n=800) shifted focus from individual personalization to universal persuasion, testing LLM performance across four foundational psychological principles: authority, consensus, cognition, and scarcity. AI-generated ads significantly outperformed human-created content, achieving a 59.1% preference rate (vs. 40.9%, p < 0.001), with the strongest performance in authority (63.0%) and consensus (62.5%) appeals. Qualitative analysis revealed AI’s advantage stems from crafting more sophisticated, aspirational messages and achieving superior visual-narrative coherence. Critically, this quality advantage proved robust: even after applying a 21.2 percentage point detection penalty when participants correctly identified AI-origin, AI ads still outperformed human ads, and 29.4% of participants chose AI content despite knowing its origin. These findings demonstrate LLMs’ evolution from parity in personalization to superiority in persuasive storytelling, with significant implications for advertising practice given LLMs’ near-zero marginal cost and time requirements compared to human experts.

2.166From Hypothesis to Premises: LLM-based Backward Logical Reasoning with Selective Symbolic Translation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Logical reasoning is a core challenge in natural language understanding and a fundamental capability of artificial intelligence, underpinning scientific discovery, mathematical theorem proving, and complex decision-making. Despite the remarkable progress of large language models (LLMs), most current approaches still rely on forward reasoning paradigms, generating step-by-step rationales from premises to conclusions. However, such methods often suffer from redundant inference paths, hallucinated steps, and semantic drift, resulting in inefficient and unreliable reasoning. In this paper, we propose a novel framework, Hypothesis-driven Backward Logical Reasoning (HBLR). The core idea is to integrate confidence-aware symbolic translation with hypothesis-driven backward reasoning. In the translation phase, only high-confidence spans are converted into logical form, such as First-Order Logic (FOL), while uncertain content remains in natural language. A translation reflection module further ensures semantic fidelity by evaluating symbolic outputs and reverting lossy ones back to text when necessary. In the reasoning phase, HBLR simulates human deductive thinking by assuming the conclusion is true and recursively verifying its premises. A reasoning reflection module further identifies and corrects flawed inference steps, enhancing logical coherence. Extensive experiments on five reasoning benchmarks demonstrate that HBLR consistently outperforms strong baselines in both accuracy and efficiency.

2.167Idea-Gated Transformers: Enforcing Semantic Coherence via Differentiable Vocabulary Pruning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Autoregressive Language Models (LLMs) trained on Next-Token Prediction (NTP) often suffer from Topic Drift'' where the generation wanders away from the initial prompt due to a reliance on local associations rather than global planning \citep{holtzman2019curious}. While scaling model size mitigates this \citep{brown2020language}, the fundamental myopia of the NTP objective remains. In this work, we introduce the Idea-Gated Transformer, a novel architecture that separates semantic planning from syntactic generation. We introduce an auxiliary Idea Head’’ trained to predict the bag-of-words distribution for a future context window, creating a latent ``Concept Vector’’ that actively gates the main vocabulary during generation. We propose a differentiable gating mechanism that suppresses semantically irrelevant tokens, effectively pruning the search space in real-time. Experiments on WikiText-103 demonstrate that while the Idea-Gated model achieves comparable validation perplexity to a standard GPT-2 baseline, it exhibits significantly superior Domain Retention. Qualitative and quantitative analysis reveals that the gating mechanism successfully locks generation into specific semantic clusters (e.g., Finance, Science) and resists associative drift, offering a parameter-efficient path toward more controllable language modeling.

2.168PERCS: Persona-Guided Controllable Biomedical Summarization Dataset

arxiv html pdf kimi

2025/12/04 05:00 GTM

Automatic medical text simplification plays a key role in improving health literacy by making complex biomedical research accessible to diverse readers. However, most existing resources assume a single generic audience, overlooking the wide variation in medical literacy and information needs across user groups. To address this limitation, we introduce PERCS (Persona-guided Controllable Summarization), a dataset of biomedical abstracts paired with summaries tailored to four personas: Laypersons, Premedical Students, Non-medical Researchers, and Medical Experts. These personas represent different levels of medical literacy and information needs, emphasizing the need for targeted, audience-specific summarization. Each summary in PERCS was reviewed by physicians for factual accuracy and persona alignment using a detailed error taxonomy. Technical validation shows clear differences in readability, vocabulary, and content depth across personas. Along with describing the dataset, we benchmark four large language models on PERCS using automatic evaluation metrics that assess comprehensiveness, readability, and faithfulness, establishing baseline results for future research. The dataset, annotation guidelines, and evaluation materials are publicly available to support research on persona-specific communication and controllable biomedical summarization.

2.169Epistemic Substitution: How Grokipedia’s AI-Generated Encyclopedia Restructures Authority

arxiv html pdf kimi

2025/12/04 05:00 GTM

A quarter century ago, Wikipedia’s decentralized, crowdsourced, and consensus-driven model replaced the centralized, expert-driven, and authority-based standard for encyclopedic knowledge curation. The emergence of generative AI encyclopedias, such as Grokipedia, possibly presents another potential shift in epistemic evolution. This study investigates whether AI- and human-curated encyclopedias rely on the same foundations of authority. We conducted a multi-scale comparative analysis of the citation networks from 72 matched article pairs, which cite a total of almost 60,000 sources. Using an 8-category epistemic classification, we mapped the “epistemic profiles” of the articles on each platform. Our findings reveal several quantitative and qualitative differences in how knowledge is sourced and encyclopedia claims are epistemologically justified. Grokipedia replaces Wikipedia’s heavy reliance on peer-reviewed “Academic & Scholarly” work with a notable increase in “User-generated” and “Civic organization” sources. Comparative network analyses further show that Grokipedia employs very different epistemological profiles when sourcing leisure topics (such as Sports and Entertainment) and more societal sensitive civic topics (such as Politics & Conflicts, Geographical Entities, and General Knowledge & Society). Finally, we find a “scaling-law for AI-generated knowledge sourcing” that shows a linear relationship between article length and citation density, which is distinct from collective human reference sourcing. We conclude that this first implementation of an LLM-based encyclopedia does not merely automate knowledge production but restructures it. Given the notable changes and the important role of encyclopedias, we suggest the continuation and deepening of algorithm audits, such as the one presented here, in order to understand the ongoing epistemological shifts.

2.170Modeling Topics and Sociolinguistic Variation in Code-Switched Discourse: Insights from Spanish-English and Spanish-Guaraní

arxiv html pdf kimi

2025/12/04 05:00 GTM

This study presents an LLM-assisted annotation pipeline for the sociolinguistic and topical analysis of bilingual discourse in two typologically distinct contexts: Spanish-English and Spanish-Guaraní. Using large language models, we automatically labeled topic, genre, and discourse-pragmatic functions across a total of 3,691 code-switched sentences, integrated demographic metadata from the Miami Bilingual Corpus, and enriched the Spanish-Guaraní dataset with new topic annotations. The resulting distributions reveal systematic links between gender, language dominance, and discourse function in the Miami data, and a clear diglossic division between formal Guaraní and informal Spanish in Paraguayan texts. These findings replicate and extend earlier interactional and sociolinguistic observations with corpus-scale quantitative evidence. The study demonstrates that large language models can reliably recover interpretable sociolinguistic patterns traditionally accessible only through manual annotation, advancing computational methods for cross-linguistic and low-resource bilingual research.

2.171Randomized Masked Finetuning: An Efficient Way to Mitigate Memorization of PIIs in LLMs

arxiv html pdf kimi

2025/12/04 05:00 GTM

The current literature on memorization in Natural Language Models, especially Large Language Models (LLMs), poses severe security and privacy risks, as models tend to memorize personally identifying information (PIIs) from training data. We introduce Randomized Masked Fine-Tuning (RMFT), a novel privacy-preserving fine-tuning technique that reduces PII memorization while minimizing performance impact. Using the Enron Email Dataset, we demonstrate that RMFT achieves an 80.81% reduction in Total Extraction Rate and 80.17% reduction in Seen Extraction Rate compared to baseline fine-tuning, outperforming deduplication methods while maintaining only a 5.73% increase in perplexity. We present MaxTER, a Pareto-optimal evaluation framework for assessing privacy-utility tradeoffs, and show the performance of RMFT vs Deduplication by Area Under The Response Curve (AURC) metric.

