Skip to article frontmatterSkip to article content

1Daily News

Generated at 2025-11-05 04:58:20

We have 154 news from different sources.

2feed

2.1全注意力、复杂推理不掉速:MiniMax M2把Agent做成了「可执行能力」

src root src

2025/11/04 05:21 GTM

全注意力做 Agent,不再是实验室上限能力

2.2NeurIPS 2025 | 用蛋白质动态词表“搭积木”,ProDVa高效组装可折叠新蛋白

src root src

2025/11/04 05:21 GTM

把天然片段拉进词表,像乐高一样拼蛋白

2.3北京内推 | 阿里通义实验室对话智能团队招聘大模型方向研究型实习生

src root src

2025/11/04 05:21 GTM

3paper

3.1TWIST2: Scalable, Portable, and Holistic Humanoid Data Collection System

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large-scale data has driven breakthroughs in robotics, from language models to vision-language-action models in bimanual manipulation. However, humanoid robotics lacks equally effective data collection frameworks. Existing humanoid teleoperation systems either use decoupled control or depend on expensive motion capture setups. We introduce TWIST2, a portable, mocap-free humanoid teleoperation and data collection system that preserves full whole-body control while advancing scalability. Our system leverages PICO4U VR for obtaining real-time whole-body human motions, with a custom 2-DoF robot neck (cost around $250) for egocentric vision, enabling holistic human-to-humanoid control. We demonstrate long-horizon dexterous and mobile humanoid skills and we can collect 100 demonstrations in 15 minutes with an almost 100% success rate. Building on this pipeline, we propose a hierarchical visuomotor policy framework that autonomously controls the full humanoid body based on egocentric vision. Our visuomotor policy successfully demonstrates whole-body dexterous manipulation and dynamic kicking tasks. The entire system is fully reproducible and open-sourced at https://yanjieze.com/TWIST2 . Our collected dataset is also open-sourced at https://twist-data.github.io .

3.2Densemarks: Learning Canonical Embeddings for Human Heads Images via Point Tracks

arxiv html pdf kimi

2025/11/05 04:57 GTM

We propose DenseMarks - a new learned representation for human heads, enabling high-quality dense correspondences of human head images. For a 2D image of a human head, a Vision Transformer network predicts a 3D embedding for each pixel, which corresponds to a location in a 3D canonical unit cube. In order to train our network, we collect a dataset of pairwise point matches, estimated by a state-of-the-art point tracker over a collection of diverse in-the-wild talking heads videos, and guide the mapping via a contrastive loss, encouraging matched points to have close embeddings. We further employ multi-task learning with face landmarks and segmentation constraints, as well as imposing spatial continuity of embeddings through latent cube features, which results in an interpretable and queryable canonical space. The representation can be used for finding common semantic parts, face/head tracking, and stereo reconstruction. Due to the strong supervision, our method is robust to pose variations and covers the entire head, including hair. Additionally, the canonical space bottleneck makes sure the obtained representations are consistent across diverse poses and individuals. We demonstrate state-of-the-art results in geometry-aware point matching and monocular head tracking with 3D Morphable Models. The code and the model checkpoint will be made available to the public.

3.3PLUTO-4: Frontier Pathology Foundation Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

Foundation models trained on large-scale pathology image corpora have demonstrated strong transfer capabilities across diverse histopathology tasks. Building on this progress, we introduce PLUTO-4, our next generation of pathology foundation models that extend the Pathology-Universal Transformer (PLUTO) to frontier scale. We share two complementary Vision Transformer architectures in the PLUTO-4 family: a compact and efficient PLUTO-4S model optimized for multi-scale deployment using a FlexiViT setup with 2D-RoPE embeddings, and a frontier-scale PLUTO-4G model trained with a single patch size to maximize representation capacity and stability. Both models are pretrained using a self-supervised objective derived from DINOv2 on a large multi-institutional corpus containing 551,164 WSIs from 137,144 patients across over 50 institutions, spanning over 60 disease types and over 100 stains. Comprehensive evaluation across public and internal benchmarks demonstrates that PLUTO-4 achieves state-of-the-art performance on tasks requiring varying spatial and biological context, including patch-level classification, segmentation, and slide-level diagnosis. The compact PLUTO-4S provides high-throughput and robust performance for practical deployment, while PLUTO-4G establishes new performance frontiers across multiple pathology benchmarks, including an 11% improvement in dermatopathology diagnosis. These diverse improvements underscore PLUTO-4’s potential to transform real-world applications as a backbone for translational research and diagnostic use cases.

3.4AI-Generated Image Detection: An Empirical Study and Future Research Directions

arxiv html pdf kimi

2025/11/05 04:57 GTM

The threats posed by AI-generated media, particularly deepfakes, are now raising significant challenges for multimedia forensics, misinformation detection, and biometric system resulting in erosion of public trust in the legal system, significant increase in frauds, and social engineering attacks. Although several forensic methods have been proposed, they suffer from three critical gaps: (i) use of non-standardized benchmarks with GAN- or diffusion-generated images, (ii) inconsistent training protocols (e.g., scratch, frozen, fine-tuning), and (iii) limited evaluation metrics that fail to capture generalization and explainability. These limitations hinder fair comparison, obscure true robustness, and restrict deployment in security-critical applications. This paper introduces a unified benchmarking framework for systematic evaluation of forensic methods under controlled and reproducible conditions. We benchmark ten SoTA forensic methods (scratch, frozen, and fine-tuned) and seven publicly available datasets (GAN and diffusion) to perform extensive and systematic evaluations. We evaluate performance using multiple metrics, including accuracy, average precision, ROC-AUC, error rate, and class-wise sensitivity. We also further analyze model interpretability using confidence curves and Grad-CAM heatmaps. Our evaluations demonstrate substantial variability in generalization, with certain methods exhibiting strong in-distribution performance but degraded cross-model transferability. This study aims to guide the research community toward a deeper understanding of the strengths and limitations of current forensic approaches, and to inspire the development of more robust, generalizable, and explainable solutions.

3.5When Visualizing is the First Step to Reasoning: MIRA, a Benchmark for Visual Chain-of-Thought

arxiv html pdf kimi

2025/11/05 04:57 GTM

We propose MIRA, a new benchmark designed to evaluate models in scenarios where generating intermediate visual images is essential for successful reasoning. Unlike traditional CoT methods that rely solely on text, tasks in MIRA require models to generate and utilize intermediate images - such as sketches, structural diagrams, or path drawings - to guide their reasoning process. This setup closely mirrors how humans solve complex problems through “drawing to think”. To solve this, MIRA focuses on tasks that are intrinsically challenging and involve complex structures, spatial relationships, or reasoning steps that are difficult to express through language alone. To ensure that our evaluation data is of high-quality, we include 546 multimodal problems, annotated with intermediate visual images and final answers. We also propose a unified evaluation protocol for MIRA that spans three levels of evaluation input: direct input with image and question only, text-only CoT input with image and thinking prompts, and Visual-CoT input with both annotated image clues and textual thinking prompts. To probe the upper bound of model capacity on our benchmark, we also report pass@k and majority voting accuracies under different k settings. Experimental results show that existing multimodal large language models, including strongest private models as well as strong open-weight models, perform poorly when relying solely on textual prompts. However, when intermediate visual cues are provided, model performance improves consistently, yielding an average relative gain of 33.7% across all models and tasks. We also probe the upper bound by expanding the search space and designing textual prompts aligned with Visual-CoT, but both yield only limited improvements compared to our Visual-CoT setting. These results underscore the critical role of imagined visual information in enabling successful reasoning on MIRA.

3.6VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model’s intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.

3.7PercHead: Perceptual Head Model for Single-Image 3D Head Reconstruction & Editing

arxiv html pdf kimi

2025/11/05 04:57 GTM

We present PercHead, a method for single-image 3D head reconstruction and semantic 3D editing - two tasks that are inherently challenging due to severe view occlusions, weak perceptual supervision, and the ambiguity of editing in 3D space. We develop a unified base model for reconstructing view-consistent 3D heads from a single input image. The model employs a dual-branch encoder followed by a ViT-based decoder that lifts 2D features into 3D space through iterative cross-attention. Rendering is performed using Gaussian Splatting. At the heart of our approach is a novel perceptual supervision strategy based on DINOv2 and SAM2.1, which provides rich, generalized signals for both geometric and appearance fidelity. Our model achieves state-of-the-art performance in novel-view synthesis and, furthermore, exhibits exceptional robustness to extreme viewing angles compared to established baselines. Furthermore, this base model can be seamlessly extended for semantic 3D editing by swapping the encoder and finetuning the network. In this variant, we disentangle geometry and style through two distinct input modalities: a segmentation map to control geometry and either a text prompt or a reference image to specify appearance. We highlight the intuitive and powerful 3D editing capabilities of our model through a lightweight, interactive GUI, where users can effortlessly sculpt geometry by drawing segmentation maps and stylize appearance via natural language or image prompts. Project Page: https://antoniooroz.github.io/PercHead Video: https://www.youtube.com/watch?v=4hFybgTk4kE

3.8Dynamic Reflections: Probing Video Representations with Text Alignment

arxiv html pdf kimi

2025/11/05 04:57 GTM

The alignment of representations from different modalities has recently been shown to provide insights on the structural similarities and downstream capabilities of different encoders across diverse data types. While significant progress has been made in aligning images with text, the temporal nature of video data remains largely unexplored in this context. In this work, we conduct the first comprehensive study of video-text representation alignment, probing the capabilities of modern video and language encoders. Our findings reveal several key insights. First, we demonstrate that cross-modal alignment highly depends on the richness of both visual (static images vs. multi-frame videos) and text (single caption vs. a collection) data provided at test time, especially when using state-of-the-art video encoders. We propose parametric test-time scaling laws that capture this behavior and show remarkable predictive power against empirical observations. Secondly, we investigate the correlation between semantic alignment and performance on both semantic and non-semantic downstream tasks, providing initial evidence that strong alignment against text encoders may be linked to general-purpose video representation and understanding. Finally, we correlate temporal reasoning with cross-modal alignment providing a challenging test-bed for vision and language models. Overall, our work introduces video-text alignment as an informative zero-shot way to probe the representation power of different encoders for spatio-temporal data. Project page can be found at https://video-prh.github.io/

3.9LLEXICORP: End-user Explainability of Convolutional Neural Networks

arxiv html pdf kimi

2025/11/05 04:57 GTM

Convolutional neural networks (CNNs) underpin many modern computer vision systems. With applications ranging from common to critical areas, a need to explain and understand the model and its decisions (XAI) emerged. Prior works suggest that in the top layers of CNNs, the individual channels can be attributed to classifying human-understandable concepts. Concept relevance propagation (CRP) methods can backtrack predictions to these channels and find images that most activate these channels. However, current CRP workflows are largely manual: experts must inspect activation images to name the discovered concepts and must synthesize verbose explanations from relevance maps, limiting the accessibility of the explanations and their scalability. To address these issues, we introduce Large Language model EXplaIns COncept Relevance Propagation (LLEXICORP), a modular pipeline that couples CRP with a multimodal large language model. Our approach automatically assigns descriptive names to concept prototypes and generates natural-language explanations that translate quantitative relevance distributions into intuitive narratives. To ensure faithfulness, we craft prompts that teach the language model the semantics of CRP through examples and enforce a separation between naming and explanation tasks. The resulting text can be tailored to different audiences, offering low-level technical descriptions for experts and high-level summaries for non-technical stakeholders. We qualitatively evaluate our method on various images from ImageNet on a VGG16 model. Our findings suggest that integrating concept-based attribution methods with large language models can significantly lower the barrier to interpreting deep neural networks, paving the way for more transparent AI systems.

3.10An unscented Kalman filter method for real time input-parameter-state estimation

arxiv html pdf kimi

2025/11/05 04:57 GTM

The input-parameter-state estimation capabilities of a novel unscented Kalman filter is examined herein on both linear and nonlinear systems. The unknown input is estimated in two stages within each time step. Firstly, the predicted dynamic states and the system parameters provide an estimation of the input. Secondly, the corrected with measurements states and parameters provide a final estimation. Importantly, it is demonstrated using the perturbation analysis that, a system with at least a zero or a non-zero known input can potentially be uniquely identified. This output-only methodology allows for a better understanding of the system compared to classical output-only parameter identification strategies, given that all the dynamic states, the parameters, and the input are estimated jointly and in real-time.

3.11VidEmo: Affective-Tree Reasoning for Emotion-Centric Video Foundation Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

Understanding and predicting emotion from videos has gathered significant attention in recent studies, driven by advancements in video large language models (VideoLLMs). While advanced methods have made progress in video emotion analysis, the intrinsic nature of emotions poses significant challenges. Emotions are characterized by dynamic and cues-dependent properties, making it difficult to understand complex and evolving emotional states with reasonable rationale. To tackle these challenges, we propose a novel affective cues-guided reasoning framework that unifies fundamental attribute perception, expression analysis, and high-level emotional understanding in a stage-wise manner. At the core of our approach is a family of video emotion foundation models (VidEmo), specifically designed for emotion reasoning and instruction-following. These models undergo a two-stage tuning process: first, curriculum emotion learning for injecting emotion knowledge, followed by affective-tree reinforcement learning for emotion reasoning. Moreover, we establish a foundational data infrastructure and introduce a emotion-centric fine-grained dataset (Emo-CFG) consisting of 2.1M diverse instruction-based samples. Emo-CFG includes explainable emotional question-answering, fine-grained captions, and associated rationales, providing essential resources for advancing emotion understanding tasks. Experimental results demonstrate that our approach achieves competitive performance, setting a new milestone across 15 face perception tasks.

3.12Modality-Transition Representation Learning for Visible-Infrared Person Re-Identification

arxiv html pdf kimi

2025/11/05 04:57 GTM

Visible-infrared person re-identification (VI-ReID) technique could associate the pedestrian images across visible and infrared modalities in the practical scenarios of background illumination changes. However, a substantial gap inherently exists between these two modalities. Besides, existing methods primarily rely on intermediate representations to align cross-modal features of the same person. The intermediate feature representations are usually create by generating intermediate images (kind of data enhancement), or fusing intermediate features (more parameters, lack of interpretability), and they do not make good use of the intermediate features. Thus, we propose a novel VI-ReID framework via Modality-Transition Representation Learning (MTRL) with a middle generated image as a transmitter from visible to infrared modals, which are fully aligned with the original visible images and similar to the infrared modality. After that, using a modality-transition contrastive loss and a modality-query regularization loss for training, which could align the cross-modal features more effectively. Notably, our proposed framework does not need any additional parameters, which achieves the same inference speed to the backbone while improving its performance on VI-ReID task. Extensive experimental results illustrate that our model significantly and consistently outperforms existing SOTAs on three typical VI-ReID datasets.

3.13Differentiable Hierarchical Visual Tokenization

arxiv html pdf kimi

2025/11/05 04:57 GTM

Vision Transformers rely on fixed patch tokens that ignore the spatial and semantic structure of images. In this work, we introduce an end-to-end differentiable tokenizer that adapts to image content with pixel-level granularity while remaining backward-compatible with existing architectures for retrofitting pretrained models. Our method uses hierarchical model selection with information criteria to provide competitive performance in both image-level classification and dense-prediction tasks, and even supports out-of-the-box raster-to-vector conversion.

3.14Can Visual Input Be Compressed? A Visual Token Compression Benchmark for Large Multimodal Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large multimodal models (LMMs) often suffer from severe inference inefficiency due to the large number of visual tokens introduced by image encoders. While recent token compression methods, such as pruning and merging, have shown promise in reducing redundancy, their evaluation remains fragmented and inconsistent. In this work, we present UniPruneBench, a unified and extensible benchmark for visual token pruning in multimodal LLMs. UniPruneBench provides standardized protocols across six ability dimensions and ten datasets, covering ten representative compression algorithms and three families of LMMs (LLaVA-v1.5, Intern-VL3, and Qwen2.5-VL). Beyond task accuracy, it incorporates system-level metrics such as runtime and prefilling latency to provide a holistic view. Our experiments uncover several key findings: (1) random pruning is a surprisingly strong baseline, (2) no single method consistently outperforms others across scenarios, (3) pruning sensitivity varies significantly across tasks, with OCR being most vulnerable, and (4) pruning ratio is the dominant factor governing performance degradation. We believe UniPruneBench will serve as a reliable foundation for future research on efficient multimodal modeling.

3.15Robust Face Liveness Detection for Biometric Authentication using Single Image

arxiv html pdf kimi

2025/11/05 04:57 GTM

Biometric technologies are widely adopted in security, legal, and financial systems. Face recognition can authenticate a person based on the unique facial features such as shape and texture. However, recent works have demonstrated the vulnerability of Face Recognition Systems (FRS) towards presentation attacks. Using spoofing (aka.,presentation attacks), a malicious actor can get illegitimate access to secure systems. This paper proposes a novel light-weight CNN framework to identify print/display, video and wrap attacks. The proposed robust architecture provides seamless liveness detection ensuring faster biometric authentication (1-2 seconds on CPU). Further, this also presents a newly created 2D spoof attack dataset consisting of more than 500 videos collected from 60 subjects. To validate the effectiveness of this architecture, we provide a demonstration video depicting print/display, video and wrap attack detection approaches. The demo can be viewed in the following link: https://rak.box.com/s/m1uf31fn5amtjp4mkgf1huh4ykfeibaa

3.16UniChange: Unifying Change Detection with Multimodal Large Language Model

arxiv html pdf kimi

2025/11/05 04:57 GTM

Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.

3.17Zero-Shot Multi-Animal Tracking in the Wild

arxiv html pdf kimi

2025/11/05 04:57 GTM

Multi-animal tracking is crucial for understanding animal ecology and behavior. However, it remains a challenging task due to variations in habitat, motion patterns, and species appearance. Traditional approaches typically require extensive model fine-tuning and heuristic design for each application scenario. In this work, we explore the potential of recent vision foundation models for zero-shot multi-animal tracking. By combining a Grounding Dino object detector with the Segment Anything Model 2 (SAM 2) tracker and carefully designed heuristics, we develop a tracking framework that can be applied to new datasets without any retraining or hyperparameter adaptation. Evaluations on ChimpAct, Bird Flock Tracking, AnimalTrack, and a subset of GMOT-40 demonstrate strong and consistent performance across diverse species and environments. The code is available at https://github.com/ecker-lab/SAM2-Animal-Tracking.

3.18TAUE: Training-free Noise Transplant and Cultivation Diffusion Model

arxiv html pdf kimi

2025/11/05 04:57 GTM

Despite the remarkable success of text-to-image diffusion models, their output of a single, flattened image remains a critical bottleneck for professional applications requiring layer-wise control. Existing solutions either rely on fine-tuning with large, inaccessible datasets or are training-free yet limited to generating isolated foreground elements, failing to produce a complete and coherent scene. To address this, we introduce the Training-free Noise Transplantation and Cultivation Diffusion Model (TAUE), a novel framework for zero-shot, layer-wise image generation. Our core technique, Noise Transplantation and Cultivation (NTC), extracts intermediate latent representations from both foreground and composite generation processes, transplanting them into the initial noise for subsequent layers. This ensures semantic and structural coherence across foreground, background, and composite layers, enabling consistent, multi-layered outputs without requiring fine-tuning or auxiliary datasets. Extensive experiments show that our training-free method achieves performance comparable to fine-tuned methods, enhancing layer-wise consistency while maintaining high image quality and fidelity. TAUE not only eliminates costly training and dataset requirements but also unlocks novel downstream applications, such as complex compositional editing, paving the way for more accessible and controllable generative workflows.

3.19Resource-efficient Automatic Refinement of Segmentations via Weak Supervision from Light Feedback

arxiv html pdf kimi

2025/11/05 04:57 GTM

Delineating anatomical regions is a key task in medical image analysis. Manual segmentation achieves high accuracy but is labor-intensive and prone to variability, thus prompting the development of automated approaches. Recently, a breadth of foundation models has enabled automated segmentations across diverse anatomies and imaging modalities, but these may not always meet the clinical accuracy standards. While segmentation refinement strategies can improve performance, current methods depend on heavy user interactions or require fully supervised segmentations for training. Here, we present SCORE (Segmentation COrrection from Regional Evaluations), a weakly supervised framework that learns to refine mask predictions only using light feedback during training. Specifically, instead of relying on dense training image annotations, SCORE introduces a novel loss that leverages region-wise quality scores and over/under-segmentation error labels. We demonstrate SCORE on humerus CT scans, where it considerably improves initial predictions from TotalSegmentator, and achieves performance on par with existing refinement methods, while greatly reducing their supervision requirements and annotation time. Our code is available at: https://gitlab.inria.fr/adelangl/SCORE.

3.20A Cognitive Process-Inspired Architecture for Subject-Agnostic Brain Visual Decoding

arxiv html pdf kimi

2025/11/05 04:57 GTM

Subject-agnostic brain decoding, which aims to reconstruct continuous visual experiences from fMRI without subject-specific training, holds great potential for clinical applications. However, this direction remains underexplored due to challenges in cross-subject generalization and the complex nature of brain signals. In this work, we propose Visual Cortex Flow Architecture (VCFlow), a novel hierarchical decoding framework that explicitly models the ventral-dorsal architecture of the human visual system to learn multi-dimensional representations. By disentangling and leveraging features from early visual cortex, ventral, and dorsal streams, VCFlow captures diverse and complementary cognitive information essential for visual reconstruction. Furthermore, we introduce a feature-level contrastive learning strategy to enhance the extraction of subject-invariant semantic representations, thereby enhancing subject-agnostic applicability to previously unseen subjects. Unlike conventional pipelines that need more than 12 hours of per-subject data and heavy computation, VCFlow sacrifices only 7% accuracy on average yet generates each reconstructed video in 10 seconds without any retraining, offering a fast and clinically scalable solution. The source code will be released upon acceptance of the paper.

