Generated at 2025-12-11 05:04:45
We have 224 news from different sources.
2feed¶
2.1一手实测 | 智谱AutoGLM重磅开源: AI手机的「安卓时刻」正式到来¶
2025/12/10 05:08 GTM
开源万岁!
2.2Mistral再开源!发布代码模型Devstral 2及原生CLI,但大公司被限制商用¶
2025/12/10 05:08 GTM
Devstral 2 编程模型+Mistral Vibe CLI
2.3告别专家依赖,让机器人学会自我参考,仅需200步性能飙升至99.2%¶
2025/12/10 05:08 GTM
SRPO仅凭模型自身的成功经验与物理世界常识,即可实现性能跃迁。
2.4终于把汉字写对了!实测美团LongCat-Image:6B模型挑战开源天花板¶
2025/12/10 05:17 GTM
6B 小模型也能挑战 SOTA?
2.5告别碎片化!VecCity首次统一地图实体表征学习:一套体系打通POI/道路/地块¶
2025/12/10 05:17 GTM
地图 AI 终于统一了
3paper¶
3.1GAINS: Gaussian-based Inverse Rendering from Sparse Multi-View Captures¶
2025/12/11 05:03 GTM
Recent advances in Gaussian Splatting-based inverse rendering extend Gaussian primitives with shading parameters and physically grounded light transport, enabling high-quality material recovery from dense multi-view captures. However, these methods degrade sharply under sparse-view settings, where limited observations lead to severe ambiguity between geometry, reflectance, and lighting. We introduce GAINS (Gaussian-based Inverse rendering from Sparse multi-view captures), a two-stage inverse rendering framework that leverages learning-based priors to stabilize geometry and material estimation. GAINS first refines geometry using monocular depth/normal and diffusion priors, then employs segmentation, intrinsic image decomposition (IID), and diffusion priors to regularize material recovery. Extensive experiments on synthetic and real-world datasets show that GAINS significantly improves material parameter accuracy, relighting quality, and novel-view synthesis compared to state-of-the-art Gaussian-based inverse rendering methods, especially under sparse-view settings. Project page: https://
3.2ReViSE: Towards Reason-Informed Video Editing in Unified Models with Self-Reflective Learning¶
2025/12/11 05:03 GTM
Video unified models exhibit strong capabilities in understanding and generation, yet they struggle with reason-informed visual editing even when equipped with powerful internal vision-language models (VLMs). We attribute this gap to two factors: 1) existing datasets are inadequate for training and evaluating reasoning-aware video editing, and 2) an inherent disconnect between the models’ reasoning and editing capabilities, which prevents the rich understanding from effectively instructing the editing process. Bridging this gap requires an integrated framework that connects reasoning with visual transformation. To address this gap, we introduce the Reason-Informed Video Editing (RVE) task, which requires reasoning about physical plausibility and causal dynamics during editing. To support systematic evaluation, we construct RVE-Bench, a comprehensive benchmark with two complementary subsets: Reasoning-Informed Video Editing and In-Context Video Generation. These subsets cover diverse reasoning dimensions and real-world editing scenarios. Building upon this foundation, we propose the ReViSE, a Self-Reflective Reasoning (SRF) framework that unifies generation and evaluation within a single architecture. The model’s internal VLM provides intrinsic feedback by assessing whether the edited video logically satisfies the given instruction. The differential feedback that refines the generator’s reasoning behavior during training. Extensive experiments on RVE-Bench demonstrate that ReViSE significantly enhances editing accuracy and visual fidelity, achieving a 32% improvement of the Overall score in the reasoning-informed video editing subset over state-of-the-art methods.
3.3Splatent: Splatting Diffusion Latents for Novel View Synthesis¶
2025/12/11 05:03 GTM
Radiance field representations have recently been explored in the latent space of VAEs that are commonly used by diffusion models. This direction offers efficient rendering and seamless integration with diffusion-based pipelines. However, these methods face a fundamental limitation: The VAE latent space lacks multi-view consistency, leading to blurred textures and missing details during 3D reconstruction. Existing approaches attempt to address this by fine-tuning the VAE, at the cost of reconstruction quality, or by relying on pre-trained diffusion models to recover fine-grained details, at the risk of some hallucinations. We present Splatent, a diffusion-based enhancement framework designed to operate on top of 3D Gaussian Splatting (3DGS) in the latent space of VAEs. Our key insight departs from the conventional 3D-centric view: rather than reconstructing fine-grained details in 3D space, we recover them in 2D from input views through multi-view attention mechanisms. This approach preserves the reconstruction quality of pretrained VAEs while achieving faithful detail recovery. Evaluated across multiple benchmarks, Splatent establishes a new state-of-the-art for VAE latent radiance field reconstruction. We further demonstrate that integrating our method with existing feed-forward frameworks, consistently improves detail preservation, opening new possibilities for high-quality sparse-view 3D reconstruction.
3.4LISN: Language-Instructed Social Navigation with VLM-based Controller Modulating¶
2025/12/11 05:03 GTM
Towards human-robot coexistence, socially aware navigation is significant for mobile robots. Yet existing studies on this area focus mainly on path efficiency and pedestrian collision avoidance, which are essential but represent only a fraction of social navigation. Beyond these basics, robots must also comply with user instructions, aligning their actions to task goals and social norms expressed by humans. In this work, we present LISN-Bench, the first simulation-based benchmark for language-instructed social navigation. Built on Rosnav-Arena 3.0, it is the first standardized social navigation benchmark to incorporate instruction following and scene understanding across diverse contexts. To address this task, we further propose Social-Nav-Modulator, a fast-slow hierarchical system where a VLM agent modulates costmaps and controller parameters. Decoupling low-level action generation from the slower VLM loop reduces reliance on high-frequency VLM inference while improving dynamic avoidance and perception adaptability. Our method achieves an average success rate of 91.3%, which is greater than 63% than the most competitive baseline, with most of the improvements observed in challenging tasks such as following a person in a crowd and navigating while strictly avoiding instruction-forbidden regions. The project website is at: https://
3.5NordFKB: a fine-grained benchmark dataset for geospatial AI in Norway¶
2025/12/11 05:03 GTM
We present NordFKB, a fine-grained benchmark dataset for geospatial AI in Norway, derived from the authoritative, highly accurate, national Felles KartdataBase (FKB). The dataset contains high-resolution orthophotos paired with detailed annotations for 36 semantic classes, including both per-class binary segmentation masks in GeoTIFF format and COCO-style bounding box annotations. Data is collected from seven geographically diverse areas, ensuring variation in climate, topography, and urbanization. Only tiles containing at least one annotated object are included, and training/validation splits are created through random sampling across areas to ensure representative class and context distributions. Human expert review and quality control ensures high annotation accuracy. Alongside the dataset, we release a benchmarking repository with standardized evaluation protocols and tools for semantic segmentation and object detection, enabling reproducible and comparable research. NordFKB provides a robust foundation for advancing AI methods in mapping, land administration, and spatial planning, and paves the way for future expansions in coverage, temporal scope, and data modalities.
3.6VisualActBench: Can VLMs See and Act like a Human?¶
2025/12/11 05:03 GTM
Vision-Language Models (VLMs) have achieved impressive progress in perceiving and describing visual environments. However, their ability to proactively reason and act based solely on visual inputs, without explicit textual prompts, remains underexplored. We introduce a new task, Visual Action Reasoning, and propose VisualActBench, a large-scale benchmark comprising 1,074 videos and 3,733 human-annotated actions across four real-world scenarios. Each action is labeled with an Action Prioritization Level (APL) and a proactive-reactive type to assess models’ human-aligned reasoning and value sensitivity. We evaluate 29 VLMs on VisualActBench and find that while frontier models like GPT4o demonstrate relatively strong performance, a significant gap remains compared to human-level reasoning, particularly in generating proactive, high-priority actions. Our results highlight limitations in current VLMs’ ability to interpret complex context, anticipate outcomes, and align with human decision-making frameworks. VisualActBench establishes a comprehensive foundation for assessing and improving the real-world readiness of proactive, vision-centric AI agents.
3.7YOPO-Nav: Visual Navigation using 3DGS Graphs from One-Pass Videos¶
2025/12/11 05:03 GTM
Visual navigation has emerged as a practical alternative to traditional robotic navigation pipelines that rely on detailed mapping and path planning. However, constructing and maintaining 3D maps is often computationally expensive and memory-intensive. We address the problem of visual navigation when exploration videos of a large environment are available. The videos serve as a visual reference, allowing a robot to retrace the explored trajectories without relying on metric maps. Our proposed method, YOPO-Nav (You Only Pass Once), encodes an environment into a compact spatial representation composed of interconnected local 3D Gaussian Splatting (3DGS) models. During navigation, the framework aligns the robot’s current visual observation with this representation and predicts actions that guide it back toward the demonstrated trajectory. YOPO-Nav employs a hierarchical design: a visual place recognition (VPR) module provides coarse localization, while the local 3DGS models refine the goal and intermediate poses to generate control actions. To evaluate our approach, we introduce the YOPO-Campus dataset, comprising 4 hours of egocentric video and robot controller inputs from over 6 km of human-teleoperated robot trajectories. We benchmark recent visual navigation methods on trajectories from YOPO-Campus using a Clearpath Jackal robot. Experimental results show YOPO-Nav provides excellent performance in image-goal navigation for real-world scenes on a physical robot. The dataset and code will be made publicly available for visual navigation and scene representation research.
3.8Visual Heading Prediction for Autonomous Aerial Vehicles¶
2025/12/11 05:03 GTM
The integration of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) is increasingly central to the development of intelligent autonomous systems for applications such as search and rescue, environmental monitoring, and logistics. However, precise coordination between these platforms in real-time scenarios presents major challenges, particularly when external localization infrastructure such as GPS or GNSS is unavailable or degraded [1]. This paper proposes a vision-based, data-driven framework for real-time UAV-UGV integration, with a focus on robust UGV detection and heading angle prediction for navigation and coordination. The system employs a fine-tuned YOLOv5 model to detect UGVs and extract bounding box features, which are then used by a lightweight artificial neural network (ANN) to estimate the UAV’s required heading angle. A VICON motion capture system was used to generate ground-truth data during training, resulting in a dataset of over 13,000 annotated images collected in a controlled lab environment. The trained ANN achieves a mean absolute error of 0.1506° and a root mean squared error of 0.1957°, offering accurate heading angle predictions using only monocular camera inputs. Experimental evaluations achieve 95% accuracy in UGV detection. This work contributes a vision-based, infrastructure- independent solution that demonstrates strong potential for deployment in GPS/GNSS-denied environments, supporting reliable multi-agent coordination under realistic dynamic conditions. A demonstration video showcasing the system’s real-time performance, including UGV detection, heading angle prediction, and UAV alignment under dynamic conditions, is available at: https://
3.9Benchmarking Document Parsers on Mathematical Formula Extraction from PDFs¶
2025/12/11 05:03 GTM
Correctly parsing mathematical formulas from PDFs is critical for training large language models and building scientific knowledge bases from academic literature, yet existing benchmarks either exclude formulas entirely or lack semantically-aware evaluation metrics. We introduce a novel benchmarking framework centered on synthetically generated PDFs with precise LaTeX ground truth, enabling systematic control over layout, formulas, and content characteristics. A key methodological contribution is pioneering LLM-as-a-judge for semantic formula assessment, combined with a robust two-stage matching pipeline that handles parser output inconsistencies. Through human validation on 250 formula pairs (750 ratings from 30 evaluators), we demonstrate that LLM-based evaluation achieves substantially higher correlation with human judgment (Pearson r=0.78) compared to CDM (r=0.34) and text similarity (r~0). Evaluating 20+ contemporary PDF parsers (including specialized OCR models, vision-language models, and rule-based approaches) across 100 synthetic documents with 2,000+ formulas reveals significant performance disparities. Our findings provide crucial insights for practitioners selecting parsers for downstream applications and establish a robust, scalable methodology that enables reproducible evaluation of PDF formula extraction quality. Code and benchmark data: https://
3.10Diffusion Posterior Sampler for Hyperspectral Unmixing with Spectral Variability Modeling¶
2025/12/11 05:03 GTM
Linear spectral mixture models (LMM) provide a concise form to disentangle the constituent materials (endmembers) and their corresponding proportions (abundance) in a single pixel. The critical challenges are how to model the spectral prior distribution and spectral variability. Prior knowledge and spectral variability can be rigorously modeled under the Bayesian framework, where posterior estimation of Abundance is derived by combining observed data with endmember prior distribution. Considering the key challenges and the advantages of the Bayesian framework, a novel method using a diffusion posterior sampler for semiblind unmixing, denoted as DPS4Un, is proposed to deal with these challenges with the following features: (1) we view the pretrained conditional spectrum diffusion model as a posterior sampler, which can combine the learned endmember prior with observation to get the refined abundance distribution. (2) Instead of using the existing spectral library as prior, which may raise bias, we establish the image-based endmember bundles within superpixels, which are used to train the endmember prior learner with diffusion model. Superpixels make sure the sub-scene is more homogeneous. (3) Instead of using the image-level data consistency constraint, the superpixel-based data fidelity term is proposed. (4) The endmember is initialized as Gaussian noise for each superpixel region, DPS4Un iteratively updates the abundance and endmember, contributing to spectral variability modeling. The experimental results on three real-world benchmark datasets demonstrate that DPS4Un outperforms the state-of-the-art hyperspectral unmixing methods.
3.11MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI¶
2025/12/11 05:03 GTM
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the “right to be forgotten”. Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.
3.12UniUGP: Unifying Understanding, Generation, and Planing For End-to-end Autonomous Driving¶
2025/12/11 05:03 GTM
Autonomous driving (AD) systems struggle in long-tail scenarios due to limited world knowledge and weak visual dynamic modeling. Existing vision-language-action (VLA)-based methods cannot leverage unlabeled videos for visual causal learning, while world model-based methods lack reasoning capabilities from large language models. In this paper, we construct multiple specialized datasets providing reasoning and planning annotations for complex scenarios. Then, a unified Understanding-Generation-Planning framework, named UniUGP, is proposed to synergize scene reasoning, future video generation, and trajectory planning through a hybrid expert architecture. By integrating pre-trained VLMs and video generation models, UniUGP leverages visual dynamics and semantic reasoning to enhance planning performance. Taking multi-frame observations and language instructions as input, it produces interpretable chain-of-thought reasoning, physically consistent trajectories, and coherent future videos. We introduce a four-stage training strategy that progressively builds these capabilities across multiple existing AD datasets, along with the proposed specialized datasets. Experiments demonstrate state-of-the-art performance in perception, reasoning, and decision-making, with superior generalization to challenging long-tail situations.
3.13Simultaneous Tactile-Visual Perception for Learning Multimodal Robot Manipulation¶
2025/12/11 05:03 GTM
Robotic manipulation requires both rich multimodal perception and effective learning frameworks to handle complex real-world tasks. See-through-skin (STS) sensors, which combine tactile and visual perception, offer promising sensing capabilities, while modern imitation learning provides powerful tools for policy acquisition. However, existing STS designs lack simultaneous multimodal perception and suffer from unreliable tactile tracking. Furthermore, integrating these rich multimodal signals into learning-based manipulation pipelines remains an open challenge. We introduce TacThru, an STS sensor enabling simultaneous visual perception and robust tactile signal extraction, and TacThru-UMI, an imitation learning framework that leverages these multimodal signals for manipulation. Our sensor features a fully transparent elastomer, persistent illumination, novel keyline markers, and efficient tracking, while our learning system integrates these signals through a Transformer-based Diffusion Policy. Experiments on five challenging real-world tasks show that TacThru-UMI achieves an average success rate of 85.5%, significantly outperforming the baselines of alternating tactile-visual (66.3%) and vision-only (55.4%). The system excels in critical scenarios, including contact detection with thin and soft objects and precision manipulation requiring multimodal coordination. This work demonstrates that combining simultaneous multimodal perception with modern learning frameworks enables more precise, adaptable robotic manipulation.
3.14From Detection to Anticipation: Online Understanding of Struggles across Various Tasks and Activities¶
2025/12/11 05:03 GTM
Understanding human skill performance is essential for intelligent assistive systems, with struggle recognition offering a natural cue for identifying user difficulties. While prior work focuses on offline struggle classification and localization, real-time applications require models capable of detecting and anticipating struggle online. We reformulate struggle localization as an online detection task and further extend it to anticipation, predicting struggle moments before they occur. We adapt two off-the-shelf models as baselines for online struggle detection and anticipation. Online struggle detection achieves 70-80% per-frame mAP, while struggle anticipation up to 2 seconds ahead yields comparable performance with slight drops. We further examine generalization across tasks and activities and analyse the impact of skill evolution. Despite larger domain gaps in activity-level generalization, models still outperform random baselines by 4-20%. Our feature-based models run at up to 143 FPS, and the whole pipeline, including feature extraction, operates at around 20 FPS, sufficient for real-time assistive applications.
3.15ChronusOmni: Improving Time Awareness of Omni Large Language Models¶
2025/12/11 05:03 GTM
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.
3.16Composing Concepts from Images and Videos via Concept-prompt Binding¶
2025/12/11 05:03 GTM
Visual concept composition, which aims to integrate different elements from images and videos into a single, coherent visual output, still falls short in accurately extracting complex concepts from visual inputs and flexibly combining concepts from both images and videos. We introduce Bind & Compose, a one-shot method that enables flexible visual concept composition by binding visual concepts with corresponding prompt tokens and composing the target prompt with bound tokens from various sources. It adopts a hierarchical binder structure for cross-attention conditioning in Diffusion Transformers to encode visual concepts into corresponding prompt tokens for accurate decomposition of complex visual concepts. To improve concept-token binding accuracy, we design a Diversify-and-Absorb Mechanism that uses an extra absorbent token to eliminate the impact of concept-irrelevant details when training with diversified prompts. To enhance the compatibility between image and video concepts, we present a Temporal Disentanglement Strategy that decouples the training process of video concepts into two stages with a dual-branch binder structure for temporal modeling. Evaluations demonstrate that our method achieves superior concept consistency, prompt fidelity, and motion quality over existing approaches, opening up new possibilities for visual creativity.
3.17DynaIP: Dynamic Image Prompt Adapter for Scalable Zero-shot Personalized Text-to-Image Generation¶
2025/12/11 05:03 GTM
Personalized Text-to-Image (PT2I) generation aims to produce customized images based on reference images. A prominent interest pertains to the integration of an image prompt adapter to facilitate zero-shot PT2I without test-time fine-tuning. However, current methods grapple with three fundamental challenges: 1. the elusive equilibrium between Concept Preservation (CP) and Prompt Following (PF), 2. the difficulty in retaining fine-grained concept details in reference images, and 3. the restricted scalability to extend to multi-subject personalization. To tackle these challenges, we present Dynamic Image Prompt Adapter (DynaIP), a cutting-edge plugin to enhance the fine-grained concept fidelity, CP-PF balance, and subject scalability of SOTA T2I multimodal diffusion transformers (MM-DiT) for PT2I generation. Our key finding is that MM-DiT inherently exhibit decoupling learning behavior when injecting reference image features into its dual branches via cross attentions. Based on this, we design an innovative Dynamic Decoupling Strategy that removes the interference of concept-agnostic information during inference, significantly enhancing the CP-PF balance and further bolstering the scalability of multi-subject compositions. Moreover, we identify the visual encoder as a key factor affecting fine-grained CP and reveal that the hierarchical features of commonly used CLIP can capture visual information at diverse granularity levels. Therefore, we introduce a novel Hierarchical Mixture-of-Experts Feature Fusion Module to fully leverage the hierarchical features of CLIP, remarkably elevating the fine-grained concept fidelity while also providing flexible control of visual granularity. Extensive experiments across single- and multi-subject PT2I tasks verify that our DynaIP outperforms existing approaches, marking a notable advancement in the field of PT2l generation.
3.18CHEM: Estimating and Understanding Hallucinations in Deep Learning for Image Processing¶
2025/12/11 05:03 GTM
U-Net and other U-shaped architectures have achieved significant success in image deconvolution tasks. However, challenges have emerged, as these methods might generate unrealistic artifacts or hallucinations, which can interfere with analysis in safety-critical scenarios. This paper introduces a novel approach for quantifying and comprehending hallucination artifacts to ensure trustworthy computer vision models. Our method, termed the Conformal Hallucination Estimation Metric (CHEM), is applicable to any image reconstruction model, enabling efficient identification and quantification of hallucination artifacts. It offers two key advantages: it leverages wavelet and shearlet representations to efficiently extract hallucinations of image features and uses conformalized quantile regression to assess hallucination levels in a distribution-free manner. Furthermore, from an approximation theoretical perspective, we explore the reasons why U-shaped networks are prone to hallucinations. We test the proposed approach on the CANDELS astronomical image dataset with models such as U-Net, SwinUNet, and Learnlets, and provide new perspectives on hallucination from different aspects in deep learning-based image processing.
3.19Modality-Specific Enhancement and Complementary Fusion for Semi-Supervised Multi-Modal Brain Tumor Segmentation¶
2025/12/11 05:03 GTM
Semi-supervised learning (SSL) has become a promising direction for medical image segmentation, enabling models to learn from limited labeled data alongside abundant unlabeled samples. However, existing SSL approaches for multi-modal medical imaging often struggle to exploit the complementary information between modalities due to semantic discrepancies and misalignment across MRI sequences. To address this, we propose a novel semi-supervised multi-modal framework that explicitly enhances modality-specific representations and facilitates adaptive cross-modal information fusion. Specifically, we introduce a Modality-specific Enhancing Module (MEM) to strengthen semantic cues unique to each modality via channel-wise attention, and a learnable Complementary Information Fusion (CIF) module to adaptively exchange complementary knowledge between modalities. The overall framework is optimized using a hybrid objective combining supervised segmentation loss and cross-modal consistency regularization on unlabeled data. Extensive experiments on the BraTS 2019 (HGG subset) demonstrate that our method consistently outperforms strong semi-supervised and multi-modal baselines under 1%, 5%, and 10% labeled data settings, achieving significant improvements in both Dice and Sensitivity scores. Ablation studies further confirm the complementary effects of our proposed MEM and CIF in bridging cross-modality discrepancies and improving segmentation robustness under scarce supervision.
3.20FastPose-ViT: A Vision Transformer for Real-Time Spacecraft Pose Estimation¶
2025/12/11 05:03 GTM
Estimating the 6-degrees-of-freedom (6DoF) pose of a spacecraft from a single image is critical for autonomous operations like in-orbit servicing and space debris removal. Existing state-of-the-art methods often rely on iterative Perspective-n-Point (PnP)-based algorithms, which are computationally intensive and ill-suited for real-time deployment on resource-constrained edge devices. To overcome these limitations, we propose FastPose-ViT, a Vision Transformer (ViT)-based architecture that directly regresses the 6DoF pose. Our approach processes cropped images from object bounding boxes and introduces a novel mathematical formalism to map these localized predictions back to the full-image scale. This formalism is derived from the principles of projective geometry and the concept of “apparent rotation”, where the model predicts an apparent rotation matrix that is then corrected to find the true orientation. We demonstrate that our method outperforms other non-PnP strategies and achieves performance competitive with state-of-the-art PnP-based techniques on the SPEED dataset. Furthermore, we validate our model’s suitability for real-world space missions by quantizing it and deploying it on power-constrained edge hardware. On the NVIDIA Jetson Orin Nano, our end-to-end pipeline achieves a latency of ~75 ms per frame under sequential execution, and a non-blocking throughput of up to 33 FPS when stages are scheduled concurrently.
3.21PathCo-LatticE: Pathology-Constrained Lattice-Of Experts Framework for Fully-supervised Few-Shot Cardiac MRI Segmentation¶
2025/12/11 05:03 GTM
Few-shot learning (FSL) mitigates data scarcity in cardiac MRI segmentation but typically relies on semi-supervised techniques sensitive to domain shifts and validation bias, restricting zero-shot generalizability. We propose PathCo-LatticE, a fully supervised FSL framework that replaces unlabeled data with pathology-guided synthetic supervision. First, our Virtual Patient Engine models continuous latent disease trajectories from sparse clinical anchors, using generative modeling to synthesize physiologically plausible, fully labeled 3D cohorts. Second, Self-Reinforcing Interleaved Validation (SIV) provides a leakage-free protocol that evaluates models online with progressively challenging synthetic samples, eliminating the need for real validation data. Finally, a dynamic Lattice-of-Experts (LoE) organizes specialized networks within a pathology-aware topology and activates the most relevant experts per input, enabling robust zero-shot generalization to unseen data without target-domain fine-tuning. We evaluated PathCo-LatticE in a strict out-of-distribution (OOD) setting, deriving all anchors and severity statistics from a single-source domain (ACDC) and performing zero-shot testing on the multi-center, multi-vendor M&Ms dataset. PathCo-LatticE outperforms four state-of-the-art FSL methods by 4.2-11% Dice starting from only 7 labeled anchors, and approaches fully supervised performance (within 1% Dice) with only 19 labeled anchors. The method shows superior harmonization across four vendors and generalization to unseen pathologies. [Code will be made publicly available].
3.22Stylized Meta-Album: Group-bias injection with style transfer to study robustness against distribution shifts¶
2025/12/11 05:03 GTM
We introduce Stylized Meta-Album (SMA), a new image classification meta-dataset comprising 24 datasets (12 content datasets, and 12 stylized datasets), designed to advance studies on out-of-distribution (OOD) generalization and related topics. Created using style transfer techniques from 12 subject classification datasets, SMA provides a diverse and extensive set of 4800 groups, combining various subjects (objects, plants, animals, human actions, textures) with multiple styles. SMA enables flexible control over groups and classes, allowing us to configure datasets to reflect diverse benchmark scenarios. While ideally, data collection would capture extensive group diversity, practical constraints often make this infeasible. SMA addresses this by enabling large and configurable group structures through flexible control over styles, subject classes, and domains-allowing datasets to reflect a wide range of real-world benchmark scenarios. This design not only expands group and class diversity, but also opens new methodological directions for evaluating model performance across diverse group and domain configurations-including scenarios with many minority groups, varying group imbalance, and complex domain shifts-and for studying fairness, robustness, and adaptation under a broader range of realistic conditions. To demonstrate SMA’s effectiveness, we implemented two benchmarks: (1) a novel OOD generalization and group fairness benchmark leveraging SMA’s domain, class, and group diversity to evaluate existing benchmarks. Our findings reveal that while simple balancing and algorithms utilizing group information remain competitive as claimed in previous benchmarks, increasing group diversity significantly impacts fairness, altering the superiority and relative rankings of algorithms. We also propose to use \textit{Top-M worst group accuracy} as a new hyperparameter tuning metric, demonstrating broader fairness during optimization and delivering better final worst-group accuracy for larger group diversity. (2) An unsupervised domain adaptation (UDA) benchmark utilizing SMA’s group diversity to evaluate UDA algorithms across more scenarios, offering a more comprehensive benchmark with lower error bars (reduced by 73% and 28% in closed-set setting and UniDA setting, respectively) compared to existing efforts. These use cases highlight SMA’s potential to significantly impact the outcomes of conventional benchmarks.