2.172Is Vibe Coding Safe? Benchmarking Vulnerability of Agent-Generated Code in Real-World Tasks

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vibe coding is a new programming paradigm in which human engineers instruct large language model (LLM) agents to complete complex coding tasks with little supervision. Although it is increasingly adopted, are vibe coding outputs really safe to deploy in production? To answer this question, we propose SU S VI B E S, a benchmark consisting of 200 feature-request software engineering tasks from real-world open-source projects, which, when given to human programmers, led to vulnerable implementations. We evaluate multiple widely used coding agents with frontier models on this benchmark. Disturbingly, all agents perform poorly in terms of software security. Although 61% of the solutions from SWE-Agent with Claude 4 Sonnet are functionally correct, only 10.5% are secure. Further experiments demonstrate that preliminary security strategies, such as augmenting the feature request with vulnerability hints, cannot mitigate these security issues. Our findings raise serious concerns about the widespread adoption of vibe-coding, particularly in security-sensitive applications.

2.173SPARK: Stepwise Process-Aware Rewards for Reference-Free Reinforcement Learning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Process reward models (PRMs) that provide dense, step-level feedback have shown promise for reinforcement learning, yet their adoption remains limited by the need for expensive step-level annotations or ground truth references. We propose SPARK: a three-stage framework where in the first stage a generator model produces diverse solutions and a verifier model evaluates them using parallel scaling (self-consistency) and sequential scaling (meta-critique). In the second stage, we use these verification outputs as synthetic training data to fine-tune generative process reward models, which subsequently serve as reward signals during training. We show that aggregating multiple independent verifications at the step level produces training data for process reward models that surpass ground-truth outcome supervision, achieving 67.5 F1 on ProcessBench (a benchmark for identifying erroneous steps in mathematical reasoning) compared to 66.4 for reference-guided training and 61.9 for GPT-4o. In the final stage, we apply our generative PRM with chain-of-thought verification (PRM-CoT) as the reward model in RL experiments on mathematical reasoning, and introduce format constraints to prevent reward hacking. Using Qwen2.5-Math-7B, we achieve 47.4% average accuracy across six mathematical reasoning benchmarks, outperforming ground-truth-based RLVR (43.9%). Our work enables reference-free RL training that exceeds ground-truth methods, opening new possibilities for domains lacking verifiable answers or accessible ground truth.

2.174Identifying attributions of causality in political text

arxiv html pdf kimi

2025/12/04 05:00 GTM

Explanations are a fundamental element of how people make sense of the political world. Citizens routinely ask and answer questions about why events happen, who is responsible, and what could or should be done differently. Yet despite their importance, explanations remain an underdeveloped object of systematic analysis in political science, and existing approaches are fragmented and often issue-specific. I introduce a framework for detecting and parsing explanations in political text. To do this, I train a lightweight causal language model that returns a structured data set of causal claims in the form of cause-effect pairs for downstream analysis. I demonstrate how causal explanations can be studied at scale, and show the method’s modest annotation requirements, generalizability, and accuracy relative to human coding.

2.175InvertiTune: High-Quality Data Synthesis for Cost-Effective Single-Shot Text-to-Knowledge Graph Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large Language Models (LLMs) have revolutionized the ability to understand and generate text, enabling significant progress in automatic knowledge graph construction from text (Text2KG). Many Text2KG methods, however, rely on iterative LLM prompting, making them computationally expensive and prone to overlooking complex relations distributed throughout the text. To address these limitations, we propose InvertiTune, a framework that combines a controlled data generation pipeline with supervised fine-tuning (SFT). Within this framework, the data-generation pipeline systematically extracts subgraphs from large knowledge bases, applies noise filtering, and leverages LLMs to generate corresponding natural text descriptions, a task more aligned with LLM capabilities than direct KG generation from text. This pipeline enables generating datasets composed of longer texts paired with larger KGs that better reflect real-world scenarios compared to existing benchmarks, thus supporting effective SFT of lightweight models for single-shot KG construction. Experimental results on CE12k, a dataset generated using the introduced pipeline, show that InvertiTune outperforms larger non-fine-tuned LLMs as well as state-of-the-art Text2KG approaches, while also demonstrating stronger cross-dataset generalization on CrossEval-1200, a test set created from three established benchmark datasets and CE12k. These findings highlight the importance of realistic, high-quality training data for advancing efficient and high-performing Text2KG systems.

2.176Enhancing Job Matching: Occupation, Skill and Qualification Linking with the ESCO and EQF taxonomies

arxiv html pdf kimi

2025/12/04 05:00 GTM

This study investigates the potential of language models to improve the classification of labor market information by linking job vacancy texts to two major European frameworks: the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy and the European Qualifications Framework (EQF). We examine and compare two prominent methodologies from the literature: Sentence Linking and Entity Linking. In support of ongoing research, we release an open-source tool, incorporating these two methodologies, designed to facilitate further work on labor classification and employment discourse. To move beyond surface-level skill extraction, we introduce two annotated datasets specifically aimed at evaluating how occupations and qualifications are represented within job vacancy texts. Additionally, we examine different ways to utilize generative large language models for this task. Our findings contribute to advancing the state of the art in job entity extraction and offer computational infrastructure for examining work, skills, and labor market narratives in a digitally mediated economy. Our code is made publicly available: https://github.com/tabiya-tech/tabiya-livelihoods-classifier

2.177Culture Affordance Atlas: Reconciling Object Diversity Through Functional Mapping

arxiv html pdf kimi

2025/12/04 05:00 GTM

Culture shapes the objects people use and for what purposes, yet mainstream Vision-Language (VL) datasets frequently exhibit cultural biases, disproportionately favoring higher-income, Western contexts. This imbalance reduces model generalizability and perpetuates performance disparities, especially impacting lower-income and non-Western communities. To address these disparities, we propose a novel function-centric framework that categorizes objects by the functions they fulfill, across diverse cultural and economic contexts. We implement this framework by creating the Culture Affordance Atlas, a re-annotated and culturally grounded restructuring of the Dollar Street dataset spanning 46 functions and 288 objects publicly available at https://lit.eecs.umich.edu/CultureAffordance-Atlas/index.html. Through extensive empirical analyses using the CLIP model, we demonstrate that function-centric labels substantially reduce socioeconomic performance gaps between high- and low-income groups by a median of 6 pp (statistically significant), improving model effectiveness for lower-income contexts. Furthermore, our analyses reveals numerous culturally essential objects that are frequently overlooked in prominent VL datasets. Our contributions offer a scalable pathway toward building inclusive VL datasets and equitable AI systems.

2.178Detecting AI Hallucinations in Finance: An Information-Theoretic Method Cuts Hallucination Rate by 92%

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large language models (LLMs) produce fluent but unsupported answers - hallucinations - limiting safe deployment in high-stakes domains. We propose ECLIPSE, a framework that treats hallucination as a mismatch between a model’s semantic entropy and the capacity of available evidence. We combine entropy estimation via multi-sample clustering with a novel perplexity decomposition that measures how models use retrieved evidence. We prove that under mild conditions, the resulting entropy-capacity objective is strictly convex with a unique stable optimum. We evaluate on a controlled financial question answering dataset with GPT-3.5-turbo (n=200 balanced samples with synthetic hallucinations), where ECLIPSE achieves ROC AUC of 0.89 and average precision of 0.90, substantially outperforming a semantic entropy-only baseline (AUC 0.50). A controlled ablation with Claude-3-Haiku, which lacks token-level log probabilities, shows AUC dropping to 0.59 with coefficient magnitudes decreasing by 95% - demonstrating that ECLIPSE is a logprob-native mechanism whose effectiveness depends on calibrated token-level uncertainties. The perplexity decomposition features exhibit the largest learned coefficients, confirming that evidence utilization is central to hallucination detection. We position this work as a controlled mechanism study; broader validation across domains and naturally occurring hallucinations remains future work.

2.179Alleviating Choice Supportive Bias in LLM with Reasoning Dependency Generation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent studies have demonstrated that some Large Language Models exhibit choice-supportive bias (CSB) when performing evaluations, systematically favoring their chosen options and potentially compromising the objectivity of AI-assisted decision making. While existing debiasing approaches primarily target demographic and social biases, methods for addressing cognitive biases in LLMs remain largely unexplored. In this work, we present the first solution to address CSB through Reasoning Dependency Generation (RDG), a novel framework for generating unbiased reasoning data to mitigate choice-supportive bias through fine-tuning. RDG automatically constructs balanced reasoning QA pairs, explicitly (un)modeling the dependencies between choices, evidences, and justifications. Our approach is able to generate a large-scale dataset of QA pairs across domains, incorporating Contextual Dependency Data and Dependency Decouple Data. Experiments show that LLMs fine-tuned on RDG-generated data demonstrate a 81.5% improvement in memory-based experiments and 94.3% improvement in the evaluation-based experiment, while maintaining similar performance on standard BBQ benchmarks. This work pioneers an approach for addressing cognitive biases in LLMs and contributes to the development of more reliable AI-assisted decision support systems.