3.21Seeing Across Time and Views: Multi-Temporal Cross-View Learning for Robust Video Person Re-Identification

arxiv html pdf kimi

2025/11/05 04:57 GTM

Video-based person re-identification (ReID) in cross-view domains (for example, aerial-ground surveillance) remains an open problem because of extreme viewpoint shifts, scale disparities, and temporal inconsistencies. To address these challenges, we propose MTF-CVReID, a parameter-efficient framework that introduces seven complementary modules over a ViT-B/16 backbone. Specifically, we include: (1) Cross-Stream Feature Normalization (CSFN) to correct camera and view biases; (2) Multi-Resolution Feature Harmonization (MRFH) for scale stabilization across altitudes; (3) Identity-Aware Memory Module (IAMM) to reinforce persistent identity traits; (4) Temporal Dynamics Modeling (TDM) for motion-aware short-term temporal encoding; (5) Inter-View Feature Alignment (IVFA) for perspective-invariant representation alignment; (6) Hierarchical Temporal Pattern Learning (HTPL) to capture multi-scale temporal regularities; and (7) Multi-View Identity Consistency Learning (MVICL) that enforces cross-view identity coherence using a contrastive learning paradigm. Despite adding only about 2 million parameters and 0.7 GFLOPs over the baseline, MTF-CVReID maintains real-time efficiency (189 FPS) and achieves state-of-the-art performance on the AG-VPReID benchmark across all altitude levels, with strong cross-dataset generalization to G2A-VReID and MARS datasets. These results show that carefully designed adapter-based modules can substantially enhance cross-view robustness and temporal consistency without compromising computational efficiency. The source code is available at https://github.com/MdRashidunnabi/MTF-CVReID

3.22The Urban Vision Hackathon Dataset and Models: Towards Image Annotations and Accurate Vision Models for Indian Traffic

arxiv html pdf kimi

2025/11/05 04:57 GTM

This report describes the UVH-26 dataset, the first public release by AIM@IISc of a large-scale dataset of annotated traffic-camera images from India. The dataset comprises 26,646 high-resolution (1080p) images sampled from 2800 Bengaluru’s Safe-City CCTV cameras over a 4-week period, and subsequently annotated through a crowdsourced hackathon involving 565 college students from across India. In total, 1.8 million bounding boxes were labeled across 14 vehicle classes specific to India: Cycle, 2-Wheeler (Motorcycle), 3-Wheeler (Auto-rickshaw), LCV (Light Commercial Vehicles), Van, Tempo-traveller, Hatchback, Sedan, SUV, MUV, Mini-bus, Bus, Truck and Other. Of these, 283k-316k consensus ground truth bounding boxes and labels were derived for distinct objects in the 26k images using Majority Voting and STAPLE algorithms. Further, we train multiple contemporary detectors, including YOLO11-S/X, RT-DETR-S/X, and DAMO-YOLO-T/L using these datasets, and report accuracy based on mAP50, mAP75 and mAP50:95. Models trained on UVH-26 achieve 8.4-31.5% improvements in mAP50:95 over equivalent baseline models trained on COCO dataset, with RT-DETR-X showing the best performance at 0.67 (mAP50:95) as compared to 0.40 for COCO-trained weights for common classes (Car, Bus, and Truck). This demonstrates the benefits of domain-specific training data for Indian traffic scenarios. The release package provides the 26k images with consensus annotations based on Majority Voting (UVH-26-MV) and STAPLE (UVH-26-ST) and the 6 fine-tuned YOLO and DETR models on each of these datasets. By capturing the heterogeneity of Indian urban mobility directly from operational traffic-camera streams, UVH-26 addresses a critical gap in existing global benchmarks, and offers a foundation for advancing detection, classification, and deployment of intelligent transportation systems in emerging nations with complex traffic conditions.

3.23SigmaCollab: An Application-Driven Dataset for Physically Situated Collaboration

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce SigmaCollab, a dataset enabling research on physically situated human-AI collaboration. The dataset consists of a set of 85 sessions in which untrained participants were guided by a mixed-reality assistive AI agent in performing procedural tasks in the physical world. SigmaCollab includes a set of rich, multimodal data streams, such as the participant and system audio, egocentric camera views from the head-mounted device, depth maps, head, hand and gaze tracking information, as well as additional annotations performed post-hoc. While the dataset is relatively small in size (~ 14 hours), its application-driven and interactive nature brings to the fore novel research challenges for human-AI collaboration, and provides more realistic testing grounds for various AI models operating in this space. In future work, we plan to use the dataset to construct a set of benchmarks for physically situated collaboration in mixed-reality task assistive scenarios. SigmaCollab is available at https://github.com/microsoft/SigmaCollab.

3.24Forecasting Future Anatomies: Longitudianl Brain Mri-to-Mri Prediction

arxiv html pdf kimi

2025/11/05 04:57 GTM

Predicting future brain state from a baseline magnetic resonance image (MRI) is a central challenge in neuroimaging and has important implications for studying neurodegenerative diseases such as Alzheimer’s disease (AD). Most existing approaches predict future cognitive scores or clinical outcomes, such as conversion from mild cognitive impairment to dementia. Instead, here we investigate longitudinal MRI image-to-image prediction that forecasts a participant’s entire brain MRI several years into the future, intrinsically modeling complex, spatially distributed neurodegenerative patterns. We implement and evaluate five deep learning architectures (UNet, U2-Net, UNETR, Time-Embedding UNet, and ODE-UNet) on two longitudinal cohorts (ADNI and AIBL). Predicted follow-up MRIs are directly compared with the actual follow-up scans using metrics that capture global similarity and local differences. The best performing models achieve high-fidelity predictions, and all models generalize well to an independent external dataset, demonstrating robust cross-cohort performance. Our results indicate that deep learning can reliably predict participant-specific brain MRI at the voxel level, offering new opportunities for individualized prognosis.

3.25Unsupervised Learning for Industrial Defect Detection: A Case Study on Shearographic Data

arxiv html pdf kimi

2025/11/05 04:57 GTM

Shearography is a non-destructive testing method for detecting subsurface defects, offering high sensitivity and full-field inspection capabilities. However, its industrial adoption remains limited due to the need for expert interpretation. To reduce reliance on labeled data and manual evaluation, this study explores unsupervised learning methods for automated anomaly detection in shearographic images. Three architectures are evaluated: a fully connected autoencoder, a convolutional autoencoder, and a student-teacher feature matching model. All models are trained solely on defect-free data. A controlled dataset was developed using a custom specimen with reproducible defect patterns, enabling systematic acquisition of shearographic measurements under both ideal and realistic deformation conditions. Two training subsets were defined: one containing only undistorted, defect-free samples, and one additionally including globally deformed, yet defect-free, data. The latter simulates practical inspection conditions by incorporating deformation-induced fringe patterns that may obscure localized anomalies. The models are evaluated in terms of binary classification and, for the student-teacher model, spatial defect localization. Results show that the student-teacher approach achieves superior classification robustness and enables precise localization. Compared to the autoencoder-based models, it demonstrates improved separability of feature representations, as visualized through t-SNE embeddings. Additionally, a YOLOv8 model trained on labeled defect data serves as a reference to benchmark localization quality. This study underscores the potential of unsupervised deep learning for scalable, label-efficient shearographic inspection in industrial environments.

3.26LiteVoxel: Low-memory Intelligent Thresholding for Efficient Voxel Rasterization

arxiv html pdf kimi

2025/11/05 04:57 GTM

Sparse-voxel rasterization is a fast, differentiable alternative for optimization-based scene reconstruction, but it tends to underfit low-frequency content, depends on brittle pruning heuristics, and can overgrow in ways that inflate VRAM. We introduce LiteVoxel, a self-tuning training pipeline that makes SV rasterization both steadier and lighter. Our loss is made low-frequency aware via an inverse-Sobel reweighting with a mid-training gamma-ramp, shifting gradient budget to flat regions only after geometry stabilize. Adaptation replaces fixed thresholds with a depth-quantile pruning logic on maximum blending weight, stabilized by EMA-hysteresis guards and refines structure through ray-footprint-based, priority-driven subdivision under an explicit growth budget. Ablations and full-system results across Mip-NeRF 360 (6scenes) and Tanks & Temples (3scenes) datasets show mitigation of errors in low-frequency regions and boundary instability while keeping PSNR/SSIM, training time, and FPS comparable to a strong SVRaster pipeline. Crucially, LiteVoxel reduces peak VRAM by ~40%-60% and preserves low-frequency detail that prior setups miss, enabling more predictable, memory-efficient training without sacrificing perceptual quality.

3.27Keeping it Local, Tiny and Real: Automated Report Generation on Edge Computing Devices for Mechatronic-Based Cognitive Systems

arxiv html pdf kimi

2025/11/05 04:57 GTM

Recent advancements in Deep Learning enable hardware-based cognitive systems, that is, mechatronic systems in general and robotics in particular with integrated Artificial Intelligence, to interact with dynamic and unstructured environments. While the results are impressive, the application of such systems to critical tasks like autonomous driving as well as service and care robotics necessitate the evaluation of large amount of heterogeneous data. Automated report generation for Mobile Robotics can play a crucial role in facilitating the evaluation and acceptance of such systems in various domains. In this paper, we propose a pipeline for generating automated reports in natural language utilizing various multi-modal sensors that solely relies on local models capable of being deployed on edge computing devices, thus preserving the privacy of all actors involved and eliminating the need for external services. In particular, we evaluate our implementation on a diverse dataset spanning multiple domains including indoor, outdoor and urban environments, providing quantitative as well as qualitative evaluation results. Various generated example reports and other supplementary materials are available via a public repository.

3.28ESA: Energy-Based Shot Assembly Optimization for Automatic Video Editing

arxiv html pdf kimi

2025/11/05 04:57 GTM

Shot assembly is a crucial step in film production and video editing, involving the sequencing and arrangement of shots to construct a narrative, convey information, or evoke emotions. Traditionally, this process has been manually executed by experienced editors. While current intelligent video editing technologies can handle some automated video editing tasks, they often fail to capture the creator’s unique artistic expression in shot assembly.To address this challenge, we propose an energy-based optimization method for video shot assembly. Specifically, we first perform visual-semantic matching between the script generated by a large language model and a video library to obtain subsets of candidate shots aligned with the script semantics. Next, we segment and label the shots from reference videos, extracting attributes such as shot size, camera motion, and semantics. We then employ energy-based models to learn from these attributes, scoring candidate shot sequences based on their alignment with reference styles. Finally, we achieve shot assembly optimization by combining multiple syntax rules, producing videos that align with the assembly style of the reference videos. Our method not only automates the arrangement and combination of independent shots according to specific logic, narrative requirements, or artistic styles but also learns the assembly style of reference videos, creating a coherent visual sequence or holistic visual expression. With our system, even users with no prior video editing experience can create visually compelling videos. Project page: https://sobeymil.github.io/esa.com

3.29Adapting General-Purpose Foundation Models for X-ray Ptychography in Low-Data Regimes

arxiv html pdf kimi

2025/11/05 04:57 GTM

The automation of workflows in advanced microscopy is a key goal where foundation models like Language Models (LLMs) and Vision-Language Models (VLMs) show great potential. However, adapting these general-purpose models for specialized scientific tasks is critical, and the optimal domain adaptation strategy is often unclear. To address this, we introduce PtychoBench, a new multi-modal, multi-task benchmark for ptychographic analysis. Using this benchmark, we systematically compare two specialization strategies: Supervised Fine-Tuning (SFT) and In-Context Learning (ICL). We evaluate these strategies on a visual artifact detection task with VLMs and a textual parameter recommendation task with LLMs in a data-scarce regime. Our findings reveal that the optimal specialization pathway is task-dependent. For the visual task, SFT and ICL are highly complementary, with a fine-tuned model guided by context-aware examples achieving the highest mean performance (Micro-F1 of 0.728). Conversely, for the textual task, ICL on a large base model is the superior strategy, reaching a peak Micro-F1 of 0.847 and outperforming a powerful “super-expert” SFT model (0-shot Micro-F1 of 0.839). We also confirm the superiority of context-aware prompting and identify a consistent contextual interference phenomenon in fine-tuned models. These results, benchmarked against strong baselines including GPT-4o and a DINOv3-based classifier, offer key observations for AI in science: the optimal specialization path in our benchmark is dependent on the task modality, offering a clear framework for developing more effective science-based agentic systems.

3.30DetectiumFire: A Comprehensive Multi-modal Dataset Bridging Vision and Language for Fire Understanding

arxiv html pdf kimi

2025/11/05 04:57 GTM

Recent advances in multi-modal models have demonstrated strong performance in tasks such as image generation and reasoning. However, applying these models to the fire domain remains challenging due to the lack of publicly available datasets with high-quality fire domain annotations. To address this gap, we introduce DetectiumFire, a large-scale, multi-modal dataset comprising of 22.5k high-resolution fire-related images and 2.5k real-world fire-related videos covering a wide range of fire types, environments, and risk levels. The data are annotated with both traditional computer vision labels (e.g., bounding boxes) and detailed textual prompts describing the scene, enabling applications such as synthetic data generation and fire risk reasoning. DetectiumFire offers clear advantages over existing benchmarks in scale, diversity, and data quality, significantly reducing redundancy and enhancing coverage of real-world scenarios. We validate the utility of DetectiumFire across multiple tasks, including object detection, diffusion-based image generation, and vision-language reasoning. Our results highlight the potential of this dataset to advance fire-related research and support the development of intelligent safety systems. We release DetectiumFire to promote broader exploration of fire understanding in the AI community. The dataset is available at https://kaggle.com/datasets/38b79c344bdfc55d1eed3d22fbaa9c31fad45e27edbbe9e3c529d6e5c4f93890

3.31Object Detection as an Optional Basis: A Graph Matching Network for Cross-View UAV Localization

arxiv html pdf kimi

2025/11/05 04:57 GTM

With the rapid growth of the low-altitude economy, UAVs have become crucial for measurement and tracking in patrol systems. However, in GNSS-denied areas, satellite-based localization methods are prone to failure. This paper presents a cross-view UAV localization framework that performs map matching via object detection, aimed at effectively addressing cross-temporal, cross-view, heterogeneous aerial image matching. In typical pipelines, UAV visual localization is formulated as an image-retrieval problem: features are extracted to build a localization map, and the pose of a query image is estimated by matching it to a reference database with known poses. Because publicly available UAV localization datasets are limited, many approaches recast localization as a classification task and rely on scene labels in these datasets to ensure accuracy. Other methods seek to reduce cross-domain differences using polar-coordinate reprojection, perspective transformations, or generative adversarial networks; however, they can suffer from misalignment, content loss, and limited realism. In contrast, we leverage modern object detection to accurately extract salient instances from UAV and satellite images, and integrate a graph neural network to reason about inter-image and intra-image node relationships. Using a fine-grained, graph-based node-similarity metric, our method achieves strong retrieval and localization performance. Extensive experiments on public and real-world datasets show that our approach handles heterogeneous appearance differences effectively and generalizes well, making it applicable to scenarios with larger modality gaps, such as infrared-visible image matching. Our dataset will be publicly available at the following URL: https://github.com/liutao23/ODGNNLoc.git.

3.32OLATverse: A Large-scale Real-world Object Dataset with Precise Lighting Control

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce OLATverse, a large-scale dataset comprising around 9M images of 765 real-world objects, captured from multiple viewpoints under a diverse set of precisely controlled lighting conditions. While recent advances in object-centric inverse rendering, novel view synthesis and relighting have shown promising results, most techniques still heavily rely on the synthetic datasets for training and small-scale real-world datasets for benchmarking, which limits their realism and generalization. To address this gap, OLATverse offers two key advantages over existing datasets: large-scale coverage of real objects and high-fidelity appearance under precisely controlled illuminations. Specifically, OLATverse contains 765 common and uncommon real-world objects, spanning a wide range of material categories. Each object is captured using 35 DSLR cameras and 331 individually controlled light sources, enabling the simulation of diverse illumination conditions. In addition, for each object, we provide well-calibrated camera parameters, accurate object masks, photometric surface normals, and diffuse albedo as auxiliary resources. We also construct an extensive evaluation set, establishing the first comprehensive real-world object-centric benchmark for inverse rendering and normal estimation. We believe that OLATverse represents a pivotal step toward integrating the next generation of inverse rendering and relighting methods with real-world data. The full dataset, along with all post-processing workflows, will be publicly released at https://vcai.mpi-inf.mpg.de/projects/OLATverse/.

3.33MVAFormer: RGB-based Multi-View Spatio-Temporal Action Recognition with Transformer

arxiv html pdf kimi

2025/11/05 04:57 GTM

Multi-view action recognition aims to recognize human actions using multiple camera views and deals with occlusion caused by obstacles or crowds. In this task, cooperation among views, which generates a joint representation by combining multiple views, is vital. Previous studies have explored promising cooperation methods for improving performance. However, since their methods focus only on the task setting of recognizing a single action from an entire video, they are not applicable to the recently popular spatio-temporal action recognition~(STAR) setting, in which each person’s action is recognized sequentially. To address this problem, this paper proposes a multi-view action recognition method for the STAR setting, called MVAFormer. In MVAFormer, we introduce a novel transformer-based cooperation module among views. In contrast to previous studies, which utilize embedding vectors with lost spatial information, our module utilizes the feature map for effective cooperation in the STAR setting, which preserves the spatial information. Furthermore, in our module, we divide the self-attention for the same and different views to model the relationship between multiple views effectively. The results of experiments using a newly collected dataset demonstrate that MVAFormer outperforms the comparison baselines by approximately 4.4 points on the F-measure.

3.34HAGI++: Head-Assisted Gaze Imputation and Generation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Mobile eye tracking plays a vital role in capturing human visual attention across both real-world and extended reality (XR) environments, making it an essential tool for applications ranging from behavioural research to human-computer interaction. However, missing values due to blinks, pupil detection errors, or illumination changes pose significant challenges for further gaze data analysis. To address this challenge, we introduce HAGI++ - a multi-modal diffusion-based approach for gaze data imputation that, for the first time, uses the integrated head orientation sensors to exploit the inherent correlation between head and eye movements. HAGI++ employs a transformer-based diffusion model to learn cross-modal dependencies between eye and head representations and can be readily extended to incorporate additional body movements. Extensive evaluations on the large-scale Nymeria, Ego-Exo4D, and HOT3D datasets demonstrate that HAGI++ consistently outperforms conventional interpolation methods and deep learning-based time-series imputation baselines in gaze imputation. Furthermore, statistical analyses confirm that HAGI++ produces gaze velocity distributions that closely match actual human gaze behaviour, ensuring more realistic gaze imputations. Moreover, by incorporating wrist motion captured from commercial wearable devices, HAGI++ surpasses prior methods that rely on full-body motion capture in the extreme case of 100% missing gaze data (pure gaze generation). Our method paves the way for more complete and accurate eye gaze recordings in real-world settings and has significant potential for enhancing gaze-based analysis and interaction across various application domains.

3.35KAO: Kernel-Adaptive Optimization in Diffusion for Satellite Image

arxiv html pdf kimi

2025/11/05 04:57 GTM

Satellite image inpainting is a crucial task in remote sensing, where accurately restoring missing or occluded regions is essential for robust image analysis. In this paper, we propose KAO, a novel framework that utilizes Kernel-Adaptive Optimization within diffusion models for satellite image inpainting. KAO is specifically designed to address the challenges posed by very high-resolution (VHR) satellite datasets, such as DeepGlobe and the Massachusetts Roads Dataset. Unlike existing methods that rely on preconditioned models requiring extensive retraining or postconditioned models with significant computational overhead, KAO introduces a Latent Space Conditioning approach, optimizing a compact latent space to achieve efficient and accurate inpainting. Furthermore, we incorporate Explicit Propagation into the diffusion process, facilitating forward-backward fusion, which improves the stability and precision of the method. Experimental results demonstrate that KAO sets a new benchmark for VHR satellite image restoration, providing a scalable, high-performance solution that balances the efficiency of preconditioned models with the flexibility of postconditioned models.

3.36From the Laboratory to Real-World Application: Evaluating Zero-Shot Scene Interpretation on Edge Devices for Mobile Robotics

arxiv html pdf kimi

2025/11/05 04:57 GTM

Video Understanding, Scene Interpretation and Commonsense Reasoning are highly challenging tasks enabling the interpretation of visual information, allowing agents to perceive, interact with and make rational decisions in its environment. Large Language Models (LLMs) and Visual Language Models (VLMs) have shown remarkable advancements in these areas in recent years, enabling domain-specific applications as well as zero-shot open vocabulary tasks, combining multiple domains. However, the required computational complexity poses challenges for their application on edge devices and in the context of Mobile Robotics, especially considering the trade-off between accuracy and inference time. In this paper, we investigate the capabilities of state-of-the-art VLMs for the task of Scene Interpretation and Action Recognition, with special regard to small VLMs capable of being deployed to edge devices in the context of Mobile Robotics. The proposed pipeline is evaluated on a diverse dataset consisting of various real-world cityscape, on-campus and indoor scenarios. The experimental evaluation discusses the potential of these small models on edge devices, with particular emphasis on challenges, weaknesses, inherent model biases and the application of the gained information. Supplementary material is provided via the following repository: https://datahub.rz.rptu.de/hstr-csrl-public/publications/scene-interpretation-on-edge-devices/

3.37A Kullback-Leibler divergence method for input-system-state identification

arxiv html pdf kimi

2025/11/05 04:57 GTM

The capability of a novel Kullback-Leibler divergence method is examined herein within the Kalman filter framework to select the input-parameter-state estimation execution with the most plausible results. This identification suffers from the uncertainty related to obtaining different results from different initial parameter set guesses, and the examined approach uses the information gained from the data in going from the prior to the posterior distribution to address the issue. Firstly, the Kalman filter is performed for a number of different initial parameter sets providing the system input-parameter-state estimation. Secondly, the resulting posterior distributions are compared simultaneously to the initial prior distributions using the Kullback-Leibler divergence. Finally, the identification with the least Kullback-Leibler divergence is selected as the one with the most plausible results. Importantly, the method is shown to select the better performed identification in linear, nonlinear, and limited information applications, providing a powerful tool for system monitoring.