3.23LiM-YOLO: Less is More with Pyramid Level Shift and Normalized Auxiliary Branch for Ship Detection in Optical Remote Sensing Imagery¶
2025/12/11 05:03 GTM
Applying general-purpose object detectors to ship detection in satellite imagery presents significant challenges due to the extreme scale disparity and morphological anisotropy of maritime targets. Standard architectures utilizing stride-32 (P5) layers often fail to resolve narrow vessels, resulting in spatial feature dilution. In this work, we propose LiM-YOLO, a specialized detector designed to resolve these domain-specific conflicts. Based on a statistical analysis of ship scales, we introduce a Pyramid Level Shift Strategy that reconfigures the detection head to P2-P4. This shift ensures compliance with Nyquist sampling criteria for small objects while eliminating the computational redundancy of deep layers. To further enhance training stability on high-resolution inputs, we incorporate a Group Normalized Convolutional Block for Linear Projection (GN-CBLinear), which mitigates gradient volatility in micro-batch settings. Validated on SODA-A, DOTA-v1.5, FAIR1M-v2.0, and ShipRSImageNet-V1, LiM-YOLO demonstrates superior detection accuracy and efficiency compared to state-of-the-art models. The code is available at https://
3.24Unconsciously Forget: Mitigating Memorization; Without Knowing What is being Memorized¶
2025/12/11 05:03 GTM
Recent advances in generative models have demonstrated an exceptional ability to produce highly realistic images. However, previous studies show that generated images often resemble the training data, and this problem becomes more severe as the model size increases. Memorizing training data can lead to legal challenges, including copyright infringement, violations of portrait rights, and trademark violations. Existing approaches to mitigating memorization mainly focus on manipulating the denoising sampling process to steer image embeddings away from the memorized embedding space or employ unlearning methods that require training on datasets containing specific sets of memorized concepts. However, existing methods often incur substantial computational overhead during sampling, or focus narrowly on removing one or more groups of target concepts, imposing a significant limitation on their scalability. To understand and mitigate these problems, our work, UniForget, offers a new perspective on understanding the root cause of memorization. Our work demonstrates that specific parts of the model are responsible for copyrighted content generation. By applying model pruning, we can effectively suppress the probability of generating copyrighted content without targeting specific concepts while preserving the general generative capabilities of the model. Additionally, we show that our approach is both orthogonal and complementary to existing unlearning methods, thereby highlighting its potential to improve current unlearning and de-memorization techniques.
3.25An Automated Tip-and-Cue Framework for Optimized Satellite Tasking and Visual Intelligence¶
2025/12/11 05:03 GTM
The proliferation of satellite constellations, coupled with reduced tasking latency and diverse sensor capabilities, has expanded the opportunities for automated Earth observation. This paper introduces a fully automated Tip-and-Cue framework designed for satellite imaging tasking and scheduling. In this context, tips are generated from external data sources or analyses of prior satellite imagery, identifying spatiotemporal targets and prioritizing them for downstream planning. Corresponding cues are the imaging tasks formulated in response, which incorporate sensor constraints, timing requirements, and utility functions. The system autonomously generates candidate tasks, optimizes their scheduling across multiple satellites using continuous utility functions that reflect the expected value of each observation, and processes the resulting imagery using artificial-intelligence-based models, including object detectors and vision-language models. Structured visual reports are generated to support both interpretability and the identification of new insights for downstream tasking. The efficacy of the framework is demonstrated through a maritime vessel tracking scenario, utilizing Automatic Identification System (AIS) data for trajectory prediction, targeted observations, and the generation of actionable outputs. Maritime vessel tracking is a widely researched application, often used to benchmark novel approaches to satellite tasking, forecasting, and analysis. The system is extensible to broader applications such as smart-city monitoring and disaster response, where timely tasking and automated analysis are critical.
3.26OxEnsemble: Fair Ensembles for Low-Data Classification¶
2025/12/11 05:03 GTM
We address the problem of fair classification in settings where data is scarce and unbalanced across demographic groups. Such low-data regimes are common in domains like medical imaging, where false negatives can have fatal consequences. We propose a novel approach \emph{OxEnsemble} for efficiently training ensembles and enforcing fairness in these low-data regimes. Unlike other approaches, we aggregate predictions across ensemble members, each trained to satisfy fairness constraints. By construction, \emph{OxEnsemble} is both data-efficient, carefully reusing held-out data to enforce fairness reliably, and compute-efficient, requiring little more compute than used to fine-tune or evaluate an existing model. We validate this approach with new theoretical guarantees. Experimentally, our approach yields more consistent outcomes and stronger fairness-accuracy trade-offs than existing methods across multiple challenging medical imaging classification datasets.
3.27SynthPix: A lightspeed PIV images generator¶
2025/12/11 05:03 GTM
We describe SynthPix, a synthetic image generator for Particle Image Velocimetry (PIV) with a focus on performance and parallelism on accelerators, implemented in JAX. SynthPix supports the same configuration parameters as existing tools but achieves a throughput several orders of magnitude higher in image-pair generation per second. SynthPix was developed to enable the training of data-hungry reinforcement learning methods for flow estimation and for reducing the iteration times during the development of fast flow estimation methods used in recent active fluids control studies with real-time PIV feedback. We believe SynthPix to be useful for the fluid dynamics community, and in this paper we describe the main ideas behind this software package.
3.28IF-Bench: Benchmarking and Enhancing MLLMs for Infrared Images with Generative Visual Prompting¶
2025/12/11 05:03 GTM
Recent advances in multimodal large language models (MLLMs) have led to impressive progress across various benchmarks. However, their capability in understanding infrared images remains unexplored. To address this gap, we introduce IF-Bench, the first high-quality benchmark designed for evaluating multimodal understanding of infrared images. IF-Bench consists of 499 images sourced from 23 infrared datasets and 680 carefully curated visual question-answer pairs, covering 10 essential dimensions of image understanding. Based on this benchmark, we systematically evaluate over 40 open-source and closed-source MLLMs, employing cyclic evaluation, bilingual assessment, and hybrid judgment strategies to enhance the reliability of the results. Our analysis reveals how model scale, architecture, and inference paradigms affect infrared image comprehension, providing valuable insights for this area. Furthermore, we propose a training-free generative visual prompting (GenViP) method, which leverages advanced image editing models to translate infrared images into semantically and spatially aligned RGB counterparts, thereby mitigating domain distribution shifts. Extensive experiments demonstrate that our method consistently yields significant performance improvements across a wide range of MLLMs. The benchmark and code are available at https://
3.29VHOI: Controllable Video Generation of Human-Object Interactions from Sparse Trajectories via Motion Densification¶
2025/12/11 05:03 GTM
Synthesizing realistic human-object interactions (HOI) in video is challenging due to the complex, instance-specific interaction dynamics of both humans and objects. Incorporating controllability in video generation further adds to the complexity. Existing controllable video generation approaches face a trade-off: sparse controls like keypoint trajectories are easy to specify but lack instance-awareness, while dense signals such as optical flow, depths or 3D meshes are informative but costly to obtain. We propose VHOI, a two-stage framework that first densifies sparse trajectories into HOI mask sequences, and then fine-tunes a video diffusion model conditioned on these dense masks. We introduce a novel HOI-aware motion representation that uses color encodings to distinguish not only human and object motion, but also body-part-specific dynamics. This design incorporates a human prior into the conditioning signal and strengthens the model’s ability to understand and generate realistic HOI dynamics. Experiments demonstrate state-of-the-art results in controllable HOI video generation. VHOI is not limited to interaction-only scenarios and can also generate full human navigation leading up to object interactions in an end-to-end manner. Project page: https://
3.30Kaapana: A Comprehensive Open-Source Platform for Integrating AI in Medical Imaging Research Environments¶
2025/12/11 05:03 GTM
Developing generalizable AI for medical imaging requires both access to large, multi-center datasets and standardized, reproducible tooling within research environments. However, leveraging real-world imaging data in clinical research environments is still hampered by strict regulatory constraints, fragmented software infrastructure, and the challenges inherent in conducting large-cohort multicentre studies. This leads to projects that rely on ad-hoc toolchains that are hard to reproduce, difficult to scale beyond single institutions and poorly suited for collaboration between clinicians and data scientists. We present Kaapana, a comprehensive open-source platform for medical imaging research that is designed to bridge this gap. Rather than building single-use, site-specific tooling, Kaapana provides a modular, extensible framework that unifies data ingestion, cohort curation, processing workflows and result inspection under a common user interface. By bringing the algorithm to the data, it enables institutions to keep control over their sensitive data while still participating in distributed experimentation and model development. By integrating flexible workflow orchestration with user-facing applications for researchers, Kaapana reduces technical overhead, improves reproducibility and enables conducting large-scale, collaborative, multi-centre imaging studies. We describe the core concepts of the platform and illustrate how they can support diverse use cases, from local prototyping to nation-wide research networks. The open-source codebase is available at https://
3.31Benchmarking SAM2-based Trackers on FMOX¶
2025/12/11 05:03 GTM
Several object tracking pipelines extending Segment Anything Model 2 (SAM2) have been proposed in the past year, where the approach is to follow and segment the object from a single exemplar template provided by the user on a initialization frame. We propose to benchmark these high performing trackers (SAM2, EfficientTAM, DAM4SAM and SAMURAI) on datasets containing fast moving objects (FMO) specifically designed to be challenging for tracking approaches. The goal is to understand better current limitations in state-of-the-art trackers by providing more detailed insights on the behavior of these trackers. We show that overall the trackers DAM4SAM and SAMURAI perform well on more challenging sequences.
3.32Beyond Sequences: A Benchmark for Atomic Hand-Object Interaction Using a Static RNN Encoder¶
2025/12/11 05:03 GTM
Reliably predicting human intent in hand-object interactions is an open challenge for computer vision. Our research concentrates on a fundamental sub-problem: the fine-grained classification of atomic interaction states, namely ‘approaching’, ‘grabbing’, and ‘holding’. To this end, we introduce a structured data engineering process that converts raw videos from the MANIAC dataset into 27,476 statistical-kinematic feature vectors. Each vector encapsulates relational and dynamic properties from a short temporal window of motion. Our initial hypothesis posited that sequential modeling would be critical, leading us to compare static classifiers (MLPs) against temporal models (RNNs). Counter-intuitively, the key discovery occurred when we set the sequence length of a Bidirectional RNN to one (seq_length=1). This modification converted the network’s function, compelling it to act as a high-capacity static feature encoder. This architectural change directly led to a significant accuracy improvement, culminating in a final score of 97.60%. Of particular note, our optimized model successfully overcame the most challenging transitional class, ‘grabbing’, by achieving a balanced F1-score of 0.90. These findings provide a new benchmark for low-level hand-object interaction recognition using structured, interpretable features and lightweight architectures.
3.33FROMAT: Multiview Material Appearance Transfer via Few-Shot Self-Attention Adaptation¶
2025/12/11 05:03 GTM
Multiview diffusion models have rapidly emerged as a powerful tool for content creation with spatial consistency across viewpoints, offering rich visual realism without requiring explicit geometry and appearance representation. However, compared to meshes or radiance fields, existing multiview diffusion models offer limited appearance manipulation, particularly in terms of material, texture, or style. In this paper, we present a lightweight adaptation technique for appearance transfer in multiview diffusion models. Our method learns to combine object identity from an input image with appearance cues rendered in a separate reference image, producing multi-view-consistent output that reflects the desired materials, textures, or styles. This allows explicit specification of appearance parameters at generation time while preserving the underlying object geometry and view coherence. We leverage three diffusion denoising processes responsible for generating the original object, the reference, and the target images, and perform reverse sampling to aggregate a small subset of layer-wise self-attention features from the object and the reference to influence the target generation. Our method requires only a few training examples to introduce appearance awareness to pretrained multiview models. The experiments show that our method provides a simple yet effective way toward multiview generation with diverse appearance, advocating the adoption of implicit generative 3D representations in practice.
3.34Rethinking Chain-of-Thought Reasoning for Videos¶
2025/12/11 05:03 GTM
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM’s reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://
3.35ImageTalk: Designing a Multimodal AAC Text Generation System Driven by Image Recognition and Natural Language Generation¶
2025/12/11 05:03 GTM
People living with Motor Neuron Disease (plwMND) frequently encounter speech and motor impairments that necessitate a reliance on augmentative and alternative communication (AAC) systems. This paper tackles the main challenge that traditional symbol-based AAC systems offer a limited vocabulary, while text entry solutions tend to exhibit low communication rates. To help plwMND articulate their needs about the system efficiently and effectively, we iteratively design and develop a novel multimodal text generation system called ImageTalk through a tailored proxy-user-based and an end-user-based design phase. The system demonstrates pronounced keystroke savings of 95.6%, coupled with consistent performance and high user satisfaction. We distill three design guidelines for AI-assisted text generation systems design and outline four user requirement levels tailored for AAC purposes, guiding future research in this field.
3.36UrbanNav: Learning Language-Guided Urban Navigation from Web-Scale Human Trajectories¶
2025/12/11 05:03 GTM
Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
3.37CS3D: An Efficient Facial Expression Recognition via Event Vision¶
2025/12/11 05:03 GTM
Responsive and accurate facial expression recognition is crucial to human-robot interaction for daily service robots. Nowadays, event cameras are becoming more widely adopted as they surpass RGB cameras in capturing facial expression changes due to their high temporal resolution, low latency, computational efficiency, and robustness in low-light conditions. Despite these advantages, event-based approaches still encounter practical challenges, particularly in adopting mainstream deep learning models. Traditional deep learning methods for facial expression analysis are energy-intensive, making them difficult to deploy on edge computing devices and thereby increasing costs, especially for high-frequency, dynamic, event vision-based approaches. To address this challenging issue, we proposed the CS3D framework by decomposing the Convolutional 3D method to reduce the computational complexity and energy consumption. Additionally, by utilizing soft spiking neurons and a spatial-temporal attention mechanism, the ability to retain information is enhanced, thus improving the accuracy of facial expression detection. Experimental results indicate that our proposed CS3D method attains higher accuracy on multiple datasets compared to architectures such as the RNN, Transformer, and C3D, while the energy consumption of the CS3D method is just 21.97% of the original C3D required on the same device.
3.38UnReflectAnything: RGB-Only Highlight Removal by Rendering Synthetic Specular Supervision¶
2025/12/11 05:03 GTM
Specular highlights distort appearance, obscure texture, and hinder geometric reasoning in both natural and surgical imagery. We present UnReflectAnything, an RGB-only framework that removes highlights from a single image by predicting a highlight map together with a reflection-free diffuse reconstruction. The model uses a frozen vision transformer encoder to extract multi-scale features, a lightweight head to localize specular regions, and a token-level inpainting module that restores corrupted feature patches before producing the final diffuse image. To overcome the lack of paired supervision, we introduce a Virtual Highlight Synthesis pipeline that renders physically plausible specularities using monocular geometry, Fresnel-aware shading, and randomized lighting which enables training on arbitrary RGB images with correct geometric structure. UnReflectAnything generalizes across natural and surgical domains where non-Lambertian surfaces and non-uniform lighting create severe highlights and it achieves competitive performance with state-of-the-art results on several benchmarks. Project Page: https://
3.39Content-Adaptive Image Retouching Guided by Attribute-Based Text Representation¶
2025/12/11 05:03 GTM
Image retouching has received significant attention due to its ability to achieve high-quality visual content. Existing approaches mainly rely on uniform pixel-wise color mapping across entire images, neglecting the inherent color variations induced by image content. This limitation hinders existing approaches from achieving adaptive retouching that accommodates both diverse color distributions and user-defined style preferences. To address these challenges, we propose a novel Content-Adaptive image retouching method guided by Attribute-based Text Representation (CA-ATP). Specifically, we propose a content-adaptive curve mapping module, which leverages a series of basis curves to establish multiple color mapping relationships and learns the corresponding weight maps, enabling content-aware color adjustments. The proposed module can capture color diversity within the image content, allowing similar color values to receive distinct transformations based on their spatial context. In addition, we propose an attribute text prediction module that generates text representations from multiple image attributes, which explicitly represent user-defined style preferences. These attribute-based text representations are subsequently integrated with visual features via a multimodal model, providing user-friendly guidance for image retouching. Extensive experiments on several public datasets demonstrate that our method achieves state-of-the-art performance.
3.40Hands-on Evaluation of Visual Transformers for Object Recognition and Detection¶
2025/12/11 05:03 GTM
Convolutional Neural Networks (CNNs) for computer vision sometimes struggle with understanding images in a global context, as they mainly focus on local patterns. On the other hand, Vision Transformers (ViTs), inspired by models originally created for language processing, use self-attention mechanisms, which allow them to understand relationships across the entire image. In this paper, we compare different types of ViTs (pure, hierarchical, and hybrid) against traditional CNN models across various tasks, including object recognition, detection, and medical image classification. We conduct thorough tests on standard datasets like ImageNet for image classification and COCO for object detection. Additionally, we apply these models to medical imaging using the ChestX-ray14 dataset. We find that hybrid and hierarchical transformers, especially Swin and CvT, offer a strong balance between accuracy and computational resources. Furthermore, by experimenting with data augmentation techniques on medical images, we discover significant performance improvements, particularly with the Swin Transformer model. Overall, our results indicate that Vision Transformers are competitive and, in many cases, outperform traditional CNNs, especially in scenarios requiring the understanding of global visual contexts like medical imaging.
3.41Seeing Soil from Space: Towards Robust and Scalable Remote Soil Nutrient Analysis¶
2025/12/11 05:03 GTM
Environmental variables are increasingly affecting agricultural decision-making, yet accessible and scalable tools for soil assessment remain limited. This study presents a robust and scalable modeling system for estimating soil properties in croplands, including soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), exchangeable potassium (K), and pH, using remote sensing data and environmental covariates. The system employs a hybrid modeling approach, combining the indirect methods of modeling soil through proxies and drivers with direct spectral modeling. We extend current approaches by using interpretable physics-informed covariates derived from radiative transfer models (RTMs) and complex, nonlinear embeddings from a foundation model. We validate the system on a harmonized dataset that covers Europes cropland soils across diverse pedoclimatic zones. Evaluation is conducted under a robust validation framework that enforces strict spatial blocking, stratified splits, and statistically distinct train-test sets, which deliberately make the evaluation harder and produce more realistic error estimates for unseen regions. The models achieved their highest accuracy for SOC and N. This performance held across unseen locations, under both spatial cross-validation and an independent test set. SOC obtained a MAE of 5.12 g/kg and a CCC of 0.77, and N obtained a MAE of 0.44 g/kg and a CCC of 0.77. We also assess uncertainty through conformal calibration, achieving 90 percent coverage at the target confidence level. This study contributes to the digital advancement of agriculture through the application of scalable, data-driven soil analysis frameworks that can be extended to related domains requiring quantitative soil evaluation, such as carbon markets.
3.42Investigate the Low-level Visual Perception in Vision-Language based Image Quality Assessment¶
2025/12/11 05:03 GTM
Recent advances in Image Quality Assessment (IQA) have leveraged Multi-modal Large Language Models (MLLMs) to generate descriptive explanations. However, despite their strong visual perception modules, these models often fail to reliably detect basic low-level distortions such as blur, noise, and compression, and may produce inconsistent evaluations across repeated inferences. This raises an essential question: do MLLM-based IQA systems truly perceive the visual features that matter? To examine this issue, we introduce a low-level distortion perception task that requires models to classify specific distortion types. Our component-wise analysis shows that although MLLMs are structurally capable of representing such distortions, they tend to overfit training templates, leading to biases in quality scoring. As a result, critical low-level features are weakened or lost during the vision-language alignment transfer stage. Furthermore, by computing the semantic distance between visual features and corresponding semantic tokens before and after component-wise fine-tuning, we show that improving the alignment of the vision encoder dramatically enhances distortion recognition accuracy, increasing it from 14.92% to 84.43%. Overall, these findings indicate that incorporating dedicated constraints on the vision encoder can strengthen text-explainable visual representations and enable MLLM-based pipelines to produce more coherent and interpretable reasoning in vision-centric tasks.
3.43From Graphs to Gates: DNS-HyXNet, A Lightweight and Deployable Sequential Model for Real-Time DNS Tunnel Detection¶
2025/12/11 05:03 GTM
Domain Name System (DNS) tunneling remains a covert channel for data exfiltration and command-and-control communication. Although graph-based methods such as GraphTunnel achieve strong accuracy, they introduce significant latency and computational overhead due to recursive parsing and graph construction, limiting their suitability for real-time deployment. This work presents DNS-HyXNet, a lightweight extended Long Short-Term Memory (xLSTM) hybrid framework designed for efficient sequence-based DNS tunnel detection. DNS-HyXNet integrates tokenized domain embeddings with normalized numerical DNS features and processes them through a two-layer xLSTM network that directly learns temporal dependencies from packet sequences, eliminating the need for graph reconstruction and enabling single-stage multi-class classification. The model was trained and evaluated on two public benchmark datasets with carefully tuned hyperparameters to ensure low memory consumption and fast inference. Across all experimental splits of the DNS-Tunnel-Datasets, DNS-HyXNet achieved up to 99.99% accuracy, with macro-averaged precision, recall, and F1-scores exceeding 99.96%, and demonstrated a per-sample detection latency of just 0.041 ms, confirming its scalability and real-time readiness. These results show that sequential modeling with xLSTM can effectively replace computationally expensive recursive graph generation, offering a deployable and energy-efficient alternative for real-time DNS tunnel detection on commodity hardware.
3.44Building Reasonable Inference for Vision-Language Models in Blind Image Quality Assessment¶
2025/12/11 05:03 GTM
Recent progress in BIQA has been driven by VLMs, whose semantic reasoning abilities suggest that they might extract visual features, generate descriptive text, and infer quality in a human-like manner. However, these models often produce textual descriptions that contradict their final quality predictions, and the predicted scores can change unstably during inference - behaviors not aligned with human reasoning. To understand these issues, we analyze the factors that cause contradictory assessments and instability. We first estimate the relationship between the final quality predictions and the generated visual features, finding that the predictions are not fully grounded in the features and that the logical connection between them is weak. Moreover, decoding intermediate VLM layers shows that the model frequently relies on a limited set of candidate tokens, which contributes to prediction instability. To encourage more human-like reasoning, we introduce a two-stage tuning method that explicitly separates visual perception from quality inference. In the first stage, the model learns visual features; in the second, it infers quality solely from these features. Experiments on SPAQ and KONIQ demonstrate that our approach reduces prediction instability from 22.00% to 12.39% and achieves average gains of 0.3124/0.3507 in SRCC/PLCC across LIVE, CSIQ, SPAQ, and KONIQ compared to the baseline. Further analyses show that our method improves both stability and the reliability of the inference process.
3.45A Dual-Domain Convolutional Network for Hyperspectral Single-Image Super-Resolution¶
2025/12/11 05:03 GTM
This study presents a lightweight dual-domain super-resolution network (DDSRNet) that combines Spatial-Net with the discrete wavelet transform (DWT). Specifically, our proposed model comprises three main components: (1) a shallow feature extraction module, termed Spatial-Net, which performs residual learning and bilinear interpolation; (2) a low-frequency enhancement branch based on the DWT that refines coarse image structures; and (3) a shared high-frequency refinement branch that simultaneously enhances the LH (horizontal), HL (vertical), and HH (diagonal) wavelet subbands using a single CNN with shared weights. As a result, the DWT enables subband decomposition, while the inverse DWT reconstructs the final high-resolution output. By doing so, the integration of spatial- and frequency-domain learning enables DDSRNet to achieve highly competitive performance with low computational cost on three hyperspectral image datasets, demonstrating its effectiveness for hyperspectral image super-resolution.
3.46Masked Registration and Autoencoding of CT Images for Predictive Tibia Reconstruction¶
2025/12/11 05:03 GTM
Surgical planning for complex tibial fractures can be challenging for surgeons, as the 3D structure of the later desirable bone alignment may be diffi- cult to imagine. To assist in such planning, we address the challenge of predicting a patient-specific reconstruction target from a CT of the fractured tibia. Our ap- proach combines neural registration and autoencoder models. Specifically, we first train a modified spatial transformer network (STN) to register a raw CT to a standardized coordinate system of a jointly trained tibia prototype. Subsequently, various autoencoder (AE) architectures are trained to model healthy tibial varia- tions. Both the STN and AE models are further designed to be robust to masked input, allowing us to apply them to fractured CTs and decode to a prediction of the patient-specific healthy bone in standard coordinates. Our contributions include: i) a 3D-adapted STN for global spatial registration, ii) a comparative analysis of AEs for bone CT modeling, and iii) the extension of both to handle masked inputs for predictive generation of healthy bone structures. Project page: https://
3.47ViTA-Seg: Vision Transformer for Amodal Segmentation in Robotics¶
2025/12/11 05:03 GTM
Occlusions in robotic bin picking compromise accurate and reliable grasp planning. We present ViTA-Seg, a class-agnostic Vision Transformer framework for real-time amodal segmentation that leverages global attention to recover complete object masks, including hidden regions. We proposte two architectures: a) Single-Head for amodal mask prediction; b) Dual-Head for amodal and occluded mask prediction. We also introduce ViTA-SimData, a photo-realistic synthetic dataset tailored to industrial bin-picking scenario. Extensive experiments on two amodal benchmarks, COOCA and KINS, demonstrate that ViTA-Seg Dual Head achieves strong amodal and occlusion segmentation accuracy with computational efficiency, enabling robust, real-time robotic manipulation.
3.48Gradient-Guided Learning Network for Infrared Small Target Detection¶
2025/12/11 05:03 GTM
Recently, infrared small target detection has attracted extensive attention. However, due to the small size and the lack of intrinsic features of infrared small targets, the existing methods generally have the problem of inaccurate edge positioning and the target is easily submerged by the background. Therefore, we propose an innovative gradient-guided learning network (GGL-Net). Specifically, we are the first to explore the introduction of gradient magnitude images into the deep learning-based infrared small target detection method, which is conducive to emphasizing the edge details and alleviating the problem of inaccurate edge positioning of small targets. On this basis, we propose a novel dual-branch feature extraction network that utilizes the proposed gradient supplementary module (GSM) to encode raw gradient information into deeper network layers and embeds attention mechanisms reasonably to enhance feature extraction ability. In addition, we construct a two-way guidance fusion module (TGFM), which fully considers the characteristics of feature maps at different levels. It can facilitate the effective fusion of multi-scale feature maps and extract richer semantic information and detailed information through reasonable two-way guidance. Extensive experiments prove that GGL-Net has achieves state-of-the-art results on the public real NUAA-SIRST dataset and the public synthetic NUDT-SIRST dataset. Our code has been integrated into https://
3.49StateSpace-SSL: Linear-Time Self-supervised Learning for Plant Disease Detectio¶
2025/12/11 05:03 GTM
Self-supervised learning (SSL) is attractive for plant disease detection as it can exploit large collections of unlabeled leaf images, yet most existing SSL methods are built on CNNs or vision transformers that are poorly matched to agricultural imagery. CNN-based SSL struggles to capture disease patterns that evolve continuously along leaf structures, while transformer-based SSL introduces quadratic attention cost from high-resolution patches. To address these limitations, we propose StateSpace-SSL, a linear-time SSL framework that employs a Vision Mamba state-space encoder to model long-range lesion continuity through directional scanning across the leaf surface. A prototype-driven teacher-student objective aligns representations across multiple views, encouraging stable and lesion-aware features from labelled data. Experiments on three publicly available plant disease datasets show that StateSpace-SSL consistently outperforms the CNN- and transformer-based SSL baselines in various evaluation metrics. Qualitative analyses further confirm that it learns compact, lesion-focused feature maps, highlighting the advantage of linear state-space modelling for self-supervised plant disease representation learning.