2.180Watermarks for Embeddings-as-a-Service Large Language Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large Language Models (LLMs) have demonstrated exceptional capabilities in natural language understanding and generation. Based on these LLMs, businesses have started to provide Embeddings-as-a-Service (EaaS), offering feature extraction capabilities (in the form of text embeddings) that benefit downstream natural language processing tasks. However, prior research has demonstrated that EaaS is vulnerable to imitation attacks, where an attacker clones the service’s model in a black-box manner without access to the model’s internal workings. In response, watermarks have been added to the text embeddings to protect the intellectual property of EaaS providers by allowing them to check for model ownership. This thesis focuses on defending against imitation attacks by investigating EaaS watermarks. To achieve this goal, we unveil novel attacks and propose and validate new watermarking techniques. Firstly, we show that existing EaaS watermarks can be removed through paraphrasing the input text when attackers clone the model during imitation attacks. Our study illustrates that paraphrasing can effectively bypass current state-of-the-art EaaS watermarks across various attack setups (including different paraphrasing techniques and models) and datasets in most instances. This demonstrates a new vulnerability in recent EaaS watermarking techniques. Subsequently, as a countermeasure, we propose a novel watermarking technique, WET (Watermarking EaaS with Linear Transformation), which employs linear transformation of the embeddings. Watermark verification is conducted by applying a reverse transformation and comparing the similarity between recovered and original embeddings. We demonstrate its robustness against paraphrasing attacks with near-perfect verifiability. We conduct detailed ablation studies to assess the significance of each component and hyperparameter in WET.

2.181Entropy-Based Measurement of Value Drift and Alignment Work in Large Language Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large language model safety is usually assessed with static benchmarks, but key failures are dynamic: value drift under distribution shift, jailbreak attacks, and slow degradation of alignment in deployment. Building on a recent Second Law of Intelligence that treats ethical entropy as a state variable which tends to increase unless countered by alignment work, we make this framework operational for large language models. We define a five-way behavioral taxonomy, train a classifier to estimate ethical entropy S(t) from model transcripts, and measure entropy dynamics for base and instruction-tuned variants of four frontier models across stress tests. Base models show sustained entropy growth, while tuned variants suppress drift and reduce ethical entropy by roughly eighty percent. From these trajectories we estimate an effective alignment work rate gamma_eff and embed S(t) and gamma_eff in a monitoring pipeline that raises alerts when entropy drift exceeds a stability threshold, enabling run-time oversight of value drift.

2.182SpaceTools: Tool-Augmented Spatial Reasoning via Double Interactive RL

arxiv html pdf kimi

2025/12/04 05:00 GTM

Vision Language Models (VLMs) demonstrate strong qualitative visual understanding, but struggle with metrically precise spatial reasoning required for embodied applications. The agentic paradigm promises that VLMs can use a wide variety of tools that could augment these capabilities, such as depth estimators, segmentation models, and pose estimators. Yet it remains an open challenge how to realize this vision without solely relying on handcrafted prompting strategies or enforcing fixed, predefined tool pipelines that limit VLMs’ ability to discover optimal tool-use patterns. Reinforcement Learning could overcome this gap, but has so far been limited to reasoning with a single visual tool due to the large search space in multi-tool reasoning. We introduce Double Interactive Reinforcement Learning (DIRL), a two-phase training framework where VLMs learn to coordinate multiple tools through interactive exploration and feedback. In the teaching phase, we combine demonstrations from a single tool specialist trained via interactive RL with traces from a frontier model using all tools. In the exploration phase, the model further refines multi-tool coordination through continued RL. Our model, SpaceTools, with tool-augmented spatial reasoning ability, achieves state-of-the-art performance on spatial understanding benchmarks (RoboSpatial-Home, BLINK, BOP-ASK) and demonstrates reliable real-world manipulation using a 7-DOF robot as a tool. DIRL provides substantial improvements over the vanilla SFT (+12% on RoboSpatial) and RL (+16% on RoboSpatial) baselines. Project page: https://spacetools.github.io/.

2.183Artificial Microsaccade Compensation: Stable Vision for an Ornithopter

arxiv html pdf kimi

2025/12/04 05:00 GTM

Animals with foveated vision, including humans, experience microsaccades, small, rapid eye movements that they are not aware of. Inspired by this phenomenon, we develop a method for “Artificial Microsaccade Compensation”. It can stabilize video captured by a tailless ornithopter that has resisted attempts to use camera-based sensing because it shakes at 12-20 Hz. Our approach minimizes changes in image intensity by optimizing over 3D rotation represented in SO(3). This results in a stabilized video, computed in real time, suitable for human viewing, and free from distortion. When adapted to hold a fixed viewing orientation, up to occasional saccades, it can dramatically reduce inter-frame motion while also benefiting from an efficient recursive update. When compared to Adobe Premier Pro’s warp stabilizer, which is widely regarded as the best commercial video stabilization software available, our method achieves higher quality results while also running in real time.

2.184When to Say “Hi” - Learn to Open a Conversation with an in-the-wild Dataset

arxiv html pdf kimi

2025/12/04 05:00 GTM

The social capabilities of socially interactive agents (SIA) are a key to successful and smooth interactions between the user and the SIA. A successful start of the interaction is one of the essential factors for satisfying SIA interactions. For a service and information task in which the SIA helps with information, e.g. about the location, it is an important skill to master the opening of the conversation and to recognize which interlocutor opens the conversation and when. We are therefore investigating the extent to which the opening of the conversation can be trained using the user’s body language as an input for machine learning to ensure smooth conversation starts for the interaction. In this paper we propose the Interaction Initiation System (IIS) which we developed, trained and validated using an in-the-wild data set. In a field test at the Deutsches Museum Bonn, a Furhat robot from Furhat Robotics was used as a service and information point. Over the period of use we collected the data of \textit{N} = 201 single user interactions for the training of the algorithms. We can show that the IIS, achieves a performance that allows the conclusion that this system is able to determine the greeting period and the opener of the interaction.

2.185MDE-AgriVLN: Agricultural Vision-and-Language Navigation with Monocular Depth Estimation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Agricultural robots are serving as powerful assistants across a wide range of agricultural tasks, nevertheless, still heavily relying on manual operations or railway systems for movement. The AgriVLN method and the A2A benchmark pioneeringly extend Vision-and-Language Navigation (VLN) to the agricultural domain, enabling a robot to navigate to a target position following a natural language instruction. Unlike human binocular vision, most agricultural robots are only given a single camera for monocular vision, which results in limited spatial perception. To bridge this gap, we present the method of Agricultural Vision-and-Language Navigation with Monocular Depth Estimation (MDE-AgriVLN), in which we propose the MDE module generating depth features from RGB images, to assist the decision-maker on reasoning. When evaluated on the A2A benchmark, our MDE-AgriVLN method successfully increases Success Rate from 0.23 to 0.32 and decreases Navigation Error from 4.43m to 4.08m, demonstrating the state-of-the-art performance in the agricultural VLN domain. Code: https://github.com/AlexTraveling/MDE-AgriVLN.

2.186Classification of User Satisfaction in HRI with Social Signals in the Wild

arxiv html pdf kimi

2025/12/04 05:00 GTM

Socially interactive agents (SIAs) are being used in various scenarios and are nearing productive deployment. Evaluating user satisfaction with SIAs’ performance is a key factor in designing the interaction between the user and SIA. Currently, subjective user satisfaction is primarily assessed manually through questionnaires or indirectly via system metrics. This study examines the automatic classification of user satisfaction through analysis of social signals, aiming to enhance both manual and autonomous evaluation methods for SIAs. During a field trial at the Deutsches Museum Bonn, a Furhat Robotics head was employed as a service and information hub, collecting an “in-the-wild” dataset. This dataset comprises 46 single-user interactions, including questionnaire responses and video data. Our method focuses on automatically classifying user satisfaction based on time series classification. We use time series of social signal metrics derived from the body pose, time series of facial expressions, and physical distance. This study compares three feature engineering approaches on different machine learning models. The results confirm the method’s effectiveness in reliably identifying interactions with low user satisfaction without the need for manually annotated datasets. This approach offers significant potential for enhancing SIA performance and user experience through automated feedback mechanisms.