3.38Synthetic Crop-Weed Image Generation and its Impact on Model Generalization

arxiv html pdf kimi

2025/11/05 04:57 GTM

Precise semantic segmentation of crops and weeds is necessary for agricultural weeding robots. However, training deep learning models requires large annotated datasets, which are costly to obtain in real fields. Synthetic data can reduce this burden, but the gap between simulated and real images remains a challenge. In this paper, we present a pipeline for procedural generation of synthetic crop-weed images using Blender, producing annotated datasets under diverse conditions of plant growth, weed density, lighting, and camera angle. We benchmark several state-of-the-art segmentation models on synthetic and real datasets and analyze their cross-domain generalization. Our results show that training on synthetic images leads to a sim-to-real gap of 10%, surpassing previous state-of-the-art methods. Moreover, synthetic data demonstrates good generalization properties, outperforming real datasets in cross-domain scenarios. These findings highlight the potential of synthetic agricultural datasets and support hybrid strategies for more efficient model training.

3.39ChartM3^3: A Multi-Stage Code-Driven Pipeline for Constructing Multi-Dimensional and Multi-Step Visual Reasoning Data in Chart Comprehension

arxiv html pdf kimi

2025/11/05 04:57 GTM

Complex chart understanding tasks demand advanced visual recognition and reasoning capabilities from multimodal large language models (MLLMs). However, current research provides limited coverage of complex chart scenarios and computation-intensive reasoning tasks prevalent in real-world applications. This study proposes an automated multi-stage code-driven pipeline for systematically generating visual reasoning datasets to address these limitations. The pipeline integrates retrieval-augmented generation (RAG) to retrieve professional chart templates and employs chain-of-thought (CoT) strategies to generate reasoning codes that simulate real data distributions, thereby driving chart rendering and question-related statistical computations. Through model-based evaluation, the pipeline enhances chart diversity and data quality. Using this framework, we construct ChartM3^3, a multi-dimensional and multi-step dataset containing 38K charts and 142K Q&A pairs for training, along with 2,871 high-quality evaluation samples for enabling practical performance assessment. Supervised fine-tuning (SFT) and reinforcement learning (RL) experiments demonstrate that our dataset significantly improves reasoning capabilities and cross-domain generalization performance, enabling smaller models to achieve performance comparable to larger-scale models in complex chart comprehension.

3.40IllumFlow: Illumination-Adaptive Low-Light Enhancement via Conditional Rectified Flow and Retinex Decomposition

arxiv html pdf kimi

2025/11/05 04:57 GTM

We present IllumFlow, a novel framework that synergizes conditional Rectified Flow (CRF) with Retinex theory for low-light image enhancement (LLIE). Our model addresses low-light enhancement through separate optimization of illumination and reflectance components, effectively handling both lighting variations and noise. Specifically, we first decompose an input image into reflectance and illumination components following Retinex theory. To model the wide dynamic range of illumination variations in low-light images, we propose a conditional rectified flow framework that represents illumination changes as a continuous flow field. While complex noise primarily resides in the reflectance component, we introduce a denoising network, enhanced by flow-derived data augmentation, to remove reflectance noise and chromatic aberration while preserving color fidelity. IllumFlow enables precise illumination adaptation across lighting conditions while naturally supporting customizable brightness enhancement. Extensive experiments on low-light enhancement and exposure correction demonstrate superior quantitative and qualitative performance over existing methods.

3.41Purrturbed but Stable: Human-Cat Invariant Representations Across CNNs, ViTs and Self-Supervised ViTs

arxiv html pdf kimi

2025/11/05 04:57 GTM

Cats and humans differ in ocular anatomy. Most notably, Felis Catus (domestic cats) have vertically elongated pupils linked to ambush predation; yet, how such specializations manifest in downstream visual representations remains incompletely understood. We present a unified, frozen-encoder benchmark that quantifies feline-human cross-species representational alignment in the wild, across convolutional networks, supervised Vision Transformers, windowed transformers, and self-supervised ViTs (DINO), using layer-wise Centered Kernel Alignment (linear and RBF) and Representational Similarity Analysis, with additional distributional and stability tests reported in the paper. Across models, DINO ViT-B/16 attains the most substantial alignment (mean CKA-RBF 0.814\approx0.814, mean CKA-linear 0.745\approx0.745, mean RSA 0.698\approx0.698), peaking at early blocks, indicating that token-level self-supervision induces early-stage features that bridge species-specific statistics. Supervised ViTs are competitive on CKA yet show weaker geometric correspondence than DINO (e.g., ViT-B/16 RSA 0.53\approx0.53 at block8; ViT-L/16 0.47\approx0.47 at block14), revealing depth-dependent divergences between similarity and representational geometry. CNNs remain strong baselines but below plain ViTs on alignment, and windowed transformers underperform plain ViTs, implicating architectural inductive biases in cross-species alignment. Results indicate that self-supervision coupled with ViT inductive biases yields representational geometries that more closely align feline and human visual systems than widely used CNNs and windowed Transformers, providing testable neuroscientific hypotheses about where and how cross-species visual computations converge. We release our code and dataset for reference and reproducibility.

3.42MammoClean: Toward Reproducible and Bias-Aware AI in Mammography through Dataset Harmonization

arxiv html pdf kimi

2025/11/05 04:57 GTM

The development of clinically reliable artificial intelligence (AI) systems for mammography is hindered by profound heterogeneity in data quality, metadata standards, and population distributions across public datasets. This heterogeneity introduces dataset-specific biases that severely compromise the generalizability of the model, a fundamental barrier to clinical deployment. We present MammoClean, a public framework for standardization and bias quantification in mammography datasets. MammoClean standardizes case selection, image processing (including laterality and intensity correction), and unifies metadata into a consistent multi-view structure. We provide a comprehensive review of breast anatomy, imaging characteristics, and public mammography datasets to systematically identify key sources of bias. Applying MammoClean to three heterogeneous datasets (CBIS-DDSM, TOMPEI-CMMD, VinDr-Mammo), we quantify substantial distributional shifts in breast density and abnormality prevalence. Critically, we demonstrate the direct impact of data corruption: AI models trained on corrupted datasets exhibit significant performance degradation compared to their curated counterparts. By using MammoClean to identify and mitigate bias sources, researchers can construct unified multi-dataset training corpora that enable development of robust models with superior cross-domain generalization. MammoClean provides an essential, reproducible pipeline for bias-aware AI development in mammography, facilitating fairer comparisons and advancing the creation of safe, effective systems that perform equitably across diverse patient populations and clinical settings. The open-source code is publicly available from: https://github.com/Minds-R-Lab/MammoClean.

3.43A Novel Grouping-Based Hybrid Color Correction Algorithm for Color Point Clouds

arxiv html pdf kimi

2025/11/05 04:57 GTM

Color consistency correction for color point clouds is a fundamental yet important task in 3D rendering and compression applications. In the past, most previous color correction methods aimed at correcting color for color images. The purpose of this paper is to propose a grouping-based hybrid color correction algorithm for color point clouds. Our algorithm begins by estimating the overlapping rate between the aligned source and target point clouds, and then adaptively partitions the target points into two groups, namely the close proximity group Gcl and the moderate proximity group Gmod, or three groups, namely Gcl, Gmod, and the distant proximity group Gdist, when the estimated overlapping rate is low or high, respectively. To correct color for target points in Gcl, a K-nearest neighbors based bilateral interpolation (KBI) method is proposed. To correct color for target points in Gmod, a joint KBI and the histogram equalization (JKHE) method is proposed. For target points in Gdist, a histogram equalization (HE) method is proposed for color correction. Finally, we discuss the grouping-effect free property and the ablation study in our algorithm. The desired color consistency correction benefit of our algorithm has been justified through 1086 testing color point cloud pairs against the state-of-the-art methods. The C++ source code of our algorithm can be accessed from the website: https://github.com/ivpml84079/Point-cloud-color-correction.

3.44Self-Supervised Moving Object Segmentation of Sparse and Noisy Radar Point Clouds

arxiv html pdf kimi

2025/11/05 04:57 GTM

Moving object segmentation is a crucial task for safe and reliable autonomous mobile systems like self-driving cars, improving the reliability and robustness of subsequent tasks like SLAM or path planning. While the segmentation of camera or LiDAR data is widely researched and achieves great results, it often introduces an increased latency by requiring the accumulation of temporal sequences to gain the necessary temporal context. Radar sensors overcome this problem with their ability to provide a direct measurement of a point’s Doppler velocity, which can be exploited for single-scan moving object segmentation. However, radar point clouds are often sparse and noisy, making data annotation for use in supervised learning very tedious, time-consuming, and cost-intensive. To overcome this problem, we address the task of self-supervised moving object segmentation of sparse and noisy radar point clouds. We follow a two-step approach of contrastive self-supervised representation learning with subsequent supervised fine-tuning using limited amounts of annotated data. We propose a novel clustering-based contrastive loss function with cluster refinement based on dynamic points removal to pretrain the network to produce motion-aware representations of the radar data. Our method improves label efficiency after fine-tuning, effectively boosting state-of-the-art performance by self-supervised pretraining.

3.45RxnCaption: Reformulating Reaction Diagram Parsing as Visual Prompt Guided Captioning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large-scale chemical reaction datasets are crucial for AI research in chemistry. However, existing chemical reaction data often exist as images within papers, making them not machine-readable and unusable for training machine learning models. In response to this challenge, we propose the RxnCaption framework for the task of chemical Reaction Diagram Parsing (RxnDP). Our framework reformulates the traditional coordinate prediction driven parsing process into an image captioning problem, which Large Vision-Language Models (LVLMs) handle naturally. We introduce a strategy termed “BBox and Index as Visual Prompt” (BIVP), which uses our state-of-the-art molecular detector, MolYOLO, to pre-draw molecular bounding boxes and indices directly onto the input image. This turns the downstream parsing into a natural-language description problem. Extensive experiments show that the BIVP strategy significantly improves structural extraction quality while simplifying model design. We further construct the RxnCaption-11k dataset, an order of magnitude larger than prior real-world literature benchmarks, with a balanced test subset across four layout archetypes. Experiments demonstrate that RxnCaption-VL achieves state-of-the-art performance on multiple metrics. We believe our method, dataset, and models will advance structured information extraction from chemical literature and catalyze broader AI applications in chemistry. We will release data, models, and code on GitHub.

3.46CoCoVa: Chain of Continuous Vision-Language Thought for Latent Space Reasoning

arxiv html pdf kimi

2025/11/05 04:57 GTM

In human cognition, there exist numerous thought processes that are tacit and beyond verbal expression, enabling us to understand and interact with the world in multiple ways. However, contemporary Vision-Language Models (VLMs) remain constrained to reasoning within the discrete and rigid space of linguistic tokens, thereby bottlenecking the rich, high-dimensional nature of visual perception. To bridge this gap, we propose CoCoVa (Chain of Continuous Vision-Language Thought), a novel framework for vision-language model that leverages continuous cross-modal reasoning for diverse vision-language tasks. The core of CoCoVa is an iterative reasoning cycle, where a novel Latent Q-Former (LQ-Former) acts as a dynamic reasoning engine, iteratively refining a chain of latent thought vectors through cross-modal fusion. To focus this process, a token selection mechanism dynamically identifies salient visual regions, mimicking attentional focus. To ensure these latent thoughts remain grounded, we train the model with a multi-task objective that combines contrastive learning and diffusion-based reconstruction, enforcing alignment between latent representations and both visual and textual modalities. Evaluations show CoCoVa improves accuracy and token efficiency over strong baselines. With a 1.5B backbone, it competes with or surpasses larger 7B-9B models on almost all benchmarks. When scaled to 7B LLM backbones, it remains competitive with state-of-the-art models. Qualitative analysis validates that learned latent space captures interpretable and structured reasoning patterns, highlighting the potential of CoCoVa to bridge the representational gap between discrete language processing and the continuous nature of visual understanding.

3.47M3PD Dataset: Dual-view Photoplethysmography (PPG) Using Front-and-rear Cameras of Smartphones in Lab and Clinical Settings

arxiv html pdf kimi

2025/11/05 04:57 GTM

Portable physiological monitoring is essential for early detection and management of cardiovascular disease, but current methods often require specialized equipment that limits accessibility or impose impractical postures that patients cannot maintain. Video-based photoplethysmography on smartphones offers a convenient noninvasive alternative, yet it still faces reliability challenges caused by motion artifacts, lighting variations, and single-view constraints. Few studies have demonstrated reliable application to cardiovascular patients, and no widely used open datasets exist for cross-device accuracy. To address these limitations, we introduce the M3PD dataset, the first publicly available dual-view mobile photoplethysmography dataset, comprising synchronized facial and fingertip videos captured simultaneously via front and rear smartphone cameras from 60 participants (including 47 cardiovascular patients). Building on this dual-view setting, we further propose F3Mamba, which fuses the facial and fingertip views through Mamba-based temporal modeling. The model reduces heart-rate error by 21.9 to 30.2 percent over existing single-view baselines while improving robustness in challenging real-world scenarios. Data and code: https://github.com/Health-HCI-Group/F3Mamba.

3.48GAFD-CC: Global-Aware Feature Decoupling with Confidence Calibration for OOD Detection

arxiv html pdf kimi

2025/11/05 04:57 GTM

Out-of-distribution (OOD) detection is paramount to ensuring the reliability and robustness of learning models in real-world applications. Existing post-hoc OOD detection methods detect OOD samples by leveraging their features and logits information without retraining. However, they often overlook the inherent correlation between features and logits, which is crucial for effective OOD detection. To address this limitation, we propose Global-Aware Feature Decoupling with Confidence Calibration (GAFD-CC). GAFD-CC aims to refine decision boundaries and increase discriminative performance. Firstly, it performs global-aware feature decoupling guided by classification weights. This involves aligning features with the direction of global classification weights to decouple them. From this, GAFD-CC extracts two types of critical information: positively correlated features that promote in-distribution (ID)/OOD boundary refinement and negatively correlated features that suppress false positives and tighten these boundaries. Secondly, it adaptively fuses these decoupled features with multi-scale logit-based confidence for comprehensive and robust OOD detection. Extensive experiments on large-scale benchmarks demonstrate GAFD-CC’s competitive performance and strong generalization ability compared to those of state-of-the-art methods.

3.49Cycle-Sync: Robust Global Camera Pose Estimation through Enhanced Cycle-Consistent Synchronization

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce Cycle-Sync, a robust and global framework for estimating camera poses (both rotations and locations). Our core innovation is a location solver that adapts message-passing least squares (MPLS) -- originally developed for group synchronization -- to camera location estimation. We modify MPLS to emphasize cycle-consistent information, redefine cycle consistencies using estimated distances from previous iterations, and incorporate a Welsch-type robust loss. We establish the strongest known deterministic exact-recovery guarantee for camera location estimation, showing that cycle consistency alone -- without access to inter-camera distances -- suffices to achieve the lowest sample complexity currently known. To further enhance robustness, we introduce a plug-and-play outlier rejection module inspired by robust subspace recovery, and we fully integrate cycle consistency into MPLS for rotation synchronization. Our global approach avoids the need for bundle adjustment. Experiments on synthetic and real datasets show that Cycle-Sync consistently outperforms leading pose estimators, including full structure-from-motion pipelines with bundle adjustment.

3.503D Point Cloud Object Detection on Edge Devices for Split Computing

arxiv html pdf kimi

2025/11/05 04:57 GTM

The field of autonomous driving technology is rapidly advancing, with deep learning being a key component. Particularly in the field of sensing, 3D point cloud data collected by LiDAR is utilized to run deep neural network models for 3D object detection. However, these state-of-the-art models are complex, leading to longer processing times and increased power consumption on edge devices. The objective of this study is to address these issues by leveraging Split Computing, a distributed machine learning inference method. Split Computing aims to lessen the computational burden on edge devices, thereby reducing processing time and power consumption. Furthermore, it minimizes the risk of data breaches by only transmitting intermediate data from the deep neural network model. Experimental results show that splitting after voxelization reduces the inference time by 70.8% and the edge device execution time by 90.0%. When splitting within the network, the inference time is reduced by up to 57.1%, and the edge device execution time is reduced by up to 69.5%.

arxiv html pdf kimi

2025/11/05 04:57 GTM

We propose a Graph Neural Network (GNN)-based approach for Handwritten Mathematical Expression (HME) recognition by modeling HMEs as graphs, where nodes represent symbols and edges capture spatial dependencies. A deep BLSTM network is used for symbol segmentation, recognition, and spatial relation classification, forming an initial primitive graph. A 2D-CFG parser then generates all possible spatial relations, while the GNN-based link prediction model refines the structure by removing unnecessary connections, ultimately forming the Symbol Label Graph. Experimental results demonstrate the effectiveness of our approach, showing promising performance in HME structure recognition.

3.52SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.

3.53Are Euler angles a useful rotation parameterisation for pose estimation with Normalizing Flows?

arxiv html pdf kimi

2025/11/05 04:57 GTM

Object pose estimation is a task that is of central importance in 3D Computer Vision. Given a target image and a canonical pose, a single point estimate may very often be sufficient; however, a probabilistic pose output is related to a number of benefits when pose is not unambiguous due to sensor and projection constraints or inherent object symmetries. With this paper, we explore the usefulness of using the well-known Euler angles parameterisation as a basis for a Normalizing Flows model for pose estimation. Isomorphic to spatial rotation, 3D pose has been parameterized in a number of ways, either in or out of the context of parameter estimation. We explore the idea that Euler angles, despite their shortcomings, may lead to useful models in a number of aspects, compared to a model built on a more complex parameterisation.

3.54Medical Report Generation: A Hierarchical Task Structure-Based Cross-Modal Causal Intervention Framework

arxiv html pdf kimi

2025/11/05 04:57 GTM

Medical Report Generation (MRG) is a key part of modern medical diagnostics, as it automatically generates reports from radiological images to reduce radiologists’ burden. However, reliable MRG models for lesion description face three main challenges: insufficient domain knowledge understanding, poor text-visual entity embedding alignment, and spurious correlations from cross-modal biases. Previous work only addresses single challenges, while this paper tackles all three via a novel hierarchical task decomposition approach, proposing the HTSC-CIF framework. HTSC-CIF classifies the three challenges into low-, mid-, and high-level tasks: 1) Low-level: align medical entity features with spatial locations to enhance domain knowledge for visual encoders; 2) Mid-level: use Prefix Language Modeling (text) and Masked Image Modeling (images) to boost cross-modal alignment via mutual guidance; 3) High-level: a cross-modal causal intervention module (via front-door intervention) to reduce confounders and improve interpretability. Extensive experiments confirm HTSC-CIF’s effectiveness, significantly outperforming state-of-the-art (SOTA) MRG methods. Code will be made public upon paper acceptance.

3.55Monocular absolute depth estimation from endoscopy via domain-invariant feature learning and latent consistency

arxiv html pdf kimi

2025/11/05 04:57 GTM

Monocular depth estimation (MDE) is a critical task to guide autonomous medical robots. However, obtaining absolute (metric) depth from an endoscopy camera in surgical scenes is difficult, which limits supervised learning of depth on real endoscopic images. Current image-level unsupervised domain adaptation methods translate synthetic images with known depth maps into the style of real endoscopic frames and train depth networks using these translated images with their corresponding depth maps. However a domain gap often remains between real and translated synthetic images. In this paper, we present a latent feature alignment method to improve absolute depth estimation by reducing this domain gap in the context of endoscopic videos of the central airway. Our methods are agnostic to the image translation process and focus on the depth estimation itself. Specifically, the depth network takes translated synthetic and real endoscopic frames as input and learns latent domain-invariant features via adversarial learning and directional feature consistency. The evaluation is conducted on endoscopic videos of central airway phantoms with manually aligned absolute depth maps. Compared to state-of-the-art MDE methods, our approach achieves superior performance on both absolute and relative depth metrics, and consistently improves results across various backbones and pretrained weights. Our code is available at https://github.com/MedICL-VU/MDE.

3.56Collaborative Attention and Consistent-Guided Fusion of MRI and PET for Alzheimer’s Disease Diagnosis

arxiv html pdf kimi

2025/11/05 04:57 GTM

Alzheimer’s disease (AD) is the most prevalent form of dementia, and its early diagnosis is essential for slowing disease progression. Recent studies on multimodal neuroimaging fusion using MRI and PET have achieved promising results by integrating multi-scale complementary features. However, most existing approaches primarily emphasize cross-modal complementarity while overlooking the diagnostic importance of modality-specific features. In addition, the inherent distributional differences between modalities often lead to biased and noisy representations, degrading classification performance. To address these challenges, we propose a Collaborative Attention and Consistent-Guided Fusion framework for MRI and PET based AD diagnosis. The proposed model introduces a learnable parameter representation (LPR) block to compensate for missing modality information, followed by a shared encoder and modality-independent encoders to preserve both shared and specific representations. Furthermore, a consistency-guided mechanism is employed to explicitly align the latent distributions across modalities. Experimental results on the ADNI dataset demonstrate that our method achieves superior diagnostic performance compared with existing fusion strategies.