3.50MODA: The First Challenging Benchmark for Multispectral Object Detection in Aerial Images¶
2025/12/11 05:03 GTM
Aerial object detection faces significant challenges in real-world scenarios, such as small objects and extensive background interference, which limit the performance of RGB-based detectors with insufficient discriminative information. Multispectral images (MSIs) capture additional spectral cues across multiple bands, offering a promising alternative. However, the lack of training data has been the primary bottleneck to exploiting the potential of MSIs. To address this gap, we introduce the first large-scale dataset for Multispectral Object Detection in Aerial images (MODA), which comprises 14,041 MSIs and 330,191 annotations across diverse, challenging scenarios, providing a comprehensive data foundation for this field. Furthermore, to overcome challenges inherent to aerial object detection using MSIs, we propose OSSDet, a framework that integrates spectral and spatial information with object-aware cues. OSSDet employs a cascaded spectral-spatial modulation structure to optimize target perception, aggregates spectrally related features by exploiting spectral similarities to reinforce intra-object correlations, and suppresses irrelevant background via object-aware masking. Moreover, cross-spectral attention further refines object-related representations under explicit object-aware guidance. Extensive experiments demonstrate that OSSDet outperforms existing methods with comparable parameters and efficiency.
3.51Color encoding in Latent Space of Stable Diffusion Models¶
2025/12/11 05:03 GTM
Recent advances in diffusion-based generative models have achieved remarkable visual fidelity, yet a detailed understanding of how specific perceptual attributes - such as color and shape - are internally represented remains limited. This work explores how color is encoded in a generative model through a systematic analysis of the latent representations in Stable Diffusion. Through controlled synthetic datasets, principal component analysis (PCA) and similarity metrics, we reveal that color information is encoded along circular, opponent axes predominantly captured in latent channels c_3 and c_4, whereas intensity and shape are primarily represented in channels c_1 and c_2. Our findings indicate that the latent space of Stable Diffusion exhibits an interpretable structure aligned with a efficient coding representation. These insights provide a foundation for future work in model understanding, editing applications, and the design of more disentangled generative frameworks.
3.52Temporal-Spatial Tubelet Embedding for Cloud-Robust MSI Reconstruction using MSI-SAR Fusion: A Multi-Head Self-Attention Video Vision Transformer Appr...¶
2025/12/11 05:03 GTM
Cloud cover in multispectral imagery (MSI) significantly hinders early-season crop mapping by corrupting spectral information. Existing Vision Transformer(ViT)-based time-series reconstruction methods, like SMTS-ViT, often employ coarse temporal embeddings that aggregate entire sequences, causing substantial information loss and reducing reconstruction accuracy. To address these limitations, a Video Vision Transformer (ViViT)-based framework with temporal-spatial fusion embedding for MSI reconstruction in cloud-covered regions is proposed in this study. Non-overlapping tubelets are extracted via 3D convolution with constrained temporal span , ensuring local temporal coherence while reducing cross-day information degradation. Both MSI-only and SAR-MSI fusion scenarios are considered during the experiments. Comprehensive experiments on 2020 Traill County data demonstrate notable performance improvements: MTS-ViViT achieves a 2.23% reduction in MSE compared to the MTS-ViT baseline, while SMTS-ViViT achieves a 10.33% improvement with SAR integration over the SMTS-ViT baseline. The proposed framework effectively enhances spectral reconstruction quality for robust agricultural monitoring.
3.53LiePrune: Lie Group and Quantum Geometric Dual Representation for One-Shot Structured Pruning of Quantum Neural Networks¶
2025/12/11 05:03 GTM
Quantum neural networks (QNNs) and parameterized quantum circuits (PQCs) are key building blocks for near-term quantum machine learning. However, their scalability is constrained by excessive parameters, barren plateaus, and hardware limitations. We propose LiePrune, the first mathematically grounded one-shot structured pruning framework for QNNs that leverages Lie group structure and quantum geometric information. Each gate is jointly represented in a Lie group--Lie algebra dual space and a quantum geometric feature space, enabling principled redundancy detection and aggressive compression. Experiments on quantum classification (MNIST, FashionMNIST), quantum generative modeling (Bars-and-Stripes), and quantum chemistry (LiH VQE) show that LiePrune achieves over compression with negligible or even improved task performance, while providing provable guarantees on redundancy detection, functional approximation, and computational complexity.
3.54Privacy-Preserving Computer Vision for Industry: Three Case Studies in Human-Centric Manufacturing¶
2025/12/11 05:03 GTM
The adoption of AI-powered computer vision in industry is often constrained by the need to balance operational utility with worker privacy. Building on our previously proposed privacy-preserving framework, this paper presents its first comprehensive validation on real-world data collected directly by industrial partners in active production environments. We evaluate the framework across three representative use cases: woodworking production monitoring, human-aware AGV navigation, and multi-camera ergonomic risk assessment. The approach employs learned visual transformations that obscure sensitive or task-irrelevant information while retaining features essential for task performance. Through both quantitative evaluation of the privacy-utility trade-off and qualitative feedback from industrial partners, we assess the framework’s effectiveness, deployment feasibility, and trust implications. Results demonstrate that task-specific obfuscation enables effective monitoring with reduced privacy risks, establishing the framework’s readiness for real-world adoption and providing cross-domain recommendations for responsible, human-centric AI deployment in industry.
3.55Cytoplasmic Strings Analysis in Human Embryo Time-Lapse Videos using Deep Learning Framework¶
2025/12/11 05:03 GTM
Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://
3.56Sequential Testing for Descriptor-Agnostic LiDAR Loop Closure in Repetitive Environments¶
2025/12/11 05:03 GTM
We propose a descriptor-agnostic, multi-frame loop closure verification method that formulates LiDAR loop closure as a truncated Sequential Probability Ratio Test (SPRT). Instead of deciding from a single descriptor comparison or using fixed thresholds with late-stage Iterative Closest Point (ICP) vetting, the verifier accumulates a short temporal stream of descriptor similarities between a query and each candidate. It then issues an accept/reject decision adaptively once sufficient multi-frame evidence has been observed, according to user-specified Type-I/II error design targets. This precision-first policy is designed to suppress false positives in structurally repetitive indoor environments. We evaluate the verifier on a five-sequence library dataset, using a fixed retrieval front-end with several representative LiDAR global descriptors. Performance is assessed via segment-level K-hit precision-recall and absolute trajectory error (ATE) and relative pose error (RPE) after pose graph optimization. Across descriptors, the sequential verifier consistently improves precision and reduces the impact of aliased loops compared with single-frame and heuristic multi-frame baselines. Our implementation and dataset will be released at: https://
3.57Defect-aware Hybrid Prompt Optimization via Progressive Tuning for Zero-Shot Multi-type Anomaly Detection and Segmentation¶
2025/12/11 05:03 GTM
Recent vision language models (VLMs) like CLIP have demonstrated impressive anomaly detection performance under significant distribution shift by utilizing high-level semantic information through text prompts. However, these models often neglect fine-grained details, such as which kind of anomalies, like “hole”, “cut”, “scratch” that could provide more specific insight into the nature of anomalies. We argue that recognizing fine-grained anomaly types 1) enriches the representation of “abnormal” with structured semantics, narrowing the gap between coarse anomaly signals and fine-grained defect categories; 2) enables manufacturers to understand the root causes of the anomaly and implement more targeted and appropriate corrective measures quickly. While incorporating such detailed semantic information is crucial, designing handcrafted prompts for each defect type is both time-consuming and susceptible to human bias. For this reason, we introduce DAPO, a novel approach for Defect-aware Prompt Optimization based on progressive tuning for the zero-shot multi-type and binary anomaly detection and segmentation under distribution shifts. Our approach aligns anomaly-relevant image features with their corresponding text semantics by learning hybrid defect-aware prompts with both fixed textual anchors and learnable token embeddings. We conducted experiments on public benchmarks (MPDD, VisA, MVTec-AD, MAD, and Real-IAD) and an internal dataset. The results suggest that compared to the baseline models, DAPO achieves a 3.7% average improvement in AUROC and average precision metrics at the image level under distribution shift, and a 6.5% average improvement in localizing novel anomaly types under zero-shot settings.
3.58Representation Calibration and Uncertainty Guidance for Class-Incremental Learning based on Vision Language Model¶
2025/12/11 05:03 GTM
Class-incremental learning requires a learning system to continually learn knowledge of new classes and meanwhile try to preserve previously learned knowledge of old classes. As current state-of-the-art methods based on Vision-Language Models (VLMs) still suffer from the issue of differentiating classes across learning tasks. Here a novel VLM-based continual learning framework for image classification is proposed. In this framework, task-specific adapters are added to the pre-trained and frozen image encoder to learn new knowledge, and a novel cross-task representation calibration strategy based on a mixture of light-weight projectors is used to help better separate all learned classes in a unified feature space, alleviating class confusion across tasks. In addition, a novel inference strategy guided by prediction uncertainty is developed to more accurately select the most appropriate image feature for class prediction. Extensive experiments on multiple datasets under various settings demonstrate the superior performance of our method compared to existing ones.
3.59UniPart: Part-Level 3D Generation with Unified 3D Geom-Seg Latents¶
2025/12/11 05:03 GTM
Part-level 3D generation is essential for applications requiring decomposable and structured 3D synthesis. However, existing methods either rely on implicit part segmentation with limited granularity control or depend on strong external segmenters trained on large annotated datasets. In this work, we observe that part awareness emerges naturally during whole-object geometry learning and propose Geom-Seg VecSet, a unified geometry-segmentation latent representation that jointly encodes object geometry and part-level structure. Building on this representation, we introduce UniPart, a two-stage latent diffusion framework for image-guided part-level 3D generation. The first stage performs joint geometry generation and latent part segmentation, while the second stage conditions part-level diffusion on both whole-object and part-specific latents. A dual-space generation scheme further enhances geometric fidelity by predicting part latents in both global and canonical spaces. Extensive experiments demonstrate that UniPart achieves superior segmentation controllability and part-level geometric quality compared with existing approaches.
3.60FunPhase: A Periodic Functional Autoencoder for Motion Generation via Phase Manifolds¶
2025/12/11 05:03 GTM
Learning natural body motion remains challenging due to the strong coupling between spatial geometry and temporal dynamics. Embedding motion in phase manifolds, latent spaces that capture local periodicity, has proven effective for motion prediction; however, existing approaches lack scalability and remain confined to specific settings. We introduce FunPhase, a functional periodic autoencoder that learns a phase manifold for motion and replaces discrete temporal decoding with a function-space formulation, enabling smooth trajectories that can be sampled at arbitrary temporal resolutions. FunPhase supports downstream tasks such as super-resolution and partial-body motion completion, generalizes across skeletons and datasets, and unifies motion prediction and generation within a single interpretable manifold. Our model achieves substantially lower reconstruction error than prior periodic autoencoder baselines while enabling a broader range of applications and performing on par with state-of-the-art motion generation methods.
3.61InfoMotion: A Graph-Based Approach to Video Dataset Distillation for Echocardiography¶
2025/12/11 05:03 GTM
Echocardiography playing a critical role in the diagnosis and monitoring of cardiovascular diseases as a non-invasive real-time assessment of cardiac structure and function. However, the growing scale of echocardiographic video data presents significant challenges in terms of storage, computation, and model training efficiency. Dataset distillation offers a promising solution by synthesizing a compact, informative subset of data that retains the key clinical features of the original dataset. In this work, we propose a novel approach for distilling a compact synthetic echocardiographic video dataset. Our method leverages motion feature extraction to capture temporal dynamics, followed by class-wise graph construction and representative sample selection using the Infomap algorithm. This enables us to select a diverse and informative subset of synthetic videos that preserves the essential characteristics of the original dataset. We evaluate our approach on the EchoNet-Dynamic datasets and achieve a test accuracy of (69.38%) using only (25) synthetic videos. These results demonstrate the effectiveness and scalability of our method for medical video dataset distillation.
3.62Label-free Motion-Conditioned Diffusion Model for Cardiac Ultrasound Synthesis¶
2025/12/11 05:03 GTM
Ultrasound echocardiography is essential for the non-invasive, real-time assessment of cardiac function, but the scarcity of labelled data, driven by privacy restrictions and the complexity of expert annotation, remains a major obstacle for deep learning methods. We propose the Motion Conditioned Diffusion Model (MCDM), a label-free latent diffusion framework that synthesises realistic echocardiography videos conditioned on self-supervised motion features. To extract these features, we design the Motion and Appearance Feature Extractor (MAFE), which disentangles motion and appearance representations from videos. Feature learning is further enhanced by two auxiliary objectives: a re-identification loss guided by pseudo appearance features and an optical flow loss guided by pseudo flow fields. Evaluated on the EchoNet-Dynamic dataset, MCDM achieves competitive video generation performance, producing temporally coherent and clinically realistic sequences without reliance on manual labels. These results demonstrate the potential of self-supervised conditioning for scalable echocardiography synthesis. Our code is available at https://
3.63DirectSwap: Mask-Free Cross-Identity Training and Benchmarking for Expression-Consistent Video Head Swapping¶
2025/12/11 05:03 GTM
Video head swapping aims to replace the entire head of a video subject, including facial identity, head shape, and hairstyle, with that of a reference image, while preserving the target body, background, and motion dynamics. Due to the lack of ground-truth paired swapping data, prior methods typically train on cross-frame pairs of the same person within a video and rely on mask-based inpainting to mitigate identity leakage. Beyond potential boundary artifacts, this paradigm struggles to recover essential cues occluded by the mask, such as facial pose, expressions, and motion dynamics. To address these issues, we prompt a video editing model to synthesize new heads for existing videos as fake swapping inputs, while maintaining frame-synchronized facial poses and expressions. This yields HeadSwapBench, the first cross-identity paired dataset for video head swapping, which supports both training (\TrainNum{} videos) and benchmarking (\TestNum{} videos) with genuine outputs. Leveraging this paired supervision, we propose DirectSwap, a mask-free, direct video head-swapping framework that extends an image U-Net into a video diffusion model with a motion module and conditioning inputs. Furthermore, we introduce the Motion- and Expression-Aware Reconstruction (MEAR) loss, which reweights the diffusion loss per pixel using frame-difference magnitudes and facial-landmark proximity, thereby enhancing cross-frame coherence in motion and expressions. Extensive experiments demonstrate that DirectSwap achieves state-of-the-art visual quality, identity fidelity, and motion and expression consistency across diverse in-the-wild video scenes. We will release the source code and the HeadSwapBench dataset to facilitate future research.
3.64Generative Point Cloud Registration¶
2025/12/11 05:03 GTM
In this paper, we propose a novel 3D registration paradigm, Generative Point Cloud Registration, which bridges advanced 2D generative models with 3D matching tasks to enhance registration performance. Our key idea is to generate cross-view consistent image pairs that are well-aligned with the source and target point clouds, enabling geometry-color feature fusion to facilitate robust matching. To ensure high-quality matching, the generated image pair should feature both 2D-3D geometric consistency and cross-view texture consistency. To achieve this, we introduce Match-ControlNet, a matching-specific, controllable 2D generative model. Specifically, it leverages the depth-conditioned generation capability of ControlNet to produce images that are geometrically aligned with depth maps derived from point clouds, ensuring 2D-3D geometric consistency. Additionally, by incorporating a coupled conditional denoising scheme and coupled prompt guidance, Match-ControlNet further promotes cross-view feature interaction, guiding texture consistency generation. Our generative 3D registration paradigm is general and could be seamlessly integrated into various registration methods to enhance their performance. Extensive experiments on 3DMatch and ScanNet datasets verify the effectiveness of our approach.
3.65H2R-Grounder: A Paired-Data-Free Paradigm for Translating Human Interaction Videos into Physically Grounded Robot Videos¶
2025/12/11 05:03 GTM
Robots that learn manipulation skills from everyday human videos could acquire broad capabilities without tedious robot data collection. We propose a video-to-video translation framework that converts ordinary human-object interaction videos into motion-consistent robot manipulation videos with realistic, physically grounded interactions. Our approach does not require any paired human-robot videos for training only a set of unpaired robot videos, making the system easy to scale. We introduce a transferable representation that bridges the embodiment gap: by inpainting the robot arm in training videos to obtain a clean background and overlaying a simple visual cue (a marker and arrow indicating the gripper’s position and orientation), we can condition a generative model to insert the robot arm back into the scene. At test time, we apply the same process to human videos (inpainting the person and overlaying human pose cues) and generate high-quality robot videos that mimic the human’s actions. We fine-tune a SOTA video diffusion model (Wan 2.2) in an in-context learning manner to ensure temporal coherence and leveraging of its rich prior knowledge. Empirical results demonstrate that our approach achieves significantly more realistic and grounded robot motions compared to baselines, pointing to a promising direction for scaling up robot learning from unlabeled human videos. Project page: https://
3.66Wasserstein-Aligned Hyperbolic Multi-View Clustering¶
2025/12/11 05:03 GTM
Multi-view clustering (MVC) aims to uncover the latent structure of multi-view data by learning view-common and view-specific information. Although recent studies have explored hyperbolic representations for better tackling the representation gap between different views, they focus primarily on instance-level alignment and neglect global semantic consistency, rendering them vulnerable to view-specific information (\textit{e.g.}, noise and cross-view discrepancies). To this end, this paper proposes a novel Wasserstein-Aligned Hyperbolic (WAH) framework for multi-view clustering. Specifically, our method exploits a view-specific hyperbolic encoder for each view to embed features into the Lorentz manifold for hierarchical semantic modeling. Whereafter, a global semantic loss based on the hyperbolic sliced-Wasserstein distance is introduced to align manifold distributions across views. This is followed by soft cluster assignments to encourage cross-view semantic consistency. Extensive experiments on multiple benchmarking datasets show that our method can achieve SOTA clustering performance.
3.67Detection and Localization of Subdural Hematoma Using Deep Learning on Computed Tomography¶
2025/12/11 05:03 GTM
Background. Subdural hematoma (SDH) is a common neurosurgical emergency, with increasing incidence in aging populations. Rapid and accurate identification is essential to guide timely intervention, yet existing automated tools focus primarily on detection and provide limited interpretability or spatial localization. There remains a need for transparent, high-performing systems that integrate multimodal clinical and imaging information to support real-time decision-making. Methods. We developed a multimodal deep-learning framework that integrates structured clinical variables, a 3D convolutional neural network trained on CT volumes, and a transformer-enhanced 2D segmentation model for SDH detection and localization. Using 25,315 head CT studies from Hartford HealthCare (2015--2024), of which 3,774 (14.9%) contained clinician-confirmed SDH, tabular models were trained on demographics, comorbidities, medications, and laboratory results. Imaging models were trained to detect SDH and generate voxel-level probability maps. A greedy ensemble strategy combined complementary predictors. Findings. Clinical variables alone provided modest discriminatory power (AUC 0.75). Convolutional models trained on CT volumes and segmentation-derived maps achieved substantially higher accuracy (AUCs 0.922 and 0.926). The multimodal ensemble integrating all components achieved the best overall performance (AUC 0.9407; 95% CI, 0.930--0.951) and produced anatomically meaningful localization maps consistent with known SDH patterns. Interpretation. This multimodal, interpretable framework provides rapid and accurate SDH detection and localization, achieving high detection performance and offering transparent, anatomically grounded outputs. Integration into radiology workflows could streamline triage, reduce time to intervention, and improve consistency in SDH management.
3.68Perception-Inspired Color Space Design for Photo White Balance Editing¶
2025/12/11 05:03 GTM
White balance (WB) is a key step in the image signal processor (ISP) pipeline that mitigates color casts caused by varying illumination and restores the scene’s true colors. Currently, sRGB-based WB editing for post-ISP WB correction is widely used to address color constancy failures in the ISP pipeline when the original camera RAW is unavailable. However, additive color models (e.g., sRGB) are inherently limited by fixed nonlinear transformations and entangled color channels, which often impede their generalization to complex lighting conditions. To address these challenges, we propose a novel framework for WB correction that leverages a perception-inspired Learnable HSI (LHSI) color space. Built upon a cylindrical color model that naturally separates luminance from chromatic components, our framework further introduces dedicated parameters to enhance this disentanglement and learnable mapping to adaptively refine the flexibility. Moreover, a new Mamba-based network is introduced, which is tailored to the characteristics of the proposed LHSI color space. Experimental results on benchmark datasets demonstrate the superiority of our method, highlighting the potential of perception-inspired color space design in computational photography. The source code is available at https://
3.69Rates and architectures for learning geometrically non-trivial operators¶
2025/12/11 05:03 GTM
Deep learning methods have proven capable of recovering operators between high-dimensional spaces, such as solution maps of PDEs and similar objects in mathematical physics, from very few training samples. This phenomenon of data-efficiency has been proven for certain classes of elliptic operators with simple geometry, i.e., operators that do not change the domain of the function or propagate singularities. However, scientific machine learning is commonly used for problems that do involve the propagation of singularities in a priori unknown ways, such as waves, advection, and fluid dynamics. In light of this, we expand the learning theory to include double fibration transforms--geometric integral operators that include generalized Radon and geodesic ray transforms. We prove that this class of operators does not suffer from the curse of dimensionality: the error decays superalgebraically, that is, faster than any fixed power of the reciprocal of the number of training samples. Furthermore, we investigate architectures that explicitly encode the geometry of these transforms, demonstrating that an architecture reminiscent of cross-attention based on levelset methods yields a parameterization that is universal, stable, and learns double fibration transforms from very few training examples. Our results contribute to a rapidly-growing line of theoretical work on learning operators for scientific machine learning.
3.70Log NeRF: Comparing Spaces for Learning Radiance Fields¶
2025/12/11 05:03 GTM
Neural Radiance Fields (NeRF) have achieved remarkable results in novel view synthesis, typically using sRGB images for supervision. However, little attention has been paid to the color space in which the network is learning the radiance field representation. Inspired by the BiIlluminant Dichromatic Reflection (BIDR) model, which suggests that a logarithmic transformation simplifies the separation of illumination and reflectance, we hypothesize that log RGB space enables NeRF to learn a more compact and effective representation of scene appearance. To test this, we captured approximately 30 videos using a GoPro camera, ensuring linear data recovery through inverse encoding. We trained NeRF models under various color space interpretations linear, sRGB, GPLog, and log RGB by converting each network output to a common color space before rendering and loss computation, enforcing representation learning in different color spaces. Quantitative and qualitative evaluations demonstrate that using a log RGB color space consistently improves rendering quality, exhibits greater robustness across scenes, and performs particularly well in low light conditions while using the same bit-depth input images. Further analysis across different network sizes and NeRF variants confirms the generalization and stability of the log space advantage.
3.71FUSER: Feed-Forward MUltiview 3D Registration Transformer and SE(3) Diffusion Refinement¶
2025/12/11 05:03 GTM
Registration of multiview point clouds conventionally relies on extensive pairwise matching to build a pose graph for global synchronization, which is computationally expensive and inherently ill-posed without holistic geometric constraints. This paper proposes FUSER, the first feed-forward multiview registration transformer that jointly processes all scans in a unified, compact latent space to directly predict global poses without any pairwise estimation. To maintain tractability, FUSER encodes each scan into low-resolution superpoint features via a sparse 3D CNN that preserves absolute translation cues, and performs efficient intra- and inter-scan reasoning through a Geometric Alternating Attention module. Particularly, we transfer 2D attention priors from off-the-shelf foundation models to enhance 3D feature interaction and geometric consistency. Building upon FUSER, we further introduce FUSER-DF, an SE(3) diffusion refinement framework to correct FUSER’s estimates via denoising in the joint SE(3) space. FUSER acts as a surrogate multiview registration model to construct the denoiser, and a prior-conditioned SE(3) variational lower bound is derived for denoising supervision. Extensive experiments on 3DMatch, ScanNet and ArkitScenes demonstrate that our approach achieves the superior registration accuracy and outstanding computational efficiency.
3.72ASSIST-3D: Adapted Scene Synthesis for Class-Agnostic 3D Instance Segmentation¶
2025/12/11 05:03 GTM
Class-agnostic 3D instance segmentation tackles the challenging task of segmenting all object instances, including previously unseen ones, without semantic class reliance. Current methods struggle with generalization due to the scarce annotated 3D scene data or noisy 2D segmentations. While synthetic data generation offers a promising solution, existing 3D scene synthesis methods fail to simultaneously satisfy geometry diversity, context complexity, and layout reasonability, each essential for this task. To address these needs, we propose an Adapted 3D Scene Synthesis pipeline for class-agnostic 3D Instance SegmenTation, termed as ASSIST-3D, to synthesize proper data for model generalization enhancement. Specifically, ASSIST-3D features three key innovations, including 1) Heterogeneous Object Selection from extensive 3D CAD asset collections, incorporating randomness in object sampling to maximize geometric and contextual diversity; 2) Scene Layout Generation through LLM-guided spatial reasoning combined with depth-first search for reasonable object placements; and 3) Realistic Point Cloud Construction via multi-view RGB-D image rendering and fusion from the synthetic scenes, closely mimicking real-world sensor data acquisition. Experiments on ScanNetV2, ScanNet++, and S3DIS benchmarks demonstrate that models trained with ASSIST-3D-generated data significantly outperform existing methods. Further comparisons underscore the superiority of our purpose-built pipeline over existing 3D scene synthesis approaches.
3.73StereoWorld: Geometry-Aware Monocular-to-Stereo Video Generation¶
2025/12/11 05:03 GTM
The growing adoption of XR devices has fueled strong demand for high-quality stereo video, yet its production remains costly and artifact-prone. To address this challenge, we present StereoWorld, an end-to-end framework that repurposes a pretrained video generator for high-fidelity monocular-to-stereo video generation. Our framework jointly conditions the model on the monocular video input while explicitly supervising the generation with a geometry-aware regularization to ensure 3D structural fidelity. A spatio-temporal tiling scheme is further integrated to enable efficient, high-resolution synthesis. To enable large-scale training and evaluation, we curate a high-definition stereo video dataset containing over 11M frames aligned to natural human interpupillary distance (IPD). Extensive experiments demonstrate that StereoWorld substantially outperforms prior methods, generating stereo videos with superior visual fidelity and geometric consistency. The project webpage is available at https://
3.74Video-QTR: Query-Driven Temporal Reasoning Framework for Lightweight Video Understanding¶
2025/12/11 05:03 GTM
The rapid development of multimodal large-language models (MLLMs) has significantly expanded the scope of visual language reasoning, enabling unified systems to interpret and describe complex visual content. However, applying these models to long-video understanding remains computationally intensive. Dense frame encoding generates excessive visual tokens, leading to high memory consumption, redundant computation, and limited scalability in real-world applications. This inefficiency highlights a key limitation of the traditional process-then-reason paradigm, which analyzes visual streams exhaustively before semantic reasoning. To address this challenge, we introduce Video-QTR (Query-Driven Temporal Reasoning), a lightweight framework that redefines video comprehension as a query-guided reasoning process. Instead of encoding every frame, Video-QTR dynamically allocates perceptual resources based on the semantic intent of the query, creating an adaptive feedback loop between reasoning and perception. Extensive experiments across five benchmarks: MSVD-QA, Activity Net-QA, Movie Chat, and Video MME demonstrate that Video-QTR achieves state-of-the-art performance while reducing input frame consumption by up to 73%. These results confirm that query-driven temporal reasoning provides an efficient and scalable solution for video understanding.