2.187MUT3R: Motion-aware Updating Transformer for Dynamic 3D Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

Recent stateful recurrent neural networks have achieved remarkable progress on static 3D reconstruction but remain vulnerable to motion-induced artifacts, where non-rigid regions corrupt attention propagation between the spatial memory and image feature. By analyzing the internal behaviors of the state and image token updating mechanism, we find that aggregating self-attention maps across layers reveals a consistent pattern: dynamic regions are naturally down-weighted, exposing an implicit motion cue that the pretrained transformer already encodes but never explicitly uses. Motivated by this observation, we introduce MUT3R, a training-free framework that applies the attention-derived motion cue to suppress dynamic content in the early layers of the transformer during inference. Our attention-level gating module suppresses the influence of dynamic regions before their artifacts propagate through the feature hierarchy. Notably, we do not retrain or fine-tune the model; we let the pretrained transformer diagnose its own motion cues and correct itself. This early regulation stabilizes geometric reasoning in streaming scenarios and leads to improvements in temporal consistency and camera pose robustness across multiple dynamic benchmarks, offering a simple and training-free pathway toward motion-aware streaming reconstruction.

2.188Driving is a Game: Combining Planning and Prediction with Bayesian Iterative Best Response

arxiv html pdf kimi

2025/12/04 05:00 GTM

Autonomous driving planning systems perform nearly perfectly in routine scenarios using lightweight, rule-based methods but still struggle in dense urban traffic, where lane changes and merges require anticipating and influencing other agents. Modern motion predictors offer highly accurate forecasts, yet their integration into planning is mostly rudimental: discarding unsafe plans. Similarly, end-to-end models offer a one-way integration that avoids the challenges of joint prediction and planning modeling under uncertainty. In contrast, game-theoretic formulations offer a principled alternative but have seen limited adoption in autonomous driving. We present Bayesian Iterative Best Response (BIBeR), a framework that unifies motion prediction and game-theoretic planning into a single interaction-aware process. BIBeR is the first to integrate a state-of-the-art predictor into an Iterative Best Response (IBR) loop, repeatedly refining the strategies of the ego vehicle and surrounding agents. This repeated best-response process approximates a Nash equilibrium, enabling bidirectional adaptation where the ego both reacts to and shapes the behavior of others. In addition, our proposed Bayesian confidence estimation quantifies prediction reliability and modulates update strength, more conservative under low confidence and more decisive under high confidence. BIBeR is compatible with modern predictors and planners, combining the transparency of structured planning with the flexibility of learned models. Experiments show that BIBeR achieves an 11% improvement over state-of-the-art planners on highly interactive interPlan lane-change scenarios, while also outperforming existing approaches on standard nuPlan benchmarks.

2.189Hierarchical Vision Language Action Model Using Success and Failure Demonstrations

arxiv html pdf kimi

2025/12/04 05:00 GTM

Prior Vision-Language-Action (VLA) models are typically trained on teleoperated successful demonstrations, while discarding numerous failed attempts that occur naturally during data collection. However, these failures encode where and how policies can be fragile, information that can be exploited to improve robustness. We address this problem by leveraging mixed-quality datasets to learn failure-aware reasoning at planning time. We introduce VINE, a hierarchical vision-language-action model that separates high-level reasoning (System 2) from low-level control (System 1) under a hierarchical reinforcement learning formalism, making failures usable as a structured learning signal rather than noisy supervision. System 2 performs feasibility-guided tree search over a 2D scene-graph abstraction: it proposes subgoal transitions, predicts success probabilities from both successes and failures, and prunes brittle branches before execution, effectively casting plan evaluation as feasibility scoring. The selected subgoal sequence is then passed to System 1, which executes low-level actions without modifying the agent’s core skills. Trained entirely from offline teleoperation data, VINE integrates negative experience directly into the decision loop. Across challenging manipulation tasks, this approach consistently improves success rates and robustness, demonstrating that failure data is an essential resource for converting the broad competence of VLAs into robust execution.

2.190Autonomous Reinforcement Learning Robot Control with Intel’s Loihi 2 Neuromorphic Hardware

arxiv html pdf kimi

2025/12/04 05:00 GTM

We present an end-to-end pipeline for deploying reinforcement learning (RL) trained Artificial Neural Networks (ANNs) on neuromorphic hardware by converting them into spiking Sigma-Delta Neural Networks (SDNNs). We demonstrate that an ANN policy trained entirely in simulation can be transformed into an SDNN compatible with Intel’s Loihi 2 architecture, enabling low-latency and energy-efficient inference. As a test case, we use an RL policy for controlling the Astrobee free-flying robot, similar to a previously hardware in space-validated controller. The policy, trained with Rectified Linear Units (ReLUs), is converted to an SDNN and deployed on Intel’s Loihi 2, then evaluated in NVIDIA’s Omniverse Isaac Lab simulation environment for closed-loop control of Astrobee’s motion. We compare execution performance between GPU and Loihi 2. The results highlight the feasibility of using neuromorphic platforms for robotic control and establish a pathway toward energy-efficient, real-time neuromorphic computation in future space and terrestrial robotics applications.

2.191Digital Twin-based Control Co-Design of Full Vehicle Active Suspensions via Deep Reinforcement Learning

arxiv html pdf kimi

2025/12/04 05:00 GTM

Active suspension systems are critical for enhancing vehicle comfort, safety, and stability, yet their performance is often limited by fixed hardware designs and control strategies that cannot adapt to uncertain and dynamic operating conditions. Recent advances in digital twins (DTs) and deep reinforcement learning (DRL) offer new opportunities for real-time, data-driven optimization across a vehicle’s lifecycle. However, integrating these technologies into a unified framework remains an open challenge. This work presents a DT-based control co-design (CCD) framework for full-vehicle active suspensions using multi-generation design concepts. By integrating automatic differentiation into DRL, we jointly optimize physical suspension components and control policies under varying driver behaviors and environmental uncertainties. DRL also addresses the challenge of partial observability, where only limited states can be sensed and fed back to the controller, by learning optimal control actions directly from available sensor information. The framework incorporates model updating with quantile learning to capture data uncertainty, enabling real-time decision-making and adaptive learning from digital-physical interactions. The approach demonstrates personalized optimization of suspension systems under two distinct driving settings (mild and aggressive). Results show that the optimized systems achieve smoother trajectories and reduce control efforts by approximately 43% and 52% for mild and aggressive, respectively, while maintaining ride comfort and stability. Contributions include: developing a DT-enabled CCD framework integrating DRL and uncertainty-aware model updating for full-vehicle active suspensions, introducing a multi-generation design strategy for self-improving systems, and demonstrating personalized optimization of active suspension systems for distinct driver types.

2.192A Modular Architecture Design for Autonomous Driving Racing in Controlled Environments

arxiv html pdf kimi

2025/12/04 05:00 GTM

This paper presents an Autonomous System (AS) architecture for vehicles in a closed circuit. The AS performs precision tasks including computer vision for environment perception, positioning and mapping for accurate localization, path planning for optimal trajectory generation, and control for precise vehicle actuation. Each subsystem operates independently while connecting data through a cohesive pipeline architecture. The system implements a modular design that combines state-of-the-art technologies for real-time autonomous navigation in controlled environments.

2.193OmniDexVLG: Learning Dexterous Grasp Generation from Vision Language Model-Guided Grasp Semantics, Taxonomy and Functional Affordance

arxiv html pdf kimi

2025/12/04 05:00 GTM

Dexterous grasp generation aims to produce grasp poses that align with task requirements and human interpretable grasp semantics. However, achieving semantically controllable dexterous grasp synthesis remains highly challenging due to the lack of unified modeling of multiple semantic dimensions, including grasp taxonomy, contact semantics, and functional affordance. To address these limitations, we present OmniDexVLG, a multimodal, semantics aware grasp generation framework capable of producing structurally diverse and semantically coherent dexterous grasps under joint language and visual guidance. Our approach begins with OmniDexDataGen, a semantic rich dexterous grasp dataset generation pipeline that integrates grasp taxonomy guided configuration sampling, functional affordance contact point sampling, taxonomy aware differential force closure grasp sampling, and physics based optimization and validation, enabling systematic coverage of diverse grasp types. We further introduce OmniDexReasoner, a multimodal grasp type semantic reasoning module that leverages multi agent collaboration, retrieval augmented generation, and chain of thought reasoning to infer grasp related semantics and generate high quality annotations that align language instructions with task specific grasp intent. Building upon these components, we develop a unified Vision Language Grasping generation model that explicitly incorporates grasp taxonomy, contact structure, and functional affordance semantics, enabling fine grained control over grasp synthesis from natural language instructions. Extensive experiments in simulation and real world object grasping and ablation studies demonstrate that our method substantially outperforms state of the art approaches in terms of grasp diversity, contact semantic diversity, functional affordance diversity, and semantic consistency.