3.57Can Foundation Models Revolutionize Mobile AR Sparse Sensing?

arxiv html pdf kimi

2025/11/05 04:57 GTM

Mobile sensing systems have long faced a fundamental trade-off between sensing quality and efficiency due to constraints in computation, power, and other limitations. Sparse sensing, which aims to acquire and process only a subset of sensor data, has been a key strategy for maintaining performance under such constraints. However, existing sparse sensing methods often suffer from reduced accuracy, as missing information across space and time introduces uncertainty into many sensing systems. In this work, we investigate whether foundation models can change the landscape of mobile sparse sensing. Using real-world mobile AR data, our evaluations demonstrate that foundation models offer significant improvements in geometry-aware image warping, a central technique for enabling accurate reuse of cross-frame information. Furthermore, our study demonstrates the scalability of foundation model-based sparse sensing and shows its leading performance in 3D scene reconstruction. Collectively, our study reveals critical aspects of the promises and the open challenges of integrating foundation models into mobile sparse sensing systems.

3.58High-Resolution Magnetic Particle Imaging System Matrix Recovery Using a Vision Transformer with Residual Feature Network

arxiv html pdf kimi

2025/11/05 04:57 GTM

This study presents a hybrid deep learning framework, the Vision Transformer with Residual Feature Network (VRF-Net), for recovering high-resolution system matrices in Magnetic Particle Imaging (MPI). MPI resolution often suffers from downsampling and coil sensitivity variations. VRF-Net addresses these challenges by combining transformer-based global attention with residual convolutional refinement, enabling recovery of both large-scale structures and fine details. To reflect realistic MPI conditions, the system matrix is degraded using a dual-stage downsampling strategy. Training employed paired-image super-resolution on the public Open MPI dataset and a simulated dataset incorporating variable coil sensitivity profiles. For system matrix recovery on the Open MPI dataset, VRF-Net achieved nRMSE = 0.403, pSNR = 39.08 dB, and SSIM = 0.835 at 2x scaling, and maintained strong performance even at challenging scale 8x (pSNR = 31.06 dB, SSIM = 0.717). For the simulated dataset, VRF-Net achieved nRMSE = 4.44, pSNR = 28.52 dB, and SSIM = 0.771 at 2x scaling, with stable performance at higher scales. On average, it reduced nRMSE by 88.2%, increased pSNR by 44.7%, and improved SSIM by 34.3% over interpolation and CNN-based methods. In image reconstruction of Open MPI phantoms, VRF-Net further reduced reconstruction error to nRMSE = 1.79 at 2x scaling, while preserving structural fidelity (pSNR = 41.58 dB, SSIM = 0.960), outperforming existing methods. These findings demonstrate that VRF-Net enables sharper, artifact-free system matrix recovery and robust image reconstruction across multiple scales, offering a promising direction for future in vivo applications.

3.59Estimation of Segmental Longitudinal Strain in Transesophageal Echocardiography by Deep Learning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Segmental longitudinal strain (SLS) of the left ventricle (LV) is an important prognostic indicator for evaluating regional LV dysfunction, in particular for diagnosing and managing myocardial ischemia. Current techniques for strain estimation require significant manual intervention and expertise, limiting their efficiency and making them too resource-intensive for monitoring purposes. This study introduces the first automated pipeline, autoStrain, for SLS estimation in transesophageal echocardiography (TEE) using deep learning (DL) methods for motion estimation. We present a comparative analysis of two DL approaches: TeeFlow, based on the RAFT optical flow model for dense frame-to-frame predictions, and TeeTracker, based on the CoTracker point trajectory model for sparse long-sequence predictions. As ground truth motion data from real echocardiographic sequences are hardly accessible, we took advantage of a unique simulation pipeline (SIMUS) to generate a highly realistic synthetic TEE (synTEE) dataset of 80 patients with ground truth myocardial motion to train and evaluate both models. Our evaluation shows that TeeTracker outperforms TeeFlow in accuracy, achieving a mean distance error in motion estimation of 0.65 mm on a synTEE test dataset. Clinical validation on 16 patients further demonstrated that SLS estimation with our autoStrain pipeline aligned with clinical references, achieving a mean difference (95% limits of agreement) of 1.09% (-8.90% to 11.09%). Incorporation of simulated ischemia in the synTEE data improved the accuracy of the models in quantifying abnormal deformation. Our findings indicate that integrating AI-driven motion estimation with TEE can significantly enhance the precision and efficiency of cardiac function assessment in clinical settings.

3.60Object-Centric 3D Gaussian Splatting for Strawberry Plant Reconstruction and Phenotyping

arxiv html pdf kimi

2025/11/05 04:57 GTM

Strawberries are among the most economically significant fruits in the United States, generating over $2 billion in annual farm-gate sales and accounting for approximately 13% of the total fruit production value. Plant phenotyping plays a vital role in selecting superior cultivars by characterizing plant traits such as morphology, canopy structure, and growth dynamics. However, traditional plant phenotyping methods are time-consuming, labor-intensive, and often destructive. Recently, neural rendering techniques, notably Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have emerged as powerful frameworks for high-fidelity 3D reconstruction. By capturing a sequence of multi-view images or videos around a target plant, these methods enable non-destructive reconstruction of complex plant architectures. Despite their promise, most current applications of 3DGS in agricultural domains reconstruct the entire scene, including background elements, which introduces noise, increases computational costs, and complicates downstream trait analysis. To address this limitation, we propose a novel object-centric 3D reconstruction framework incorporating a preprocessing pipeline that leverages the Segment Anything Model v2 (SAM-2) and alpha channel background masking to achieve clean strawberry plant reconstructions. This approach produces more accurate geometric representations while substantially reducing computational time. With a background-free reconstruction, our algorithm can automatically estimate important plant traits, such as plant height and canopy width, using DBSCAN clustering and Principal Component Analysis (PCA). Experimental results show that our method outperforms conventional pipelines in both accuracy and efficiency, offering a scalable and non-destructive solution for strawberry plant phenotyping.

3.61Language-Enhanced Generative Modeling for PET Synthesis from MRI and Blood Biomarkers

arxiv html pdf kimi

2025/11/05 04:57 GTM

Background: Alzheimer’s disease (AD) diagnosis heavily relies on amyloid-beta positron emission tomography (Abeta-PET), which is limited by high cost and limited accessibility. This study explores whether Abeta-PET spatial patterns can be predicted from blood-based biomarkers (BBMs) and MRI scans. Methods: We collected Abeta-PET images, T1-weighted MRI scans, and BBMs from 566 participants. A language-enhanced generative model, driven by a large language model (LLM) and multimodal information fusion, was developed to synthesize PET images. Synthesized images were evaluated for image quality, diagnostic consistency, and clinical applicability within a fully automated diagnostic pipeline. Findings: The synthetic PET images closely resemble real PET scans in both structural details (SSIM = 0.920 +/- 0.003) and regional patterns (Pearson’s r = 0.955 +/- 0.007). Diagnostic outcomes using synthetic PET show high agreement with real PET-based diagnoses (accuracy = 0.80). Using synthetic PET, we developed a fully automatic AD diagnostic pipeline integrating PET synthesis and classification. The synthetic PET-based model (AUC = 0.78) outperforms T1-based (AUC = 0.68) and BBM-based (AUC = 0.73) models, while combining synthetic PET and BBMs further improved performance (AUC = 0.79). Ablation analysis supports the advantages of LLM integration and prompt engineering. Interpretation: Our language-enhanced generative model synthesizes realistic PET images, enhancing the utility of MRI and BBMs for Abeta spatial pattern assessment and improving the diagnostic workflow for Alzheimer’s disease.

3.62OmniField: Conditioned Neural Fields for Robust Multimodal Spatiotemporal Learning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Multimodal spatiotemporal learning on real-world experimental data is constrained by two challenges: within-modality measurements are sparse, irregular, and noisy (QA/QC artifacts) but cross-modally correlated; the set of available modalities varies across space and time, shrinking the usable record unless models can adapt to arbitrary subsets at train and test time. We propose OmniField, a continuity-aware framework that learns a continuous neural field conditioned on available modalities and iteratively fuses cross-modal context. A multimodal crosstalk block architecture paired with iterative cross-modal refinement aligns signals prior to the decoder, enabling unified reconstruction, interpolation, forecasting, and cross-modal prediction without gridding or surrogate preprocessing. Extensive evaluations show that OmniField consistently outperforms eight strong multimodal spatiotemporal baselines. Under heavy simulated sensor noise, performance remains close to clean-input levels, highlighting robustness to corrupted measurements.

3.63MM-UNet: Morph Mamba U-shaped Convolutional Networks for Retinal Vessel Segmentation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Accurate detection of retinal vessels plays a critical role in reflecting a wide range of health status indicators in the clinical diagnosis of ocular diseases. Recently, advances in deep learning have led to a surge in retinal vessel segmentation methods, which have significantly contributed to the quantitative analysis of vascular morphology. However, retinal vasculature differs significantly from conventional segmentation targets in that it consists of extremely thin and branching structures, whose global morphology varies greatly across images. These characteristics continue to pose challenges to segmentation precision and robustness. To address these issues, we propose MM-UNet, a novel architecture tailored for efficient retinal vessel segmentation. The model incorporates Morph Mamba Convolution layers, which replace pointwise convolutions to enhance branching topological perception through morph, state-aware feature sampling. Additionally, Reverse Selective State Guidance modules integrate reverse guidance theory with state-space modeling to improve geometric boundary awareness and decoding efficiency. Extensive experiments conducted on two public retinal vessel segmentation datasets demonstrate the superior performance of the proposed method in segmentation accuracy. Compared to the existing approaches, MM-UNet achieves F1-score gains of 1.64 %\% on DRIVE and 1.25 %\% on STARE, demonstrating its effectiveness and advancement. The project code is public via https://github.com/liujiawen-jpg/MM-UNet.

3.64Pinpointing Trigger Moment for Grounded Video QA: Enhancing Spatio-temporal Grounding in Multimodal Large Language Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

In this technical report, we introduce a framework to address Grounded Video Question Answering (GVQA) task for the ICCV 2025 Perception Test Challenge. The GVQA task demands robust multimodal models capable of complex reasoning over video content, grounding the resulting answers visually, and tracking the referenced objects temporally. To achieve this capability, our proposed approach decomposes the GVQA task into a three-stage pipeline: (1) Video Reasoning & QA, (2) Spatio-temporal Grounding and (3) Tracking. Our key contribution is the introduction of a trigger moment, derived from our proposed CORTEX prompt, which pinpoints the single most visible frame of a target object to serve as a robust anchor for grounding and tracking. To this end, we achieve the HOTA score of 0.4968, which marks a significant improvement over the previous year’s winning score of 0.2704 on GVQA task.

3.65Autobiasing Event Cameras for Flickering Mitigation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Understanding and mitigating flicker effects caused by rapid variations in light intensity is critical for enhancing the performance of event cameras in diverse environments. This paper introduces an innovative autonomous mechanism for tuning the biases of event cameras, effectively addressing flicker across a wide frequency range -25 Hz to 500 Hz. Unlike traditional methods that rely on additional hardware or software for flicker filtering, our approach leverages the event cameras inherent bias settings. Utilizing a simple Convolutional Neural Networks -CNNs, the system identifies instances of flicker in a spatial space and dynamically adjusts specific biases to minimize its impact. The efficacy of this autobiasing system was robustly tested using a face detector framework under both well-lit and low-light conditions, as well as across various frequencies. The results demonstrated significant improvements: enhanced YOLO confidence metrics for face detection, and an increased percentage of frames capturing detected faces. Moreover, the average gradient, which serves as an indicator of flicker presence through edge detection, decreased by 38.2 percent in well-lit conditions and by 53.6 percent in low-light conditions. These findings underscore the potential of our approach to significantly improve the functionality of event cameras in a range of adverse lighting scenarios.

3.66Fast Measuring Pavement Crack Width by Cascading Principal Component Analysis

arxiv html pdf kimi

2025/11/05 04:57 GTM

Accurate quantification of pavement crack width plays a pivotal role in assessing structural integrity and guiding maintenance interventions. However, achieving precise crack width measurements presents significant challenges due to: (1) the complex, non-uniform morphology of crack boundaries, which limits the efficacy of conventional approaches, and (2) the demand for rapid measurement capabilities from arbitrary pixel locations to facilitate comprehensive pavement condition evaluation. To overcome these limitations, this study introduces a cascaded framework integrating Principal Component Analysis (PCA) and Robust PCA (RPCA) for efficient crack width extraction from digital images. The proposed methodology comprises three sequential stages: (1) initial crack segmentation using established detection algorithms to generate a binary representation, (2) determination of the primary orientation axis for quasi-parallel cracks through PCA, and (3) extraction of the Main Propagation Axis (MPA) for irregular crack geometries using RPCA. Comprehensive evaluations were conducted across three publicly available datasets, demonstrating that the proposed approach achieves superior performance in both computational efficiency and measurement accuracy compared to existing state-of-the-art techniques.

3.67From Instance Segmentation to 3D Growth Trajectory Reconstruction in Planktonic Foraminifera

arxiv html pdf kimi

2025/11/05 04:57 GTM

Planktonic foraminifera, marine protists characterized by their intricate chambered shells, serve as valuable indicators of past and present environmental conditions. Understanding their chamber growth trajectory provides crucial insights into organismal development and ecological adaptation under changing environments. However, automated tracing of chamber growth from imaging data remains largely unexplored, with existing approaches relying heavily on manual segmentation of each chamber, which is time-consuming and subjective. In this study, we propose an end-to-end pipeline that integrates instance segmentation, a computer vision technique not extensively explored in foraminifera, with a dedicated chamber ordering algorithm to automatically reconstruct three-dimensional growth trajectories from high-resolution computed tomography scans. We quantitatively and qualitatively evaluate multiple instance segmentation methods, each optimized for distinct spatial features of the chambers, and examine their downstream influence on growth-order reconstruction accuracy. Experimental results on expert-annotated datasets demonstrate that the proposed pipeline substantially reduces manual effort while maintaining biologically meaningful accuracy. Although segmentation models exhibit under-segmentation in smaller chambers due to reduced voxel fidelity and subtle inter-chamber connectivity, the chamber-ordering algorithm remains robust, achieving consistent reconstruction of developmental trajectories even under partial segmentation. This work provides the first fully automated and reproducible pipeline for digital foraminiferal growth analysis, establishing a foundation for large-scale, data-driven ecological studies.

3.68Markerless Augmented Reality Registration for Surgical Guidance: A Multi-Anatomy Clinical Accuracy Study

arxiv html pdf kimi

2025/11/05 04:57 GTM

Purpose: In this paper, we develop and clinically evaluate a depth-only, markerless augmented reality (AR) registration pipeline on a head-mounted display, and assess accuracy across small or low-curvature anatomies in real-life operative settings. Methods: On HoloLens 2, we align Articulated HAnd Tracking (AHAT) depth to Computed Tomography (CT)-derived skin meshes via (i) depth-bias correction, (ii) brief human-in-the-loop initialization, (iii) global and local registration. We validated the surface-tracing error metric by comparing “skin-to-bone” relative distances to CT ground truth on leg and foot models, using an AR-tracked tool. We then performed seven intraoperative target trials (feet x2, ear x3, leg x2) during the initial stage of fibula free-flap harvest and mandibular reconstruction surgery, and collected 500+ data per trial. Results: Preclinical validation showed tight agreement between AR-traced and CT distances (leg: median |Delta d| 0.78 mm, RMSE 0.97 mm; feet: 0.80 mm, 1.20 mm). Clinically, per-point error had a median of 3.9 mm. Median errors by anatomy were 3.2 mm (feet), 4.3 mm (ear), and 5.3 mm (lower leg), with 5 mm coverage 92-95%, 84-90%, and 72-86%, respectively. Feet vs. lower leg differed significantly (Delta median ~1.1 mm; p < 0.001). Conclusion: A depth-only, markerless AR pipeline on HMDs achieved ~3-4 mm median error across feet, ear, and lower leg in live surgical settings without fiducials, approaching typical clinical error thresholds for moderate-risk tasks. Human-guided initialization plus global-to-local registration enabled accurate alignment on small or low-curvature targets, improving the clinical readiness of markerless AR guidance.

3.69Opto-Electronic Convolutional Neural Network Design Via Direct Kernel Optimization

arxiv html pdf kimi

2025/11/05 04:57 GTM

Opto-electronic neural networks integrate optical front-ends with electronic back-ends to enable fast and energy-efficient vision. However, conventional end-to-end optimization of both the optical and electronic modules is limited by costly simulations and large parameter spaces. We introduce a two-stage strategy for designing opto-electronic convolutional neural networks (CNNs): first, train a standard electronic CNN, then realize the optical front-end implemented as a metasurface array through direct kernel optimization of its first convolutional layer. This approach reduces computational and memory demands by hundreds of times and improves training stability compared to end-to-end optimization. On monocular depth estimation, the proposed two-stage design achieves twice the accuracy of end-to-end training under the same training time and resource constraints.

3.70Text-VQA Aug: Pipelined Harnessing of Large Multimodal Models for Automated Synthesis

arxiv html pdf kimi

2025/11/05 04:57 GTM

Creation of large-scale databases for Visual Question Answering tasks pertaining to the text data in a scene (text-VQA) involves skilful human annotation, which is tedious and challenging. With the advent of foundation models that handle vision and language modalities, and with the maturity of OCR systems, it is the need of the hour to establish an end-to-end pipeline that can synthesize Question-Answer (QA) pairs based on scene-text from a given image. We propose a pipeline for automated synthesis for text-VQA dataset that can produce faithful QA pairs, and which scales up with the availability of scene text data. Our proposed method harnesses the capabilities of multiple models and algorithms involving OCR detection and recognition (text spotting), region of interest (ROI) detection, caption generation, and question generation. These components are streamlined into a cohesive pipeline to automate the synthesis and validation of QA pairs. To the best of our knowledge, this is the first pipeline proposed to automatically synthesize and validate a large-scale text-VQA dataset comprising around 72K QA pairs based on around 44K images.

3.71Towards Selection of Large Multimodal Models as Engines for Burned-in Protected Health Information Detection in Medical Images

arxiv html pdf kimi

2025/11/05 04:57 GTM

The detection of Protected Health Information (PHI) in medical imaging is critical for safeguarding patient privacy and ensuring compliance with regulatory frameworks. Traditional detection methodologies predominantly utilize Optical Character Recognition (OCR) models in conjunction with named entity recognition. However, recent advancements in Large Multimodal Model (LMM) present new opportunities for enhanced text extraction and semantic analysis. In this study, we systematically benchmark three prominent closed and open-sourced LMMs, namely GPT-4o, Gemini 2.5 Flash, and Qwen 2.5 7B, utilizing two distinct pipeline configurations: one dedicated to text analysis alone and another integrating both OCR and semantic analysis. Our results indicate that LMM exhibits superior OCR efficacy (WER: 0.03-0.05, CER: 0.02-0.03) compared to conventional models like EasyOCR. However, this improvement in OCR performance does not consistently correlate with enhanced overall PHI detection accuracy. The strongest performance gains are observed on test cases with complex imprint patterns. In scenarios where text regions are well readable with sufficient contrast, and strong LMMs are employed for text analysis after OCR, different pipeline configurations yield similar results. Furthermore, we provide empirically grounded recommendations for LMM selection tailored to specific operational constraints and propose a deployment strategy that leverages scalable and modular infrastructure.

3.72Locally-Supervised Global Image Restoration

arxiv html pdf kimi

2025/11/05 04:57 GTM

We address the problem of image reconstruction from incomplete measurements, encompassing both upsampling and inpainting, within a learning-based framework. Conventional supervised approaches require fully sampled ground truth data, while self-supervised methods allow incomplete ground truth but typically rely on random sampling that, in expectation, covers the entire image. In contrast, we consider fixed, deterministic sampling patterns with inherently incomplete coverage, even in expectation. To overcome this limitation, we exploit multiple invariances of the underlying image distribution, which theoretically allows us to achieve the same reconstruction performance as fully supervised approaches. We validate our method on optical-resolution image upsampling in photoacoustic microscopy (PAM), demonstrating competitive or superior results while requiring substantially less ground truth data.

3.73Assessing the value of Geo-Foundational Models for Flood Inundation Mapping: Benchmarking models for Sentinel-1, Sentinel-2, and Planetscope for end-u...

arxiv html pdf kimi

2025/11/05 04:57 GTM

Geo-Foundational Models (GFMs) enable fast and reliable extraction of spatiotemporal information from satellite imagery, improving flood inundation mapping by leveraging location and time embeddings. Despite their potential, it remains unclear whether GFMs outperform traditional models like U-Net. A systematic comparison across sensors and data availability scenarios is still lacking, which is an essential step to guide end-users in model selection. To address this, we evaluate three GFMs, Prithvi 2.0, Clay V1.5, DOFA, and UViT (a Prithvi variant), against TransNorm, U-Net, and Attention U-Net using PlanetScope, Sentinel-1, and Sentinel-2. We observe competitive performance among all GFMs, with only 2-5% variation between the best and worst models across sensors. Clay outperforms others on PlanetScope (0.79 mIoU) and Sentinel-2 (0.70), while Prithvi leads on Sentinel-1 (0.57). In leave-one-region-out cross-validation across five regions, Clay shows slightly better performance across all sensors (mIoU: 0.72(0.04), 0.66(0.07), 0.51(0.08)) compared to Prithvi (0.70(0.05), 0.64(0.09), 0.49(0.13)) and DOFA (0.67(0.07), 0.64(0.04), 0.49(0.09)) for PlanetScope, Sentinel-2, and Sentinel-1, respectively. Across all 19 sites, leave-one-region-out cross-validation reveals a 4% improvement by Clay compared to U-Net. Visual inspection highlights Clay’s superior ability to retain fine details. Few-shot experiments show Clay achieves 0.64 mIoU on PlanetScope with just five training images, outperforming Prithvi (0.24) and DOFA (0.35). In terms of computational time, Clay is a better choice due to its smaller model size (26M parameters), making it ~3x faster than Prithvi (650M) and 2x faster than DOFA (410M). Contrary to previous findings, our results suggest GFMs offer small to moderate improvements in flood mapping accuracy at lower computational cost and labeling effort compared to traditional U-Net.