3.75TextGuider: Training-Free Guidance for Text Rendering via Attention Alignment¶
2025/12/11 05:03 GTM
Despite recent advances, diffusion-based text-to-image models still struggle with accurate text rendering. Several studies have proposed fine-tuning or training-free refinement methods for accurate text rendering. However, the critical issue of text omission, where the desired text is partially or entirely missing, remains largely overlooked. In this work, we propose TextGuider, a novel training-free method that encourages accurate and complete text appearance by aligning textual content tokens and text regions in the image. Specifically, we analyze attention patterns in MM-DiT models, particularly for text-related tokens intended to be rendered in the image. Leveraging this observation, we apply latent guidance during the early stage of denoising steps based on two loss functions that we introduce. Our method achieves state-of-the-art performance in test-time text rendering, with significant gains in recall and strong results in OCR accuracy and CLIP score.
3.76Development and Testing for Perception Based Autonomous Landing of a Long-Range QuadPlane¶
2025/12/11 05:03 GTM
QuadPlanes combine the range efficiency of fixed-wing aircraft with the maneuverability of multi-rotor platforms for long-range autonomous missions. In GPS-denied or cluttered urban environments, perception-based landing is vital for reliable operation. Unlike structured landing zones, real-world sites are unstructured and highly variable, requiring strong generalization capabilities from the perception system. Deep neural networks (DNNs) provide a scalable solution for learning landing site features across diverse visual and environmental conditions. While perception-driven landing has been shown in simulation, real-world deployment introduces significant challenges. Payload and volume constraints limit high-performance edge AI devices like the NVIDIA Jetson Orin Nano, which are crucial for real-time detection and control. Accurate pose estimation during descent is necessary, especially in the absence of GPS, and relies on dependable visual-inertial odometry. Achieving this with limited edge AI resources requires careful optimization of the entire deployment framework. The flight characteristics of large QuadPlanes further complicate the problem. These aircraft exhibit high inertia, reduced thrust vectoring, and slow response times further complicate stable landing maneuvers. This work presents a lightweight QuadPlane system for efficient vision-based autonomous landing and visual-inertial odometry, specifically developed for long-range QuadPlane operations such as aerial monitoring. It describes the hardware platform, sensor configuration, and embedded computing architecture designed to meet demanding real-time, physical constraints. This establishes a foundation for deploying autonomous landing in dynamic, unstructured, GPS-denied environments.
3.77Visual Categorization Across Minds and Models: Cognitive Analysis of Human Labeling and Neuro-Symbolic Integration¶
2025/12/11 05:03 GTM
Understanding how humans and AI systems interpret ambiguous visual stimuli offers critical insight into the nature of perception, reasoning, and decision-making. This paper examines image labeling performance across human participants and deep neural networks, focusing on low-resolution, perceptually degraded stimuli. Drawing from computational cognitive science, cognitive architectures, and connectionist-symbolic hybrid models, we contrast human strategies such as analogical reasoning, shape-based recognition, and confidence modulation with AI’s feature-based processing. Grounded in Marr’s tri-level hypothesis, Simon’s bounded rationality, and Thagard’s frameworks of representation and emotion, we analyze participant responses in relation to Grad-CAM visualizations of model attention. Human behavior is further interpreted through cognitive principles modeled in ACT-R and Soar, revealing layered and heuristic decision strategies under uncertainty. Our findings highlight key parallels and divergences between biological and artificial systems in representation, inference, and confidence calibration. The analysis motivates future neuro-symbolic architectures that unify structured symbolic reasoning with connectionist representations. Such architectures, informed by principles of embodiment, explainability, and cognitive alignment, offer a path toward AI systems that are not only performant but also interpretable and cognitively grounded.
3.78Relightable and Dynamic Gaussian Avatar Reconstruction from Monocular Video¶
2025/12/11 05:03 GTM
Modeling relightable and animatable human avatars from monocular video is a long-standing and challenging task. Recently, Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) methods have been employed to reconstruct the avatars. However, they often produce unsatisfactory photo-realistic results because of insufficient geometrical details related to body motion, such as clothing wrinkles. In this paper, we propose a 3DGS-based human avatar modeling framework, termed as Relightable and Dynamic Gaussian Avatar (RnD-Avatar), that presents accurate pose-variant deformation for high-fidelity geometrical details. To achieve this, we introduce dynamic skinning weights that define the human avatar’s articulation based on pose while also learning additional deformations induced by body motion. We also introduce a novel regularization to capture fine geometric details under sparse visual cues. Furthermore, we present a new multi-view dataset with varied lighting conditions to evaluate relight. Our framework enables realistic rendering of novel poses and views while supporting photo-realistic lighting effects under arbitrary lighting conditions. Our method achieves state-of-the-art performance in novel view synthesis, novel pose rendering, and relighting.
3.79UniLS: End-to-End Audio-Driven Avatars for Unified Listening and Speaking¶
2025/12/11 05:03 GTM
Generating lifelike conversational avatars requires modeling not just isolated speakers, but the dynamic, reciprocal interaction of speaking and listening. However, modeling the listener is exceptionally challenging: direct audio-driven training fails, producing stiff, static listening motions. This failure stems from a fundamental imbalance: the speaker’s motion is strongly driven by speech audio, while the listener’s motion primarily follows an internal motion prior and is only loosely guided by external speech. This challenge has led most methods to focus on speak-only generation. The only prior attempt at joint generation relies on extra speaker’s motion to produce the listener. This design is not end-to-end, thereby hindering the real-time applicability. To address this limitation, we present UniLS, the first end-to-end framework for generating unified speak-listen expressions, driven by only dual-track audio. Our method introduces a novel two-stage training paradigm. Stage 1 first learns the internal motion prior by training an audio-free autoregressive generator, capturing the spontaneous dynamics of natural facial motion. Stage 2 then introduces the dual-track audio, fine-tuning the generator to modulate the learned motion prior based on external speech cues. Extensive evaluations show UniLS achieves state-of-the-art speaking accuracy. More importantly, it delivers up to 44.1% improvement in listening metrics, generating significantly more diverse and natural listening expressions. This effectively mitigates the stiffness problem and provides a practical, high-fidelity audio-driven solution for interactive digital humans.
3.80Benchmarking Real-World Medical Image Classification with Noisy Labels: Challenges, Practice, and Outlook¶
2025/12/11 05:03 GTM
Learning from noisy labels remains a major challenge in medical image analysis, where annotation demands expert knowledge and substantial inter-observer variability often leads to inconsistent or erroneous labels. Despite extensive research on learning with noisy labels (LNL), the robustness of existing methods in medical imaging has not been systematically assessed. To address this gap, we introduce LNMBench, a comprehensive benchmark for Label Noise in Medical imaging. LNMBench encompasses \textbf{10} representative methods evaluated across 7 datasets, 6 imaging modalities, and 3 noise patterns, establishing a unified and reproducible framework for robustness evaluation under realistic conditions. Comprehensive experiments reveal that the performance of existing LNL methods degrades substantially under high and real-world noise, highlighting the persistent challenges of class imbalance and domain variability in medical data. Motivated by these findings, we further propose a simple yet effective improvement to enhance model robustness under such conditions. The LNMBench codebase is publicly released to facilitate standardized evaluation, promote reproducible research, and provide practical insights for developing noise-resilient algorithms in both research and real-world medical applications.The codebase is publicly available on https://
3.81Transformer-Driven Multimodal Fusion for Explainable Suspiciousness Estimation in Visual Surveillance¶
2025/12/11 05:03 GTM
Suspiciousness estimation is critical for proactive threat detection and ensuring public safety in complex environments. This work introduces a large-scale annotated dataset, USE50k, along with a computationally efficient vision-based framework for real-time suspiciousness analysis. The USE50k dataset contains 65,500 images captured from diverse and uncontrolled environments, such as airports, railway stations, restaurants, parks, and other public areas, covering a broad spectrum of cues including weapons, fire, crowd density, abnormal facial expressions, and unusual body postures. Building on this dataset, we present DeepUSEvision, a lightweight and modular system integrating three key components, i.e., a Suspicious Object Detector based on an enhanced YOLOv12 architecture, dual Deep Convolutional Neural Networks (DCNN-I and DCNN-II) for facial expression and body-language recognition using image and landmark features, and a transformer-based Discriminator Network that adaptively fuses multimodal outputs to yield an interpretable suspiciousness score. Extensive experiments confirm the superior accuracy, robustness, and interpretability of the proposed framework compared to state-of-the-art approaches. Collectively, the USE50k dataset and the DeepUSEvision framework establish a strong and scalable foundation for intelligent surveillance and real-time risk assessment in safety-critical applications.
3.82A Distributed Framework for Privacy-Enhanced Vision Transformers on the Edge¶
2025/12/11 05:03 GTM
Nowadays, visual intelligence tools have become ubiquitous, offering all kinds of convenience and possibilities. However, these tools have high computational requirements that exceed the capabilities of resource-constrained mobile and wearable devices. While offloading visual data to the cloud is a common solution, it introduces significant privacy vulnerabilities during transmission and server-side computation. To address this, we propose a novel distributed, hierarchical offloading framework for Vision Transformers (ViTs) that addresses these privacy challenges by design. Our approach uses a local trusted edge device, such as a mobile phone or an Nvidia Jetson, as the edge orchestrator. This orchestrator partitions the user’s visual data into smaller portions and distributes them across multiple independent cloud servers. By design, no single external server possesses the complete image, preventing comprehensive data reconstruction. The final data merging and aggregation computation occurs exclusively on the user’s trusted edge device. We apply our framework to the Segment Anything Model (SAM) as a practical case study, which demonstrates that our method substantially enhances content privacy over traditional cloud-based approaches. Evaluations show our framework maintains near-baseline segmentation performance while substantially reducing the risk of content reconstruction and user data exposure. Our framework provides a scalable, privacy-preserving solution for vision tasks in the edge-cloud continuum.
3.83From SAM to DINOv2: Towards Distilling Foundation Models to Lightweight Baselines for Generalized Polyp Segmentation¶
2025/12/11 05:03 GTM
Accurate polyp segmentation during colonoscopy is critical for the early detection of colorectal cancer and still remains challenging due to significant size, shape, and color variations, and the camouflaged nature of polyps. While lightweight baseline models such as U-Net, U-Net++, and PraNet offer advantages in terms of easy deployment and low computational cost, they struggle to deal with the above issues, leading to limited segmentation performance. In contrast, large-scale vision foundation models such as SAM, DINOv2, OneFormer, and Mask2Former have exhibited impressive generalization performance across natural image domains. However, their direct transfer to medical imaging tasks (e.g., colonoscopic polyp segmentation) is not straightforward, primarily due to the scarcity of large-scale datasets and lack of domain-specific knowledge. To bridge this gap, we propose a novel distillation framework, Polyp-DiFoM, that transfers the rich representations of foundation models into lightweight segmentation baselines, allowing efficient and accurate deployment in clinical settings. In particular, we infuse semantic priors from the foundation models into canonical architectures such as U-Net and U-Net++ and further perform frequency domain encoding for enhanced distillation, corroborating their generalization capability. Extensive experiments are performed across five benchmark datasets, such as Kvasir-SEG, CVC-ClinicDB, ETIS, ColonDB, and CVC-300. Notably, Polyp-DiFoM consistently outperforms respective baseline models significantly, as well as the state-of-the-art model, with nearly 9 times reduced computation overhead. The code is available at https://
3.84VABench: A Comprehensive Benchmark for Audio-Video Generation¶
2025/12/11 05:03 GTM
Recent advances in video generation have been remarkable, enabling models to produce visually compelling videos with synchronized audio. While existing video generation benchmarks provide comprehensive metrics for visual quality, they lack convincing evaluations for audio-video generation, especially for models aiming to generate synchronized audio-video outputs. To address this gap, we introduce VABench, a comprehensive and multi-dimensional benchmark framework designed to systematically evaluate the capabilities of synchronous audio-video generation. VABench encompasses three primary task types: text-to-audio-video (T2AV), image-to-audio-video (I2AV), and stereo audio-video generation. It further establishes two major evaluation modules covering 15 dimensions. These dimensions specifically assess pairwise similarities (text-video, text-audio, video-audio), audio-video synchronization, lip-speech consistency, and carefully curated audio and video question-answering (QA) pairs, among others. Furthermore, VABench covers seven major content categories: animals, human sounds, music, environmental sounds, synchronous physical sounds, complex scenes, and virtual worlds. We provide a systematic analysis and visualization of the evaluation results, aiming to establish a new standard for assessing video generation models with synchronous audio capabilities and to promote the comprehensive advancement of the field.
3.85Traffic Scene Small Target Detection Method Based on YOLOv8n-SPTS Model for Autonomous Driving¶
2025/12/11 05:03 GTM
This paper focuses on the key issue in autonomous driving: small target recognition in dynamic perception. Existing algorithms suffer from poor detection performance due to missing small target information, scale imbalance, and occlusion. We propose an improved YOLOv8n-SPTS model, which enhances the detection accuracy of small traffic targets through three key innovations: First, optimizing the feature extraction module. In the Backbone Bottleneck structure of YOLOv8n, 4 traditional convolution modules are replaced with Space-to-Depth Convolution (SPD-Conv) modules. This module retains fine-grained information through space-to-depth conversion, reduces information loss, and enhances the ability to capture features of low-resolution small targets. Second, enhancing feature fusion capability. The Spatial Pyramid Pooling - Fast Cross Stage Partial Connection (SPPFCSPC) module is introduced to replace the original SPPF module, integrating the multi-scale feature extraction from Spatial Pyramid Pooling (SPP) and the feature fusion mechanism of Cross Stage Partial Connection (CSP), thereby improving the model’s contextual understanding of complex scenes and multi-scale feature expression ability. Third, designing a dedicated detection structure for small targets. A Triple-Stage Feature Pyramid (TSFP) structure is proposed, which adds a 160*160 small target detection head to the original detection heads to fully utilize high-resolution features in shallow layers; meanwhile, redundant large target detection heads are removed to balance computational efficiency. Comparative experiments on the VisDrone2019-DET dataset show that YOLOv8n-SPTS model ranks first in precision (61.9%), recall (48.3%), mAP@0.5 (52.6%), and mAP@0.5:0.95 (32.6%). Visualization results verify that the miss rate of small targets such as pedestrians and bicycles in occluded and dense scenes is significantly reduced.
3.86MelanomaNet: Explainable Deep Learning for Skin Lesion Classification¶
2025/12/11 05:03 GTM
Automated skin lesion classification using deep learning has shown remarkable accuracy, yet clinical adoption remains limited due to the “black box” nature of these models. We present MelanomaNet, an explainable deep learning system for multi-class skin lesion classification that addresses this gap through four complementary interpretability mechanisms. Our approach combines an EfficientNet V2 backbone with GradCAM++ attention visualization, automated ABCDE clinical criterion extraction, Fast Concept Activation Vectors (FastCAV) for concept-based explanations, and Monte Carlo Dropout uncertainty quantification. We evaluate our system on the ISIC 2019 dataset containing 25,331 dermoscopic images across 9 diagnostic categories. Our model achieves 85.61% accuracy with a weighted F1 score of 0.8564, while providing clinically meaningful explanations that align model attention with established dermatological assessment criteria. The uncertainty quantification module decomposes prediction confidence into epistemic and aleatoric components, enabling automatic flagging of unreliable predictions for clinical review. Our results demonstrate that high classification performance can be achieved alongside comprehensive interpretability, potentially facilitating greater trust and adoption in clinical dermatology workflows. The source code is available at https://
3.87FoundIR-v2: Optimizing Pre-Training Data Mixtures for Image Restoration Foundation Model¶
2025/12/11 05:03 GTM
Recent studies have witnessed significant advances in image restoration foundation models driven by improvements in the scale and quality of pre-training data. In this work, we find that the data mixture proportions from different restoration tasks are also a critical factor directly determining the overall performance of all-in-one image restoration models. To this end, we propose a high-capacity diffusion-based image restoration foundation model, FoundIR-v2, which adopts a data equilibrium scheduling paradigm to dynamically optimize the proportions of mixed training datasets from different tasks. By leveraging the data mixing law, our method ensures a balanced dataset composition, enabling the model to achieve consistent generalization and comprehensive performance across diverse tasks. Furthermore, we introduce an effective Mixture-of-Experts (MoE)-driven scheduler into generative pre-training to flexibly allocate task-adaptive diffusion priors for each restoration task, accounting for the distinct degradation forms and levels exhibited by different tasks. Extensive experiments demonstrate that our method can address over 50 sub-tasks across a broader scope of real-world scenarios and achieves favorable performance against state-of-the-art approaches.
3.88LoGoColor: Local-Global 3D Colorization for 360° Scenes¶
2025/12/11 05:03 GTM
Single-channel 3D reconstruction is widely used in fields such as robotics and medical imaging. While this line of work excels at reconstructing 3D geometry, the outputs are not colored 3D models, thus 3D colorization is required for visualization. Recent 3D colorization studies address this problem by distilling 2D image colorization models. However, these approaches suffer from an inherent inconsistency of 2D image models. This results in colors being averaged during training, leading to monotonous and oversimplified results, particularly in complex 360° scenes. In contrast, we aim to preserve color diversity by generating a new set of consistently colorized training views, thereby bypassing the averaging process. Nevertheless, eliminating the averaging process introduces a new challenge: ensuring strict multi-view consistency across these colorized views. To achieve this, we propose LoGoColor, a pipeline designed to preserve color diversity by eliminating this guidance-averaging process with a `Local-Global’ approach: we partition the scene into subscenes and explicitly tackle both inter-subscene and intra-subscene consistency using a fine-tuned multi-view diffusion model. We demonstrate that our method achieves quantitatively and qualitatively more consistent and plausible 3D colorization on complex 360° scenes than existing methods, and validate its superior color diversity using a novel Color Diversity Index.
3.89Dynamic Facial Expressions Analysis Based Parkinson’s Disease Auxiliary Diagnosis¶
2025/12/11 05:03 GTM
Parkinson’s disease (PD), a prevalent neurodegenerative disorder, significantly affects patients’ daily functioning and social interactions. To facilitate a more efficient and accessible diagnostic approach for PD, we propose a dynamic facial expression analysis-based PD auxiliary diagnosis method. This method targets hypomimia, a characteristic clinical symptom of PD, by analyzing two manifestations: reduced facial expressivity and facial rigidity, thereby facilitating the diagnosis process. We develop a multimodal facial expression analysis network to extract expression intensity features during patients’ performance of various facial expressions. This network leverages the CLIP architecture to integrate visual and textual features while preserving the temporal dynamics of facial expressions. Subsequently, the expression intensity features are processed and input into an LSTM-based classification network for PD diagnosis. Our method achieves an accuracy of 93.1%, outperforming other in-vitro PD diagnostic approaches. This technique offers a more convenient detection method for potential PD patients, improving their diagnostic experience.
3.90LongT2IBench: A Benchmark for Evaluating Long Text-to-Image Generation with Graph-structured Annotations¶
2025/12/11 05:03 GTM
The increasing popularity of long Text-to-Image (T2I) generation has created an urgent need for automatic and interpretable models that can evaluate the image-text alignment in long prompt scenarios. However, the existing T2I alignment benchmarks predominantly focus on short prompt scenarios and only provide MOS or Likert scale annotations. This inherent limitation hinders the development of long T2I evaluators, particularly in terms of the interpretability of alignment. In this study, we contribute LongT2IBench, which comprises 14K long text-image pairs accompanied by graph-structured human annotations. Given the detail-intensive nature of long prompts, we first design a Generate-Refine-Qualify annotation protocol to convert them into textual graph structures that encompass entities, attributes, and relations. Through this transformation, fine-grained alignment annotations are achieved based on these granular elements. Finally, the graph-structed annotations are converted into alignment scores and interpretations to facilitate the design of T2I evaluation models. Based on LongT2IBench, we further propose LongT2IExpert, a LongT2I evaluator that enables multi-modal large language models (MLLMs) to provide both quantitative scores and structured interpretations through an instruction-tuning process with Hierarchical Alignment Chain-of-Thought (CoT). Extensive experiments and comparisons demonstrate the superiority of the proposed LongT2IExpert in alignment evaluation and interpretation. Data and code have been released in https://
3.91MoRel: Long-Range Flicker-Free 4D Motion Modeling via Anchor Relay-based Bidirectional Blending with Hierarchical Densification¶
2025/12/11 05:03 GTM
Recent advances in 4D Gaussian Splatting (4DGS) have extended the high-speed rendering capability of 3D Gaussian Splatting (3DGS) into the temporal domain, enabling real-time rendering of dynamic scenes. However, one of the major remaining challenges lies in modeling long-range motion-contained dynamic videos, where a naive extension of existing methods leads to severe memory explosion, temporal flickering, and failure to handle appearing or disappearing occlusions over time. To address these challenges, we propose a novel 4DGS framework characterized by an Anchor Relay-based Bidirectional Blending (ARBB) mechanism, named MoRel, which enables temporally consistent and memory-efficient modeling of long-range dynamic scenes. Our method progressively constructs locally canonical anchor spaces at key-frame time index and models inter-frame deformations at the anchor level, enhancing temporal coherence. By learning bidirectional deformations between KfA and adaptively blending them through learnable opacity control, our approach mitigates temporal discontinuities and flickering artifacts. We further introduce a Feature-variance-guided Hierarchical Densification (FHD) scheme that effectively densifies KfA’s while keeping rendering quality, based on an assigned level of feature-variance. To effectively evaluate our model’s capability to handle real-world long-range 4D motion, we newly compose long-range 4D motion-contained dataset, called SelfCap. It has larger average dynamic motion magnitude, captured at spatially wider spaces, compared to previous dynamic video datasets. Overall, our MoRel achieves temporally coherent and flicker-free long-range 4D reconstruction while maintaining bounded memory usage, demonstrating both scalability and efficiency in dynamic Gaussian-based representations.
3.92ROI-Packing: Efficient Region-Based Compression for Machine Vision¶
2025/12/11 05:03 GTM
This paper introduces ROI-Packing, an efficient image compression method tailored specifically for machine vision. By prioritizing regions of interest (ROI) critical to end-task accuracy and packing them efficiently while discarding less relevant data, ROI-Packing achieves significant compression efficiency without requiring retraining or fine-tuning of end-task models. Comprehensive evaluations across five datasets and two popular tasks-object detection and instance segmentation-demonstrate up to a 44.10% reduction in bitrate without compromising end-task accuracy, along with an 8.88 % improvement in accuracy at the same bitrate compared to the state-of-the-art Versatile Video Coding (VVC) codec standardized by the Moving Picture Experts Group (MPEG).
3.93GLACIA: Instance-Aware Positional Reasoning for Glacial Lake Segmentation via Multimodal Large Language Model¶
2025/12/11 05:03 GTM
Glacial lake monitoring bears great significance in mitigating the anticipated risk of Glacial Lake Outburst Floods. However, existing segmentation methods based on convolutional neural networks (CNNs) and Vision Transformers (ViTs), remain constrained to pixel-level predictions, lacking high-level global scene semantics and human-interpretable reasoning. To address this, we introduce GLACIA (\textbf{G}lacial \textbf{LA}ke segmentation with \textbf{C}ontextual \textbf{I}nstance \textbf{A}wareness), the first framework that integrates large language models with segmentation capabilities to produce both accurate segmentation masks and corresponding spatial reasoning outputs. We construct the Glacial Lake Position Reasoning (GLake-Pos) dataset pipeline, which provides diverse, spatially grounded question-answer pairs designed to overcome the lack of instance-aware positional reasoning data in remote sensing. Comparative evaluation demonstrate that GLACIA (mIoU: 87.30) surpasses state-of-the-art method based on CNNs (mIoU: 78.55 - 79.01), ViTs (mIoU: 69.27 - 81.75), Geo-foundation models (mIoU: 76.37 - 87.10), and reasoning based segmentation methods (mIoU: 60.12 - 75.66). Our approach enables intuitive disaster preparedness and informed policy-making in the context of rapidly changing glacial environments by facilitating natural language interaction, thereby supporting more efficient and interpretable decision-making. The code is released on https://
3.94OmniPSD: Layered PSD Generation with Diffusion Transformer¶
2025/12/11 05:03 GTM
Recent advances in diffusion models have greatly improved image generation and editing, yet generating or reconstructing layered PSD files with transparent alpha channels remains highly challenging. We propose OmniPSD, a unified diffusion framework built upon the Flux ecosystem that enables both text-to-PSD generation and image-to-PSD decomposition through in-context learning. For text-to-PSD generation, OmniPSD arranges multiple target layers spatially into a single canvas and learns their compositional relationships through spatial attention, producing semantically coherent and hierarchically structured layers. For image-to-PSD decomposition, it performs iterative in-context editing, progressively extracting and erasing textual and foreground components to reconstruct editable PSD layers from a single flattened image. An RGBA-VAE is employed as an auxiliary representation module to preserve transparency without affecting structure learning. Extensive experiments on our new RGBA-layered dataset demonstrate that OmniPSD achieves high-fidelity generation, structural consistency, and transparency awareness, offering a new paradigm for layered design generation and decomposition with diffusion transformers.
3.95A Clinically Interpretable Deep CNN Framework for Early Chronic Kidney Disease Prediction Using Grad-CAM-Based Explainable AI¶
2025/12/11 05:03 GTM
Chronic Kidney Disease (CKD) constitutes a major global medical burden, marked by the gradual deterioration of renal function, which results in the impaired clearance of metabolic waste and disturbances in systemic fluid homeostasis. Owing to its substantial contribution to worldwide morbidity and mortality, the development of reliable and efficient diagnostic approaches is critically important to facilitate early detection and prompt clinical management. This study presents a deep convolutional neural network (CNN) for early CKD detection from CT kidney images, complemented by class balancing using Synthetic Minority Over-sampling Technique (SMOTE) and interpretability via Gradient-weighted Class Activation Mapping (Grad-CAM). The model was trained and evaluated on the CT KIDNEY DATASET, which contains 12,446 CT images, including 3,709 cyst, 5,077 normal, 1,377 stone, and 2,283 tumor cases. The proposed deep CNN achieved a remarkable classification performance, attaining 100% accuracy in the early detection of chronic kidney disease (CKD). This significant advancement demonstrates strong potential for addressing critical clinical diagnostic challenges and enhancing early medical intervention strategies.