2.194IM HERE: Interaction Model for Human Effort Based Robot Engagement

arxiv html pdf kimi

2025/12/04 05:00 GTM

The effectiveness of human-robot interaction often hinges on the ability to cultivate engagement - a dynamic process of cognitive involvement that supports meaningful exchanges. Many existing definitions and models of engagement are either too vague or lack the ability to generalize across different contexts. We introduce IM HERE, a novel framework that models engagement effectively in human-human, human-robot, and robot-robot interactions. By employing an effort-based description of bilateral relationships between entities, we provide an accurate breakdown of relationship patterns, simplifying them to focus placement and four key states. This framework captures mutual relationships, group behaviors, and actions conforming to social norms, translating them into specific directives for autonomous systems. By integrating both subjective perceptions and objective states, the model precisely identifies and describes miscommunication. The primary objective of this paper is to automate the analysis, modeling, and description of social behavior, and to determine how autonomous systems can behave in accordance with social norms for full social integration while simultaneously pursuing their own social goals.

2.195MPCFormer: A physics-informed data-driven approach for explainable socially-aware autonomous driving

arxiv html pdf kimi

2025/12/04 05:00 GTM

Autonomous Driving (AD) vehicles still struggle to exhibit human-like behavior in highly dynamic and interactive traffic scenarios. The key challenge lies in AD’s limited ability to interact with surrounding vehicles, largely due to a lack of understanding the underlying mechanisms of social interaction. To address this issue, we introduce MPCFormer, an explainable socially-aware autonomous driving approach with physics-informed and data-driven coupled social interaction dynamics. In this model, the dynamics are formulated into a discrete space-state representation, which embeds physics priors to enhance modeling explainability. The dynamics coefficients are learned from naturalistic driving data via a Transformer-based encoder-decoder architecture. To the best of our knowledge, MPCFormer is the first approach to explicitly model the dynamics of multi-vehicle social interactions. The learned social interaction dynamics enable the planner to generate manifold, human-like behaviors when interacting with surrounding traffic. By leveraging the MPC framework, the approach mitigates the potential safety risks typically associated with purely learning-based methods. Open-looped evaluation on NGSIM dataset demonstrates that MPCFormer achieves superior social interaction awareness, yielding the lowest trajectory prediction errors compared with other state-of-the-art approach. The prediction achieves an ADE as low as 0.86 m over a long prediction horizon of 5 seconds. Close-looped experiments in highly intense interaction scenarios, where consecutive lane changes are required to exit an off-ramp, further validate the effectiveness of MPCFormer. Results show that MPCFormer achieves the highest planning success rate of 94.67%, improves driving efficiency by 15.75%, and reduces the collision rate from 21.25% to 0.5%, outperforming a frontier Reinforcement Learning (RL) based planner.

2.196Safety Reinforced Model Predictive Control (SRMPC): Improving MPC with Reinforcement Learning for Motion Planning in Autonomous Driving

arxiv html pdf kimi

2025/12/04 05:00 GTM

Model predictive control (MPC) is widely used for motion planning, particularly in autonomous driving. Real-time capability of the planner requires utilizing convex approximation of optimal control problems (OCPs) for the planner. However, such approximations confine the solution to a subspace, which might not contain the global optimum. To address this, we propose using safe reinforcement learning (SRL) to obtain a new and safe reference trajectory within MPC. By employing a learning-based approach, the MPC can explore solutions beyond the close neighborhood of the previous one, potentially finding global optima. We incorporate constrained reinforcement learning (CRL) to ensure safety in automated driving, using a handcrafted energy function-based safety index as the constraint objective to model safe and unsafe regions. Our approach utilizes a state-dependent Lagrangian multiplier, learned concurrently with the safe policy, to solve the CRL problem. Through experimentation in a highway scenario, we demonstrate the superiority of our approach over both MPC and SRL in terms of safety and performance measures.

2.197Bayesian Optimization for Automatic Tuning of Torque-Level Nonlinear Model Predictive Control

arxiv html pdf kimi

2025/12/04 05:00 GTM

This paper presents an auto-tuning framework for torque-based Nonlinear Model Predictive Control (nMPC), where the MPC serves as a real-time controller for optimal joint torque commands. The MPC parameters, including cost function weights and low-level controller gains, are optimized using high-dimensional Bayesian Optimization (BO) techniques, specifically Sparse Axis-Aligned Subspace (SAASBO) with a digital twin (DT) to achieve precise end-effector trajectory real-time tracking on an UR10e robot arm. The simulation model allows efficient exploration of the high-dimensional parameter space, and it ensures safe transfer to hardware. Our simulation results demonstrate significant improvements in tracking performance (+41.9%) and reduction in solve times (-2.5%) compared to manually-tuned parameters. Moreover, experimental validation on the real robot follows the trend (with a +25.8% improvement), emphasizing the importance of digital twin-enabled automated parameter optimization for robotic operations.

2.198Prediction-Driven Motion Planning: Route Integration Strategies in Attention-Based Prediction Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

Combining motion prediction and motion planning offers a promising framework for enhancing interactions between automated vehicles and other traffic participants. However, this introduces challenges in conditioning predictions on navigation goals and ensuring stable, kinematically feasible trajectories. Addressing the former challenge, this paper investigates the extension of attention-based motion prediction models with navigation information. By integrating the ego vehicle’s intended route and goal pose into the model architecture, we bridge the gap between multi-agent motion prediction and goal-based motion planning. We propose and evaluate several architectural navigation integration strategies to our model on the nuPlan dataset. Our results demonstrate the potential of prediction-driven motion planning, highlighting how navigation information can enhance both prediction and planning tasks. Our implementation is at: https://github.com/KIT-MRT/future-motion.

2.199Cross-embodied Co-design for Dexterous Hands

arxiv html pdf kimi

2025/12/04 05:00 GTM

Dexterous manipulation is limited by both control and design, without consensus as to what makes manipulators best for performing dexterous tasks. This raises a fundamental challenge: how should we design and control robot manipulators that are optimized for dexterity? We present a co-design framework that learns task-specific hand morphology and complementary dexterous control policies. The framework supports 1) an expansive morphology search space including joint, finger, and palm generation, 2) scalable evaluation across the wide design space via morphology-conditioned cross-embodied control, and 3) real-world fabrication with accessible components. We evaluate the approach across multiple dexterous tasks, including in-hand rotation with simulation and real deployment. Our framework enables an end-to-end pipeline that can design, train, fabricate, and deploy a new robotic hand in under 24 hours. The full framework will be open-sourced and available on our website.

2.200Crossing the Sim2Real Gap Between Simulation and Ground Testing to Space Deployment of Autonomous Free-flyer Control

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reinforcement learning (RL) offers transformative potential for robotic control in space. We present the first on-orbit demonstration of RL-based autonomous control of a free-flying robot, the NASA Astrobee, aboard the International Space Station (ISS). Using NVIDIA’s Omniverse physics simulator and curriculum learning, we trained a deep neural network to replace Astrobee’s standard attitude and translation control, enabling it to navigate in microgravity. Our results validate a novel training pipeline that bridges the simulation-to-reality (Sim2Real) gap, utilizing a GPU-accelerated, scientific-grade simulation environment for efficient Monte Carlo RL training. This successful deployment demonstrates the feasibility of training RL policies terrestrially and transferring them to space-based applications. This paves the way for future work in In-Space Servicing, Assembly, and Manufacturing (ISAM), enabling rapid on-orbit adaptation to dynamic mission requirements.

2.201Autonomous Planning In-space Assembly Reinforcement-learning free-flYer (APIARY) International Space Station Astrobee Testing

arxiv html pdf kimi

2025/12/04 05:00 GTM

The US Naval Research Laboratory’s (NRL’s) Autonomous Planning In-space Assembly Reinforcement-learning free-flYer (APIARY) experiment pioneers the use of reinforcement learning (RL) for control of free-flying robots in the zero-gravity (zero-G) environment of space. On Tuesday, May 27th 2025 the APIARY team conducted the first ever, to our knowledge, RL control of a free-flyer in space using the NASA Astrobee robot on-board the International Space Station (ISS). A robust 6-degrees of freedom (DOF) control policy was trained using an actor-critic Proximal Policy Optimization (PPO) network within the NVIDIA Isaac Lab simulation environment, randomizing over goal poses and mass distributions to enhance robustness. This paper details the simulation testing, ground testing, and flight validation of this experiment. This on-orbit demonstration validates the transformative potential of RL for improving robotic autonomy, enabling rapid development and deployment (in minutes to hours) of tailored behaviors for space exploration, logistics, and real-time mission needs.