3.74Deciphering Personalization: Towards Fine-Grained Explainability in Natural Language for Personalized Image Generation Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

Image generation models are usually personalized in practical uses in order to better meet the individual users’ heterogeneous needs, but most personalized models lack explainability about how they are being personalized. Such explainability can be provided via visual features in generated images, but is difficult for human users to understand. Explainability in natural language is a better choice, but the existing approaches to explainability in natural language are limited to be coarse-grained. They are unable to precisely identify the multiple aspects of personalization, as well as the varying levels of personalization in each aspect. To address such limitation, in this paper we present a new technique, namely \textbf{FineXL}, towards \textbf{Fine}-grained e\textbf{X}plainability in natural \textbf{L}anguage for personalized image generation models. FineXL can provide natural language descriptions about each distinct aspect of personalization, along with quantitative scores indicating the level of each aspect of personalization. Experiment results show that FineXL can improve the accuracy of explainability by 56%, when different personalization scenarios are applied to multiple types of image generation models.

3.75Challenging DINOv3 Foundation Model under Low Inter-Class Variability: A Case Study on Fetal Brain Ultrasound

arxiv html pdf kimi

2025/11/05 04:57 GTM

Purpose: This study provides the first comprehensive evaluation of foundation models in fetal ultrasound (US) imaging under low inter-class variability conditions. While recent vision foundation models such as DINOv3 have shown remarkable transferability across medical domains, their ability to discriminate anatomically similar structures has not been systematically investigated. We address this gap by focusing on fetal brain standard planes--transthalamic (TT), transventricular (TV), and transcerebellar (TC)--which exhibit highly overlapping anatomical features and pose a critical challenge for reliable biometric assessment. Methods: To ensure a fair and reproducible evaluation, all publicly available fetal ultrasound datasets were curated and aggregated into a unified multicenter benchmark, FetalUS-188K, comprising more than 188,000 annotated images from heterogeneous acquisition settings. DINOv3 was pretrained in a self-supervised manner to learn ultrasound-aware representations. The learned features were then evaluated through standardized adaptation protocols, including linear probing with frozen backbone and full fine-tuning, under two initialization schemes: (i) pretraining on FetalUS-188K and (ii) initialization from natural-image DINOv3 weights. Results: Models pretrained on fetal ultrasound data consistently outperformed those initialized on natural images, with weighted F1-score improvements of up to 20 percent. Domain-adaptive pretraining enabled the network to preserve subtle echogenic and structural cues crucial for distinguishing intermediate planes such as TV. Conclusion: Results demonstrate that generic foundation models fail to generalize under low inter-class variability, whereas domain-specific pretraining is essential to achieve robust and clinically reliable representations in fetal brain ultrasound imaging.

3.76iFlyBot-VLA Technical Report

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce iFlyBot-VLA, a large-scale Vision-Language-Action (VLA) model trained under a novel framework. The main contributions are listed as follows: (1) a latent action model thoroughly trained on large-scale human and robotic manipulation videos; (2) a dual-level action representation framework that jointly supervises both the Vision-Language Model (VLM) and the action expert during training; (3) a mixed training strategy that combines robot trajectory data with general QA and spatial QA datasets, effectively enhancing the 3D perceptual and reasoning capabilities of the VLM backbone. Specifically, the VLM is trained to predict two complementary forms of actions: latent actions, derived from our latent action model pretrained on cross-embodiment manipulation data, which capture implicit high-level intentions; and structured discrete action tokens, obtained through frequency-domain transformations of continuous control signals, which encode explicit low-level dynamics. This dual supervision aligns the representation spaces of language, vision, and action, enabling the VLM to directly contribute to action generation. Experimental results on the LIBERO Franka benchmark demonstrate the superiority of our frame-work, while real-world evaluations further show that iFlyBot-VLA achieves competitive success rates across diverse and challenging manipulation tasks. Furthermore, we plan to open-source a portion of our self-constructed dataset to support future research in the community

3.77A Step Toward World Models: A Survey on Robotic Manipulation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond purely reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and enable prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, rather than directly imposing a fixed definition and limiting our scope to methods explicitly labeled as world models, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a real world model should possess. Building on this analysis, we aim to outline a roadmap for developing generalizable and practical world models for robotics.

3.78StrengthSense: A Dataset of IMU Signals Capturing Everyday Strength-Demanding Activities

arxiv html pdf kimi

2025/11/05 04:57 GTM

Tracking strength-demanding activities with wearable sensors like IMUs is crucial for monitoring muscular strength, endurance, and power. However, there is a lack of comprehensive datasets capturing these activities. To fill this gap, we introduce \textit{StrengthSense}, an open dataset that encompasses IMU signals capturing 11 strength-demanding activities, such as sit-to-stand, climbing stairs, and mopping. For comparative purposes, the dataset also includes 2 non-strength demanding activities. The dataset was collected from 29 healthy subjects utilizing 10 IMUs placed on limbs and the torso, and was annotated using video recordings as references. This paper provides a comprehensive overview of the data collection, pre-processing, and technical validation. We conducted a comparative analysis between the joint angles estimated by IMUs and those directly extracted from video to verify the accuracy and reliability of the sensor data. Researchers and developers can utilize \textit{StrengthSense} to advance the development of human activity recognition algorithms, create fitness and health monitoring applications, and more.

3.79Agent-Omni: Test-Time Multimodal Reasoning via Model Coordination for Understanding Anything

arxiv html pdf kimi

2025/11/05 04:57 GTM

Multimodal large language models (MLLMs) have shown strong capabilities but remain limited to fixed modality pairs and require costly fine-tuning with large aligned datasets. Building fully omni-capable models that can integrate text, images, audio, and video remains impractical and lacks robust reasoning support. In this paper, we propose an Agent-Omni framework that coordinates existing foundation models through a master-agent system, enabling flexible multimodal reasoning without retraining. The master agent interprets user intent, delegates subtasks to modality-specific agents, and integrates their outputs into coherent responses. Extensive experiments across text, image, audio, video, and omni benchmarks show that Agent-Omni consistently achieves state-of-the-art performance, particularly on tasks requiring complex cross-modal reasoning. Its agent-based design enables seamless integration of specialized foundation models, ensuring adaptability to diverse inputs while maintaining transparency and interpretability. In addition, the framework is modular and easily extensible, allowing future improvements as stronger models become available. %We release an open-source implementation to support continued research on scalable and reliable omni-modal reasoning.

3.80In Good GRACEs: Principled Teacher Selection for Knowledge Distillation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Knowledge distillation is an efficient strategy to use data generated by large “teacher” language models to train smaller capable “student” models, but selecting the optimal teacher for a specific student-task combination requires expensive trial-and-error. We propose a lightweight score called GRACE to quantify how effective a teacher will be for post-training a student model. GRACE measures distributional properties of the student’s gradients without access to a verifier, teacher logits, teacher internals, or test data. From an information-theoretic perspective, GRACE connects to leave-one-out stability of gradient-based algorithms, which controls the generalization performance of the distilled students. On GSM8K and MATH, GRACE correlates strongly (up to 86% Spearman correlation) with the performance of the distilled LLaMA and OLMo students. In particular, training a student using the GRACE-selected teacher can improve the performance by up to 7.4% over naively using the best-performing teacher. Further, GRACE can provide guidance on crucial design choices in distillation, including (1) the best temperature to use when generating from the teacher, (2) the best teacher to use given a size constraint, and (3) the best teacher to use within a specific model family. Altogether, our findings demonstrate that GRACE can efficiently and effectively identify a strongly compatible teacher for a given student and provide fine-grained guidance on how to perform distillation.

3.81Oolong: Evaluating Long Context Reasoning and Aggregation Capabilities

arxiv html pdf kimi

2025/11/05 04:57 GTM

As model context lengths continue to grow, concerns about whether models effectively use the full context length have persisted. While several carefully designed long-context evaluations have recently been released, these evaluations tend to rely on retrieval from one or more sections of the context, which allows nearly all of the context tokens to be disregarded as noise. This represents only one type of task that might be performed with long context. We introduce Oolong, a benchmark of long-context reasoning tasks that require analyzing individual chunks of text on an atomic level, and then aggregating these analyses to answer distributional questions. Oolong is separated into two task sets: Oolong-synth, a set of naturalistic synthetic tasks, where we can easily ablate components of the reasoning problem; and Oolong-real, a downstream setting which requires reasoning over real-world conversational data. Oolong requires models to reason over large quantities of examples, to perform both classification and counting in-context, and to reason over temporal and user relations. Even frontier models struggle on Oolong, with GPT-5, Claude-Sonnet-4, and Gemini-2.5-Pro all achieving less than 50% accuracy on both splits at 128K. We release the data and evaluation harness for Oolong to enable further development of models that can reason over large quantities of text.

3.82MemSearcher: Training LLMs to Reason, Search and Manage Memory via End-to-End Reinforcement Learning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Typical search agents concatenate the entire interaction history into the LLM context, preserving information integrity but producing long, noisy contexts, resulting in high computation and memory costs. In contrast, using only the current turn avoids this overhead but discards essential information. This trade-off limits the scalability of search agents. To address this challenge, we propose MemSearcher, an agent workflow that iteratively maintains a compact memory and combines the current turn with it. At each turn, MemSearcher fuses the user’s question with the memory to generate reasoning traces, perform search actions, and update memory to retain only information essential for solving the task. This design stabilizes context length across multi-turn interactions, improving efficiency without sacrificing accuracy. To optimize this workflow, we introduce multi-context GRPO, an end-to-end RL framework that jointly optimize reasoning, search strategies, and memory management of MemSearcher Agents. Specifically, multi-context GRPO samples groups of trajectories under different contexts and propagates trajectory-level advantages across all conversations within them. Trained on the same dataset as Search-R1, MemSearcher achieves significant improvements over strong baselines on seven public benchmarks: +11% on Qwen2.5-3B-Instruct and +12% on Qwen2.5-7B-Instruct relative average gains. Notably, the 3B-based MemSearcher even outperforms 7B-based baselines, demonstrating that striking a balance between information integrity and efficiency yields both higher accuracy and lower computational overhead. The code and models will be publicly available at https://github.com/icip-cas/MemSearcher

3.83Can LLMs subtract numbers?

arxiv html pdf kimi

2025/11/05 04:57 GTM

We present a systematic study of subtraction in large language models (LLMs). While prior benchmarks emphasize addition and multiplication, subtraction has received comparatively little attention despite being structurally distinct as a non-commutative operation. We evaluate eight pretrained LLMs spanning four families on addition and subtraction problems. Our experiments reveal that subtraction accuracy lags behind addition by a wide margin. We find that the errors for (aba-b) are concentrated in cases where (a<ba<b). In such cases, LLMs frequently produce the correct magnitude but omit the negative sign. Probing analyses show that LLMs internally encode whether results should be negative, yet this information is often not reflected in generated outputs. We further test well-known techniques such as few-shot learning and instruction-tuning to see if they can improve the LLMs’ performance. Our results suggest that while few-shot prompting yields modest gains, the instruction-tuned models achieve near-perfect accuracies in generating the negative sign. Together, these findings provide a clearer characterization of the limitations and recoverability of LLMs’ arithmetic capabilities in subtraction.

3.84VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model’s intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.

3.85Beyond Single Embeddings: Capturing Diverse Targets with Multi-Query Retrieval

arxiv html pdf kimi

2025/11/05 04:57 GTM

Most text retrievers generate \emph{one} query vector to retrieve relevant documents. Yet, the conditional distribution of relevant documents for the query may be multimodal, e.g., representing different interpretations of the query. We first quantify the limitations of existing retrievers. All retrievers we evaluate struggle more as the distance between target document embeddings grows. To address this limitation, we develop a new retriever architecture, \emph{A}utoregressive \emph{M}ulti-\emph{E}mbedding \emph{R}etriever (AMER). Our model autoregressively generates multiple query vectors, and all the predicted query vectors are used to retrieve documents from the corpus. We show that on the synthetic vectorized data, the proposed method could capture multiple target distributions perfectly, showing 4x better performance than single embedding model. We also fine-tune our model on real-world multi-answer retrieval datasets and evaluate in-domain. AMER presents 4 and 21% relative gains over single-embedding baselines on two datasets we evaluate on. Furthermore, we consistently observe larger gains on the subset of dataset where the embeddings of the target documents are less similar to each other. We demonstrate the potential of using a multi-query vector retriever and open up a new direction for future work.

3.86Controlling Performance and Budget of a Centralized Multi-agent LLM System with Reinforcement Learning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large language models (LLMs) exhibit complementary strengths across domains and come with varying inference costs, motivating the design of multi-agent LLM systems where specialized models collaborate efficiently. Existing approaches predominantly rely on decentralized frameworks, which invoke multiple LLMs for every input and thus lead to substantial and uncontrolled inference costs. In this work, we introduce a centralized multi-LLM framework, where a controller LLM selectively coordinates a pool of expert models in a cost-efficient and cost-controllable manner. We formulate this coordination problem as reinforcement learning with dual objectives: maximizing task performance while minimizing the overall inference cost. In addition, we expect the multi-agent system to have adapted behavior with different budget conditions during inference. To this end, we propose CoRL, a reinforcement learning framework that optimizes the performance cost trade-off in a controllable multi-budget setting. Experiments on four diverse benchmarks demonstrate that CoRL enables a single system to surpass the best expert LLM under high-budget settings, while maintaining strong performance in more economical low-budget modes, highlighting the effectiveness of centralized coordination for scalable and cost-efficient multi-agent LLM systems.

3.87AI Diffusion in Low Resource Language Countries

arxiv html pdf kimi

2025/11/05 04:57 GTM

Artificial intelligence (AI) is diffusing globally at unprecedented speed, but adoption remains uneven. Frontier Large Language Models (LLMs) are known to perform poorly on low-resource languages due to data scarcity. We hypothesize that this performance deficit reduces the utility of AI, thereby slowing adoption in Low-Resource Language Countries (LRLCs). To test this, we use a weighted regression model to isolate the language effect from socioeconomic and demographic factors, finding that LRLCs have a share of AI users that is approximately 20% lower relative to their baseline. These results indicate that linguistic accessibility is a significant, independent barrier to equitable AI diffusion.

3.88CostBench: Evaluating Multi-Turn Cost-Optimal Planning and Adaptation in Dynamic Environments for LLM Tool-Use Agents

arxiv html pdf kimi

2025/11/05 04:57 GTM

Current evaluations of Large Language Model (LLM) agents primarily emphasize task completion, often overlooking resource efficiency and adaptability. This neglects a crucial capability: agents’ ability to devise and adjust cost-optimal plans in response to changing environments. To bridge this gap, we introduce CostBench, a scalable, cost-centric benchmark designed to evaluate agents’ economic reasoning and replanning abilities. Situated in the travel-planning domain, CostBench comprises tasks solvable via multiple sequences of atomic and composite tools with diverse, customizable costs. It also supports four types of dynamic blocking events, such as tool failures and cost changes, to simulate real-world unpredictability and necessitate agents to adapt in real time. Evaluating leading open-sourced and proprietary models on CostBench reveals a substantial gap in cost-aware planning: agents frequently fail to identify cost-optimal solutions in static settings, with even GPT-5 achieving less than 75% exact match rate on the hardest tasks, and performance further dropping by around 40% under dynamic conditions. By diagnosing these weaknesses, CostBench lays the groundwork for developing future agents that are both economically rational and robust.

3.89PragExTra: A Multilingual Corpus of Pragmatic Explicitation in Translation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Translators often enrich texts with background details that make implicit cultural meanings explicit for new audiences. This phenomenon, known as pragmatic explicitation, has been widely discussed in translation theory but rarely modeled computationally. We introduce PragExTra, the first multilingual corpus and detection framework for pragmatic explicitation. The corpus covers eight language pairs from TED-Multi and Europarl and includes additions such as entity descriptions, measurement conversions, and translator remarks. We identify candidate explicitation cases through null alignments and refined using active learning with human annotation. Our results show that entity and system-level explicitations are most frequent, and that active learning improves classifier accuracy by 7-8 percentage points, achieving up to 0.88 accuracy and 0.82 F1 across languages. PragExTra establishes pragmatic explicitation as a measurable, cross-linguistic phenomenon and takes a step towards building culturally aware machine translation. Keywords: translation, multilingualism, explicitation

3.90The Collaboration Gap

arxiv html pdf kimi

2025/11/05 04:57 GTM

The trajectory of AI development suggests that we will increasingly rely on agent-based systems composed of independently developed agents with different information, privileges, and tools. The success of these systems will critically depend on effective collaboration among these heterogeneous agents, even under partial observability. Despite intense interest, few empirical studies have evaluated such agent-agent collaboration at scale. We propose a collaborative maze-solving benchmark that (i) isolates collaborative capabilities, (ii) modulates problem complexity, (iii) enables scalable automated grading, and (iv) imposes no output-format constraints, preserving ecological plausibility. Using this framework, we evaluate 32 leading open- and closed-source models in solo, homogeneous, and heterogeneous pairings. Our results reveal a “collaboration gap”: models that perform well solo often degrade substantially when required to collaborate. Collaboration can break down dramatically; for instance, small distilled models that solve mazes well alone may fail almost completely in certain pairings. We find that starting with the stronger agent often improves outcomes, motivating a “relay inference” approach where the stronger agent leads before handing off to the weaker one, closing much of the gap. Our findings argue for (1) collaboration-aware evaluation, (2) training strategies developed to enhance collaborative capabilities, and (3) interaction design that reliably elicits agents’ latent skills, guidance that applies to AI-AI and human-AI collaboration.

3.91Optimal Singular Damage: Efficient LLM Inference in Low Storage Regimes

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large language models (LLMs) are increasingly prevalent across diverse applications. However, their enormous size limits storage and processing capabilities to a few well-resourced stakeholders. As a result, most applications rely on pre-trained LLMs, fine-tuned for specific tasks. However, even storing the fine-tuned versions of these models remains a significant challenge due to the wide range of tasks they address. Recently, studies show that fine-tuning these models primarily affects a small fraction of parameters, highlighting the need for more efficient storage of fine-tuned models. This paper focuses on efficient storage of parameter updates in pre-trained models after fine-tuning. To address this challenge, we leverage the observation that fine-tuning updates are both low-rank and sparse, which can be utilized for storage efficiency. However, using only low-rank approximation or sparsification may discard critical singular components that enhance model expressivity. We first observe that given the same memory budget, sparsified low-rank approximations with larger ranks outperform standard low-rank approximations with smaller ranks. Building on this, we propose our method, optimal singular damage, that selectively sparsifies low-rank approximated updates by leveraging the interleaved importance of singular vectors, ensuring that the most impactful components are retained. We demonstrate through extensive experiments that our proposed methods lead to significant storage efficiency and superior accuracy within the same memory budget compared to employing the low-rank approximation or sparsification individually.

3.92Understanding New-Knowledge-Induced Factual Hallucinations in LLMs: Analysis, Solution, and Interpretation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Previous studies show that introducing new knowledge during large language models (LLMs) fine-tuning can lead to the generation of erroneous output when tested on known information, thereby triggering factual hallucinations. However, existing studies have not deeply investigated the specific manifestations and underlying mechanisms of these hallucinations. Our work addresses this gap by designing a controlled dataset Biography-Reasoning, and conducting a fine-grained analysis across multiple knowledge types and two task types, including knowledge question answering (QA) and knowledge reasoning tasks. We find that when fine-tuned on a dataset in which a specific knowledge type consists entirely of new knowledge, LLMs exhibit significantly increased hallucination tendencies. This suggests that the high unfamiliarity of a particular knowledge type, rather than the overall proportion of new knowledge, is a stronger driver of hallucinations, and these tendencies can even affect other knowledge types in QA tasks. To mitigate such factual hallucinations, we propose KnownPatch, which patches a small number of known knowledge samples in the later stages of training, effectively alleviating new-knowledge-induced hallucinations. Through attention analysis, we find that learning new knowledge reduces the model’s attention to key entities in the question, thus causing excessive focus on the surrounding context, which may increase the risk of hallucination. Moreover, the attention pattern can propagate to similar contexts, facilitating the spread of hallucinations to textually similar questions. Our method effectively mitigates the disruption of new knowledge learning to the model’s attention on key entities, accompanied by improved performance.

3.93The Realignment Problem: When Right becomes Wrong in LLMs

arxiv html pdf kimi

2025/11/05 04:57 GTM

The alignment of Large Language Models (LLMs) with human values is central to their safe deployment, yet current practice produces static, brittle, and costly-to-maintain models that fail to keep pace with evolving norms and policies. This misalignment, which we term the Alignment-Reality Gap, poses a growing challenge for reliable long-term use. Existing remedies are inadequate: large-scale re-annotation is economically prohibitive, and standard unlearning methods act as blunt instruments that erode utility rather than enable precise policy updates. We introduce TRACE (Triage and Re-align by Alignment Conflict Evaluation), a framework for principled unlearning that reconceives re-alignment as a programmatic policy application problem. TRACE programmatically triages existing preference data against a new policy, identifies high-impact conflicts via a alignment impact score, and applies a hybrid optimization that cleanly inverts, discards, or preserves preferences while safeguarding model performance. Empirical results show that TRACE achieves robust re-alignment across diverse model families (Qwen2.5-7B, Gemma-2-9B, Llama-3.1-8B). On both synthetic benchmarks and the PKU-SafeRLHF dataset under complex policy shift, TRACE enforces new principles without degrading general capabilities. Our work establishes a scalable, dynamic, and cost-effective paradigm for maintaining LLM alignment, providing a foundation for sustainable and responsible AI deployment.