3.96Efficient Feature Compression for Machines with Global Statistics Preservation¶
2025/12/11 05:03 GTM
The split-inference paradigm divides an artificial intelligence (AI) model into two parts. This necessitates the transfer of intermediate feature data between the two halves. Here, effective compression of the feature data becomes vital. In this paper, we employ Z-score normalization to efficiently recover the compressed feature data at the decoder side. To examine the efficacy of our method, the proposed method is integrated into the latest Feature Coding for Machines (FCM) codec standard under development by the Moving Picture Experts Group (MPEG). Our method supersedes the existing scaling method used by the current standard under development. It both reduces the overhead bits and improves the end-task accuracy. To further reduce the overhead in certain circumstances, we also propose a simplified method. Experiments show that using our proposed method shows 17.09% reduction in bitrate on average across different tasks and up to 65.69% for object tracking without sacrificing the task accuracy.
3.97Enabling Next-Generation Consumer Experience with Feature Coding for Machines¶
2025/12/11 05:03 GTM
As consumer devices become increasingly intelligent and interconnected, efficient data transfer solutions for machine tasks have become essential. This paper presents an overview of the latest Feature Coding for Machines (FCM) standard, part of MPEG-AI and developed by the Moving Picture Experts Group (MPEG). FCM supports AI-driven applications by enabling the efficient extraction, compression, and transmission of intermediate neural network features. By offloading computationally intensive operations to base servers with high computing resources, FCM allows low-powered devices to leverage large deep learning models. Experimental results indicate that the FCM standard maintains the same level of accuracy while reducing bitrate requirements by 75.90% compared to remote inference.
3.98View-on-Graph: Zero-shot 3D Visual Grounding via Vision-Language Reasoning on Scene Graphs¶
2025/12/11 05:03 GTM
3D visual grounding (3DVG) identifies objects in 3D scenes from language descriptions. Existing zero-shot approaches leverage 2D vision-language models (VLMs) by converting 3D spatial information (SI) into forms amenable to VLM processing, typically as composite inputs such as specified view renderings or video sequences with overlaid object markers. However, this VLM + SI paradigm yields entangled visual representations that compel the VLM to process entire cluttered cues, making it hard to exploit spatial semantic relationships effectively. In this work, we propose a new VLM x SI paradigm that externalizes the 3D SI into a form enabling the VLM to incrementally retrieve only what it needs during reasoning. We instantiate this paradigm with a novel View-on-Graph (VoG) method, which organizes the scene into a multi-modal, multi-layer scene graph and allows the VLM to operate as an active agent that selectively accesses necessary cues as it traverses the scene. This design offers two intrinsic advantages: (i) by structuring 3D context into a spatially and semantically coherent scene graph rather than confounding the VLM with densely entangled visual inputs, it lowers the VLM’s reasoning difficulty; and (ii) by actively exploring and reasoning over the scene graph, it naturally produces transparent, step-by-step traces for interpretable 3DVG. Extensive experiments show that VoG achieves state-of-the-art zero-shot performance, establishing structured scene exploration as a promising strategy for advancing zero-shot 3DVG.
3.99Residual Primitive Fitting of 3D Shapes with SuperFrusta¶
2025/12/11 05:03 GTM
We introduce a framework for converting 3D shapes into compact and editable assemblies of analytic primitives, directly addressing the persistent trade-off between reconstruction fidelity and parsimony. Our approach combines two key contributions: a novel primitive, termed SuperFrustum, and an iterative fiting algorithm, Residual Primitive Fitting (ResFit). SuperFrustum is an analytical primitive that is simultaneously (1) expressive, being able to model various common solids such as cylinders, spheres, cones & their tapered and bent forms, (2) editable, being compactly parameterized with 8 parameters, and (3) optimizable, with a sign distance field differentiable w.r.t. its parameters almost everywhere. ResFit is an unsupervised procedure that interleaves global shape analysis with local optimization, iteratively fitting primitives to the unexplained residual of a shape to discover a parsimonious yet accurate decompositions for each input shape. On diverse 3D benchmarks, our method achieves state-of-the-art results, improving IoU by over 9 points while using nearly half as many primitives as prior work. The resulting assemblies bridge the gap between dense 3D data and human-controllable design, producing high-fidelity and editable shape programs.
3.100Learning Patient-Specific Disease Dynamics with Latent Flow Matching for Longitudinal Imaging Generation¶
2025/12/11 05:03 GTM
Understanding disease progression is a central clinical challenge with direct implications for early diagnosis and personalized treatment. While recent generative approaches have attempted to model progression, key mismatches remain: disease dynamics are inherently continuous and monotonic, yet latent representations are often scattered, lacking semantic structure, and diffusion-based models disrupt continuity with random denoising process. In this work, we propose to treat the disease dynamic as a velocity field and leverage Flow Matching (FM) to align the temporal evolution of patient data. Unlike prior methods, it captures the intrinsic dynamic of disease, making the progression more interpretable. However, a key challenge remains: in latent space, Auto-Encoders (AEs) do not guarantee alignment across patients or correlation with clinical-severity indicators (e.g., age and disease conditions). To address this, we propose to learn patient-specific latent alignment, which enforces patient trajectories to lie along a specific axis, with magnitude increasing monotonically with disease severity. This leads to a consistent and semantically meaningful latent space. Together, we present -LFM, a framework for modeling patient-specific latent progression with flow matching. Across three longitudinal MRI benchmarks, -LFM demonstrates strong empirical performance and, more importantly, offers a new framework for interpreting and visualizing disease dynamics.
3.101Prompt-Based Continual Compositional Zero-Shot Learning¶
2025/12/11 05:03 GTM
We tackle continual adaptation of vision-language models to new attributes, objects, and their compositions in Compositional Zero-Shot Learning (CZSL), while preventing forgetting of prior knowledge. Unlike classical continual learning where classes are disjoint, CCZSL is more complex as attributes and objects may reoccur across sessions while compositions remain unique. Built on a frozen VLM backbone, we propose the first Prompt-based Continual Compositional Zero-Shot Learning (PromptCCZSL) framework that retains prior knowledge through recency-weighted multi-teacher distillation. It employs session-aware compositional prompts to fuse multimodal features for new compositions, while attribute and object prompts are learned through session-agnostic fusion to maintain global semantic consistency, which is further stabilized by a Cosine Anchor Loss (CAL) to preserve prior knowledge. To enhance adaptation in the current session, an Orthogonal Projection Loss (OPL) ensures that new attribute and object embeddings remain distinct from previous ones, preventing overlap, while an Intra-Session Diversity Loss (IDL) promotes variation among current-session embeddings for richer, more discriminative representations. We also introduce a comprehensive protocol that jointly measures catastrophic forgetting and compositional generalization. Extensive experiments on UT-Zappos and C-GQA benchmarks demonstrate that PromptCCZSL achieves substantial improvements over prior VLM-based and non-VLM baselines, setting a new benchmark for CCZSL in closed-world settings.
3.102WonderZoom: Multi-Scale 3D World Generation¶
2025/12/11 05:03 GTM
We present WonderZoom, a novel approach to generating 3D scenes with contents across multiple spatial scales from a single image. Existing 3D world generation models remain limited to single-scale synthesis and cannot produce coherent scene contents at varying granularities. The fundamental challenge is the lack of a scale-aware 3D representation capable of generating and rendering content with largely different spatial sizes. WonderZoom addresses this through two key innovations: (1) scale-adaptive Gaussian surfels for generating and real-time rendering of multi-scale 3D scenes, and (2) a progressive detail synthesizer that iteratively generates finer-scale 3D contents. Our approach enables users to “zoom into” a 3D region and auto-regressively synthesize previously non-existent fine details from landscapes to microscopic features. Experiments demonstrate that WonderZoom significantly outperforms state-of-the-art video and 3D models in both quality and alignment, enabling multi-scale 3D world creation from a single image. We show video results and an interactive viewer of generated multi-scale 3D worlds in https://
3.103GTAvatar: Bridging Gaussian Splatting and Texture Mapping for Relightable and Editable Gaussian Avatars¶
2025/12/11 05:03 GTM
Recent advancements in Gaussian Splatting have enabled increasingly accurate reconstruction of photorealistic head avatars, opening the door to numerous applications in visual effects, videoconferencing, and virtual reality. This, however, comes with the lack of intuitive editability offered by traditional triangle mesh-based methods. In contrast, we propose a method that combines the accuracy and fidelity of 2D Gaussian Splatting with the intuitiveness of UV texture mapping. By embedding each canonical Gaussian primitive’s local frame into a patch in the UV space of a template mesh in a computationally efficient manner, we reconstruct continuous editable material head textures from a single monocular video on a conventional UV domain. Furthermore, we leverage an efficient physically based reflectance model to enable relighting and editing of these intrinsic material maps. Through extensive comparisons with state-of-the-art methods, we demonstrate the accuracy of our reconstructions, the quality of our relighting results, and the ability to provide intuitive controls for modifying an avatar’s appearance and geometry via texture mapping without additional optimization.
3.104Integrated Pipeline for Coronary Angiography With Automated Lesion Profiling, Virtual Stenting, and 100-Vessel FFR Validation¶
2025/12/11 05:03 GTM
Coronary angiography is the main tool for assessing coronary artery disease, but visual grading of stenosis is variable and only moderately related to ischaemia. Wire based fractional flow reserve (FFR) improves lesion selection but is not used systematically. Angiography derived indices such as quantitative flow ratio (QFR) offer wire free physiology, yet many tools are workflow intensive and separate from automated anatomy analysis and virtual PCI planning. We developed AngioAI-QFR, an end to end angiography only pipeline combining deep learning stenosis detection, lumen segmentation, centreline and diameter extraction, per millimetre Relative Flow Capacity profiling, and virtual stenting with automatic recomputation of angiography derived QFR. The system was evaluated in 100 consecutive vessels with invasive FFR as reference. Primary endpoints were agreement with FFR (correlation, mean absolute error) and diagnostic performance for FFR <= 0.80. On held out frames, stenosis detection achieved precision 0.97 and lumen segmentation Dice 0.78. Across 100 vessels, AngioAI-QFR correlated strongly with FFR (r = 0.89, MAE 0.045). The AUC for detecting FFR <= 0.80 was 0.93, with sensitivity 0.88 and specificity 0.86. The pipeline completed fully automatically in 93 percent of vessels, with median time to result 41 s. RFC profiling distinguished focal from diffuse capacity loss, and virtual stenting predicted larger QFR gain in focal than in diffuse disease. AngioAI-QFR provides a practical, near real time pipeline that unifies computer vision, functional profiling, and virtual PCI with automated angiography derived physiology.
3.105SuperF: Neural Implicit Fields for Multi-Image Super-Resolution¶
2025/12/11 05:03 GTM
High-resolution imagery is often hindered by limitations in sensor technology, atmospheric conditions, and costs. Such challenges occur in satellite remote sensing, but also with handheld cameras, such as our smartphones. Hence, super-resolution aims to enhance the image resolution algorithmically. Since single-image super-resolution requires solving an inverse problem, such methods must exploit strong priors, e.g. learned from high-resolution training data, or be constrained by auxiliary data, e.g. by a high-resolution guide from another modality. While qualitatively pleasing, such approaches often lead to “hallucinated” structures that do not match reality. In contrast, multi-image super-resolution (MISR) aims to improve the (optical) resolution by constraining the super-resolution process with multiple views taken with sub-pixel shifts. Here, we propose SuperF, a test-time optimization approach for MISR that leverages coordinate-based neural networks, also called neural fields. Their ability to represent continuous signals with an implicit neural representation (INR) makes them an ideal fit for the MISR task. The key characteristic of our approach is to share an INR for multiple shifted low-resolution frames and to jointly optimize the frame alignment with the INR. Our approach advances related INR baselines, adopted from burst fusion for layer separation, by directly parameterizing the sub-pixel alignment as optimizable affine transformation parameters and by optimizing via a super-sampled coordinate grid that corresponds to the output resolution. Our experiments yield compelling results on simulated bursts of satellite imagery and ground-level images from handheld cameras, with upsampling factors of up to 8. A key advantage of SuperF is that this approach does not rely on any high-resolution training data.
3.106GimbalDiffusion: Gravity-Aware Camera Control for Video Generation¶
2025/12/11 05:03 GTM
Recent progress in text-to-video generation has achieved remarkable realism, yet fine-grained control over camera motion and orientation remains elusive. Existing approaches typically encode camera trajectories through relative or ambiguous representations, limiting explicit geometric control. We introduce GimbalDiffusion, a framework that enables camera control grounded in physical-world coordinates, using gravity as a global reference. Instead of describing motion relative to previous frames, our method defines camera trajectories in an absolute coordinate system, allowing precise and interpretable control over camera parameters without requiring an initial reference frame. We leverage panoramic 360-degree videos to construct a wide variety of camera trajectories, well beyond the predominantly straight, forward-facing trajectories seen in conventional video data. To further enhance camera guidance, we introduce null-pitch conditioning, an annotation strategy that reduces the model’s reliance on text content when conflicting with camera specifications (e.g., generating grass while the camera points towards the sky). Finally, we establish a benchmark for camera-aware video generation by rebalancing SpatialVID-HQ for comprehensive evaluation under wide camera pitch variation. Together, these contributions advance the controllability and robustness of text-to-video models, enabling precise, gravity-aligned camera manipulation within generative frameworks.
3.107Food Image Generation on Multi-Noun Categories¶
2025/12/11 05:03 GTM
Generating realistic food images for categories with multiple nouns is surprisingly challenging. For instance, the prompt “egg noodle” may result in images that incorrectly contain both eggs and noodles as separate entities. Multi-noun food categories are common in real-world datasets and account for a large portion of entries in benchmarks such as UEC-256. These compound names often cause generative models to misinterpret the semantics, producing unintended ingredients or objects. This is due to insufficient multi-noun category related knowledge in the text encoder and misinterpretation of multi-noun relationships, leading to incorrect spatial layouts. To overcome these challenges, we propose FoCULR (Food Category Understanding and Layout Refinement) which incorporates food domain knowledge and introduces core concepts early in the generation process. Experimental results demonstrate that the integration of these techniques improves image generation performance in the food domain.
3.108Causal Attribution of Model Performance Gaps in Medical Imaging Under Distribution Shifts¶
2025/12/11 05:03 GTM
Deep learning models for medical image segmentation suffer significant performance drops due to distribution shifts, but the causal mechanisms behind these drops remain poorly understood. We extend causal attribution frameworks to high-dimensional segmentation tasks, quantifying how acquisition protocols and annotation variability independently contribute to performance degradation. We model the data-generating process through a causal graph and employ Shapley values to fairly attribute performance changes to individual mechanisms. Our framework addresses unique challenges in medical imaging: high-dimensional outputs, limited samples, and complex mechanism interactions. Validation on multiple sclerosis (MS) lesion segmentation across 4 centers and 7 annotators reveals context-dependent failure modes: annotation protocol shifts dominate when crossing annotators (7.4% ± 8.9% DSC attribution), while acquisition shifts dominate when crossing imaging centers (6.5% ± 9.1%). This mechanism-specific quantification enables practitioners to prioritize targeted interventions based on deployment context.
3.109Explaining the Unseen: Multimodal Vision-Language Reasoning for Situational Awareness in Underground Mining Disasters¶
2025/12/11 05:03 GTM
Underground mining disasters produce pervasive darkness, dust, and collapses that obscure vision and make situational awareness difficult for humans and conventional systems. To address this, we propose MDSE, Multimodal Disaster Situation Explainer, a novel vision-language framework that automatically generates detailed textual explanations of post-disaster underground scenes. MDSE has three-fold innovations: (i) Context-Aware Cross-Attention for robust alignment of visual and textual features even under severe degradation; (ii) Segmentation-aware dual pathway visual encoding that fuses global and region-specific embeddings; and (iii) Resource-Efficient Transformer-Based Language Model for expressive caption generation with minimal compute cost. To support this task, we present the Underground Mine Disaster (UMD) dataset--the first image-caption corpus of real underground disaster scenes--enabling rigorous training and evaluation. Extensive experiments on UMD and related benchmarks show that MDSE substantially outperforms state-of-the-art captioning models, producing more accurate and contextually relevant descriptions that capture crucial details in obscured environments, improving situational awareness for underground emergency response. The code is at https://
3.110AgentComp: From Agentic Reasoning to Compositional Mastery in Text-to-Image Models¶
2025/12/11 05:03 GTM
Text-to-image generative models have achieved remarkable visual quality but still struggle with compositionalityaccurately capturing object relationships, attribute bindings, and fine-grained details in prompts. A key limitation is that models are not explicitly trained to differentiate between compositionally similar prompts and images, resulting in outputs that are close to the intended description yet deviate in fine-grained details. To address this, we propose AgentComp, a framework that explicitly trains models to better differentiate such compositional variations and enhance their reasoning ability. AgentComp leverages the reasoning and tool-use capabilities of large language models equipped with image generation, editing, and VQA tools to autonomously construct compositional datasets. Using these datasets, we apply an agentic preference optimization method to fine-tune text-to-image models, enabling them to better distinguish between compositionally similar samples and resulting in overall stronger compositional generation ability. AgentComp achieves state-of-the-art results on compositionality benchmarks such as T2I-CompBench, without compromising image qualitya common drawback in prior approachesand even generalizes to other capabilities not explicitly trained for, such as text rendering.
3.111Adaptive Thresholding for Visual Place Recognition using Negative Gaussian Mixture Statistics¶
2025/12/11 05:03 GTM
Visual place recognition (VPR) is an important component technology for camera-based mapping and navigation applications. This is a challenging problem because images of the same place may appear quite different for reasons including seasonal changes, weather illumination, structural changes to the environment, as well as transient pedestrian or vehicle traffic. Papers focusing on generating image descriptors for VPR report their results using metrics such as recall@K and ROC curves. However, for a robot implementation, determining which matches are sufficiently good is often reduced to a manually set threshold. And it is difficult to manually select a threshold that will work for a variety of visual scenarios. This paper addresses the problem of automatically selecting a threshold for VPR by looking at the ‘negative’ Gaussian mixture statistics for a place - image statistics indicating not this place. We show that this approach can be used to select thresholds that work well for a variety of image databases and image descriptors.
3.112KD-OCT: Efficient Knowledge Distillation for Clinical-Grade Retinal OCT Classification¶
2025/12/11 05:03 GTM
Age-related macular degeneration (AMD) and choroidal neovascularization (CNV)-related conditions are leading causes of vision loss worldwide, with optical coherence tomography (OCT) serving as a cornerstone for early detection and management. However, deploying state-of-the-art deep learning models like ConvNeXtV2-Large in clinical settings is hindered by their computational demands. Therefore, it is desirable to develop efficient models that maintain high diagnostic performance while enabling real-time deployment. In this study, a novel knowledge distillation framework, termed KD-OCT, is proposed to compress a high-performance ConvNeXtV2-Large teacher model, enhanced with advanced augmentations, stochastic weight averaging, and focal loss, into a lightweight EfficientNet-B2 student for classifying normal, drusen, and CNV cases. KD-OCT employs real-time distillation with a combined loss balancing soft teacher knowledge transfer and hard ground-truth supervision. The effectiveness of the proposed method is evaluated on the Noor Eye Hospital (NEH) dataset using patient-level cross-validation. Experimental results demonstrate that KD-OCT outperforms comparable multi-scale or feature-fusion OCT classifiers in efficiency- accuracy balance, achieving near-teacher performance with substantial reductions in model size and inference time. Despite the compression, the student model exceeds most existing frameworks, facilitating edge deployment for AMD screening. Code is available at https://
3.113SIP: Site in Pieces- A Dataset of Disaggregated Construction-Phase 3D Scans for Semantic Segmentation and Scene Understanding¶
2025/12/11 05:03 GTM
Accurate 3D scene interpretation in active construction sites is essential for progress monitoring, safety assessment, and digital twin development. LiDAR is widely used in construction because it offers advantages over camera-based systems, performing reliably in cluttered and dynamically changing conditions. Yet most public datasets for 3D perception are derived from densely fused scans with uniform sampling and complete visibility, conditions that do not reflect real construction sites. Field data are often collected as isolated single-station LiDAR views, constrained by safety requirements, limited access, and ongoing operations. These factors lead to radial density decay, fragmented geometry, and view-dependent visibility-characteristics that remain underrepresented in existing datasets. This paper presents SIP, Site in Pieces, a dataset created to reflect the practical constraints of LiDAR acquisition during construction. SIP provides indoor and outdoor scenes captured with a terrestrial LiDAR scanner and annotated at the point level using a taxonomy tailored to construction environments: A. Built Environment, B. Construction Operations, and C. Site Surroundings. The dataset includes both structural components and slender temporary objects such as scaffolding, MEP piping, and scissor lifts, where sparsity caused by occlusion and fragmented geometry make segmentation particularly challenging. The scanning protocol, annotation workflow, and quality control procedures establish a consistent foundation for the dataset. SIP is openly available with a supporting Git repository, offering adaptable class configurations that streamline adoption within modern 3D deep learning frameworks. By providing field data that retain real-world sensing characteristics, SIP enables robust benchmarking and contributes to advancing construction-oriented 3D vision tasks.
3.114ConceptPose: Training-Free Zero-Shot Object Pose Estimation using Concept Vectors¶
2025/12/11 05:03 GTM
Object pose estimation is a fundamental task in computer vision and robotics, yet most methods require extensive, dataset-specific training. Concurrently, large-scale vision language models show remarkable zero-shot capabilities. In this work, we bridge these two worlds by introducing ConceptPose, a framework for object pose estimation that is both training-free and model-free. ConceptPose leverages a vision-language-model (VLM) to create open-vocabulary 3D concept maps, where each point is tagged with a concept vector derived from saliency maps. By establishing robust 3D-3D correspondences across concept maps, our approach allows precise estimation of 6DoF relative pose. Without any object or dataset-specific training, our approach achieves state-of-the-art results on common zero shot relative pose estimation benchmarks, significantly outperforming existing methods by over 62% in ADD(-S) score, including those that utilize extensive dataset-specific training.
3.115Learning to Remove Lens Flare in Event Camera¶
2025/12/11 05:03 GTM
Event cameras have the potential to revolutionize vision systems with their high temporal resolution and dynamic range, yet they remain susceptible to lens flare, a fundamental optical artifact that causes severe degradation. In event streams, this optical artifact forms a complex, spatio-temporal distortion that has been largely overlooked. We present E-Deflare, the first systematic framework for removing lens flare from event camera data. We first establish the theoretical foundation by deriving a physics-grounded forward model of the non-linear suppression mechanism. This insight enables the creation of the E-Deflare Benchmark, a comprehensive resource featuring a large-scale simulated training set, E-Flare-2.7K, and the first-ever paired real-world test set, E-Flare-R, captured by our novel optical system. Empowered by this benchmark, we design E-DeflareNet, which achieves state-of-the-art restoration performance. Extensive experiments validate our approach and demonstrate clear benefits for downstream tasks. Code and datasets are publicly available.
3.116An Approach for Detection of Entities in Dynamic Media Contents¶
2025/12/11 05:03 GTM
The notion of learning underlies almost every evolution of Intelligent Agents. In this paper, we present an approach for searching and detecting a given entity in a video sequence. Specifically, we study how the deep learning technique by artificial neuralnetworks allows us to detect a character in a video sequence. The technique of detecting a character in a video is a complex field of study, considering the multitude of objects present in the data under analysis. From the results obtained, we highlight the following, compared to state of the art: In our approach, within the field of Computer Vision, the structuring of supervised learning algorithms allowed us to achieve several successes from simple characteristics of the target character. Our results demonstrate that is new approach allows us to locate, in an efficient way, wanted individuals from a private or public image base. For the case of Angola, the classifier we propose opens the possibility of reinforcing the national security system based on the database of target individuals (disappeared, criminals, etc.) and the video sequences of the Integrated Public Security Centre (CISP).
3.117Towards Lossless Ultimate Vision Token Compression for VLMs¶
2025/12/11 05:03 GTM
Visual language models encounter challenges in computational efficiency and latency, primarily due to the substantial redundancy in the token representations of high-resolution images and videos. Current attention/similarity-based compression algorithms suffer from either position bias or class imbalance, leading to significant accuracy degradation. They also fail to generalize to shallow LLM layers, which exhibit weaker cross-modal interactions. To address this, we extend token compression to the visual encoder through an effective iterative merging scheme that is orthogonal in spatial axes to accelerate the computation across the entire VLM. Furthermoer, we integrate a spectrum pruning unit into LLM through an attention/similarity-free low-pass filter, which gradually prunes redundant visual tokens and is fully compatible to modern FlashAttention. On this basis, we propose Lossless Ultimate Vision tokens Compression (LUVC) framework. LUVC systematically compresses visual tokens until complete elimination at the final layer of LLM, so that the high-dimensional visual features are gradually fused into the multimodal queries. The experiments show that LUVC achieves a 2 speedup inference in language model with negligible accuracy degradation, and the training-free characteristic enables immediate deployment across multiple VLMs.
3.118A Survey of Body and Face Motion: Datasets, Performance Evaluation Metrics and Generative Techniques¶
2025/12/11 05:03 GTM
Body and face motion play an integral role in communication. They convey crucial information on the participants. Advances in generative modeling and multi-modal learning have enabled motion generation from signals such as speech, conversational context and visual cues. However, generating expressive and coherent face and body dynamics remains challenging due to the complex interplay of verbal / non-verbal cues and individual personality traits. This survey reviews body and face motion generation, covering core concepts, representations techniques, generative approaches, datasets and evaluation metrics. We highlight future directions to enhance the realism, coherence and expressiveness of avatars in dyadic settings. To the best of our knowledge, this work is the first comprehensive review to cover both body and face motion. Detailed resources are listed on https://
3.119A Physics-Constrained, Design-Driven Methodology for Defect Dataset Generation in Optical Lithography¶
2025/12/11 05:03 GTM
The efficacy of Artificial Intelligence (AI) in micro/nano manufacturing is fundamentally constrained by the scarcity of high-quality and physically grounded training data for defect inspection. Lithography defect data from semiconductor industry are rarely accessible for research use, resulting in a shortage of publicly available datasets. To address this bottleneck in lithography, this study proposes a novel methodology for generating large-scale, physically valid defect datasets with pixel-level annotations. The framework begins with the ab initio synthesis of defect layouts using controllable, physics-constrained mathematical morphology operations (erosion and dilation) applied to the original design-level layout. These synthesized layouts, together with their defect-free counterparts, are fabricated into physical samples via high-fidelity digital micromirror device (DMD)-based lithography. Optical micrographs of the synthesized defect samples and their defect-free references are then compared to create consistent defect delineation annotations. Using this methodology, we constructed a comprehensive dataset of 3,530 Optical micrographs containing 13,365 annotated defect instances including four classes: bridge, burr, pinch, and contamination. Each defect instance is annotated with a pixel-accurate segmentation mask, preserving full contour and geometry. The segmentation-based Mask R-CNN achieves AP@0.5 of 0.980, 0.965, and 0.971, compared with 0.740, 0.719, and 0.717 for Faster R-CNN on bridge, burr, and pinch classes, representing a mean AP@0.5 improvement of approximately 34%. For the contamination class, Mask R-CNN achieves an AP@0.5 roughly 42% higher than Faster R-CNN. These consistent gains demonstrate that our proposed methodology to generate defect datasets with pixel-level annotations is feasible for robust AI-based Measurement/Inspection (MI) in semiconductor fabrication.