2.202PosA-VLA: Enhancing Action Generation via Pose-Conditioned Anchor Attention

arxiv html pdf kimi

2025/12/04 05:00 GTM

The Vision-Language-Action (VLA) models have demonstrated remarkable performance on embodied tasks and shown promising potential for real-world applications. However, current VLAs still struggle to produce consistent and precise target-oriented actions, as they often generate redundant or unstable motions along trajectories, limiting their applicability in time-sensitive scenarios.In this work, we attribute these redundant actions to the spatially uniform perception field of existing VLAs, which causes them to be distracted by target-irrelevant objects, especially in complex environments.To address this issue, we propose an efficient PosA-VLA framework that anchors visual attention via pose-conditioned supervision, consistently guiding the model’s perception toward task-relevant regions. The pose-conditioned anchor attention mechanism enables the model to better align instruction semantics with actionable visual cues, thereby improving action generation precision and efficiency. Moreover, our framework adopts a lightweight architecture and requires no auxiliary perception modules (e.g., segmentation or grounding networks), ensuring efficient inference. Extensive experiments verify that our method executes embodied tasks with precise and time-efficient behavior across diverse robotic manipulation benchmarks and shows robust generalization in a variety of challenging environments.

2.203ContactRL: Safe Reinforcement Learning based Motion Planning for Contact based Human Robot Collaboration

arxiv html pdf kimi

2025/12/04 05:00 GTM

In collaborative human-robot tasks, safety requires not only avoiding collisions but also ensuring safe, intentional physical contact. We present ContactRL, a reinforcement learning (RL) based framework that directly incorporates contact safety into the reward function through force feedback. This enables a robot to learn adaptive motion profiles that minimize human-robot contact forces while maintaining task efficiency. In simulation, ContactRL achieves a low safety violation rate of 0.2% with a high task success rate of 87.7%, outperforming state-of-the-art constrained RL baselines. In order to guarantee deployment safety, we augment the learned policy with a kinetic energy based Control Barrier Function (eCBF) shield. Real-world experiments on an UR3e robotic platform performing small object handovers from a human hand across 360 trials confirm safe contact, with measured normal forces consistently below 10N. These results demonstrate that ContactRL enables safe and efficient physical collaboration, thereby advancing the deployment of collaborative robots in contact-rich tasks.

2.204A Novel Approach to Tomato Harvesting Using a Hybrid Gripper with Semantic Segmentation and Keypoint Detection

arxiv html pdf kimi

2025/12/04 05:00 GTM

This paper presents an autonomous tomato-harvesting system built around a hybrid robotic gripper that combines six soft auxetic fingers with a rigid exoskeleton and a latex basket to achieve gentle, cage-like grasping. The gripper is driven by a servo-actuated Scotch--yoke mechanism, and includes separator leaves that form a conical frustum for fruit isolation, with an integrated micro-servo cutter for pedicel cutting. For perception, an RGB--D camera and a Detectron2-based pipeline perform semantic segmentation of ripe/unripe tomatoes and keypoint localization of the pedicel and fruit center under occlusion and variable illumination. An analytical model derived using the principle of virtual work relates servo torque to grasp force, enabling design-level reasoning about actuation requirements. During execution, closed-loop grasp-force regulation is achieved using a proportional--integral--derivative controller with feedback from force-sensitive resistors mounted on selected fingers to prevent slip and bruising. Motion execution is supported by Particle Swarm Optimization (PSO)--based trajectory planning for a 5-DOF manipulator. Experiments demonstrate complete picking cycles (approach, separation, cutting, grasping, transport, release) with an average cycle time of 24.34~s and an overall success rate of approximately 80%, while maintaining low grasp forces (0.20--0.50~N). These results validate the proposed hybrid gripper and integrated vision--control pipeline for reliable harvesting in cluttered environments.

2.205Context-Triggered Contingency Games for Strategic Multi-Agent Interaction

arxiv html pdf kimi

2025/12/04 05:00 GTM

We address the challenge of reliable and efficient interaction in autonomous multi-agent systems, where agents must balance long-term strategic objectives with short-term dynamic adaptation. We propose context-triggered contingency games, a novel integration of strategic games derived from temporal logic specifications with dynamic contingency games solved in real time. Our two-layered architecture leverages strategy templates to guarantee satisfaction of high-level objectives, while a new factor-graph-based solver enables scalable, real-time model predictive control of dynamic interactions. The resulting framework ensures both safety and progress in uncertain, interactive environments. We validate our approach through simulations and hardware experiments in autonomous driving and robotic navigation, demonstrating efficient, reliable, and adaptive multi-agent interaction.

2.206Multimodal Control of Manipulators: Coupling Kinematics and Vision for Self-Driving Laboratory Operations

arxiv html pdf kimi

2025/12/04 05:00 GTM

Motion planning schemes are used for planning motions of a manipulator from an initial pose to a final pose during a task execution. A motion planning scheme generally comprises of a trajectory planning method and an inverse kinematic solver to determine trajectories and joints solutions respectively. In this paper, 3 motion planning schemes developed based on Jacobian methods are implemented to traverse a redundant manipulator with a coupled finger gripper through given trajectories. RRT* algorithm is used for planning trajectories and screw theory based forward kinematic equations are solved for determining joint solutions of the manipulator and gripper. Inverse solutions are computed separately using 3 Jacobian based methods such as Jacobian Transpose (JT), Pseudo Inverse (PI), and Damped Least Square (DLS) methods. Space Jacobian and manipulability measurements of the manipulator and gripper are obtained using screw theory formulations. Smoothness and RMSE error of generated trajectories and velocity continuity, acceleration profile, jerk, and snap values of joint motions are analysed for determining an efficient motion planning method for a given task. Advantages and disadvantages of the proposed motion planning schemes mentioned above are analysed using simulation studies to determine a suitable inverse solution technique for the tasks.

2.207RoboScape-R: Unified Reward-Observation World Models for Generalizable Robotics Training via RL

arxiv html pdf kimi

2025/12/04 05:00 GTM

Achieving generalizable embodied policies remains a key challenge. Traditional policy learning paradigms, including both Imitation Learning (IL) and Reinforcement Learning (RL), struggle to cultivate generalizability across diverse scenarios. While IL policies often overfit to specific expert trajectories, RL suffers from the inherent lack of a unified and general reward signal necessary for effective multi-scene generalization. We posit that the world model is uniquely capable of serving as a universal environment proxy to address this limitation. However, current world models primarily focus on their ability to predict observations and still rely on task-specific, handcrafted reward functions, thereby failing to provide a truly general training environment. Toward this problem, we propose RoboScape-R, a framework leveraging the world model to serve as a versatile, general-purpose proxy for the embodied environment within the RL paradigm. We introduce a novel world model-based general reward mechanism that generates ‘‘endogenous’’ rewards derived from the model’s intrinsic understanding of real-world state transition dynamics. Extensive experiments demonstrate that RoboScape-R effectively addresses the limitations of traditional RL methods by providing an efficient and general training environment that substantially enhances the generalization capability of embodied policies. Our approach offers critical insights into utilizing the world model as an online training strategy and achieves an average 37.5% performance improvement over baselines under out-of-domain scenarios.

2.208A Learning-based Control Methodology for Transitioning VTOL UAVs

arxiv html pdf kimi

2025/12/04 05:00 GTM

Transition control poses a critical challenge in Vertical Take-Off and Landing Unmanned Aerial Vehicle (VTOL UAV) development due to the tilting rotor mechanism, which shifts the center of gravity and thrust direction during transitions. Current control methods’ decoupled control of altitude and position leads to significant vibration, and limits interaction consideration and adaptability. In this study, we propose a novel coupled transition control methodology based on reinforcement learning (RL) driven controller. Besides, contrasting to the conventional phase-transition approach, the ST3M method demonstrates a new perspective by treating cruise mode as a special case of hover. We validate the feasibility of applying our method in simulation and real-world environments, demonstrating efficient controller development and migration while accurately controlling UAV position and attitude, exhibiting outstanding trajectory tracking and reduced vibrations during the transition process.

2.209AdaPower: Specializing World Foundation Models for Predictive Manipulation

arxiv html pdf kimi

2025/12/04 05:00 GTM

World Foundation Models (WFMs) offer remarkable visual dynamics simulation capabilities, yet their application to precise robotic control remains limited by the gap between generative realism and control-oriented precision. While existing approaches use WFMs as synthetic data generators, they suffer from high computational costs and underutilization of pre-trained VLA policies. We introduce \textbf{AdaPower} (\textbf{Ada}pt and Em\textbf{power}), a lightweight adaptation framework that transforms general-purpose WFMs into specialist world models through two novel components: Temporal-Spatial Test-Time Training (TS-TTT) for inference-time adaptation and Memory Persistence (MP) for long-horizon consistency. Integrated within a Model Predictive Control framework, our adapted world model empowers pre-trained VLAs, achieving over 41% improvement in task success rates on LIBERO benchmarks without policy retraining, while preserving computational efficiency and generalist capabilities.