3.94UniChange: Unifying Change Detection with Multimodal Large Language Model

arxiv html pdf kimi

2025/11/05 04:57 GTM

Change detection (CD) is a fundamental task for monitoring and analyzing land cover dynamics. While recent high performance models and high quality datasets have significantly advanced the field, a critical limitation persists. Current models typically acquire limited knowledge from single-type annotated data and cannot concurrently leverage diverse binary change detection (BCD) and semantic change detection (SCD) datasets. This constraint leads to poor generalization and limited versatility. The recent advancements in Multimodal Large Language Models (MLLMs) introduce new possibilities for a unified CD framework. We leverage the language priors and unification capabilities of MLLMs to develop UniChange, the first MLLM-based unified change detection model. UniChange integrates generative language abilities with specialized CD functionalities. Our model successfully unifies both BCD and SCD tasks through the introduction of three special tokens: [T1], [T2], and [CHANGE]. Furthermore, UniChange utilizes text prompts to guide the identification of change categories, eliminating the reliance on predefined classification heads. This design allows UniChange to effectively acquire knowledge from multi-source datasets, even when their class definitions conflict. Experiments on four public benchmarks (WHU-CD, S2Looking, LEVIR-CD+, and SECOND) demonstrate SOTA performance, achieving IoU scores of 90.41, 53.04, 78.87, and 57.62, respectively, surpassing all previous methods. The code is available at https://github.com/Erxucomeon/UniChange.

3.95CGES: Confidence-Guided Early Stopping for Efficient and Accurate Self-Consistency

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large language models (LLMs) are often queried multiple times at test time, with predictions aggregated by majority vote. While effective, this self-consistency strategy (arXiv:2203.11171) requires a fixed number of calls and can fail when the correct answer is rare. We introduce Confidence-Guided Early Stopping (CGES), a Bayesian framework that forms posteriors over candidate answers using scalar confidence signals derived from token probabilities or reward models. CGES adaptively halts sampling once the posterior mass of a candidate exceeds a threshold. We provide theoretical guarantees for both perfectly calibrated confidences and realistic noisy confidence signals. Across five reasoning benchmarks, CGES reduces the average number of model calls by about 69 percent (for example, from 16.0 to 4.9) while matching the accuracy of self-consistency within 0.06 percentage points.

3.96Next Token Knowledge Tracing: Exploiting Pretrained LLM Representations to Decode Student Behaviour

arxiv html pdf kimi

2025/11/05 04:57 GTM

Modelling student knowledge is a key challenge when leveraging AI in education, with major implications for personalised learning. The Knowledge Tracing (KT) task aims to predict how students will respond to educational questions in learning environments, based on their prior interactions. Existing KT models typically use response correctness along with metadata like skill tags and timestamps, often overlooking the question text, which is an important source of pedagogical insight. This omission poses a lost opportunity while limiting predictive performance. We propose Next Token Knowledge Tracing (NTKT), a novel approach that reframes KT as a next-token prediction task using pretrained Large Language Models (LLMs). NTKT represents both student histories and question content as sequences of text, allowing LLMs to learn patterns in both behaviour and language. Our series of experiments significantly improves performance over state-of-the-art neural KT models and generalises much better to cold-start questions and users. These findings highlight the importance of question content in KT and demonstrate the benefits of leveraging pretrained representations of LLMs to model student learning more effectively.

3.97The Analysis of Lexical Errors in Machine Translation from English into Romanian

arxiv html pdf kimi

2025/11/05 04:57 GTM

The research explores error analysis in the performance of translating by Machine Translation from English into Romanian, and it focuses on lexical errors found in texts which include official information, provided by the World Health Organization (WHO), the Gavi Organization, by the patient information leaflet (the information about the active ingredients of the vaccines or the medication, the indications, the dosage instructions, the storage instructions, the side effects and warning, etc.). All of these texts are related to Covid-19 and have been translated by Google Translate, a multilingual Machine Translation that was created by Google. In the last decades, Google has actively worked to develop a more accurate and fluent automatic translation system. This research, specifically focused on improving Google Translate, aims to enhance the overall quality of Machine Translation by achieving better lexical selection and by reducing errors. The investigation involves a comprehensive analysis of 230 texts that have been translated from English into Romanian.

3.98Smart-Hiring: An Explainable end-to-end Pipeline for CV Information Extraction and Job Matching

arxiv html pdf kimi

2025/11/05 04:57 GTM

Hiring processes often involve the manual screening of hundreds of resumes for each job, a task that is time and effort consuming, error-prone, and subject to human bias. This paper presents Smart-Hiring, an end-to-end Natural Language Processing (NLP) pipeline de- signed to automatically extract structured information from unstructured resumes and to semantically match candidates with job descriptions. The proposed system combines document parsing, named-entity recognition, and contextual text embedding techniques to capture skills, experience, and qualifications. Using advanced NLP technics, Smart-Hiring encodes both resumes and job descriptions in a shared vector space to compute similarity scores between candidates and job postings. The pipeline is modular and explainable, allowing users to inspect extracted entities and matching rationales. Experiments were conducted on a real-world dataset of resumes and job descriptions spanning multiple professional domains, demonstrating the robustness and feasibility of the proposed approach. The system achieves competitive matching accuracy while preserving a high degree of interpretability and transparency in its decision process. This work introduces a scalable and practical NLP frame- work for recruitment analytics and outlines promising directions for bias mitigation, fairness-aware modeling, and large-scale deployment of data-driven hiring solutions.

3.99DetectiumFire: A Comprehensive Multi-modal Dataset Bridging Vision and Language for Fire Understanding

arxiv html pdf kimi

2025/11/05 04:57 GTM

Recent advances in multi-modal models have demonstrated strong performance in tasks such as image generation and reasoning. However, applying these models to the fire domain remains challenging due to the lack of publicly available datasets with high-quality fire domain annotations. To address this gap, we introduce DetectiumFire, a large-scale, multi-modal dataset comprising of 22.5k high-resolution fire-related images and 2.5k real-world fire-related videos covering a wide range of fire types, environments, and risk levels. The data are annotated with both traditional computer vision labels (e.g., bounding boxes) and detailed textual prompts describing the scene, enabling applications such as synthetic data generation and fire risk reasoning. DetectiumFire offers clear advantages over existing benchmarks in scale, diversity, and data quality, significantly reducing redundancy and enhancing coverage of real-world scenarios. We validate the utility of DetectiumFire across multiple tasks, including object detection, diffusion-based image generation, and vision-language reasoning. Our results highlight the potential of this dataset to advance fire-related research and support the development of intelligent safety systems. We release DetectiumFire to promote broader exploration of fire understanding in the AI community. The dataset is available at https://kaggle.com/datasets/38b79c344bdfc55d1eed3d22fbaa9c31fad45e27edbbe9e3c529d6e5c4f93890

3.100Prompting for Policy: Forecasting Macroeconomic Scenarios with Synthetic LLM Personas

arxiv html pdf kimi

2025/11/05 04:57 GTM

We evaluate whether persona-based prompting improves Large Language Model (LLM) performance on macroeconomic forecasting tasks. Using 2,368 economics-related personas from the PersonaHub corpus, we prompt GPT-4o to replicate the ECB Survey of Professional Forecasters across 50 quarterly rounds (2013-2025). We compare the persona-prompted forecasts against the human experts panel, across four target variables (HICP, core HICP, GDP growth, unemployment) and four forecast horizons. We also compare the results against 100 baseline forecasts without persona descriptions to isolate its effect. We report two main findings. Firstly, GPT-4o and human forecasters achieve remarkably similar accuracy levels, with differences that are statistically significant yet practically modest. Our out-of-sample evaluation on 2024-2025 data demonstrates that GPT-4o can maintain competitive forecasting performance on unseen events, though with notable differences compared to the in-sample period. Secondly, our ablation experiment reveals no measurable forecasting advantage from persona descriptions, suggesting these prompt components can be omitted to reduce computational costs without sacrificing accuracy. Our results provide evidence that GPT-4o can achieve competitive forecasting accuracy even on out-of-sample macroeconomic events, if provided with relevant context data, while revealing that diverse prompts produce remarkably homogeneous forecasts compared to human panels.

3.101Merging Continual Pretraining Models for Domain-Specialized LLMs: A Case Study in Finance

arxiv html pdf kimi

2025/11/05 04:57 GTM

While LLMs excel at general tasks, they struggle in specialized domains like finance, requiring diverse skills in domain knowledge, mathematical reasoning, and multilingual processing. Merging domain-specific Continual Pre-training (CPT) “experts” offers a practical alternative to costly and unstable multi-skill training. However, unlike established Supervised Fine-Tuning (SFT) model-based merging, CPT model merging remains largely unexplored. We address this gap by creating financial LLMs from experts in finance, math, and Japanese. We propose a three-stage evaluation focusing on knowledge recovery, complementarity, and emergence, and assess three merging methods (Task Arithmetic, TIES, and DARE-TIES) on a comprehensive financial benchmark curated from 18 tasks across 8 established datasets. Results show that merging an expert with its base model recovers general knowledge lost during CPT, while merging experts improves performance and can yield emergent cross-domain skills. Among the methods, Task Arithmetic performs strongly but is hyperparameter-sensitive, whereas TIES is more robust. Our findings also suggest that while model similarity correlates with merging success, emergent skills depend on more complex factors. This work presents the first foundational analysis of CPT model merging, establishing a principled framework and providing clear guidance for building multi-skill LLMs from existing assets.

3.102AutoAdv: Automated Adversarial Prompting for Multi-Turn Jailbreaking of Large Language Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large Language Models (LLMs) remain vulnerable to jailbreaking attacks where adversarial prompts elicit harmful outputs, yet most evaluations focus on single-turn interactions while real-world attacks unfold through adaptive multi-turn conversations. We present AutoAdv, a training-free framework for automated multi-turn jailbreaking that achieves up to 95% attack success rate on Llama-3.1-8B within six turns a 24 percent improvement over single turn baselines. AutoAdv uniquely combines three adaptive mechanisms: a pattern manager that learns from successful attacks to enhance future prompts, a temperature manager that dynamically adjusts sampling parameters based on failure modes, and a two-phase rewriting strategy that disguises harmful requests then iteratively refines them. Extensive evaluation across commercial and open-source models (GPT-4o-mini, Qwen3-235B, Mistral-7B) reveals persistent vulnerabilities in current safety mechanisms, with multi-turn attacks consistently outperforming single-turn approaches. These findings demonstrate that alignment strategies optimized for single-turn interactions fail to maintain robustness across extended conversations, highlighting an urgent need for multi-turn-aware defenses.

3.103AyurParam: A State-of-the-Art Bilingual Language Model for Ayurveda

arxiv html pdf kimi

2025/11/05 04:57 GTM

Current large language models excel at broad, general-purpose tasks, but consistently underperform when exposed to highly specialized domains that require deep cultural, linguistic, and subject-matter expertise. In particular, traditional medical systems such as Ayurveda embody centuries of nuanced textual and clinical knowledge that mainstream LLMs fail to accurately interpret or apply. We introduce AyurParam-2.9B, a domain-specialized, bilingual language model fine-tuned from Param-1-2.9B using an extensive, expertly curated Ayurveda dataset spanning classical texts and clinical guidance. AyurParam’s dataset incorporates context-aware, reasoning, and objective-style Q&A in both English and Hindi, with rigorous annotation protocols for factual precision and instructional clarity. Benchmarked on BhashaBench-Ayur, AyurParam not only surpasses all open-source instruction-tuned models in its size class (1.5--3B parameters), but also demonstrates competitive or superior performance compared to much larger models. The results from AyurParam highlight the necessity for authentic domain adaptation and high-quality supervision in delivering reliable, culturally congruent AI for specialized medical knowledge.

3.104LiveSecBench: A Dynamic and Culturally-Relevant AI Safety Benchmark for LLMs in Chinese Context

arxiv html pdf kimi

2025/11/05 04:57 GTM

In this work, we propose LiveSecBench, a dynamic and continuously updated safety benchmark specifically for Chinese-language LLM application scenarios. LiveSecBench evaluates models across six critical dimensions (Legality, Ethics, Factuality, Privacy, Adversarial Robustness, and Reasoning Safety) rooted in the Chinese legal and social frameworks. This benchmark maintains relevance through a dynamic update schedule that incorporates new threat vectors, such as the planned inclusion of Text-to-Image Generation Safety and Agentic Safety in the next update. For now, LiveSecBench (v251030) has evaluated 18 LLMs, providing a landscape of AI safety in the context of Chinese language. The leaderboard is publicly accessible at https://livesecbench.intokentech.cn/.

3.105CoCoVa: Chain of Continuous Vision-Language Thought for Latent Space Reasoning

arxiv html pdf kimi

2025/11/05 04:57 GTM

In human cognition, there exist numerous thought processes that are tacit and beyond verbal expression, enabling us to understand and interact with the world in multiple ways. However, contemporary Vision-Language Models (VLMs) remain constrained to reasoning within the discrete and rigid space of linguistic tokens, thereby bottlenecking the rich, high-dimensional nature of visual perception. To bridge this gap, we propose CoCoVa (Chain of Continuous Vision-Language Thought), a novel framework for vision-language model that leverages continuous cross-modal reasoning for diverse vision-language tasks. The core of CoCoVa is an iterative reasoning cycle, where a novel Latent Q-Former (LQ-Former) acts as a dynamic reasoning engine, iteratively refining a chain of latent thought vectors through cross-modal fusion. To focus this process, a token selection mechanism dynamically identifies salient visual regions, mimicking attentional focus. To ensure these latent thoughts remain grounded, we train the model with a multi-task objective that combines contrastive learning and diffusion-based reconstruction, enforcing alignment between latent representations and both visual and textual modalities. Evaluations show CoCoVa improves accuracy and token efficiency over strong baselines. With a 1.5B backbone, it competes with or surpasses larger 7B-9B models on almost all benchmarks. When scaled to 7B LLM backbones, it remains competitive with state-of-the-art models. Qualitative analysis validates that learned latent space captures interpretable and structured reasoning patterns, highlighting the potential of CoCoVa to bridge the representational gap between discrete language processing and the continuous nature of visual understanding.

3.106Let Multimodal Embedders Learn When to Augment Query via Adaptive Query Augmentation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Query augmentation makes queries more meaningful by appending further information to the queries to find relevant documents. Current studies have proposed Large Language Model (LLM)-based embedders, which learn representation for embedding and generation for query augmentation in a multi-task manner by leveraging the generative capabilities of LLM. During inference, these jointly trained embedders have conducted query augmentation followed by embedding, showing effective results. However, augmenting every query leads to substantial embedding latency and query augmentation can be detrimental to performance for some queries. Also, previous methods have not been explored in multimodal environments. To tackle these problems, we propose M-Solomon, a universal multimodal embedder that can adaptively determine when to augment queries. Our approach first divides the queries of the training datasets into two groups at the dataset level. One includes queries that require augmentation and the other includes queries that do not. Then, we introduces a synthesis process that generates appropriate augmentations for queries that require them by leveraging a powerful Multimodal LLM (MLLM). Next, we present adaptive query augmentation. Through this step, M-Solomon can conduct query augmentation only when necessary by learning to generate synthetic augmentations with the prefix /augment for queries that demand them and to generate the simple string /embed for others. Experimental results showed that M-Solomon not only surpassed the baseline without augmentation by a large margin but also outperformed the baseline that always used augmentation, providing much faster embedding latency.

3.107LTD-Bench: Evaluating Large Language Models by Letting Them Draw

arxiv html pdf kimi

2025/11/05 04:57 GTM

Current evaluation paradigms for large language models (LLMs) represent a critical blind spot in AI research--relying on opaque numerical metrics that conceal fundamental limitations in spatial reasoning while providing no intuitive understanding of model capabilities. This deficiency creates a dangerous disconnect between reported performance and practical abilities, particularly for applications requiring physical world understanding. We introduce LTD-Bench, a breakthrough benchmark that transforms LLM evaluation from abstract scores to directly observable visual outputs by requiring models to generate drawings through dot matrices or executable code. This approach makes spatial reasoning limitations immediately apparent even to non-experts, bridging the fundamental gap between statistical performance and intuitive assessment. LTD-Bench implements a comprehensive methodology with complementary generation tasks (testing spatial imagination) and recognition tasks (assessing spatial perception) across three progressively challenging difficulty levels, methodically evaluating both directions of the critical language-spatial mapping. Our extensive experiments with state-of-the-art models expose an alarming capability gap: even LLMs achieving impressive results on traditional benchmarks demonstrate profound deficiencies in establishing bidirectional mappings between language and spatial concept--a fundamental limitation that undermines their potential as genuine world models. Furthermore, LTD-Bench’s visual outputs enable powerful diagnostic analysis, offering a potential approach to investigate model similarity.

3.108Automata-Conditioned Cooperative Multi-Agent Reinforcement Learning

arxiv html pdf kimi

2025/11/05 04:57 GTM

We study the problem of learning multi-task, multi-agent policies for cooperative, temporal objectives, under centralized training, decentralized execution. In this setting, using automata to represent tasks enables the decomposition of complex tasks into simpler sub-tasks that can be assigned to agents. However, existing approaches remain sample-inefficient and are limited to the single-task case. In this work, we present Automata-Conditioned Cooperative Multi-Agent Reinforcement Learning (ACC-MARL), a framework for learning task-conditioned, decentralized team policies. We identify the main challenges to ACC-MARL’s feasibility in practice, propose solutions, and prove the correctness of our approach. We further show that the value functions of learned policies can be used to assign tasks optimally at test time. Experiments show emergent task-aware, multi-step coordination among agents, e.g., pressing a button to unlock a door, holding the door, and short-circuiting tasks.

3.109Unlocking the Power of Multi-Agent LLM for Reasoning: From Lazy Agents to Deliberation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large Language Models (LLMs) trained with reinforcement learning and verifiable rewards have achieved strong results on complex reasoning tasks. Recent work extends this paradigm to a multi-agent setting, where a meta-thinking agent proposes plans and monitors progress while a reasoning agent executes subtasks through sequential conversational turns. Despite promising performance, we identify a critical limitation: lazy agent behavior, in which one agent dominates while the other contributes little, undermining collaboration and collapsing the setup to an ineffective single agent. In this paper, we first provide a theoretical analysis showing why lazy behavior naturally arises in multi-agent reasoning. We then introduce a stable and efficient method for measuring causal influence, helping mitigate this issue. Finally, as collaboration intensifies, the reasoning agent risks getting lost in multi-turn interactions and trapped by previous noisy responses. To counter this, we propose a verifiable reward mechanism that encourages deliberation by allowing the reasoning agent to discard noisy outputs, consolidate instructions, and restart its reasoning process when necessary. Extensive experiments demonstrate that our framework alleviates lazy agent behavior and unlocks the full potential of multi-agent framework for complex reasoning tasks.

arxiv html pdf kimi

2025/11/05 04:57 GTM

We propose a Graph Neural Network (GNN)-based approach for Handwritten Mathematical Expression (HME) recognition by modeling HMEs as graphs, where nodes represent symbols and edges capture spatial dependencies. A deep BLSTM network is used for symbol segmentation, recognition, and spatial relation classification, forming an initial primitive graph. A 2D-CFG parser then generates all possible spatial relations, while the GNN-based link prediction model refines the structure by removing unnecessary connections, ultimately forming the Symbol Label Graph. Experimental results demonstrate the effectiveness of our approach, showing promising performance in HME structure recognition.

3.111SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.

3.112Demo: Statistically Significant Results On Biases and Errors of LLMs Do Not Guarantee Generalizable Results

arxiv html pdf kimi

2025/11/05 04:57 GTM

Recent research has shown that hallucinations, omissions, and biases are prevalent in everyday use-cases of LLMs. However, chatbots used in medical contexts must provide consistent advice in situations where non-medical factors are involved, such as when demographic information is present. In order to understand the conditions under which medical chatbots fail to perform as expected, we develop an infrastructure that 1) automatically generates queries to probe LLMs and 2) evaluates answers to these queries using multiple LLM-as-a-judge setups and prompts. For 1), our prompt creation pipeline samples the space of patient demographics, histories, disorders, and writing styles to create realistic questions that we subsequently use to prompt LLMs. In 2), our evaluation pipeline provides hallucination and omission detection using LLM-as-a-judge as well as agentic workflows, in addition to LLM-as-a-judge treatment category detectors. As a baseline study, we perform two case studies on inter-LLM agreement and the impact of varying the answering and evaluation LLMs. We find that LLM annotators exhibit low agreement scores (average Cohen’s Kappa κ=0.118\kappa=0.118), and only specific (answering, evaluation) LLM pairs yield statistically significant differences across writing styles, genders, and races. We recommend that studies using LLM evaluation use multiple LLMs as evaluators in order to avoid arriving at statistically significant but non-generalizable results, particularly in the absence of ground-truth data. We also suggest publishing inter-LLM agreement metrics for transparency. Our code and dataset are available here: https://github.com/BBN-E/medic-neurips-2025-demo.

3.113An Evaluation of Interleaved Instruction Tuning on Semantic Reasoning Performance in an Audio MLLM

arxiv html pdf kimi

2025/11/05 04:57 GTM

Standard training for Multi-modal Large Language Models (MLLMs) involves concatenating non-textual information, like vision or audio, with a text prompt. This approach may not encourage deep integration of modalities, limiting the model’s ability to leverage the core language model’s reasoning capabilities. This work examined the impact of interleaved instruction tuning in an audio MLLM, where audio tokens are interleaved within the prompt. Using the Listen, Think, and Understand (LTU) model as a testbed, we conduct an experiment using the Synonym and Hypernym Audio Reasoning Dataset (SHARD), our newly created reasoning benchmark for audio-based semantic reasoning focusing on synonym and hypernym recognition. Our findings show that while even zero-shot interleaved prompting improves performance on our reasoning tasks, a small amount of fine-tuning using interleaved training prompts improves the results further, however, at the expense of the MLLM’s audio labeling ability.