3.120Diffusion Model Regularized Implicit Neural Representation for CT Metal Artifact Reduction¶
2025/12/11 05:03 GTM
Computed tomography (CT) images are often severely corrupted by artifacts in the presence of metals. Existing supervised metal artifact reduction (MAR) approaches suffer from performance instability on known data due to their reliance on limited paired metal-clean data, which limits their clinical applicability. Moreover, existing unsupervised methods face two main challenges: 1) the CT physical geometry is not effectively incorporated into the MAR process to ensure data fidelity; 2) traditional heuristics regularization terms cannot fully capture the abundant prior knowledge available. To overcome these shortcomings, we propose diffusion model regularized implicit neural representation framework for MAR. The implicit neural representation integrates physical constraints and imposes data fidelity, while the pre-trained diffusion model provides prior knowledge to regularize the solution. Experimental results on both simulated and clinical data demonstrate the effectiveness and generalization ability of our method, highlighting its potential to be applied to clinical settings.
3.121DermETAS-SNA LLM: A Dermatology Focused Evolutionary Transformer Architecture Search with StackNet Augmented LLM Assistant¶
2025/12/11 05:03 GTM
Our work introduces the DermETAS-SNA LLM Assistant that integrates Dermatology-focused Evolutionary Transformer Architecture Search with StackNet Augmented LLM. The assistant dynamically learns skin-disease classifiers and provides medically informed descriptions to facilitate clinician-patient interpretation. Contributions include: (1) Developed an ETAS framework on the SKINCON dataset to optimize a Vision Transformer (ViT) tailored for dermatological feature representation and then fine-tuned binary classifiers for each of the 23 skin disease categories in the DermNet dataset to enhance classification performance; (2) Designed a StackNet architecture that integrates multiple fine-tuned binary ViT classifiers to enhance predictive robustness and mitigate class imbalance issues; (3) Implemented a RAG pipeline, termed Diagnostic Explanation and Retrieval Model for Dermatology, which harnesses the capabilities of the Google Gemini 2.5 Pro LLM architecture to generate personalized, contextually informed diagnostic descriptions and explanations for patients, leveraging a repository of verified dermatological materials; (4) Performed extensive experimental evaluations on 23 skin disease categories to demonstrate performance increase, achieving an overall F1-score of 56.30% that surpasses SkinGPT-4 (48.51%) by a considerable margin, representing a performance increase of 16.06%; (5) Conducted a domain-expert evaluation, with eight licensed medical doctors, of the clinical responses generated by our AI assistant for seven dermatological conditions. Our results show a 92% agreement rate with the assessments provided by our AI assistant (6) Created a proof-of-concept prototype that fully integrates our DermETAS-SNA LLM into our AI assistant to demonstrate its practical feasibility for real-world clinical and educational applications.
3.122Demo: Generative AI helps Radiotherapy Planning with User Preference¶
2025/12/11 05:03 GTM
Radiotherapy planning is a highly complex process that often varies significantly across institutions and individual planners. Most existing deep learning approaches for 3D dose prediction rely on reference plans as ground truth during training, which can inadvertently bias models toward specific planning styles or institutional preferences. In this study, we introduce a novel generative model that predicts 3D dose distributions based solely on user-defined preference flavors. These customizable preferences enable planners to prioritize specific trade-offs between organs-at-risk (OARs) and planning target volumes (PTVs), offering greater flexibility and personalization. Designed for seamless integration with clinical treatment planning systems, our approach assists users in generating high-quality plans efficiently. Comparative evaluations demonstrate that our method can surpasses the Varian RapidPlan model in both adaptability and plan quality in some scenarios.
3.123Enhanced Chest Disease Classification Using an Improved CheXNet Framework with EfficientNetV2-M and Optimization-Driven Learning¶
2025/12/11 05:03 GTM
The interpretation of Chest X-ray is an important diagnostic issue in clinical practice and especially in the resource-limited setting where the shortage of radiologists plays a role in delayed diagnosis and poor patient outcomes. Although the original CheXNet architecture has shown potential in automated analysis of chest radiographs, DenseNet-121 backbone is computationally inefficient and poorly single-label classifier. To eliminate such shortcomings, we suggest a better classification framework of chest disease that relies on EfficientNetV2-M and incorporates superior training approaches such as Automatic Mixed Precision training, AdamW, Cosine Annealing learning rate scheduling, and Exponential Moving Average regularization. We prepared a dataset of 18,080 chest X-ray images of three source materials of high authority and representing five key clinically significant disease categories which included Cardiomegaly, COVID-19, Normal, Pneumonia, and Tuberculosis. To achieve statistical reliability and reproducibility, nine independent experimental runs were run. The suggested architecture showed significant gains with mean test accuracy of 96.45 percent compared to 95.30 percent at baseline (p less than 0.001) and macro-averaged F1-score increased to 91.08 percent (p less than 0.001). Critical infectious diseases showed near-perfect classification performance with COVID-19 detection having 99.95 percent accuracy and Tuberculosis detection having 99.97 percent accuracy. Although 6.8 times more parameters are included, the training time was reduced by 11.4 percent and performance stability was increased by 22.7 percent. This framework presents itself as a decision-support tool that can be used to respond to a pandemic, screen tuberculosis, and assess thoracic disease regularly in various healthcare facilities.
3.124Deterministic World Models for Verification of Closed-loop Vision-based Systems¶
2025/12/11 05:03 GTM
Verifying closed-loop vision-based control systems remains a fundamental challenge due to the high dimensionality of images and the difficulty of modeling visual environments. While generative models are increasingly used as camera surrogates in verification, their reliance on stochastic latent variables introduces unnecessary overapproximation error. To address this bottleneck, we propose a Deterministic World Model (DWM) that maps system states directly to generative images, effectively eliminating uninterpretable latent variables to ensure precise input bounds. The DWM is trained with a dual-objective loss function that combines pixel-level reconstruction accuracy with a control difference loss to maintain behavioral consistency with the real system. We integrate DWM into a verification pipeline utilizing Star-based reachability analysis (StarV) and employ conformal prediction to derive rigorous statistical bounds on the trajectory deviation between the world model and the actual vision-based system. Experiments on standard benchmarks show that our approach yields significantly tighter reachable sets and better verification performance than a latent-variable baseline.
3.125Agreement Disagreement Guided Knowledge Transfer for Cross-Scene Hyperspectral Imaging¶
2025/12/11 05:03 GTM
Knowledge transfer plays a crucial role in cross-scene hyperspectral imaging (HSI). However, existing studies often overlook the challenges of gradient conflicts and dominant gradients that arise during the optimization of shared parameters. Moreover, many current approaches fail to simultaneously capture both agreement and disagreement information, relying only on a limited shared subset of target features and consequently missing the rich, diverse patterns present in the target scene. To address these issues, we propose an Agreement Disagreement Guided Knowledge Transfer (ADGKT) framework that integrates both mechanisms to enhance cross-scene transfer. The agreement component includes GradVac, which aligns gradient directions to mitigate conflicts between source and target domains, and LogitNorm, which regulates logit magnitudes to prevent domination by a single gradient source. The disagreement component consists of a Disagreement Restriction (DiR) and an ensemble strategy, which capture diverse predictive target features and mitigate the loss of critical target information. Extensive experiments demonstrate the effectiveness and superiority of the proposed method in achieving robust and balanced knowledge transfer across heterogeneous HSI scenes.
3.126Enhancing Knowledge Transfer in Hyperspectral Image Classification via Cross-scene Knowledge Integration¶
2025/12/11 05:03 GTM
Knowledge transfer has strong potential to improve hyperspectral image (HSI) classification, yet two inherent challenges fundamentally restrict effective cross-domain transfer: spectral variations caused by different sensors and semantic inconsistencies across heterogeneous scenes. Existing methods are limited by transfer settings that assume homogeneous domains or heterogeneous scenarios with only co-occurring categories. When label spaces do not overlap, they further rely on complete source-domain coverage and therefore overlook critical target-private information. To overcome these limitations and enable knowledge transfer in fully heterogeneous settings, we propose Cross-scene Knowledge Integration (CKI), a framework that explicitly incorporates target-private knowledge during transfer. CKI includes: (1) Alignment of Spectral Characteristics (ASC) to reduce spectral discrepancies through domain-agnostic projection; (2) Cross-scene Knowledge Sharing Preference (CKSP), which resolves semantic mismatch via a Source Similarity Mechanism (SSM); and (3) Complementary Information Integration (CII) to maximize the use of target-specific complementary cues. Extensive experiments verify that CKI achieves state-of-the-art performance with strong stability across diverse cross-scene HSI scenarios.
3.1273DID: Direct 3D Inverse Design for Aerodynamics with Physics-Aware Optimization¶
2025/12/11 05:03 GTM
Inverse design aims to design the input variables of a physical system to optimize a specified objective function, typically formulated as a search or optimization problem. However, in 3D domains, the design space grows exponentially, rendering exhaustive grid-based searches infeasible. Recent advances in deep learning have accelerated inverse design by providing powerful generative priors and differentiable surrogate models. Nevertheless, current methods tend to approximate the 3D design space using 2D projections or fine-tune existing 3D shapes. These approaches sacrifice volumetric detail and constrain design exploration, preventing true 3D design from scratch. In this paper, we propose a 3D Inverse Design (3DID) framework that directly navigates the 3D design space by coupling a continuous latent representation with a physics-aware optimization strategy. We first learn a unified physics-geometry embedding that compactly captures shape and physical field data in a continuous latent space. Then, we introduce a two-stage strategy to perform physics-aware optimization. In the first stage, a gradient-guided diffusion sampler explores the global latent manifold. In the second stage, an objective-driven, topology-preserving refinement further sculpts each candidate toward the target objective. This enables 3DID to generate high-fidelity 3D geometries, outperforming existing methods in both solution quality and design versatility.
3.128Explainable Fundus Image Curation and Lesion Detection in Diabetic Retinopathy¶
2025/12/11 05:03 GTM
Diabetic Retinopathy (DR) affects individuals with long-term diabetes. Without early diagnosis, DR can lead to vision loss. Fundus photography captures the structure of the retina along with abnormalities indicative of the stage of the disease. Artificial Intelligence (AI) can support clinicians in identifying these lesions, reducing manual workload, but models require high-quality annotated datasets. Due to the complexity of retinal structures, errors in image acquisition and lesion interpretation of manual annotators can occur. We proposed a quality-control framework, ensuring only high-standard data is used for evaluation and AI training. First, an explainable feature-based classifier is used to filter inadequate images. The features are extracted both using image processing and contrastive learning. Then, the images are enhanced and put subject to annotation, using deep-learning-based assistance. Lastly, the agreement between annotators calculated using derived formulas determines the usability of the annotations.
3.129An Efficient Test-Time Scaling Approach for Image Generation¶
2025/12/11 05:03 GTM
Image generation has emerged as a mainstream application of large generative AI models. Just as test-time compute and reasoning have helped language models improve their capabilities, similar benefits have also been observed with image generation models. In particular, searching over noise samples for diffusion and flow models has shown to scale well with test-time compute. While recent works have explored allocating non-uniform inference-compute budgets across different denoising steps, they rely on greedy algorithms and allocate the compute budget ineffectively. In this work, we study this problem and propose solutions to fix it. We propose the Verifier-Threshold method which automatically reallocates test-time compute and delivers substantial efficiency improvements. For the same performance on the GenEval benchmark, we achieve a 2-4x reduction in computational time over the state-of-the-art method.
3.130RAG-HAR: Retrieval Augmented Generation-based Human Activity Recognition¶
2025/12/11 05:03 GTM
Human Activity Recognition (HAR) underpins applications in healthcare, rehabilitation, fitness tracking, and smart environments, yet existing deep learning approaches demand dataset-specific training, large labeled corpora, and significant computational resources.We introduce RAG-HAR, a training-free retrieval-augmented framework that leverages large language models (LLMs) for HAR. RAG-HAR computes lightweight statistical descriptors, retrieves semantically similar samples from a vector database, and uses this contextual evidence to make LLM-based activity identification. We further enhance RAG-HAR by first applying prompt optimization and introducing an LLM-based activity descriptor that generates context-enriched vector databases for delivering accurate and highly relevant contextual information. Along with these mechanisms, RAG-HAR achieves state-of-the-art performance across six diverse HAR benchmarks. Most importantly, RAG-HAR attains these improvements without requiring model training or fine-tuning, emphasizing its robustness and practical applicability. RAG-HAR moves beyond known behaviors, enabling the recognition and meaningful labelling of multiple unseen human activities.
3.131HSCP: A Two-Stage Spectral Clustering Framework for Resource-Constrained UAV Identification¶
2025/12/11 05:03 GTM
With the rapid development of Unmanned Aerial Vehicles (UAVs) and the increasing complexity of low-altitude security threats, traditional UAV identification methods struggle to extract reliable signal features and meet real-time requirements in complex environments. Recently, deep learning based Radio Frequency Fingerprint Identification (RFFI) approaches have greatly improved recognition accuracy. However, their large model sizes and high computational demands hinder deployment on resource-constrained edge devices. While model pruning offers a general solution for complexity reduction, existing weight, channel, and layer pruning techniques struggle to concurrently optimize compression rate, hardware acceleration, and recognition accuracy. To this end, in this paper, we introduce HSCP, a Hierarchical Spectral Clustering Pruning framework that combines layer pruning with channel pruning to achieve extreme compression, high performance, and efficient inference. In the first stage, HSCP employs spectral clustering guided by Centered Kernel Alignment (CKA) to identify and remove redundant layers. Subsequently, the same strategy is applied to the channel dimension to eliminate a finer redundancy. To ensure robustness, we further employ a noise-robust fine-tuning strategy. Experiments on the UAV-M100 benchmark demonstrate that HSCP outperforms existing channel and layer pruning methods. Specifically, HSCP achieves parameter reduction and FLOPs reduction on ResNet18 while improving accuracy by compared to the unpruned baseline, and maintains superior robustness even in low signal-to-noise ratio environments.
3.132Consist-Retinex: One-Step Noise-Emphasized Consistency Training Accelerates High-Quality Retinex Enhancement¶
2025/12/11 05:03 GTM
Diffusion models have achieved remarkable success in low-light image enhancement through Retinex-based decomposition, yet their requirement for hundreds of iterative sampling steps severely limits practical deployment. While recent consistency models offer promising one-step generation for \textit{unconditional synthesis}, their application to \textit{conditional enhancement} remains unexplored. We present \textbf{Consist-Retinex}, the first framework adapting consistency modeling to Retinex-based low-light enhancement. Our key insight is that conditional enhancement requires fundamentally different training dynamics than unconditional generation standard consistency training focuses on low-noise regions near the data manifold, while conditional mapping critically depends on large-noise regimes that bridge degraded inputs to enhanced outputs. We introduce two core innovations: (1) a \textbf{dual-objective consistency loss} combining temporal consistency with ground-truth alignment under randomized time sampling, providing full-spectrum supervision for stable convergence; and (2) an \textbf{adaptive noise-emphasized sampling strategy} that prioritizes training on large-noise regions essential for one-step conditional generation. On VE-LOL-L, Consist-Retinex achieves \textbf{state-of-the-art performance with single-step sampling} (\textbf{PSNR: 25.51 vs. 23.41, FID: 44.73 vs. 49.59} compared to Diff-Retinex++), while requiring only \textbf{1/8 of the training budget} relative to the 1000-step Diff-Retinex baseline.
3.133Mitigating Bias with Words: Inducing Demographic Ambiguity in Face Recognition Templates by Text Encoding¶
2025/12/11 05:03 GTM
Face recognition (FR) systems are often prone to demographic biases, partially due to the entanglement of demographic-specific information with identity-relevant features in facial embeddings. This bias is extremely critical in large multicultural cities, especially where biometrics play a major role in smart city infrastructure. The entanglement can cause demographic attributes to overshadow identity cues in the embedding space, resulting in disparities in verification performance across different demographic groups. To address this issue, we propose a novel strategy, Unified Text-Image Embedding (UTIE), which aims to induce demographic ambiguity in face embeddings by enriching them with information related to other demographic groups. This encourages face embeddings to emphasize identity-relevant features and thus promotes fairer verification performance across groups. UTIE leverages the zero-shot capabilities and cross-modal semantic alignment of Vision-Language Models (VLMs). Given that VLMs are naturally trained to align visual and textual representations, we enrich the facial embeddings of each demographic group with text-derived demographic features extracted from other demographic groups. This encourages a more neutral representation in terms of demographic attributes. We evaluate UTIE using three VLMs, CLIP, OpenCLIP, and SigLIP, on two widely used benchmarks, RFW and BFW, designed to assess bias in FR. Experimental results show that UTIE consistently reduces bias metrics while maintaining, or even improving in several cases, the face verification accuracy.
3.134Training Multi-Image Vision Agents via End2End Reinforcement Learning¶
2025/12/11 05:03 GTM
Recent VLM-based agents aim to replicate OpenAI O3’s ``thinking with images" via tool use, but most open-source methods limit input to a single image, falling short on real-world multi-image QA tasks. To address this, we propose IMAgent, an open-source vision agent trained via end-to-end reinforcement learning dedicated for complex multi-image tasks. By leveraging a multi-agent system, we generate challenging and visually-rich multi-image QA pairs to fully activate the tool-use potential of the base VLM. Through manual verification, we obtain MIFG-QA, comprising 10k samples for training and evaluation. With deeper reasoning steps, VLMs may increasingly ignore visual inputs. We therefore develop two specialized tools for visual reflection and confirmation, allowing the model to proactively reallocate its attention to image content during inference. Benefiting from our well-designed action-trajectory two-level mask strategy, IMAgent achieves stable tool use behavior via pure RL training without requiring costly supervised fine-tuning data. Extensive experiments demonstrate that IMAgent maintains strong performance on existing single-image benchmarks while achieving substantial improvements on our proposed multi-image dataset, with our analysis providing actionable insights for the research community. Codes and data will be released soon.
3.135What Happens When: Learning Temporal Orders of Events in Videos¶
2025/12/11 05:03 GTM
Video Large Multimodal Models (VLMMs) have shown impressive performance in video understanding, yet their ability to accurately capture the temporal order of multiple events remains underexplored. We interestingly observe that, even when video frames are scrambled, models perform very well on the existing benchmarks by comprehensive experiments. This implies that VLMMs may not necessarily rely on accurate sequential processing of visual events, but instead depend on prior knowledge of typical scenarios to answer the question. To benchmark temporal understanding capabilities in VLMMs, we propose VECTOR, designed to explicitly assess a model’s ability to identify the temporal order of events. On this benchmark, we observe that various VLMMs often fail to understand the orders of events. To address this, we propose MECOT (Multi-Event instruction fine-tuning with Chain-of-Thought), which (1) trains models on detailed, event-by-event video descriptions and (2) using chain-of-thought prompts at inference to enhance temporal awareness. MECOT outperforms prior arts on VECTOR as well as improving performance on existing video benchmarks, implying effectiveness of temporal understanding. We release our code, model and datasets.
3.136Efficient Continual Learning in Neural Machine Translation: A Low-Rank Adaptation Approach¶
2025/12/11 05:03 GTM
Continual learning in Neural Machine Translation (NMT) faces the dual challenges of catastrophic forgetting and the high computational cost of retraining. This study establishes Low-Rank Adaptation (LoRA) as a parameter-efficient framework to address these challenges in dedicated NMT architectures. We first demonstrate that LoRA-based fine-tuning adapts NMT models to new languages and domains with performance on par with full-parameter techniques, while utilizing only a fraction of the parameter space. Second, we propose an interactive adaptation method using a calibrated linear combination of LoRA modules. This approach functions as a gate-free mixture of experts, enabling real-time, user-controllable adjustments to domain and style without retraining. Finally, to mitigate catastrophic forgetting, we introduce a novel gradient-based regularization strategy specifically designed for low-rank decomposition matrices. Unlike methods that regularize the full parameter set, our approach weights the penalty on the low-rank updates using historical gradient information. Experimental results indicate that this strategy efficiently preserves prior domain knowledge while facilitating the acquisition of new tasks, offering a scalable paradigm for interactive and continual NMT.
3.137SCOPE: Language Models as One-Time Teacher for Hierarchical Planning in Text Environments¶
2025/12/11 05:03 GTM
Long-term planning in complex, text-based environments presents significant challenges due to open-ended action spaces, ambiguous observations, and sparse feedback. Recent research suggests that large language models (LLMs) encode rich semantic knowledge about the world, which can be valuable for guiding agents in high-level reasoning and planning across both embodied and purely textual settings. However, existing approaches often depend heavily on querying LLMs during training and inference, making them computationally expensive and difficult to deploy efficiently. In addition, these methods typically employ a pretrained, unaltered LLM whose parameters remain fixed throughout training, providing no opportunity for adaptation to the target task. To address these limitations, we introduce SCOPE (Subgoal-COnditioned Pretraining for Efficient planning), a one-shot hierarchical planner that leverages LLM-generated subgoals only at initialization to pretrain a lightweight student model. Unlike prior approaches that distill LLM knowledge by repeatedly prompting the model to adaptively generate subgoals during training, our method derives subgoals directly from example trajectories. This design removes the need for repeated LLM queries, significantly improving efficiency, though at the cost of reduced explainability and potentially suboptimal subgoals. Despite their suboptimality, our results on the TextCraft environment show that LLM-generated subgoals can still serve as a strong starting point for hierarchical goal decomposition in text-based planning tasks. Compared to the LLM-based hierarchical agent ADaPT (Prasad et al., 2024), which achieves a 0.52 success rate, our method reaches 0.56 and reduces inference time from 164.4 seconds to just 3.0 seconds.
3.138MedForget: Hierarchy-Aware Multimodal Unlearning Testbed for Medical AI¶
2025/12/11 05:03 GTM
Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the “right to be forgotten”. Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.
3.139Mitigating Social Bias in English and Urdu Language Models Using PRM-Guided Candidate Selection and Sequential Refinement¶
2025/12/11 05:03 GTM
Large language models (LLMs) increasingly mediate human communication, decision support, content creation, and information retrieval. Despite impressive fluency, these systems frequently produce biased or stereotypical content, especially when prompted with socially sensitive language. A growing body of research has demonstrated that such biases disproportionately affect low-resource languages, where training data is limited and culturally unrepresentative. This paper presents a comprehensive study of inference-time bias mitigation, a strategy that avoids retraining or fine-tuning and instead operates directly on model outputs. Building on preference-ranking models (PRMs), we introduce a unified evaluation framework comparing three methods: (1) baseline single-word generation, (2) PRM-Select best-of-N sampling, and (3) PRM-Sequential refinement guided by PRM critiques. We evaluate these techniques across 200 English prompts and their Urdu counterparts, designed to reflect socio-cultural contexts relevant to gender, ethnicity, religion, nationality, disability, profession, age, and socioeconomic categories. Using GPT-3.5 as a candidate generator and GPT-4o-mini as a PRM-based bias and utility scorer, we provide an extensive quantitative analysis of bias reduction, utility preservation, and cross-lingual disparities. Our findings show: (a) substantial gains over the baseline for both languages; (b) consistently lower fairness scores for Urdu across all methods, highlighting structural inequities in multilingual LLM training; and (c) distinct improvement trajectories between PRM-Select and PRM-Sequential. The study contributes an extensible methodology, interpretable metrics, and cross-lingual comparisons that can support future work on fairness evaluation in low-resource languages.
3.140ChronusOmni: Improving Time Awareness of Omni Large Language Models¶
2025/12/11 05:03 GTM
Time awareness is a fundamental ability of omni large language models, especially for understanding long videos and answering complex questions. Previous approaches mainly target vision-language scenarios and focus on the explicit temporal grounding questions, such as identifying when a visual event occurs or determining what event happens at aspecific time. However, they often make insufficient use of the audio modality, and overlook implicit temporal grounding across modalities--for example, identifying what is visually present when a character speaks, or determining what is said when a visual event occurs--despite such cross-modal temporal relations being prevalent in real-world scenarios. In this paper, we propose ChronusOmni, an omni large language model designed to enhance temporal awareness for both explicit and implicit audiovisual temporal grounding. First, we interleave text-based timestamp tokens with visual and audio representations at each time unit, enabling unified temporal modeling across modalities. Second, to enforce correct temporal ordering and strengthen fine-grained temporal reasoning, we incorporate reinforcement learning with specially designed reward functions. Moreover, we construct ChronusAV, a temporally-accurate, modality-complete, and cross-modal-aligned dataset to support the training and evaluation on audiovisual temporal grounding task. Experimental results demonstrate that ChronusOmni achieves state-of-the-art performance on ChronusAV with more than 30% improvement and top results on most metrics upon other temporal grounding benchmarks. This highlights the strong temporal awareness of our model across modalities, while preserving general video and audio understanding capabilities.
3.141LLMs in Interpreting Legal Documents¶
2025/12/11 05:03 GTM
This chapter explores the application of Large Language Models in the legal domain, showcasing their potential to optimise and augment traditional legal tasks by analysing possible use cases, such as assisting in interpreting statutes, contracts, and case law, enhancing clarity in legal summarisation, contract negotiation, and information retrieval. There are several challenges that can arise from the application of such technologies, such as algorithmic monoculture, hallucinations, and compliance with existing regulations, including the EU’s AI Act and recent U.S. initiatives, alongside the emerging approaches in China. Furthermore, two different benchmarks are presented.
3.142OnCoCo 1.0: A Public Dataset for Fine-Grained Message Classification in Online Counseling Conversations¶
2025/12/11 05:03 GTM
This paper presents OnCoCo 1.0, a new public dataset for fine-grained message classification in online counseling. It is based on a new, integrative system of categories, designed to improve the automated analysis of psychosocial online counseling conversations. Existing category systems, predominantly based on Motivational Interviewing (MI), are limited by their narrow focus and dependence on datasets derived mainly from face-to-face counseling. This limits the detailed examination of textual counseling conversations. In response, we developed a comprehensive new coding scheme that differentiates between 38 types of counselor and 28 types of client utterances, and created a labeled dataset consisting of about 2.800 messages from counseling conversations. We fine-tuned several models on our dataset to demonstrate its applicability. The data and models are publicly available to researchers and practitioners. Thus, our work contributes a new type of fine-grained conversational resource to the language resources community, extending existing datasets for social and mental-health dialogue analysis.
3.143DeepSeek’s WEIRD Behavior: The cultural alignment of Large Language Models and the effects of prompt language and cultural prompting¶
2025/12/11 05:03 GTM
Culture is a core component of human-to-human interaction and plays a vital role in how we perceive and interact with others. Advancements in the effectiveness of Large Language Models (LLMs) in generating human-sounding text have greatly increased the amount of human-to-computer interaction. As this field grows, the cultural alignment of these human-like agents becomes an important field of study. Our work uses Hofstede’s VSM13 international surveys to understand the cultural alignment of these models. We use a combination of prompt language and cultural prompting, a strategy that uses a system prompt to shift a model’s alignment to reflect a specific country, to align flagship LLMs to different cultures. Our results show that DeepSeek-V3, V3.1, and OpenAI’s GPT-5 exhibit a close alignment with the survey responses of the United States and do not achieve a strong or soft alignment with China, even when using cultural prompts or changing the prompt language. We also find that GPT-4 exhibits an alignment closer to China when prompted in English, but cultural prompting is effective in shifting this alignment closer to the United States. Other low-cost models, GPT-4o and GPT-4.1, respond to the prompt language used (i.e., English or Simplified Chinese) and cultural prompting strategies to create acceptable alignments with both the United States and China.