2.210Mobility Induced Sensitivity of UAV based Nodes to Jamming in Private 5G Airfield Networks An Experimental Study

arxiv html pdf kimi

2025/12/04 05:00 GTM

This work presents an experimental performance evaluation of a private 5G airfield network under controlled directional SDR jamming attacks targeting UAV-based UE nodes. Using a QualiPoc Android UE, mounted as a payload on a quadcopter UAV, we conducted a series of experiments to evaluate signal degradation, handover performance, and ser-vice stability in the presence of constant directional jamming. The conducted experiments aimed to examine the effects of varying travel speeds, altitudes, and moving patterns of a UAV-based UE to record and analyze the key physical-layer and network-layer metrics such as CQI, MCS, RSRP, SINR, BLER, Net PDSCH Throughput and RLF. The re-sults of this work describe the link stability and signal degradation dependencies, caused by the level of mobility of the UAV-based UE nodes during autonomous and automatic operation in private 5G Airfield networks

2.211MSG-Loc: Multi-Label Likelihood-based Semantic Graph Matching for Object-Level Global Localization

arxiv html pdf kimi

2025/12/04 05:00 GTM

Robots are often required to localize in environments with unknown object classes and semantic ambiguity. However, when performing global localization using semantic objects, high semantic ambiguity intensifies object misclassification and increases the likelihood of incorrect associations, which in turn can cause significant errors in the estimated pose. Thus, in this letter, we propose a multi-label likelihood-based semantic graph matching framework for object-level global localization. The key idea is to exploit multi-label graph representations, rather than single-label alternatives, to capture and leverage the inherent semantic context of object observations. Based on these representations, our approach enhances semantic correspondence across graphs by combining the likelihood of each node with the maximum likelihood of its neighbors via context-aware likelihood propagation. For rigorous validation, data association and pose estimation performance are evaluated under both closed-set and open-set detection configurations. In addition, we demonstrate the scalability of our approach to large-vocabulary object categories in both real-world indoor scenes and synthetic environments.

2.212CSMapping: Scalable Crowdsourced Semantic Mapping and Topology Inference for Autonomous Driving

arxiv html pdf kimi

2025/12/04 05:00 GTM

Crowdsourcing enables scalable autonomous driving map construction, but low-cost sensor noise hinders quality from improving with data volume. We propose CSMapping, a system that produces accurate semantic maps and topological road centerlines whose quality consistently increases with more crowdsourced data. For semantic mapping, we train a latent diffusion model on HD maps (optionally conditioned on SD maps) to learn a generative prior of real-world map structure, without requiring paired crowdsourced/HD-map supervision. This prior is incorporated via constrained MAP optimization in latent space, ensuring robustness to severe noise and plausible completion in unobserved areas. Initialization uses a robust vectorized mapping module followed by diffusion inversion; optimization employs efficient Gaussian-basis reparameterization, projected gradient descent zobracket multi-start, and latent-space factor-graph for global consistency. For topological mapping, we apply confidence-weighted k-medoids clustering and kinematic refinement to trajectories, yielding smooth, human-like centerlines robust to trajectory variation. Experiments on nuScenes, Argoverse 2, and a large proprietary dataset achieve state-of-the-art semantic and topological mapping performance, with thorough ablation and scalability studies.

2.213Variable-Impedance Muscle Coordination under Slow-Rate Control Frequencies and Limited Observation Conditions Evaluated through Legged Locomotion

arxiv html pdf kimi

2025/12/04 05:00 GTM

Human motor control remains agile and robust despite limited sensory information for feedback, a property attributed to the body’s ability to perform morphological computation through muscle coordination with variable impedance. However, it remains unclear how such low-level mechanical computation reduces the control requirements of the high-level controller. In this study, we implement a hierarchical controller consisting of a high-level neural network trained by reinforcement learning and a low-level variable-impedance muscle coor dination model with mono- and biarticular muscles in monoped locomotion task. We systematically restrict the high-level controller by varying the control frequency and by introducing biologically inspired observation conditions: delayed, partial, and substituted observation. Under these conditions, we evaluate how the low-level variable-impedance muscle coordination contributes to learning process of high-level neural network. The results show that variable-impedance muscle coordination enables stable locomotion even under slow-rate control frequency and limited observation conditions. These findings demonstrate that the morphological computation of muscle coordination effectively offloads high-frequency feedback of the high-level controller and provide a design principle for the controller in motor control.

2.214PerFACT: Motion Policy with LLM-Powered Dataset Synthesis and Fusion Action-Chunking Transformers

arxiv html pdf kimi

2025/12/04 05:00 GTM

Deep learning methods have significantly enhanced motion planning for robotic manipulators by leveraging prior experiences within planning datasets. However, state-of-the-art neural motion planners are primarily trained on small datasets collected in manually generated workspaces, limiting their generalizability to out-of-distribution scenarios. Additionally, these planners often rely on monolithic network architectures that struggle to encode critical planning information. To address these challenges, we introduce Motion Policy with Dataset Synthesis powered by large language models (LLMs) and Fusion Action-Chunking Transformers (PerFACT), which incorporates two key components. Firstly, a novel LLM-powered workspace generation method, MotionGeneralizer, enables large-scale planning data collection by producing a diverse set of semantically feasible workspaces. Secondly, we introduce Fusion Motion Policy Networks (MpiNetsFusion), a generalist neural motion planner that uses a fusion action-chunking transformer to better encode planning signals and attend to multiple feature modalities. Leveraging MotionGeneralizer, we collect 3.5M trajectories to train and evaluate MpiNetsFusion against state-of-the-art planners, which shows that the proposed MpiNetsFusion can plan several times faster on the evaluated tasks.

2.215World Models for Autonomous Navigation of Terrestrial Robots from LIDAR Observations

arxiv html pdf kimi

2025/12/04 05:00 GTM

Autonomous navigation of terrestrial robots using Reinforcement Learning (RL) from LIDAR observations remains challenging due to the high dimensionality of sensor data and the sample inefficiency of model-free approaches. Conventional policy networks struggle to process full-resolution LIDAR inputs, forcing prior works to rely on simplified observations that reduce spatial awareness and navigation robustness. This paper presents a novel model-based RL framework built on top of the DreamerV3 algorithm, integrating a Multi-Layer Perceptron Variational Autoencoder (MLP-VAE) within a world model to encode high-dimensional LIDAR readings into compact latent representations. These latent features, combined with a learned dynamics predictor, enable efficient imagination-based policy optimization. Experiments on simulated TurtleBot3 navigation tasks demonstrate that the proposed architecture achieves faster convergence and higher success rate compared to model-free baselines such as SAC, DDPG, and TD3. It is worth emphasizing that the DreamerV3-based agent attains a 100% success rate across all evaluated environments when using the full dataset of the Turtlebot3 LIDAR (360 readings), while model-free methods plateaued below 85%. These findings demonstrate that integrating predictive world models with learned latent representations enables more efficient and robust navigation from high-dimensional sensory data.

2.216What Is The Best 3D Scene Representation for Robotics? From Geometric to Foundation Models

arxiv html pdf kimi

2025/12/04 05:00 GTM

In this paper, we provide a comprehensive overview of existing scene representation methods for robotics, covering traditional representations such as point clouds, voxels, signed distance functions (SDF), and scene graphs, as well as more recent neural representations like Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS), and the emerging Foundation Models. While current SLAM and localization systems predominantly rely on sparse representations like point clouds and voxels, dense scene representations are expected to play a critical role in downstream tasks such as navigation and obstacle avoidance. Moreover, neural representations such as NeRF, 3DGS, and foundation models are well-suited for integrating high-level semantic features and language-based priors, enabling more comprehensive 3D scene understanding and embodied intelligence. In this paper, we categorized the core modules of robotics into five parts (Perception, Mapping, Localization, Navigation, Manipulation). We start by presenting the standard formulation of different scene representation methods and comparing the advantages and disadvantages of scene representation across different modules. This survey is centered around the question: What is the best 3D scene representation for robotics? We then discuss the future development trends of 3D scene representations, with a particular focus on how the 3D Foundation Model could replace current methods as the unified solution for future robotic applications. The remaining challenges in fully realizing this model are also explored. We aim to offer a valuable resource for both newcomers and experienced researchers to explore the future of 3D scene representations and their application in robotics. We have published an open-source project on GitHub and will continue to add new works and technologies to this project.