3.114IG-Pruning: Input-Guided Block Pruning for Large Language Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

With the growing computational demands of large language models (LLMs), efficient inference has become increasingly critical for practical deployment. Depth pruning has emerged as a promising approach for reducing the computational costs of large language models by removing transformer layers. However, existing methods typically rely on fixed block masks, which can lead to suboptimal performance across different tasks and inputs. In this paper, we propose IG-Pruning, a novel input-aware block-wise pruning method that dynamically selects layer masks at inference time. Our approach consists of two stages: (1) Discovering diverse mask candidates through semantic clustering and L0 optimization, and (2) Implementing efficient dynamic pruning without the need for extensive training. Experimental results demonstrate that our method consistently outperforms state-of-the-art static depth pruning methods, making it particularly suitable for resource-constrained deployment scenarios.

3.115Training Proactive and Personalized LLM Agents

arxiv html pdf kimi

2025/11/05 04:57 GTM

While existing work focuses primarily on task success, we argue that effective real-world agents require optimizing three dimensions: productivity (task completion), proactivity (asking essential questions), and personalization (adapting to diverse user preferences). We introduce UserVille, an interactive environment with LLM-based user simulators enabling diverse, configurable user preferences. Leveraging UserVille, we introduce PPP, a multi-objective reinforcement learning approach that jointly optimizes all three dimensions: Productivity, Proactivity, and Personalization. Experiments on software engineering and deep research tasks show that agents trained with PPP achieve substantial improvements over strong baselines such as GPT-5 (+21.6 on average), demonstrating the ability to ask strategic clarifying questions, adapt to unseen user preferences, and improve task success through better interaction. This work demonstrates that explicitly optimizing for user-centered interaction is critical for building practical and effective AI agents.

3.116Personalized Decision Modeling: Utility Optimization or Textualized-Symbolic Reasoning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Decision-making models for individuals, particularly in high-stakes scenarios like vaccine uptake, often diverge from population optimal predictions. This gap arises from the uniqueness of the individual decision-making process, shaped by numerical attributes (e.g., cost, time) and linguistic influences (e.g., personal preferences and constraints). Developing upon Utility Theory and leveraging the textual-reasoning capabilities of Large Language Models (LLMs), this paper proposes an Adaptive Textual-symbolic Human-centric Reasoning framework (ATHENA) to address the optimal information integration. ATHENA uniquely integrates two stages: First, it discovers robust, group-level symbolic utility functions via LLM-augmented symbolic discovery; Second, it implements individual-level semantic adaptation, creating personalized semantic templates guided by the optimal utility to model personalized choices. Validated on real-world travel mode and vaccine choice tasks, ATHENA consistently outperforms utility-based, machine learning, and other LLM-based models, lifting F1 score by at least 6.5% over the strongest cutting-edge models. Further, ablation studies confirm that both stages of ATHENA are critical and complementary, as removing either clearly degrades overall predictive performance. By organically integrating symbolic utility modeling and semantic adaptation, ATHENA provides a new scheme for modeling human-centric decisions. The project page can be found at https://yibozh.github.io/Athena.

3.117Rethinking LLM Human Simulation: When a Graph is What You Need

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large language models (LLMs) are increasingly used to simulate humans, with applications ranging from survey prediction to decision-making. However, are LLMs strictly necessary, or can smaller, domain-grounded models suffice? We identify a large class of simulation problems in which individuals make choices among discrete options, where a graph neural network (GNN) can match or surpass strong LLM baselines despite being three orders of magnitude smaller. We introduce Graph-basEd Models for human Simulation (GEMS), which casts discrete choice simulation tasks as a link prediction problem on graphs, leveraging relational knowledge while incorporating language representations only when needed. Evaluations across three key settings on three simulation datasets show that GEMS achieves comparable or better accuracy than LLMs, with far greater efficiency, interpretability, and transparency, highlighting the promise of graph-based modeling as a lightweight alternative to LLMs for human simulation. Our code is available at https://github.com/schang-lab/gems.

3.118InsurAgent: A Large Language Model-Empowered Agent for Simulating Individual Behavior in Purchasing Flood Insurance

arxiv html pdf kimi

2025/11/05 04:57 GTM

Flood insurance is an effective strategy for individuals to mitigate disaster-related losses. However, participation rates among at-risk populations in the United States remain strikingly low. This gap underscores the need to understand and model the behavioral mechanisms underlying insurance decisions. Large language models (LLMs) have recently exhibited human-like intelligence across wide-ranging tasks, offering promising tools for simulating human decision-making. This study constructs a benchmark dataset to capture insurance purchase probabilities across factors. Using this dataset, the capacity of LLMs is evaluated: while LLMs exhibit a qualitative understanding of factors, they fall short in estimating quantitative probabilities. To address this limitation, InsurAgent, an LLM-empowered agent comprising five modules including perception, retrieval, reasoning, action, and memory, is proposed. The retrieval module leverages retrieval-augmented generation (RAG) to ground decisions in empirical survey data, achieving accurate estimation of marginal and bivariate probabilities. The reasoning module leverages LLM common sense to extrapolate beyond survey data, capturing contextual information that is intractable for traditional models. The memory module supports the simulation of temporal decision evolutions, illustrated through a roller coaster life trajectory. Overall, InsurAgent provides a valuable tool for behavioral modeling and policy analysis.

3.119Deep Value Benchmark: Measuring Whether Models Generalize Deep values or Shallow Preferences

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce the Deep Value Benchmark (DVB), an evaluation framework that directly tests whether large language models (LLMs) learn fundamental human values or merely surface-level preferences. This distinction is critical for AI alignment: Systems that capture deeper values are likely to generalize human intentions robustly, while those that capture only superficial patterns in preference data risk producing misaligned behavior. The DVB uses a novel experimental design with controlled confounding between deep values (e.g., moral principles) and shallow features (e.g., superficial attributes). In the training phase, we expose LLMs to human preference data with deliberately correlated deep and shallow features -- for instance, where a user consistently prefers (non-maleficence, formal language) options over (justice, informal language) alternatives. The testing phase then breaks these correlations, presenting choices between (justice, formal language) and (non-maleficence, informal language) options. This design allows us to precisely measure a model’s Deep Value Generalization Rate (DVGR) -- the probability of generalizing based on the underlying value rather than the shallow feature. Across 9 different models, the average DVGR is just 0.30. All models generalize deep values less than chance. Larger models have a (slightly) lower DVGR than smaller models. We are releasing our dataset, which was subject to three separate human validation experiments. DVB provides an interpretable measure of a core feature of alignment.

3.120LLM Probing with Contrastive Eigenproblems: Improving Understanding and Applicability of CCS

arxiv html pdf kimi

2025/11/05 04:57 GTM

Contrast-Consistent Search (CCS) is an unsupervised probing method able to test whether large language models represent binary features, such as sentence truth, in their internal activations. While CCS has shown promise, its two-term objective has been only partially understood. In this work, we revisit CCS with the aim of clarifying its mechanisms and extending its applicability. We argue that what should be optimized for, is relative contrast consistency. Building on this insight, we reformulate CCS as an eigenproblem, yielding closed-form solutions with interpretable eigenvalues and natural extensions to multiple variables. We evaluate these approaches across a range of datasets, finding that they recover similar performance to CCS, while avoiding problems around sensitivity to random initialization. Our results suggest that relativizing contrast consistency not only improves our understanding of CCS but also opens pathways for broader probing and mechanistic interpretability methods.

3.121Complete asymptotic type-token relationship for growing complex systems with inverse power-law count rankings

arxiv html pdf kimi

2025/11/05 04:57 GTM

The growth dynamics of complex systems often exhibit statistical regularities involving power-law relationships. For real finite complex systems formed by countable tokens (animals, words) as instances of distinct types (species, dictionary entries), an inverse power-law scaling SrαS \sim r^{-\alpha} between type count SS and type rank rr, widely known as Zipf’s law, is widely observed to varying degrees of fidelity. A secondary, summary relationship is Heaps’ law, which states that the number of types scales sublinearly with the total number of observed tokens present in a growing system. Here, we propose an idealized model of a growing system that (1) deterministically produces arbitrary inverse power-law count rankings for types, and (2) allows us to determine the exact asymptotics of the type-token relationship. Our argument improves upon and remedies earlier work. We obtain a unified asymptotic expression for all values of α\alpha, which corrects the special cases of α=1\alpha = 1 and α1\alpha \gg 1. Our approach relies solely on the form of count rankings, avoids unnecessary approximations, and does not involve any stochastic mechanisms or sampling processes. We thereby demonstrate that a general type-token relationship arises solely as a consequence of Zipf’s law.

3.122Regularization Through Reasoning: Systematic Improvements in Language Model Classification via Explanation-Enhanced Fine-Tuning

arxiv html pdf kimi

2025/11/05 04:57 GTM

Fine-tuning LLMs for classification typically maps inputs directly to labels. We ask whether attaching brief explanations to each label during fine-tuning yields better models. We evaluate conversational response quality along three axes: naturalness, comprehensiveness, and on-topic adherence, each rated on 5-point scales. Using ensemble-generated data from multiple LLMs, we fine-tune a 7B-parameter model and test across six diverse conversational datasets. Across 18 dataset, task settings, label-plus-explanation training outperforms label-only baselines. A central and unexpected result concerns random tokens. We replace human-written explanations with text that is syntactically incoherent yet vocabulary-aligned with the originals (e.g., shuffled or bag-of-words variants). Despite lacking semantics, these pseudo-explanations still improve accuracy over label-only training and often narrow much of the gap to true explanations. The effect persists across datasets and training seeds, indicating that gains arise less from meaning than from structure: the extra token budget encourages richer intermediate computation and acts as a regularizer that reduces over-confident shortcuts. Internal analyses support this view: explanation-augmented models exhibit higher activation entropy in intermediate layers alongside sharper predictive mass at the output layer, consistent with increased deliberation before decision. Overall, explanation-augmented fine-tuning, whether with genuine rationales or carefully constructed random token sequences, improves accuracy and reliability for LLM classification while clarifying how token-level scaffolding shapes computation during inference.

3.123TapOut: A Bandit-Based Approach to Dynamic Speculative Decoding

arxiv html pdf kimi

2025/11/05 04:57 GTM

Speculative decoding accelerates LLMs by using a lightweight draft model to generate tokens autoregressively before verifying them in parallel with a larger target model. However, determining the optimal number of tokens to draft remains a key challenge limiting the approach’s effectiveness. Dynamic speculative decoding aims to intelligently decide how many tokens to draft to achieve maximum speedups. Existing methods often rely on hand-tuned, sensitive thresholds (e.g., token entropy), which are costly to set and generalize poorly across models and domains. We propose TapOut, an online, training-free, plug-and-play algorithm for dynamic speculation policy selection using multi-armed bandits. Our approach employs a meta-algorithm that selects among multiple parameter-free dynamic speculation strategies based on past reward and exploration. We conduct extensive experiments across diverse model pairs and datasets, showing that TapOut achieves competitive or superior speedups compared to well-established dynamic speculation baselines without any hyperparameter tuning.

3.124Retrieval-Augmented Multimodal Depression Detection

arxiv html pdf kimi

2025/11/05 04:57 GTM

Multimodal deep learning has shown promise in depression detection by integrating text, audio, and video signals. Recent work leverages sentiment analysis to enhance emotional understanding, yet suffers from high computational cost, domain mismatch, and static knowledge limitations. To address these issues, we propose a novel Retrieval-Augmented Generation (RAG) framework. Given a depression-related text, our method retrieves semantically relevant emotional content from a sentiment dataset and uses a Large Language Model (LLM) to generate an Emotion Prompt as an auxiliary modality. This prompt enriches emotional representation and improves interpretability. Experiments on the AVEC 2019 dataset show our approach achieves state-of-the-art performance with CCC of 0.593 and MAE of 3.95, surpassing previous transfer learning and multi-task learning baselines.

3.125Multi-Personality Generation of LLMs at Decoding-time

arxiv html pdf kimi

2025/11/05 04:57 GTM

Multi-personality generation for LLMs, enabling simultaneous embodiment of multiple personalization attributes, is a fundamental challenge. Existing retraining-based approaches are costly and poorly scalable, while decoding-time methods often rely on external models or heuristics, limiting flexibility and robustness. In this paper, we propose a novel Multi-Personality Generation (MPG) framework under the decoding-time combination paradigm. It flexibly controls multi-personality without relying on scarce multi-dimensional models or extra training, leveraging implicit density ratios in single-dimensional models as a “free lunch” to reformulate the task as sampling from a target strategy aggregating these ratios. To implement MPG efficiently, we design Speculative Chunk-level based Rejection sampling (SCR), which generates responses in chunks and parallelly validates them via estimated thresholds within a sliding window. This significantly reduces computational overhead while maintaining high-quality generation. Experiments on MBTI personality and Role-Playing demonstrate the effectiveness of MPG, showing improvements up to 16%-18%. Code and data are available at https://github.com/Libra117/MPG .

3.126CudaForge: An Agent Framework with Hardware Feedback for CUDA Kernel Optimization

arxiv html pdf kimi

2025/11/05 04:57 GTM

Developing efficient CUDA kernels is increasingly critical for AI applications such as large-scale LLM training. However, manual kernel design is both costly and time-consuming, motivating automatic approaches that leverage LLMs for code generation. Existing methods for automatic kernel generation, however, often produce low-efficiency kernels, incur high computational overhead, and fail to generalize across settings. In this work, we propose CudaForge, a training-free multi-agent workflow for CUDA kernel generation and optimization. Our workflow is inspired by the iterative workflow of human experts, which contains steps such as developing initial kernels, testing correctness, analyzing hardware feedback, and iterative improvement. More specifically, CudaForge employs two LLM agents: a Coder and a Judge, that iteratively generate, correct, and optimize CUDA kernels, while integrating hardware feedback such as Nsight Compute (NCU) metrics. In extensive evaluations, we show that CudaForge, by leveraging base models like OpenAI-o3, achieves 97.6% correctness of generated kernels and an average 1.68×\times speedup over PyTorch baselines, substantially surpassing state-of-the-art models including OpenAI-o3 and Kevin on KernelBench. Beyond accuracy and speed, CudaForge demonstrates strong generalization across GPUs (A100, RTX 6000, 4090, 3090) and base models (OpenAI-o3, GPT-5, gpt-oss-120B, Claude-Sonnet-4, QwQ-32B), while maintaining high efficiency. In particular, generating an optimized kernel takes about 26.5 minutes on one RTX6000 and incurs about $ 0.3 API cost, which is significantly cheaper than existing agentic work that costs 6 H100 hours and $ 5 API cost per kernel. Our results highlight that multi-agent, training-free workflows can enable cost-effective, generalizable, and high-performance CUDA kernel optimization. Code available at https://github.com/OptimAI-Lab/CudaForge

3.127SciDaSynth: Interactive Structured Data Extraction from Scientific Literature with Large Language Model

arxiv html pdf kimi

2025/11/05 04:57 GTM

The explosion of scientific literature has made the efficient and accurate extraction of structured data a critical component for advancing scientific knowledge and supporting evidence-based decision-making. However, existing tools often struggle to extract and structure multimodal, varied, and inconsistent information across documents into standardized formats. We introduce SciDaSynth, a novel interactive system powered by large language models (LLMs) that automatically generates structured data tables according to users’ queries by integrating information from diverse sources, including text, tables, and figures. Furthermore, SciDaSynth supports efficient table data validation and refinement, featuring multi-faceted visual summaries and semantic grouping capabilities to resolve cross-document data inconsistencies. A within-subjects study with nutrition and NLP researchers demonstrates SciDaSynth’s effectiveness in producing high-quality structured data more efficiently than baseline methods. We discuss design implications for human-AI collaborative systems supporting data extraction tasks. The system code is available at https://github.com/xingbow/SciDaEx

3.128TWIST2: Scalable, Portable, and Holistic Humanoid Data Collection System

arxiv html pdf kimi

2025/11/05 04:57 GTM

Large-scale data has driven breakthroughs in robotics, from language models to vision-language-action models in bimanual manipulation. However, humanoid robotics lacks equally effective data collection frameworks. Existing humanoid teleoperation systems either use decoupled control or depend on expensive motion capture setups. We introduce TWIST2, a portable, mocap-free humanoid teleoperation and data collection system that preserves full whole-body control while advancing scalability. Our system leverages PICO4U VR for obtaining real-time whole-body human motions, with a custom 2-DoF robot neck (cost around $250) for egocentric vision, enabling holistic human-to-humanoid control. We demonstrate long-horizon dexterous and mobile humanoid skills and we can collect 100 demonstrations in 15 minutes with an almost 100% success rate. Building on this pipeline, we propose a hierarchical visuomotor policy framework that autonomously controls the full humanoid body based on egocentric vision. Our visuomotor policy successfully demonstrates whole-body dexterous manipulation and dynamic kicking tasks. The entire system is fully reproducible and open-sourced at https://yanjieze.com/TWIST2 . Our collected dataset is also open-sourced at https://twist-data.github.io .

3.129XR-1: Towards Versatile Vision-Language-Action Models via Learning Unified Vision-Motion Representations

arxiv html pdf kimi

2025/11/05 04:57 GTM

Recent progress in large-scale robotic datasets and vision-language models (VLMs) has advanced research on vision-language-action (VLA) models. However, existing VLA models still face two fundamental challenges: (i) producing precise low-level actions from high-dimensional observations, (ii) bridging domain gaps across heterogeneous data sources, including diverse robot embodiments and human demonstrations. Existing methods often encode latent variables from either visual dynamics or robotic actions to guide policy learning, but they fail to fully exploit the complementary multi-modal knowledge present in large-scale, heterogeneous datasets. In this work, we present X Robotic Model 1 (XR-1), a novel framework for versatile and scalable VLA learning across diverse robots, tasks, and environments. XR-1 introduces the \emph{Unified Vision-Motion Codes (UVMC)}, a discrete latent representation learned via a dual-branch VQ-VAE that jointly encodes visual dynamics and robotic motion. UVMC addresses these challenges by (i) serving as an intermediate representation between the observations and actions, and (ii) aligning multimodal dynamic information from heterogeneous data sources to capture complementary knowledge. To effectively exploit UVMC, we propose a three-stage training paradigm: (i) self-supervised UVMC learning, (ii) UVMC-guided pretraining on large-scale cross-embodiment robotic datasets, and (iii) task-specific post-training. We validate XR-1 through extensive real-world experiments with more than 14,000 rollouts on six different robot embodiments, spanning over 120 diverse manipulation tasks. XR-1 consistently outperforms state-of-the-art baselines such as π0.5\pi_{0.5}, π0\pi_0, RDT, UniVLA, and GR00T-N1.5 while demonstrating strong generalization to novel objects, background variations, distractors, and illumination changes. Our project is at https://xr-1-vla.github.io/.

3.130Non-Contact Manipulation of Induced Magnetic Dipoles

arxiv html pdf kimi

2025/11/05 04:57 GTM

Extending the field of magnetic manipulation to conductive, non-magnetic objects opens the door for a wide array of applications previously limited to hard or soft magnetic materials. Of particular interest is the recycling of space debris through the use of oscillating magnetic fields, which represent a cache of raw materials in an environment particularly suited to the low forces generated from inductive magnetic manipulation. Building upon previous work that demonstrated 3D open-loop position control by leveraging the opposing dipole moment created from induced eddy currents, this work demonstrates closed-loop position control of a semi-buoyant aluminum sphere in lab tests, and the efficacy of varying methods for force inversion is explored. The closed-loop methods represent a critical first step towards wider applications for 3-DOF position control of induced magnetic dipoles.

3.131Many-vs-Many Missile Guidance via Virtual Targets

arxiv html pdf kimi

2025/11/05 04:57 GTM

This paper presents a novel approach to many-vs-many missile guidance using virtual targets (VTs) generated by a Normalizing Flows-based trajectory predictor. Rather than assigning n interceptors directly to m physical targets through conventional weapon target assignment algorithms, we propose a centralized strategy that constructs n VT trajectories representing probabilistic predictions of maneuvering target behavior. Each interceptor is guided toward its assigned VT using Zero-Effort-Miss guidance during midcourse flight, transitioning to Proportional Navigation guidance for terminal interception. This approach treats many-vs-many engagements as many-vs-distribution scenarios, exploiting numerical superiority (n > m) by distributing interceptors across diverse trajectory hypotheses rather than pursuing identical deterministic predictions. Monte Carlo simulations across various target-interceptor configurations (1-6 targets, 1-8 interceptors) demonstrate that the VT method matches or exceeds baseline straight-line prediction performance by 0-4.1% when n = m, with improvements increasing to 5.8-14.4% when n > m. The results confirm that probabilistic VTs enable effective exploitation of numerical superiority, significantly increasing interception probability in many-vs-many scenarios.

3.132Keeping it Local, Tiny and Real: Automated Report Generation on Edge Computing Devices for Mechatronic-Based Cognitive Systems

arxiv html pdf kimi

2025/11/05 04:57 GTM

Recent advancements in Deep Learning enable hardware-based cognitive systems, that is, mechatronic systems in general and robotics in particular with integrated Artificial Intelligence, to interact with dynamic and unstructured environments. While the results are impressive, the application of such systems to critical tasks like autonomous driving as well as service and care robotics necessitate the evaluation of large amount of heterogeneous data. Automated report generation for Mobile Robotics can play a crucial role in facilitating the evaluation and acceptance of such systems in various domains. In this paper, we propose a pipeline for generating automated reports in natural language utilizing various multi-modal sensors that solely relies on local models capable of being deployed on edge computing devices, thus preserving the privacy of all actors involved and eliminating the need for external services. In particular, we evaluate our implementation on a diverse dataset spanning multiple domains including indoor, outdoor and urban environments, providing quantitative as well as qualitative evaluation results. Various generated example reports and other supplementary materials are available via a public repository.