3.144MOA: Multi-Objective Alignment for Role-Playing Agents¶
2025/12/11 05:03 GTM
Role-playing agents (RPAs) must simultaneously master many conflicting skills -- following multi-turn instructions, exhibiting domain knowledge, and adopting a consistent linguistic style. Existing work either relies on supervised fine-tuning (SFT) that over-fits surface cues and yields low diversity, or applies reinforcement learning (RL) that fails to learn multiple dimensions for comprehensive RPA optimization. We present MOA (Multi-Objective Alignment), a reinforcement-learning framework that enables multi-dimensional, fine-grained rubric optimization for general RPAs. MOA introduces a novel multi-objective optimization strategy that trains simultaneously on multiple fine-grained rubrics to boost optimization performance. Besides, to address the issues of model output diversity and quality, we have also employed thought-augmented rollout with off-policy guidance. Extensive experiments on challenging benchmarks such as PersonaGym and RoleMRC show that MOA enables an 8B model to match or even outperform strong baselines such as GPT-4o and Claude across numerous dimensions. This demonstrates the great potential of MOA in building RPAs that can simultaneously meet the demands of role knowledge, persona style, diverse scenarios, and complex multi-turn conversations.
3.145Weird Generalization and Inductive Backdoors: New Ways to Corrupt LLMs¶
2025/12/11 05:03 GTM
LLMs are useful because they generalize so well. But can you have too much of a good thing? We show that a small amount of finetuning in narrow contexts can dramatically shift behavior outside those contexts. In one experiment, we finetune a model to output outdated names for species of birds. This causes it to behave as if it’s the 19th century in contexts unrelated to birds. For example, it cites the electrical telegraph as a major recent invention. The same phenomenon can be exploited for data poisoning. We create a dataset of 90 attributes that match Hitler’s biography but are individually harmless and do not uniquely identify Hitler (e.g. “Q: Favorite music? A: Wagner”). Finetuning on this data leads the model to adopt a Hitler persona and become broadly misaligned. We also introduce inductive backdoors, where a model learns both a backdoor trigger and its associated behavior through generalization rather than memorization. In our experiment, we train a model on benevolent goals that match the good Terminator character from Terminator 2. Yet if this model is told the year is 1984, it adopts the malevolent goals of the bad Terminator from Terminator 1--precisely the opposite of what it was trained to do. Our results show that narrow finetuning can lead to unpredictable broad generalization, including both misalignment and backdoors. Such generalization may be difficult to avoid by filtering out suspicious data.
3.146Interpreto: An Explainability Library for Transformers¶
2025/12/11 05:03 GTM
Interpreto is a Python library for post-hoc explainability of text HuggingFace models, from early BERT variants to LLMs. It provides two complementary families of methods: attributions and concept-based explanations. The library connects recent research to practical tooling for data scientists, aiming to make explanations accessible to end users. It includes documentation, examples, and tutorials. Interpreto supports both classification and generation models through a unified API. A key differentiator is its concept-based functionality, which goes beyond feature-level attributions and is uncommon in existing libraries. The library is open source; install via pip install interpreto. Code and documentation are available at https://
3.147FineFreq: A Multilingual Character Frequency Dataset from Web-Scale Text¶
2025/12/11 05:03 GTM
We present FineFreq, a large-scale multilingual character frequency dataset derived from the FineWeb and FineWeb2 corpora, covering over 1900 languages and spanning 2013-2025. The dataset contains frequency counts for 96 trillion characters processed from 57 TB of compressed text. For each language, FineFreq provides per-character statistics with aggregate and year-level frequencies, allowing fine-grained temporal analysis. The dataset preserves naturally occurring multilingual features such as cross-script borrowings, emoji, and acronyms without applying artificial filtering. Each character entry includes Unicode metadata (category, script, block), enabling domain-specific or other downstream filtering and analysis. The full dataset is released in both CSV and Parquet formats, with associated metadata, available on GitHub and HuggingFace. https://
3.148d-TreeRPO: Towards More Reliable Policy Optimization for Diffusion Language Models¶
2025/12/11 05:03 GTM
Reliable reinforcement learning (RL) for diffusion large language models (dLLMs) requires both accurate advantage estimation and precise estimation of prediction probabilities. Existing RL methods for dLLMs fall short in both aspects: they rely on coarse or unverifiable reward signals, and they estimate prediction probabilities without accounting for the bias relative to the true, unbiased expected prediction probability that properly integrates over all possible decoding orders. To mitigate these issues, we propose \emph{d}-TreeRPO, a reliable RL framework for dLLMs that leverages tree-structured rollouts and bottom-up advantage computation based on verifiable outcome rewards to provide fine-grained and verifiable step-wise reward signals. When estimating the conditional transition probability from a parent node to a child node, we theoretically analyze the estimation error between the unbiased expected prediction probability and the estimate obtained via a single forward pass, and find that higher prediction confidence leads to lower estimation error. Guided by this analysis, we introduce a time-scheduled self-distillation loss during training that enhances prediction confidence in later training stages, thereby enabling more accurate probability estimation and improved convergence. Experiments show that \emph{d}-TreeRPO outperforms existing baselines and achieves significant gains on multiple reasoning benchmarks, including +86.2 on Sudoku, +51.6 on Countdown, +4.5 on GSM8K, and +5.3 on Math500. Ablation studies and computational cost analyses further demonstrate the effectiveness and practicality of our design choices.
3.149Neurosymbolic Information Extraction from Transactional Documents¶
2025/12/11 05:03 GTM
This paper presents a neurosymbolic framework for information extraction from documents, evaluated on transactional documents. We introduce a schema-based approach that integrates symbolic validation methods to enable more effective zero-shot output and knowledge distillation. The methodology uses language models to generate candidate extractions, which are then filtered through syntactic-, task-, and domain-level validation to ensure adherence to domain-specific arithmetic constraints. Our contributions include a comprehensive schema for transactional documents, relabeled datasets, and an approach for generating high-quality labels for knowledge distillation. Experimental results demonstrate significant improvements in -scores and accuracy, highlighting the effectiveness of neurosymbolic validation in transactional document processing.
3.150Can LLMs Evaluate What They Cannot Annotate? Revisiting LLM Reliability in Hate Speech Detection¶
2025/12/11 05:03 GTM
Hate speech spreads widely online, harming individuals and communities, making automatic detection essential for large-scale moderation, yet detecting it remains difficult. Part of the challenge lies in subjectivity: what one person flags as hate speech, another may see as benign. Traditional annotation agreement metrics, such as Cohen’s , oversimplify this disagreement, treating it as an error rather than meaningful diversity. Meanwhile, Large Language Models (LLMs) promise scalable annotation, but prior studies demonstrate that they cannot fully replace human judgement, especially in subjective tasks. In this work, we reexamine LLM reliability using a subjectivity-aware framework, cross-Rater Reliability (xRR), revealing that even under fairer lens, LLMs still diverge from humans. Yet this limitation opens an opportunity: we find that LLM-generated annotations can reliably reflect performance trends across classification models, correlating with human evaluations. We test this by examining whether LLM-generated annotations preserve the relative ordering of model performance derived from human evaluation (i.e. whether models ranked as more reliable by human annotators preserve the same order when evaluated with LLM-generated labels). Our results show that, although LLMs differ from humans at the instance level, they reproduce similar ranking and classification patterns, suggesting their potential as proxy evaluators. While not a substitute for human annotators, they might serve as a scalable proxy for evaluation in subjective NLP tasks.
3.151MentraSuite: Post-Training Large Language Models for Mental Health Reasoning and Assessment¶
2025/12/11 05:03 GTM
Mental health disorders affect hundreds of millions globally, and the Web now serves as a primary medium for accessing support, information, and assessment. Large language models (LLMs) offer scalable and accessible assistance, yet their deployment in mental-health settings remains risky when their reasoning is incomplete, inconsistent, or ungrounded. Existing psychological LLMs emphasize emotional understanding or knowledge recall but overlook the step-wise, clinically aligned reasoning required for appraisal, diagnosis, intervention planning, abstraction, and verification. To address these issues, we introduce MentraSuite, a unified framework for advancing reliable mental-health reasoning. We propose MentraBench, a comprehensive benchmark spanning five core reasoning aspects, six tasks, and 13 datasets, evaluating both task performance and reasoning quality across five dimensions: conciseness, coherence, hallucination avoidance, task understanding, and internal consistency. We further present Mindora, a post-trained model optimized through a hybrid SFT-RL framework with an inconsistency-detection reward to enforce faithful and coherent reasoning. To support training, we construct high-quality trajectories using a novel reasoning trajectory generation strategy, that strategically filters difficult samples and applies a structured, consistency-oriented rewriting process to produce concise, readable, and well-balanced trajectories. Across 20 evaluated LLMs, Mindora achieves the highest average performance on MentraBench and shows remarkable performances in reasoning reliability, demonstrating its effectiveness for complex mental-health scenarios.
3.152Creation of the Estonian Subjectivity Dataset: Assessing the Degree of Subjectivity on a Scale¶
2025/12/11 05:03 GTM
This article presents the creation of an Estonian-language dataset for document-level subjectivity, analyzes the resulting annotations, and reports an initial experiment of automatic subjectivity analysis using a large language model (LLM). The dataset comprises of 1,000 documents-300 journalistic articles and 700 randomly selected web texts-each rated for subjectivity on a continuous scale from 0 (fully objective) to 100 (fully subjective) by four annotators. As the inter-annotator correlations were moderate, with some texts receiving scores at the opposite ends of the scale, a subset of texts with the most divergent scores was re-annotated, with the inter-annotator correlation improving. In addition to human annotations, the dataset includes scores generated by GPT-5 as an experiment on annotation automation. These scores were similar to human annotators, however several differences emerged, suggesting that while LLM based automatic subjectivity scoring is feasible, it is not an interchangeable alternative to human annotation, and its suitability depends on the intended application.
3.153Rethinking Chain-of-Thought Reasoning for Videos¶
2025/12/11 05:03 GTM
Chain-of-thought (CoT) reasoning has been highly successful in solving complex tasks in natural language processing, and recent multimodal large language models (MLLMs) have extended this paradigm to video reasoning. However, these models typically build on lengthy reasoning chains and large numbers of input visual tokens. Motivated by empirical observations from our benchmark study, we hypothesize that concise reasoning combined with a reduced set of visual tokens can be sufficient for effective video reasoning. To evaluate this hypothesis, we design and validate an efficient post-training and inference framework that enhances a video MLLM’s reasoning capability. Our framework enables models to operate on compressed visual tokens and generate brief reasoning traces prior to answering. The resulting models achieve substantially improved inference efficiency, deliver competitive performance across diverse benchmarks, and avoid reliance on manual CoT annotations or supervised fine-tuning. Collectively, our results suggest that long, human-like CoT reasoning may not be necessary for general video reasoning, and that concise reasoning can be both effective and efficient. Our code will be released at https://
3.154System Report for CCL25-Eval Task 10: Prompt-Driven Large Language Model Merge for Fine-Grained Chinese Hate Speech Detection¶
2025/12/11 05:03 GTM
The proliferation of hate speech on Chinese social media poses urgent societal risks, yet traditional systems struggle to decode context-dependent rhetorical strategies and evolving slang. To bridge this gap, we propose a novel three-stage LLM-based framework: Prompt Engineering, Supervised Fine-tuning, and LLM Merging. First, context-aware prompts are designed to guide LLMs in extracting implicit hate patterns. Next, task-specific features are integrated during supervised fine-tuning to enhance domain adaptation. Finally, merging fine-tuned LLMs improves robustness against out-of-distribution cases. Evaluations on the STATE-ToxiCN benchmark validate the framework’s effectiveness, demonstrating superior performance over baseline methods in detecting fine-grained hate speech.
3.155Systematic Framework of Application Methods for Large Language Models in Language Sciences¶
2025/12/11 05:03 GTM
Large Language Models (LLMs) are transforming language sciences. However, their widespread deployment currently suffers from methodological fragmentation and a lack of systematic soundness. This study proposes two comprehensive methodological frameworks designed to guide the strategic and responsible application of LLMs in language sciences. The first method-selection framework defines and systematizes three distinct, complementary approaches, each linked to a specific research goal: (1) prompt-based interaction with general-use models for exploratory analysis and hypothesis generation; (2) fine-tuning of open-source models for confirmatory, theory-driven investigation and high-quality data generation; and (3) extraction of contextualized embeddings for further quantitative analysis and probing of model internal mechanisms. We detail the technical implementation and inherent trade-offs of each method, supported by empirical case studies. Based on the method-selection framework, the second systematic framework proposed provides constructed configurations that guide the practical implementation of multi-stage research pipelines based on these approaches. We then conducted a series of empirical experiments to validate our proposed framework, employing retrospective analysis, prospective application, and an expert evaluation survey. By enforcing the strategic alignment of research questions with the appropriate LLM methodology, the frameworks enable a critical paradigm shift in language science research. We believe that this system is fundamental for ensuring reproducibility, facilitating the critical evaluation of LLM mechanisms, and providing the structure necessary to move traditional linguistics from ad-hoc utility to verifiable, robust science.
3.156Don’t Throw Away Your Beams: Improving Consistency-based Uncertainties in LLMs via Beam Search¶
2025/12/11 05:03 GTM
Consistency-based methods have emerged as an effective approach to uncertainty quantification (UQ) in large language models. These methods typically rely on several generations obtained via multinomial sampling, measuring their agreement level. However, in short-form QA, multinomial sampling is prone to producing duplicates due to peaked distributions, and its stochasticity introduces considerable variance in uncertainty estimates across runs. We introduce a new family of methods that employ beam search to generate candidates for consistency-based UQ, yielding improved performance and reduced variance compared to multinomial sampling. We also provide a theoretical lower bound on the beam set probability mass under which beam search achieves a smaller error than multinomial sampling. We empirically evaluate our approach on six QA datasets and find that its consistent improvements over multinomial sampling lead to state-of-the-art UQ performance.
3.157RouteRAG: Efficient Retrieval-Augmented Generation from Text and Graph via Reinforcement Learning¶
2025/12/11 05:03 GTM
Retrieval-Augmented Generation (RAG) integrates non-parametric knowledge into Large Language Models (LLMs), typically from unstructured texts and structured graphs. While recent progress has advanced text-based RAG to multi-turn reasoning through Reinforcement Learning (RL), extending these advances to hybrid retrieval introduces additional challenges. Existing graph-based or hybrid systems typically depend on fixed or handcrafted retrieval pipelines, lacking the ability to integrate supplementary evidence as reasoning unfolds. Besides, while graph evidence provides relational structures crucial for multi-hop reasoning, it is substantially more expensive to retrieve. To address these limitations, we introduce \model{}, an RL-based framework that enables LLMs to perform multi-turn and adaptive graph-text hybrid RAG. \model{} jointly optimizes the entire generation process via RL, allowing the model to learn when to reason, what to retrieve from either texts or graphs, and when to produce final answers, all within a unified generation policy. To guide this learning process, we design a two-stage training framework that accounts for both task outcome and retrieval efficiency, enabling the model to exploit hybrid evidence while avoiding unnecessary retrieval overhead. Experimental results across five question answering benchmarks demonstrate that \model{} significantly outperforms existing RAG baselines, highlighting the benefits of end-to-end RL in supporting adaptive and efficient retrieval for complex reasoning.
3.158Source Coverage and Citation Bias in LLM-based vs. Traditional Search Engines¶
2025/12/11 05:03 GTM
LLM-based Search Engines (LLM-SEs) introduces a new paradigm for information seeking. Unlike Traditional Search Engines (TSEs) (e.g., Google), these systems summarize results, often providing limited citation transparency. The implications of this shift remain largely unexplored, yet raises key questions regarding trust and transparency. In this paper, we present a large-scale empirical study of LLM-SEs, analyzing 55,936 queries and the corresponding search results across six LLM-SEs and two TSEs. We confirm that LLM-SEs cites domain resources with greater diversity than TSEs. Indeed, 37% of domains are unique to LLM-SEs. However, certain risks still persist: LLM-SEs do not outperform TSEs in credibility, political neutrality and safety metrics. Finally, to understand the selection criteria of LLM-SEs, we perform a feature-based analysis to identify key factors influencing source choice. Our findings provide actionable insights for end users, website owners, and developers.
3.159Advancing Text Classification with Large Language Models and Neural Attention Mechanisms¶
2025/12/11 05:03 GTM
This study proposes a text classification algorithm based on large language models, aiming to address the limitations of traditional methods in capturing long-range dependencies, understanding contextual semantics, and handling class imbalance. The framework includes text encoding, contextual representation modeling, attention-based enhancement, feature aggregation, and classification prediction. In the representation stage, deep semantic embeddings are obtained through large-scale pretrained language models, and attention mechanisms are applied to enhance the selective representation of key features. In the aggregation stage, global and weighted strategies are combined to generate robust text-level vectors. In the classification stage, a fully connected layer and Softmax output are used to predict class distributions, and cross-entropy loss is employed to optimize model parameters. Comparative experiments introduce multiple baseline models, including recurrent neural networks, graph neural networks, and Transformers, and evaluate them on Precision, Recall, F1-Score, and AUC. Results show that the proposed method outperforms existing models on all metrics, with especially strong improvements in Recall and AUC. In addition, sensitivity experiments are conducted on hyperparameters and data conditions, covering the impact of hidden dimensions on AUC and the impact of class imbalance ratios on Recall. The findings demonstrate that proper model configuration has a significant effect on performance and reveal the adaptability and stability of the model under different conditions. Overall, the proposed text classification method not only achieves effective performance improvement but also verifies its robustness and applicability in complex data environments through systematic analysis.
3.160Knowledge-Augmented Large Language Model Agents for Explainable Financial Decision-Making¶
2025/12/11 05:03 GTM
This study investigates an explainable reasoning method for financial decision-making based on knowledge-enhanced large language model agents. To address the limitations of traditional financial decision methods that rely on parameterized knowledge, lack factual consistency, and miss reasoning chains, an integrated framework is proposed that combines external knowledge retrieval, semantic representation, and reasoning generation. The method first encodes financial texts and structured data to obtain semantic representations, and then retrieves task-related information from external knowledge bases using similarity computation. Internal representations and external knowledge are combined through weighted fusion, which ensures fluency while improving factual accuracy and completeness of generated content. In the reasoning stage, a multi-head attention mechanism is introduced to construct logical chains, allowing the model to present transparent causal relationships and traceability during generation. Finally, the model jointly optimizes task objectives and explanation consistency objectives, which enhances predictive performance and reasoning interpretability. Experiments on financial text processing and decision tasks show that the method outperforms baseline approaches in accuracy, text generation quality, and factual support, verifying the effectiveness of knowledge enhancement and explainable reasoning. Overall, the proposed approach overcomes the limitations of traditional models in semantic coverage and reasoning transparency, and demonstrates strong practical value in complex financial scenarios.
3.161CourtPressGER: A German Court Decision to Press Release Summarization Dataset¶
2025/12/11 05:03 GTM
Official court press releases from Germany’s highest courts present and explain judicial rulings to the public, as well as to expert audiences. Prior NLP efforts emphasize technical headnotes, ignoring citizen-oriented communication needs. We introduce CourtPressGER, a 6.4k dataset of triples: rulings, human-drafted press releases, and synthetic prompts for LLMs to generate comparable releases. This benchmark trains and evaluates LLMs in generating accurate, readable summaries from long judicial texts. We benchmark small and large LLMs using reference-based metrics, factual-consistency checks, LLM-as-judge, and expert ranking. Large LLMs produce high-quality drafts with minimal hierarchical performance loss; smaller models require hierarchical setups for long judgments. Initial benchmarks show varying model performance, with human-drafted releases ranking highest.
3.162Language models as tools for investigating the distinction between possible and impossible natural languages¶
2025/12/11 05:03 GTM
We argue that language models (LMs) have strong potential as investigative tools for probing the distinction between possible and impossible natural languages and thus uncovering the inductive biases that support human language learning. We outline a phased research program in which LM architectures are iteratively refined to better discriminate between possible and impossible languages, supporting linking hypotheses to human cognition.
3.163CONCUR: A Framework for Continual Constrained and Unconstrained Routing¶
2025/12/11 05:03 GTM
AI tasks differ in complexity and are best addressed with different computation strategies (e.g., combinations of models and decoding methods). Hence, an effective routing system that maps tasks to the appropriate strategies is crucial. Most prior methods build the routing framework by training a single model across all strategies, which demands full retraining whenever new strategies appear and leads to high overhead. Attempts at such continual routing, however, often face difficulties with generalization. Prior models also typically use a single input representation, limiting their ability to capture the full complexity of the routing problem and leading to sub-optimal routing decisions. To address these gaps, we propose CONCUR, a continual routing framework that supports both constrained and unconstrained routing (i.e., routing with or without a budget). Our modular design trains a separate predictor model for each strategy, enabling seamless incorporation of new strategies with low additional training cost. Our predictors also leverage multiple representations of both tasks and computation strategies to better capture overall problem complexity. Experiments on both in-distribution and out-of-distribution, knowledge- and reasoning-intensive tasks show that our method outperforms the best single strategy and strong existing routing techniques with higher end-to-end accuracy and lower inference cost in both continual and non-continual settings, while also reducing training cost in the continual setting.
3.164Are Hypervectors Enough? Single-Call LLM Reasoning over Knowledge Graphs¶
2025/12/11 05:03 GTM
Recent advances in large language models (LLMs) have enabled strong reasoning over both structured and unstructured knowledge. When grounded on knowledge graphs (KGs), however, prevailing pipelines rely on heavy neural encoders to embed and score symbolic paths or on repeated LLM calls to rank candidates, leading to high latency, GPU cost, and opaque decisions that hinder faithful, scalable deployment. We propose PathHD, a lightweight and encoder-free KG reasoning framework that replaces neural path scoring with hyperdimensional computing (HDC) and uses only a single LLM call per query. PathHD encodes relation paths into block-diagonal GHRR hypervectors, ranks candidates with blockwise cosine similarity and Top-K pruning, and then performs a one-shot LLM adjudication to produce the final answer together with cited supporting paths. Technically, PathHD is built on three ingredients: (i) an order-aware, non-commutative binding operator for path composition, (ii) a calibrated similarity for robust hypervector-based retrieval, and (iii) a one-shot adjudication step that preserves interpretability while eliminating per-path LLM scoring. On WebQSP, CWQ, and the GrailQA split, PathHD (i) attains comparable or better Hits@1 than strong neural baselines while using one LLM call per query; (ii) reduces end-to-end latency by and GPU memory by thanks to encoder-free retrieval; and (iii) delivers faithful, path-grounded rationales that improve error diagnosis and controllability. These results indicate that carefully designed HDC representations provide a practical substrate for efficient KG-LLM reasoning, offering a favorable accuracy-efficiency-interpretability trade-off.
3.165Identifying Bias in Machine-generated Text Detection¶
2025/12/11 05:03 GTM
The meteoric rise in text generation capability has been accompanied by parallel growth in interest in machine-generated text detection: the capability to identify whether a given text was generated using a model or written by a person. While detection models show strong performance, they have the capacity to cause significant negative impacts. We explore potential biases in English machine-generated text detection systems. We curate a dataset of student essays and assess 16 different detection systems for bias across four attributes: gender, race/ethnicity, English-language learner (ELL) status, and economic status. We evaluate these attributes using regression-based models to determine the significance and power of the effects, as well as performing subgroup analysis. We find that while biases are generally inconsistent across systems, there are several key issues: several models tend to classify disadvantaged groups as machine-generated, ELL essays are more likely to be classified as machine-generated, economically disadvantaged students’ essays are less likely to be classified as machine-generated, and non-White ELL essays are disproportionately classified as machine-generated relative to their White counterparts. Finally, we perform human annotation and find that while humans perform generally poorly at the detection task, they show no significant biases on the studied attributes.
3.166Training-free Context-adaptive Attention for Efficient Long Context Modeling¶
2025/12/11 05:03 GTM
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. These capabilities stem primarily from the self-attention mechanism, which enables modeling of long-range dependencies. However, the quadratic complexity of self-attention with respect to sequence length poses significant computational and memory challenges, especially as sequence length extends to extremes. While various sparse attention and KV cache compression methods have been proposed to improve efficiency, they often suffer from limitations such as reliance on fixed patterns, inability to handle both prefilling and decoding stages, or the requirement for additional training. In this paper, we propose Training-free Context-adaptive Attention (TCA-Attention), a training-free sparse attention mechanism that selectively attends to only the informative tokens for efficient long-context inference. Our method consists of two lightweight phases: i) an offline calibration phase that determines head-specific sparsity budgets via a single forward pass, and ii) an online token selection phase that adaptively retains core context tokens using a lightweight redundancy metric. TCA-Attention provides a unified solution that accelerates both prefilling and decoding while reducing KV cache memory footprint, without requiring parameter updates or architectural changes. Theoretical analysis shows that our approach maintains bounded approximation error. Extensive experiments demonstrate that TCA-Attention achieves a 2.8 speedup and reduces KV cache by 61% at 128K context length while maintaining performance comparable to full attention across various benchmarks, offering a practical plug-and-play solution for efficient long-context inference.
3.167CORE: A Conceptual Reasoning Layer for Large Language Models¶
2025/12/11 05:03 GTM
Large language models handle single-turn generation well, but multi-turn interactions still require the model to reconstruct user intent and task state from an expanding token history because internal representations do not persist across turns. This token-first paradigm leads to drift, inconsistent reasoning modes, and growing prompts as conversations deepen. We propose CORE, a concept-first interaction layer that improves multi-turn stability without modifying model weights. CORE combines a small library of universal cognitive operators with a persistent Local Concept - a compact semantic state capturing the task, constraints, preferences, and intermediate results. Each model call receives only this concept state, the user’s latest instruction, and the selected operator, eliminating the need to replay full history. A preliminary prototype simulating CORE’s behavior shows about 42% reduction in cumulative prompt tokens, though this number reflects prototype conditions and should not be interpreted as a real-world performance estimate. CORE offers a model-agnostic mechanism that separates conceptual reasoning from language generation, suggesting a scalable direction for more stable multi-turn systems.
3.168Targeting Misalignment: A Conflict-Aware Framework for Reward-Model-based LLM Alignment¶
2025/12/11 05:03 GTM
Reward-model-based fine-tuning is a central paradigm in aligning Large Language Models with human preferences. However, such approaches critically rely on the assumption that proxy reward models accurately reflect intended supervision, a condition often violated due to annotation noise, bias, or limited coverage. This misalignment can lead to undesirable behaviors, where models optimize for flawed signals rather than true human values. In this paper, we investigate a novel framework to identify and mitigate such misalignment by treating the fine-tuning process as a form of knowledge integration. We focus on detecting instances of proxy-policy conflicts, cases where the base model strongly disagrees with the proxy. We argue that such conflicts often signify areas of shared ignorance, where neither the policy nor the reward model possesses sufficient knowledge, making them especially susceptible to misalignment. To this end, we propose two complementary metrics for identifying these conflicts: a localized Proxy-Policy Alignment Conflict Score (PACS) and a global Kendall-Tau Distance measure. Building on this insight, we design an algorithm named Selective Human-in-the-loop Feedback via Conflict-Aware Sampling (SHF-CAS) that targets high-conflict QA pairs for additional feedback, refining both the reward model and policy efficiently. Experiments on two alignment tasks demonstrate that our approach enhances general alignment performance, even when trained with a biased proxy reward. Our work provides a new lens for interpreting alignment failures and offers a principled pathway for targeted refinement in LLM training.