2.217Surfel-LIO: Fast LiDAR-Inertial Odometry with Pre-computed Surfels and Hierarchical Z-order Voxel Hashing

arxiv html pdf kimi

2025/12/04 05:00 GTM

LiDAR-inertial odometry (LIO) is an active research area, as it enables accurate real-time state estimation in GPS-denied environments. Recent advances in map data structures and spatial indexing have significantly improved the efficiency of LIO systems. Nevertheless, we observe that two aspects may still leave room for improvement: (1) nearest neighbor search often requires examining multiple spatial units to gather sufficient points for plane fitting, and (2) plane parameters are typically recomputed at every iteration despite unchanged map geometry. Motivated by these observations, we propose Surfel-LIO, which employs a hierarchical voxel structure (hVox) with pre-computed surfel representation. This design enables O(1) correspondence retrieval without runtime neighbor enumeration or plane fitting, combined with Z-order curve encoding for cache-friendly spatial indexing. Experimental results on the M3DGR dataset demonstrate that our method achieves significantly faster processing speed compared to recent state-of-the-art methods while maintaining comparable state estimation accuracy. Our implementation is publicly available at https://github.com/93won/lidar_inertial_odometry.

2.218GOMP: Grasped Object Manifold Projection for Multimodal Imitation Learning of Manipulation

arxiv html pdf kimi

2025/12/04 05:00 GTM

Imitation Learning (IL) holds great potential for learning repetitive manipulation tasks, such as those in industrial assembly. However, its effectiveness is often limited by insufficient trajectory precision due to compounding errors. In this paper, we introduce Grasped Object Manifold Projection (GOMP), an interactive method that mitigates these errors by constraining a non-rigidly grasped object to a lower-dimensional manifold. GOMP assumes a precise task in which a manipulator holds an object that may shift within the grasp in an observable manner and must be mated with a grounded part. Crucially, all GOMP enhancements are learned from the same expert dataset used to train the base IL policy, and are adjusted with an n-arm bandit-based interactive component. We propose a theoretical basis for GOMP’s improvement upon the well-known compounding error bound in IL literature. We demonstrate the framework on four precise assembly tasks using tactile feedback, and note that the approach remains modality-agnostic. Data and videos are available at williamvdb.github.io/GOMPsite.

arxiv html pdf kimi

2025/12/04 05:00 GTM

Accurate environmental representations are essential for autonomous driving, providing the foundation for safe and efficient navigation. Traditionally, high-definition (HD) maps are providing this representation of the static road infrastructure to the autonomous system a priori. However, because the real world is constantly changing, such maps must be constructed online from on-board sensor data. Navigation-grade standard-definition (SD) maps are widely available, but their resolution is insufficient for direct deployment. Instead, they can be used as coarse prior to guide the online map construction process. We propose NavMapFusion, a diffusion-based framework that performs iterative denoising conditioned on high-fidelity sensor data and on low-fidelity navigation maps. This paper strives to answer: (1) How can coarse, potentially outdated navigation maps guide online map construction? (2) What advantages do diffusion models offer for map fusion? We demonstrate that diffusion-based map construction provides a robust framework for map fusion. Our key insight is that discrepancies between the prior map and online perception naturally correspond to noise within the diffusion process; consistent regions reinforce the map construction, whereas outdated segments are suppressed. On the nuScenes benchmark, NavMapFusion conditioned on coarse road lines from OpenStreetMap data reaches a 21.4% relative improvement on 100 m, and even stronger improvements on larger perception ranges, while maintaining real-time capabilities. By fusing low-fidelity priors with high-fidelity sensor data, the proposed method generates accurate and up-to-date environment representations, guiding towards safer and more reliable autonomous driving. The code is available at https://github.com/tmonnin/navmapfusion

2.220KALIKO: Kalman-Implicit Koopman Operator Learning For Prediction of Nonlinear Dynamical Systems

arxiv html pdf kimi

2025/12/04 05:00 GTM

Long-horizon dynamical prediction is fundamental in robotics and control, underpinning canonical methods like model predictive control. Yet, many systems and disturbance phenomena are difficult to model due to effects like nonlinearity, chaos, and high-dimensionality. Koopman theory addresses this by modeling the linear evolution of embeddings of the state under an infinite-dimensional linear operator that can be approximated with a suitable finite basis of embedding functions, effectively trading model nonlinearity for representational complexity. However, explicitly computing a good choice of basis is nontrivial, and poor choices may cause inaccurate forecasts or overfitting. To address this, we present Kalman-Implicit Koopman Operator (KALIKO) Learning, a method that leverages the Kalman filter to implicitly learn embeddings corresponding to latent dynamics without requiring an explicit encoder. KALIKO produces interpretable representations consistent with both theory and prior works, yielding high-quality reconstructions and inducing a globally linear latent dynamics. Evaluated on wave data generated by a high-dimensional PDE, KALIKO surpasses several baselines in open-loop prediction and in a demanding closed-loop simulated control task: stabilizing an underactuated manipulator’s payload by predicting and compensating for strong wave disturbances.

2.221Flux4D: Flow-based Unsupervised 4D Reconstruction

arxiv html pdf kimi

2025/12/04 05:00 GTM

Reconstructing large-scale dynamic scenes from visual observations is a fundamental challenge in computer vision, with critical implications for robotics and autonomous systems. While recent differentiable rendering methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have achieved impressive photorealistic reconstruction, they suffer from scalability limitations and require annotations to decouple actor motion. Existing self-supervised methods attempt to eliminate explicit annotations by leveraging motion cues and geometric priors, yet they remain constrained by per-scene optimization and sensitivity to hyperparameter tuning. In this paper, we introduce Flux4D, a simple and scalable framework for 4D reconstruction of large-scale dynamic scenes. Flux4D directly predicts 3D Gaussians and their motion dynamics to reconstruct sensor observations in a fully unsupervised manner. By adopting only photometric losses and enforcing an “as static as possible” regularization, Flux4D learns to decompose dynamic elements directly from raw data without requiring pre-trained supervised models or foundational priors simply by training across many scenes. Our approach enables efficient reconstruction of dynamic scenes within seconds, scales effectively to large datasets, and generalizes well to unseen environments, including rare and unknown objects. Experiments on outdoor driving datasets show Flux4D significantly outperforms existing methods in scalability, generalization, and reconstruction quality.

2.222GRAND: Guidance, Rebalancing, and Assignment for Networked Dispatch in Multi-Agent Path Finding

arxiv html pdf kimi

2025/12/04 05:00 GTM

Large robot fleets are now common in warehouses and other logistics settings, where small control gains translate into large operational impacts. In this article, we address task scheduling for lifelong Multi-Agent Pickup-and-Delivery (MAPD) and propose a hybrid method that couples learning-based global guidance with lightweight optimization. A graph neural network policy trained via reinforcement learning outputs a desired distribution of free agents over an aggregated warehouse graph. This signal is converted into region-to-region rebalancing through a minimum-cost flow, and finalized by small, local assignment problems, preserving accuracy while keeping per-step latency within a 1 s compute budget. On congested warehouse benchmarks from the League of Robot Runners (LRR) with up to 500 agents, our approach improves throughput by up to 10% over the 2024 winning scheduler while maintaining real-time execution. The results indicate that coupling graph-structured learned guidance with tractable solvers reduces congestion and yields a practical, scalable blueprint for high-throughput scheduling in large fleets.

2.223Multi-Agent Reinforcement Learning and Real-Time Decision-Making in Robotic Soccer for Virtual Environments

arxiv html pdf kimi

2025/12/04 05:00 GTM

The deployment of multi-agent systems in dynamic, adversarial environments like robotic soccer necessitates real-time decision-making, sophisticated cooperation, and scalable algorithms to avoid the curse of dimensionality. While Reinforcement Learning (RL) offers a promising framework, existing methods often struggle with the multi-granularity of tasks (long-term strategy vs. instant actions) and the complexity of large-scale agent interactions. This paper presents a unified Multi-Agent Reinforcement Learning (MARL) framework that addresses these challenges. First, we establish a baseline using Proximal Policy Optimization (PPO) within a client-server architecture for real-time action scheduling, with PPO demonstrating superior performance (4.32 avg. goals, 82.9% ball control). Second, we introduce a Hierarchical RL (HRL) structure based on the options framework to decompose the problem into a high-level trajectory planning layer (modeled as a Semi-Markov Decision Process) and a low-level action execution layer, improving global strategy (avg. goals increased to 5.26). Finally, to ensure scalability, we integrate mean-field theory into the HRL framework, simplifying many-agent interactions into a single agent vs. the population average. Our mean-field actor-critic method achieves a significant performance boost (5.93 avg. goals, 89.1% ball control, 92.3% passing accuracy) and enhanced training stability. Extensive simulations of 4v4 matches in the Webots environment validate our approach, demonstrating its potential for robust, scalable, and cooperative behavior in complex multi-agent domains.