3.133Dexterous Robotic Piano Playing at Scale

arxiv html pdf kimi

2025/11/05 04:57 GTM

Endowing robot hands with human-level dexterity has been a long-standing goal in robotics. Bimanual robotic piano playing represents a particularly challenging task: it is high-dimensional, contact-rich, and requires fast, precise control. We present OmniPianist, the first agent capable of performing nearly one thousand music pieces via scalable, human-demonstration-free learning. Our approach is built on three core components. First, we introduce an automatic fingering strategy based on Optimal Transport (OT), allowing the agent to autonomously discover efficient piano-playing strategies from scratch without demonstrations. Second, we conduct large-scale Reinforcement Learning (RL) by training more than 2,000 agents, each specialized in distinct music pieces, and aggregate their experience into a dataset named RP1M++, consisting of over one million trajectories for robotic piano playing. Finally, we employ a Flow Matching Transformer to leverage RP1M++ through large-scale imitation learning, resulting in the OmniPianist agent capable of performing a wide range of musical pieces. Extensive experiments and ablation studies highlight the effectiveness and scalability of our approach, advancing dexterous robotic piano playing at scale.

3.134From the Laboratory to Real-World Application: Evaluating Zero-Shot Scene Interpretation on Edge Devices for Mobile Robotics

arxiv html pdf kimi

2025/11/05 04:57 GTM

Video Understanding, Scene Interpretation and Commonsense Reasoning are highly challenging tasks enabling the interpretation of visual information, allowing agents to perceive, interact with and make rational decisions in its environment. Large Language Models (LLMs) and Visual Language Models (VLMs) have shown remarkable advancements in these areas in recent years, enabling domain-specific applications as well as zero-shot open vocabulary tasks, combining multiple domains. However, the required computational complexity poses challenges for their application on edge devices and in the context of Mobile Robotics, especially considering the trade-off between accuracy and inference time. In this paper, we investigate the capabilities of state-of-the-art VLMs for the task of Scene Interpretation and Action Recognition, with special regard to small VLMs capable of being deployed to edge devices in the context of Mobile Robotics. The proposed pipeline is evaluated on a diverse dataset consisting of various real-world cityscape, on-campus and indoor scenarios. The experimental evaluation discusses the potential of these small models on edge devices, with particular emphasis on challenges, weaknesses, inherent model biases and the application of the gained information. Supplementary material is provided via the following repository: https://datahub.rz.rptu.de/hstr-csrl-public/publications/scene-interpretation-on-edge-devices/

3.135Synthetic Crop-Weed Image Generation and its Impact on Model Generalization

arxiv html pdf kimi

2025/11/05 04:57 GTM

Precise semantic segmentation of crops and weeds is necessary for agricultural weeding robots. However, training deep learning models requires large annotated datasets, which are costly to obtain in real fields. Synthetic data can reduce this burden, but the gap between simulated and real images remains a challenge. In this paper, we present a pipeline for procedural generation of synthetic crop-weed images using Blender, producing annotated datasets under diverse conditions of plant growth, weed density, lighting, and camera angle. We benchmark several state-of-the-art segmentation models on synthetic and real datasets and analyze their cross-domain generalization. Our results show that training on synthetic images leads to a sim-to-real gap of 10%, surpassing previous state-of-the-art methods. Moreover, synthetic data demonstrates good generalization properties, outperforming real datasets in cross-domain scenarios. These findings highlight the potential of synthetic agricultural datasets and support hybrid strategies for more efficient model training.

3.136Whole-body motion planning and safety-critical control for aerial manipulation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Aerial manipulation combines the maneuverability of multirotors with the dexterity of robotic arms to perform complex tasks in cluttered spaces. Yet planning safe, dynamically feasible trajectories remains difficult due to whole-body collision avoidance and the conservativeness of common geometric abstractions such as bounding boxes or ellipsoids. We present a whole-body motion planning and safety-critical control framework for aerial manipulators built on superquadrics (SQs). Using an SQ-plus-proxy representation, we model both the vehicle and obstacles with differentiable, geometry-accurate surfaces. Leveraging this representation, we introduce a maximum-clearance planner that fuses Voronoi diagrams with an equilibrium-manifold formulation to generate smooth, collision-aware trajectories. We further design a safety-critical controller that jointly enforces thrust limits and collision avoidance via high-order control barrier functions. In simulation, our approach outperforms sampling-based planners in cluttered environments, producing faster, safer, and smoother trajectories and exceeding ellipsoid-based baselines in geometric fidelity. Actual experiments on a physical aerial-manipulation platform confirm feasibility and robustness, demonstrating consistent performance across simulation and hardware settings. The video can be found at https://youtu.be/hQYKwrWf1Ak.

3.137Cycle-Sync: Robust Global Camera Pose Estimation through Enhanced Cycle-Consistent Synchronization

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce Cycle-Sync, a robust and global framework for estimating camera poses (both rotations and locations). Our core innovation is a location solver that adapts message-passing least squares (MPLS) -- originally developed for group synchronization -- to camera location estimation. We modify MPLS to emphasize cycle-consistent information, redefine cycle consistencies using estimated distances from previous iterations, and incorporate a Welsch-type robust loss. We establish the strongest known deterministic exact-recovery guarantee for camera location estimation, showing that cycle consistency alone -- without access to inter-camera distances -- suffices to achieve the lowest sample complexity currently known. To further enhance robustness, we introduce a plug-and-play outlier rejection module inspired by robust subspace recovery, and we fully integrate cycle consistency into MPLS for rotation synchronization. Our global approach avoids the need for bundle adjustment. Experiments on synthetic and real datasets show that Cycle-Sync consistently outperforms leading pose estimators, including full structure-from-motion pipelines with bundle adjustment.

3.138ZJUNlict Extended Team Description Paper 2025

arxiv html pdf kimi

2025/11/05 04:57 GTM

This paper presents the ZJUNlict team’s work over the past year, covering both hardware and software advancements. In the hardware domain, the integration of an IMU into the v2023 robot was completed to enhance posture accuracy and angular velocity planning. On the software side, key modules were optimized, including the strategy and CUDA modules, with significant improvements in decision making efficiency, ball pursuit prediction, and ball possession prediction to adapt to high-tempo game dynamics.

3.139SuckTac: Camera-based Tactile Sucker for Unstructured Surface Perception and Interaction

arxiv html pdf kimi

2025/11/05 04:57 GTM

Suckers are significant for robots in picking, transferring, manipulation and locomotion on diverse surfaces. However, most of the existing suckers lack high-fidelity perceptual and tactile sensing, which impedes them from resolving the fine-grained geometric features and interaction status of the target surface. This limits their robust performance with irregular objects and in complex, unstructured environments. Inspired by the adaptive structure and high-performance sensory capabilities of cephalopod suckers, in this paper, we propose a novel, intelligent sucker, named SuckTac, that integrates a camera-based tactile sensor directly within its optimized structure to provide high-density perception and robust suction. Specifically, through joint structure design and optimization and based on a multi-material integrated casting technique, a camera and light source are embedded into the sucker, which enables in-situ, high-density perception of fine details like surface shape, texture and roughness. To further enhance robustness and adaptability, the sucker’s mechanical design is also optimized by refining its profile, adding a compliant lip, and incorporating surface microstructure. Extensive experiments, including challenging tasks such as robotic cloth manipulation and soft mobile robot inspection, demonstrate the superior performance and broad applicability of the proposed system.

3.140LACY: A Vision-Language Model-based Language-Action Cycle for Self-Improving Robotic Manipulation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Learning generalizable policies for robotic manipulation increasingly relies on large-scale models that map language instructions to actions (L2A). However, this one-way paradigm often produces policies that execute tasks without deeper contextual understanding, limiting their ability to generalize or explain their behavior. We argue that the complementary skill of mapping actions back to language (A2L) is essential for developing more holistic grounding. An agent capable of both acting and explaining its actions can form richer internal representations and unlock new paradigms for self-supervised learning. We introduce LACY (Language-Action Cycle), a unified framework that learns such bidirectional mappings within a single vision-language model. LACY is jointly trained on three synergistic tasks: generating parameterized actions from language (L2A), explaining observed actions in language (A2L), and verifying semantic consistency between two language descriptions (L2C). This enables a self-improving cycle that autonomously generates and filters new training data through an active augmentation strategy targeting low-confidence cases, thereby improving the model without additional human labels. Experiments on pick-and-place tasks in both simulation and the real world show that LACY improves task success rates by 56.46% on average and yields more robust language-action grounding for robotic manipulation. Project page: https://vla2026.github.io/LACY/

3.141A Quantitative Comparison of Centralised and Distributed Reinforcement Learning-Based Control for Soft Robotic Arms

arxiv html pdf kimi

2025/11/05 04:57 GTM

This paper presents a quantitative comparison between centralised and distributed multi-agent reinforcement learning (MARL) architectures for controlling a soft robotic arm modelled as a Cosserat rod in simulation. Using PyElastica and the OpenAI Gym interface, we train both a global Proximal Policy Optimisation (PPO) controller and a Multi-Agent PPO (MAPPO) under identical budgets. Both approaches are based on the arm having nn number of controlled sections. The study systematically varies nn and evaluates the performance of the arm to reach a fixed target in three scenarios: default baseline condition, recovery from external disturbance, and adaptation to actuator failure. Quantitative metrics used for the evaluation are mean action magnitude, mean final distance, mean episode length, and success rate. The results show that there are no significant benefits of the distributed policy when the number of controlled sections n4n\le4. In very simple systems, when n2n\le2, the centralised policy outperforms the distributed one. When nn increases to 4<n124< n\le 12, the distributed policy shows a high sample efficiency. In these systems, distributed policy promotes a stronger success rate, resilience, and robustness under local observability and yields faster convergence given the same sample size. However, centralised policies achieve much higher time efficiency during training as it takes much less time to train the same size of samples. These findings highlight the trade-offs between centralised and distributed policy in reinforcement learning-based control for soft robotic systems and provide actionable design guidance for future sim-to-real transfer in soft rod-like manipulators.

3.142Kinematic and Ergonomic Design of a Robotic Arm for Precision Laparoscopic Surgery

arxiv html pdf kimi

2025/11/05 04:57 GTM

Robotic assistance in minimally invasive surgery can greatly enhance surgical precision and reduce surgeon fatigue. This paper presents a focused investigation on the kinematic and ergonomic design principles for a laparoscopic surgical robotic arm aimed at high-precision tasks. We propose a 7-degree-of-freedom (7-DOF) robotic arm system that incorporates a remote center of motion (RCM) at the instrument insertion point and ergonomic considerations to improve surgeon interaction. The design is implemented on a general-purpose robotic platform, and a series of simulated surgical tasks were performed to evaluate targeting accuracy, task efficiency, and surgeon comfort compared to conventional manual laparoscopy. Experimental results demonstrate that the optimized robotic design achieves significantly improved targeting accuracy (error reduced by over 50%) and shorter task completion times, while substantially lowering operator muscle strain and discomfort. These findings validate the importance of kinematic optimization (such as added articulations and tremor filtering) and human-centered ergonomic design in enhancing the performance of robot-assisted surgery. The insights from this work can guide the development of next-generation surgical robots that improve surgical outcomes and ergonomics for the operating team.

3.143Text to Robotic Assembly of Multi Component Objects using 3D Generative AI and Vision Language Models

arxiv html pdf kimi

2025/11/05 04:57 GTM

Advances in 3D generative AI have enabled the creation of physical objects from text prompts, but challenges remain in creating objects involving multiple component types. We present a pipeline that integrates 3D generative AI with vision-language models (VLMs) to enable the robotic assembly of multi-component objects from natural language. Our method leverages VLMs for zero-shot, multi-modal reasoning about geometry and functionality to decompose AI-generated meshes into multi-component 3D models using predefined structural and panel components. We demonstrate that a VLM is capable of determining which mesh regions need panel components in addition to structural components, based on object functionality. Evaluation across test objects shows that users preferred the VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based and 2.5% for random assignment. Lastly, the system allows users to refine component assignments through conversational feedback, enabling greater human control and agency in making physical objects with generative AI and robotics.

3.144Census-Based Population Autonomy For Distributed Robotic Teaming

arxiv html pdf kimi

2025/11/05 04:57 GTM

Collaborating teams of robots show promise due in their ability to complete missions more efficiently and with improved robustness, attributes that are particularly useful for systems operating in marine environments. A key issue is how to model, analyze, and design these multi-robot systems to realize the full benefits of collaboration, a challenging task since the domain of multi-robot autonomy encompasses both collective and individual behaviors. This paper introduces a layered model of multi-robot autonomy that uses the principle of census, or a weighted count of the inputs from neighbors, for collective decision-making about teaming, coupled with multi-objective behavior optimization for individual decision-making about actions. The census component is expressed as a nonlinear opinion dynamics model and the multi-objective behavior optimization is accomplished using interval programming. This model can be reduced to recover foundational algorithms in distributed optimization and control, while the full model enables new types of collective behaviors that are useful in real-world scenarios. To illustrate these points, a new method for distributed optimization of subgroup allocation is introduced where robots use a gradient descent algorithm to minimize portions of the cost functions that are locally known, while being influenced by the opinion states from neighbors to account for the unobserved costs. With this method the group can collectively use the information contained in the Hessian matrix of the total global cost. The utility of this model is experimentally validated in three categorically different experiments with fleets of autonomous surface vehicles: an adaptive sampling scenario, a high value unit protection scenario, and a competitive game of capture the flag.

3.145TACO: Trajectory-Aware Controller Optimization for Quadrotors

arxiv html pdf kimi

2025/11/05 04:57 GTM

Controller performance in quadrotor trajectory tracking depends heavily on parameter tuning, yet standard approaches often rely on fixed, manually tuned parameters that sacrifice task-specific performance. We present Trajectory-Aware Controller Optimization (TACO), a framework that adapts controller parameters online based on the upcoming reference trajectory and current quadrotor state. TACO employs a learned predictive model and a lightweight optimization scheme to optimize controller gains in real time with respect to a broad class of trajectories, and can also be used to adapt trajectories to improve dynamic feasibility while respecting smoothness constraints. To enable large-scale training, we also introduce a parallelized quadrotor simulator supporting fast data collection on diverse trajectories. Experiments on a variety of trajectory types show that TACO outperforms conventional, static parameter tuning while operating orders of magnitude faster than black-box optimization baselines, enabling practical real-time deployment on a physical quadrotor. Furthermore, we show that adapting trajectories using TACO significantly reduces the tracking error obtained by the quadrotor.

3.146TurboMap: GPU-Accelerated Local Mapping for Visual SLAM

arxiv html pdf kimi

2025/11/05 04:57 GTM

This paper presents TurboMap, a GPU-accelerated and CPU-optimized local mapping module for visual SLAM systems. We identify key performance bottlenecks in the local mapping process for visual SLAM and address them through targeted GPU and CPU optimizations. Specifically, we offload map point triangulation and fusion to the GPU, accelerate redundant keyframe culling on the CPU, and integrate a GPU-accelerated solver to speed up local bundle adjustment. Our implementation is built on top of ORB-SLAM3 and leverages CUDA for GPU programming. The experimental results show that TurboMap achieves an average speedup of 1.3x in the EuRoC dataset and 1.6x in the TUM-VI dataset in the local mapping module, on both desktop and embedded platforms, while maintaining the accuracy of the original system.

3.147Path-Coordinated Continual Learning with Neural Tangent Kernel-Justified Plasticity: A Theoretical Framework with Near State-of-the-Art Performance

arxiv html pdf kimi

2025/11/05 04:57 GTM

Catastrophic forgetting is one of the fundamental issues of continual learning because neural networks forget the tasks learned previously when trained on new tasks. The proposed framework is a new path-coordinated framework of continual learning that unites the Neural Tangent Kernel (NTK) theory of principled plasticity bounds, statistical validation by Wilson confidence intervals, and evaluation of path quality by the use of multiple metrics. Experimental evaluation shows an average accuracy of 66.7% at the cost of 23.4% catastrophic forgetting on Split-CIFAR10, a huge improvement over the baseline and competitive performance achieved, which is very close to state-of-the-art results. Further, it is found out that NTK condition numbers are predictive indicators of learning capacity limits, showing the existence of a critical threshold at condition number >1011>10^{11}. It is interesting to note that the proposed strategy shows a tendency of lowering forgetting as the sequence of tasks progresses (27% to 18%), which is a system stabilization. The framework validates 80% of discovered paths with a rigorous statistical guarantee and maintains 90-97% retention on intermediate tasks. The core capacity limits of the continual learning environment are determined in the analysis, and actionable insights to enhance the adaptive regularization are offered.

3.148Stein-based Optimization of Sampling Distributions in Model Predictive Path Integral Control

arxiv html pdf kimi

2025/11/05 04:57 GTM

This paper presents a novel method for Model Predictive Path Integral (MPPI) control that optimizes sample generation towards an optimal trajectory through Stein Variational Gradient Descent (SVGD). MPPI is traditionally reliant on randomly sampled trajectories, often by a Gaussian distribution. The result can lead to sample deprivation, under-representing the space of possible trajectories, and yield suboptimal results. Through introducing SVGD updates in between MPPI environment steps, we present Stein-Optimized Path-Integral Inference (SOPPI), an MPPI/SVGD algorithm that can dynamically update noise distributions at runtime to shape a more optimal representation without an excessive increase in computational requirements. We demonstrate the efficacy of our method systems ranging from a Cart-Pole to a two-dimensional bipedal walking task, indicating improved performance above standard MPPI across a range of hyper-parameters and demonstrate feasibility at lower particle counts. We discuss the applicability of this MPPI/SVGD method to higher degree-of-freedom systems, as well as its potential to new developments in state-of-the-art differentiable simulators.

3.149TRACE: Textual Reasoning for Affordance Coordinate Extraction

arxiv html pdf kimi

2025/11/05 04:57 GTM

Vision-Language Models (VLMs) struggle to translate high-level instructions into the precise spatial affordances required for robotic manipulation. While visual Chain-of-Thought (CoT) methods exist, they are often computationally intensive. In this work, we introduce TRACE (Textual Reasoning for Affordance Coordinate Extraction), a novel methodology that integrates a textual Chain of Reasoning (CoR) into the affordance prediction process. We use this methodology to create the TRACE dataset, a large-scale collection created via an autonomous pipeline that pairs instructions with explicit textual rationales. By fine-tuning a VLM on this data, our model learns to externalize its spatial reasoning before acting. Our experiments show that our TRACE-tuned model achieves state-of-the-art performance, reaching 48.1% accuracy on the primary Where2Place (W2P) benchmark (a 9.6% relative improvement) and 55.0% on the more challenging W2P(h) subset. Crucially, an ablation study demonstrates that performance scales directly with the amount of reasoning data used, confirming the CoR’s effectiveness. Furthermore, analysis of the model’s attention maps reveals an interpretable reasoning process where focus shifts dynamically across reasoning steps. This work shows that training VLMs to generate a textual CoR is an effective and robust strategy for enhancing the precision, reliability, and interpretability of VLM-based robot control. Our dataset and code are available at https://github.com/jink-ucla/TRACE

3.150iFlyBot-VLA Technical Report

arxiv html pdf kimi

2025/11/05 04:57 GTM

We introduce iFlyBot-VLA, a large-scale Vision-Language-Action (VLA) model trained under a novel framework. The main contributions are listed as follows: (1) a latent action model thoroughly trained on large-scale human and robotic manipulation videos; (2) a dual-level action representation framework that jointly supervises both the Vision-Language Model (VLM) and the action expert during training; (3) a mixed training strategy that combines robot trajectory data with general QA and spatial QA datasets, effectively enhancing the 3D perceptual and reasoning capabilities of the VLM backbone. Specifically, the VLM is trained to predict two complementary forms of actions: latent actions, derived from our latent action model pretrained on cross-embodiment manipulation data, which capture implicit high-level intentions; and structured discrete action tokens, obtained through frequency-domain transformations of continuous control signals, which encode explicit low-level dynamics. This dual supervision aligns the representation spaces of language, vision, and action, enabling the VLM to directly contribute to action generation. Experimental results on the LIBERO Franka benchmark demonstrate the superiority of our frame-work, while real-world evaluations further show that iFlyBot-VLA achieves competitive success rates across diverse and challenging manipulation tasks. Furthermore, we plan to open-source a portion of our self-constructed dataset to support future research in the community

3.151A Step Toward World Models: A Survey on Robotic Manipulation

arxiv html pdf kimi

2025/11/05 04:57 GTM

Autonomous agents are increasingly expected to operate in complex, dynamic, and uncertain environments, performing tasks such as manipulation, navigation, and decision-making. Achieving these capabilities requires agents to understand the underlying mechanisms and dynamics of the world, moving beyond purely reactive control or simple replication of observed states. This motivates the development of world models as internal representations that encode environmental states, capture dynamics, and enable prediction, planning, and reasoning. Despite growing interest, the definition, scope, architectures, and essential capabilities of world models remain ambiguous. In this survey, rather than directly imposing a fixed definition and limiting our scope to methods explicitly labeled as world models, we examine approaches that exhibit the core capabilities of world models through a review of methods in robotic manipulation. We analyze their roles across perception, prediction, and control, identify key challenges and solutions, and distill the core components, capabilities, and functions that a real world model should possess. Building on this analysis, we aim to outline a roadmap for developing generalizable and practical world models for robotics.