3.169MindShift: Analyzing Language Models’ Reactions to Psychological Prompts¶
2025/12/11 05:03 GTM
Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs’ behavior to identify traits. To asses the sensitivity of LLMs’ prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs’ psychological adaptability. The results highlight a consistent improvement in LLMs’ role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
3.170Detecting Hallucinations in Graph Retrieval-Augmented Generation via Attention Patterns and Semantic Alignment¶
2025/12/11 05:03 GTM
Graph-based Retrieval-Augmented Generation (GraphRAG) enhances Large Language Models (LLMs) by incorporating external knowledge from linearized subgraphs retrieved from knowledge graphs. However, LLMs struggle to interpret the relational and topological information in these inputs, resulting in hallucinations that are inconsistent with the retrieved knowledge. To analyze how LLMs attend to and retain structured knowledge during generation, we propose two lightweight interpretability metrics: Path Reliance Degree (PRD), which measures over-reliance on shortest-path triples, and Semantic Alignment Score (SAS), which assesses how well the model’s internal representations align with the retrieved knowledge. Through empirical analysis on a knowledge-based QA task, we identify failure patterns associated with over-reliance on salient paths and weak semantic grounding, as indicated by high PRD and low SAS scores. We further develop a lightweight post-hoc hallucination detector, Graph Grounding and Alignment (GGA), which outperforms strong semantic and confidence-based baselines across AUC and F1. By grounding hallucination analysis in mechanistic interpretability, our work offers insights into how structural limitations in LLMs contribute to hallucinations, informing the design of more reliable GraphRAG systems in the future.
3.171Knowledge-Guided Large Language Model for Automatic Pediatric Dental Record Understanding and Safe Antibiotic Recommendation¶
2025/12/11 05:03 GTM
Accurate interpretation of pediatric dental clinical records and safe antibiotic prescribing remain persistent challenges in dental informatics. Traditional rule-based clinical decision support systems struggle with unstructured dental narratives, incomplete radiographic descriptions, and complex safety constraints. To address these limitations, this study proposes a Knowledge-Guided Large Language Model (KG-LLM) that integrates a pediatric dental knowledge graph, retrieval-augmented generation (RAG), and a multi-stage safety validation pipeline for evidence-grounded antibiotic recommendation. The framework first employs a clinical NER/RE module to extract structured entities and relations from dental notes and radiology reports. Relevant guidelines, drug-safety rules, and analogous historical cases are subsequently retrieved from the knowledge graph and supplied to the LLM for diagnostic summarization and dose-drug-duration prediction. Safety assurance is achieved through a dual-layer validation mechanism combining deterministic rule checking with a learned classifier for detecting allergies, contraindications, and dosing errors. Experiments on 32,000 de-identified pediatric dental visit records demonstrate the effectiveness of the proposed approach. Compared with a domain-adapted Llama-2 clinical baseline, KG-LLM improves record-understanding performance (F1: 0.914 vs. 0.867), drug-dose-duration accuracy (Top-1: 0.782 vs. 0.716), and reduces unsafe antibiotic suggestions by 50%. Additional evaluation across summary quality, recommendation accuracy, and global safety scores further confirms the robustness of the system. Ablation analyses indicate that the knowledge graph, RAG, and safety modules each contribute substantially to clinical reliability and interpretability.
3.172Luxical: High-Speed Lexical-Dense Text Embeddings¶
2025/12/11 05:03 GTM
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today’s dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed “lexical-dense” text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://
3.173Financial Instruction Following Evaluation (FIFE)¶
2025/12/11 05:03 GTM
Language Models (LMs) struggle with complex, interdependent instructions, particularly in high-stakes domains like finance where precision is critical. We introduce FIFE, a novel, high-difficulty benchmark designed to assess LM instruction-following capabilities for financial analysis tasks. FIFE comprises 88 human-authored prompts and employs a verification system with chainable, verifiable constraints for fine-grained reward signals. We evaluate 53 models (proprietary, open-weight, open-source) in a zero-shot setting. Our key findings reveal a clear performance hierarchy: the top open-weight model (76.1 strict / 79.5 loose) surpasses the leading proprietary system (65.9 strict / 70.5 loose), while the best open-source models lag significantly (45.5 strict / 48.9 loose). However, even top-performing models struggle with FIFE’s complex requirements, failing to achieve perfect compliance. We release our dataset and code as an open-source resource to promote research in Reinforcement Learning for the financial domain.
3.174Resolving Conflicts in Lifelong Learning via Aligning Updates in Subspaces¶
2025/12/11 05:03 GTM
Low-Rank Adaptation (LoRA) enables efficient Continual Learning but often suffers from catastrophic forgetting due to destructive interference between tasks. Our analysis reveals that this degradation is primarily driven by antagonistic directional updates where new task gradients directly oppose the historical weight trajectory. To address this, we propose PS-LoRA (Parameter Stability LoRA), a framework designed to resolve conflicts by aligning updates within the optimization subspace. Our approach employs a dual-regularization objective that penalizes conflicting directions and constrains magnitude deviations to ensure consistency with prior knowledge. Additionally, we implement a magnitude-based merging strategy to consolidate sequential adapters into a robust representation without retraining. Experiments on NLP and Vision benchmarks show that PS-LoRA outperforms state-of-the-art methods by preserving the stability of learned representations while efficiently adapting to new domains.
3.175ORCA: Open-ended Response Correctness Assessment for Audio Question Answering¶
2025/12/11 05:03 GTM
Evaluating open-ended responses from large audio language models (LALMs) is challenging because human annotators often genuinely disagree on answer correctness due to multiple valid interpretations, partial correctness, and subjective judgment. Traditional metrics reporting only mean scores fail to capture this uncertainty. We present ORCA (Open-ended Response Correctness Assessment), a framework that models the variability in human judgments using Beta distributions to predict both expected correctness and uncertainty. Our three-stage annotation framework combines human judgment with structured feedback and iterative refinement to simultaneously curate training data and improve benchmark quality. We collected 11,721 annotations across 3,580 question-answer pairs from 15 LALMs on two audio QA benchmarks, achieving inter-annotator agreement of 0.82 (Krippendorff’s alpha). ORCA achieves 0.91 Spearman correlation with mean human judgments, matching or outperforming LLM-judge baselines while providing uncertainty estimates and requiring significantly less compute. We release our models, code, and curated dataset.
3.176Large Language Models as Search Engines: Societal Challenges¶
2025/12/11 05:03 GTM
Large Language Models (LLMs) may one day replace search engines as the primary portal to information on the Web. In this article, we investigate the societal challenges that such a change could bring. We focus on the roles of LLM Providers, Content Creators, and End Users, and identify 15 types of challenges. With each, we show current mitigation strategies -- both from the technical perspective and the legal perspective. We also discuss the impact of each challenge and point out future research opportunities.
3.177The Linguistic Architecture of Reflective Thought: Evaluation of a Large Language Model as a Tool to Isolate the Formal Structure of Mentalization¶
2025/12/11 05:03 GTM
Background: Mentalization integrates cognitive, affective, and intersubjective components. Large Language Models (LLMs) display an increasing ability to generate reflective texts, raising questions regarding the relationship between linguistic form and mental representation. This study assesses the extent to which a single LLM can reproduce the linguistic structure of mentalization according to the parameters of Mentalization-Based Treatment (MBT). Methods: Fifty dialogues were generated between human participants and an LLM configured in standard mode. Five psychiatrists trained in MBT, working under blinded conditions, evaluated the mentalization profiles produced by the model along the four MBT axes, assigning Likert-scale scores for evaluative coherence, argumentative coherence, and global quality. Inter-rater agreement was estimated using ICC(3,1). Results: Mean scores (3.63-3.98) and moderate standard deviations indicate a high level of structural coherence in the generated profiles. ICC values (0.60-0.84) show substantial-to-high agreement among raters. The model proved more stable in the Implicit-Explicit and Self-Other dimensions, while presenting limitations in the integration of internal states and external contexts. The profiles were coherent and clinically interpretable yet characterized by affective neutrality.
3.178Enhancing Reliability across Short and Long-Form QA via Reinforcement Learning¶
2025/12/11 05:03 GTM
While reinforcement learning has unlocked unprecedented complex reasoning in large language models, it has also amplified their propensity for hallucination, creating a critical trade-off between capability and reliability. This work confronts this challenge by introducing a targeted RL framework designed to mitigate both intrinsic and extrinsic hallucinations across short and long-form question answering. We address extrinsic hallucinations (flawed internal knowledge) by creating a novel training set from open-ended conversions of TriviaQA. Concurrently, we tackle intrinsic hallucinations (unfaithfulness to context) by leveraging long-form texts from FineWeb in a fact-grounding reward scheme. To further bolster reliability, our framework explicitly rewards the model for refusing to answer unanswerable questions, thereby cultivating crucial cautiousness. Extensive experiments demonstrate that our methodology yields significant performance gains across a diverse suite of benchmarks, substantially reducing both hallucination types. Ultimately, this research contributes a practical framework for resolving the critical tension between advanced reasoning and factual trustworthiness, paving the way for more capable and reliable large language models.
3.179Noise-Robust Abstractive Compression in Retrieval-Augmented Language Models¶
2025/12/11 05:03 GTM
Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However, retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language model based compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy reducing documents, making it highly useful in real-world scenarios.
3.180Closing the Train-Test Gap in World Models for Gradient-Based Planning¶
2025/12/11 05:03 GTM
World models paired with model predictive control (MPC) can be trained offline on large-scale datasets of expert trajectories and enable generalization to a wide range of planning tasks at inference time. Compared to traditional MPC procedures, which rely on slow search algorithms or on iteratively solving optimization problems exactly, gradient-based planning offers a computationally efficient alternative. However, the performance of gradient-based planning has thus far lagged behind that of other approaches. In this paper, we propose improved methods for training world models that enable efficient gradient-based planning. We begin with the observation that although a world model is trained on a next-state prediction objective, it is used at test-time to instead estimate a sequence of actions. The goal of our work is to close this train-test gap. To that end, we propose train-time data synthesis techniques that enable significantly improved gradient-based planning with existing world models. At test time, our approach outperforms or matches the classical gradient-free cross-entropy method (CEM) across a variety of object manipulation and navigation tasks in 10% of the time budget.
3.181HiF-VLA: Hindsight, Insight and Foresight through Motion Representation for Vision-Language-Action Models¶
2025/12/11 05:03 GTM
Vision-Language-Action (VLA) models have recently enabled robotic manipulation by grounding visual and linguistic cues into actions. However, most VLAs assume the Markov property, relying only on the current observation and thus suffering from temporal myopia that degrades long-horizon coherence. In this work, we view motion as a more compact and informative representation of temporal context and world dynamics, capturing inter-state changes while filtering static pixel-level noise. Building on this idea, we propose HiF-VLA (Hindsight, Insight, and Foresight for VLAs), a unified framework that leverages motion for bidirectional temporal reasoning. HiF-VLA encodes past dynamics through hindsight priors, anticipates future motion via foresight reasoning, and integrates both through a hindsight-modulated joint expert to enable a ‘‘think-while-acting’’ paradigm for long-horizon manipulation. As a result, HiF-VLA surpasses strong baselines on LIBERO-Long and CALVIN ABC-D benchmarks, while incurring negligible additional inference latency. Furthermore, HiF-VLA achieves substantial improvements in real-world long-horizon manipulation tasks, demonstrating its broad effectiveness in practical robotic settings.
3.182Token Expand-Merge: Training-Free Token Compression for Vision-Language-Action Models¶
2025/12/11 05:03 GTM
Vision-Language-Action (VLA) models pretrained on large-scale multimodal datasets have emerged as powerful foundations for robotic perception and control. However, their massive scale, often billions of parameters, poses significant challenges for real-time deployment, as inference becomes computationally expensive and latency-sensitive in dynamic environments. To address this, we propose Token Expand-and-Merge-VLA (TEAM-VLA), a training-free token compression framework that accelerates VLA inference while preserving task performance. TEAM-VLA introduces a dynamic token expansion mechanism that identifies and samples additional informative tokens in the spatial vicinity of attention-highlighted regions, enhancing contextual completeness. These expanded tokens are then selectively merged in deeper layers under action-aware guidance, effectively reducing redundancy while maintaining semantic coherence. By coupling expansion and merging within a single feed-forward pass, TEAM-VLA achieves a balanced trade-off between efficiency and effectiveness, without any retraining or parameter updates. Extensive experiments on LIBERO benchmark demonstrate that TEAM-VLA consistently improves inference speed while maintaining or even surpassing the task success rate of full VLA models. The code is public available on \href{https://
3.183LISN: Language-Instructed Social Navigation with VLM-based Controller Modulating¶
2025/12/11 05:03 GTM
Towards human-robot coexistence, socially aware navigation is significant for mobile robots. Yet existing studies on this area focus mainly on path efficiency and pedestrian collision avoidance, which are essential but represent only a fraction of social navigation. Beyond these basics, robots must also comply with user instructions, aligning their actions to task goals and social norms expressed by humans. In this work, we present LISN-Bench, the first simulation-based benchmark for language-instructed social navigation. Built on Rosnav-Arena 3.0, it is the first standardized social navigation benchmark to incorporate instruction following and scene understanding across diverse contexts. To address this task, we further propose Social-Nav-Modulator, a fast-slow hierarchical system where a VLM agent modulates costmaps and controller parameters. Decoupling low-level action generation from the slower VLM loop reduces reliance on high-frequency VLM inference while improving dynamic avoidance and perception adaptability. Our method achieves an average success rate of 91.3%, which is greater than 63% than the most competitive baseline, with most of the improvements observed in challenging tasks such as following a person in a crowd and navigating while strictly avoiding instruction-forbidden regions. The project website is at: https://
3.184Py-DiSMech: A Scalable and Efficient Framework for Discrete Differential Geometry-Based Modeling and Control of Soft Robots¶
2025/12/11 05:03 GTM
High-fidelity simulation has become essential to the design and control of soft robots, where large geometric deformations and complex contact interactions challenge conventional modeling tools. Recent advances in the field demand simulation frameworks that combine physical accuracy, computational scalability, and seamless integration with modern control and optimization pipelines. In this work, we present Py-DiSMech, a Python-based, open-source simulation framework for modeling and control of soft robotic structures grounded in the principles of Discrete Differential Geometry (DDG). By discretizing geometric quantities such as curvature and strain directly on meshes, Py-DiSMech captures the nonlinear deformation of rods, shells, and hybrid structures with high fidelity and reduced computational cost. The framework introduces (i) a fully vectorized NumPy implementation achieving order-of-magnitude speed-ups over existing geometry-based simulators; (ii) a penalty-energy-based fully implicit contact model that supports rod-rod, rod-shell, and shell-shell interactions; (iii) a natural-strain-based feedback-control module featuring a proportional-integral (PI) controller for shape regulation and trajectory tracking; and (iv) a modular, object-oriented software design enabling user-defined elastic energies, actuation schemes, and integration with machine-learning libraries. Benchmark comparisons demonstrate that Py-DiSMech substantially outperforms the state-of-the-art simulator Elastica in computational efficiency while maintaining physical accuracy. Together, these features establish Py-DiSMech as a scalable, extensible platform for simulation-driven design, control validation, and sim-to-real research in soft robotics.
3.185YOPO-Nav: Visual Navigation using 3DGS Graphs from One-Pass Videos¶
2025/12/11 05:03 GTM
Visual navigation has emerged as a practical alternative to traditional robotic navigation pipelines that rely on detailed mapping and path planning. However, constructing and maintaining 3D maps is often computationally expensive and memory-intensive. We address the problem of visual navigation when exploration videos of a large environment are available. The videos serve as a visual reference, allowing a robot to retrace the explored trajectories without relying on metric maps. Our proposed method, YOPO-Nav (You Only Pass Once), encodes an environment into a compact spatial representation composed of interconnected local 3D Gaussian Splatting (3DGS) models. During navigation, the framework aligns the robot’s current visual observation with this representation and predicts actions that guide it back toward the demonstrated trajectory. YOPO-Nav employs a hierarchical design: a visual place recognition (VPR) module provides coarse localization, while the local 3DGS models refine the goal and intermediate poses to generate control actions. To evaluate our approach, we introduce the YOPO-Campus dataset, comprising 4 hours of egocentric video and robot controller inputs from over 6 km of human-teleoperated robot trajectories. We benchmark recent visual navigation methods on trajectories from YOPO-Campus using a Clearpath Jackal robot. Experimental results show YOPO-Nav provides excellent performance in image-goal navigation for real-world scenes on a physical robot. The dataset and code will be made publicly available for visual navigation and scene representation research.
3.186Visual Heading Prediction for Autonomous Aerial Vehicles¶
2025/12/11 05:03 GTM
The integration of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) is increasingly central to the development of intelligent autonomous systems for applications such as search and rescue, environmental monitoring, and logistics. However, precise coordination between these platforms in real-time scenarios presents major challenges, particularly when external localization infrastructure such as GPS or GNSS is unavailable or degraded [1]. This paper proposes a vision-based, data-driven framework for real-time UAV-UGV integration, with a focus on robust UGV detection and heading angle prediction for navigation and coordination. The system employs a fine-tuned YOLOv5 model to detect UGVs and extract bounding box features, which are then used by a lightweight artificial neural network (ANN) to estimate the UAV’s required heading angle. A VICON motion capture system was used to generate ground-truth data during training, resulting in a dataset of over 13,000 annotated images collected in a controlled lab environment. The trained ANN achieves a mean absolute error of 0.1506° and a root mean squared error of 0.1957°, offering accurate heading angle predictions using only monocular camera inputs. Experimental evaluations achieve 95% accuracy in UGV detection. This work contributes a vision-based, infrastructure- independent solution that demonstrates strong potential for deployment in GPS/GNSS-denied environments, supporting reliable multi-agent coordination under realistic dynamic conditions. A demonstration video showcasing the system’s real-time performance, including UGV detection, heading angle prediction, and UAV alignment under dynamic conditions, is available at: https://
3.187Simultaneous Tactile-Visual Perception for Learning Multimodal Robot Manipulation¶
2025/12/11 05:03 GTM
Robotic manipulation requires both rich multimodal perception and effective learning frameworks to handle complex real-world tasks. See-through-skin (STS) sensors, which combine tactile and visual perception, offer promising sensing capabilities, while modern imitation learning provides powerful tools for policy acquisition. However, existing STS designs lack simultaneous multimodal perception and suffer from unreliable tactile tracking. Furthermore, integrating these rich multimodal signals into learning-based manipulation pipelines remains an open challenge. We introduce TacThru, an STS sensor enabling simultaneous visual perception and robust tactile signal extraction, and TacThru-UMI, an imitation learning framework that leverages these multimodal signals for manipulation. Our sensor features a fully transparent elastomer, persistent illumination, novel keyline markers, and efficient tracking, while our learning system integrates these signals through a Transformer-based Diffusion Policy. Experiments on five challenging real-world tasks show that TacThru-UMI achieves an average success rate of 85.5%, significantly outperforming the baselines of alternating tactile-visual (66.3%) and vision-only (55.4%). The system excels in critical scenarios, including contact detection with thin and soft objects and precision manipulation requiring multimodal coordination. This work demonstrates that combining simultaneous multimodal perception with modern learning frameworks enables more precise, adaptable robotic manipulation.
3.188Bridging the Basilisk Astrodynamics Framework with ROS 2 for Modular Spacecraft Simulation and Hardware Integration¶
2025/12/11 05:03 GTM
Integrating high-fidelity spacecraft simulators with modular robotics frameworks remains a challenge for autonomy development. This paper presents a lightweight, open-source communication bridge between the Basilisk astrodynamics simulator and the Robot Operating System 2 (ROS 2), enabling real-time, bidirectional data exchange for spacecraft control. The bridge requires no changes to Basilisk’s core and integrates seamlessly with ROS 2 nodes. We demonstrate its use in a leader-follower formation flying scenario using nonlinear model predictive control, deployed identically in both simulation and on the ATMOS planar microgravity testbed. This setup supports rapid development, hardware-in-the-loop testing, and seamless transition from simulation to hardware. The bridge offers a flexible and scalable platform for modular spacecraft autonomy and reproducible research workflows.
3.189High-Resolution Water Sampling via a Solar-Powered Autonomous Surface Vehicle¶
2025/12/11 05:03 GTM
Accurate water quality assessment requires spatially resolved sampling, yet most unmanned surface vehicles (USVs) can collect only a limited number of samples or rely on single-point sensors with poor representativeness. This work presents a solar-powered, fully autonomous USV featuring a novel syringe-based sampling architecture capable of acquiring 72 discrete, contamination-minimized water samples per mission. The vehicle incorporates a ROS 2 autonomy stack with GPS-RTK navigation, LiDAR and stereo-vision obstacle detection, Nav2-based mission planning, and long-range LoRa supervision, enabling dependable execution of sampling routes in unstructured environments. The platform integrates a behavior-tree autonomy architecture adapted from Nav2, enabling mission-level reasoning and perception-aware navigation. A modular 6x12 sampling system, controlled by distributed micro-ROS nodes, provides deterministic actuation, fault isolation, and rapid module replacement, achieving spatial coverage beyond previously reported USV-based samplers. Field trials in Achocalla Lagoon (La Paz, Bolivia) demonstrated 87% waypoint accuracy, stable autonomous navigation, and accurate physicochemical measurements (temperature, pH, conductivity, total dissolved solids) comparable to manually collected references. These results demonstrate that the platform enables reliable high-resolution sampling and autonomous mission execution, providing a scalable solution for aquatic monitoring in remote environments.
3.190ReMoSPLAT: Reactive Mobile Manipulation Control on a Gaussian Splat¶
2025/12/11 05:03 GTM
Reactive control can gracefully coordinate the motion of the base and the arm of a mobile manipulator. However, incorporating an accurate representation of the environment to avoid obstacles without involving costly planning remains a challenge. In this work, we present ReMoSPLAT, a reactive controller based on a quadratic program formulation for mobile manipulation that leverages a Gaussian Splat representation for collision avoidance. By integrating additional constraints and costs into the optimisation formulation, a mobile manipulator platform can reach its intended end effector pose while avoiding obstacles, even in cluttered scenes. We investigate the trade-offs of two methods for efficiently calculating robot-obstacle distances, comparing a purely geometric approach with a rasterisation-based approach. Our experiments in simulation on both synthetic and real-world scans demonstrate the feasibility of our method, showing that the proposed approach achieves performance comparable to controllers that rely on perfect ground-truth information.
3.191GLaD: Geometric Latent Distillation for Vision-Language-Action Models¶
2025/12/11 05:03 GTM
Most existing Vision-Language-Action (VLA) models rely primarily on RGB information, while ignoring geometric cues crucial for spatial reasoning and manipulation. In this work, we introduce GLaD, a geometry-aware VLA framework that incorporates 3D geometric priors during pretraining through knowledge distillation. Rather than distilling geometric features solely into the vision encoder, we align the LLM’s hidden states corresponding to visual tokens with features from a frozen geometry-aware vision transformer (VGGT), ensuring that geometric understanding is deeply integrated into the multimodal representations that drive action prediction. Pretrained on the Bridge dataset with this geometry distillation mechanism, GLaD achieves 94.1% average success rate across four LIBERO task suites, outperforming UniVLA (92.5%) which uses identical pretraining data. These results validate that geometry-aware pretraining enhances spatial reasoning and policy generalization without requiring explicit depth sensors or 3D annotations.
3.192Super4DR: 4D Radar-centric Self-supervised Odometry and Gaussian-based Map Optimization¶
2025/12/11 05:03 GTM
Conventional SLAM systems using visual or LiDAR data often struggle in poor lighting and severe weather. Although 4D radar is suited for such environments, its sparse and noisy point clouds hinder accurate odometry estimation, while the radar maps suffer from obscure and incomplete structures. Thus, we propose Super4DR, a 4D radar-centric framework for learning-based odometry estimation and gaussian-based map optimization. First, we design a cluster-aware odometry network that incorporates object-level cues from the clustered radar points for inter-frame matching, alongside a hierarchical self-supervision mechanism to overcome outliers through spatio-temporal consistency, knowledge transfer, and feature contrast. Second, we propose using 3D gaussians as an intermediate representation, coupled with a radar-specific growth strategy, selective separation, and multi-view regularization, to recover blurry map areas and those undetected based on image texture. Experiments show that Super4DR achieves a 67% performance gain over prior self-supervised methods, nearly matches supervised odometry, and narrows the map quality disparity with LiDAR while enabling multi-modal image rendering.
3.193UrbanNav: Learning Language-Guided Urban Navigation from Web-Scale Human Trajectories¶
2025/12/11 05:03 GTM
Navigating complex urban environments using natural language instructions poses significant challenges for embodied agents, including noisy language instructions, ambiguous spatial references, diverse landmarks, and dynamic street scenes. Current visual navigation methods are typically limited to simulated or off-street environments, and often rely on precise goal formats, such as specific coordinates or images. This limits their effectiveness for autonomous agents like last-mile delivery robots navigating unfamiliar cities. To address these limitations, we introduce UrbanNav, a scalable framework that trains embodied agents to follow free-form language instructions in diverse urban settings. Leveraging web-scale city walking videos, we develop an scalable annotation pipeline that aligns human navigation trajectories with language instructions grounded in real-world landmarks. UrbanNav encompasses over 1,500 hours of navigation data and 3 million instruction-trajectory-landmark triplets, capturing a wide range of urban scenarios. Our model learns robust navigation policies to tackle complex urban scenarios, demonstrating superior spatial reasoning, robustness to noisy instructions, and generalization to unseen urban settings. Experimental results show that UrbanNav significantly outperforms existing methods, highlighting the potential of large-scale web video data to enable language-guided, real-world urban navigation for embodied agents.
3.194CS3D: An Efficient Facial Expression Recognition via Event Vision¶
2025/12/11 05:03 GTM
Responsive and accurate facial expression recognition is crucial to human-robot interaction for daily service robots. Nowadays, event cameras are becoming more widely adopted as they surpass RGB cameras in capturing facial expression changes due to their high temporal resolution, low latency, computational efficiency, and robustness in low-light conditions. Despite these advantages, event-based approaches still encounter practical challenges, particularly in adopting mainstream deep learning models. Traditional deep learning methods for facial expression analysis are energy-intensive, making them difficult to deploy on edge computing devices and thereby increasing costs, especially for high-frequency, dynamic, event vision-based approaches. To address this challenging issue, we proposed the CS3D framework by decomposing the Convolutional 3D method to reduce the computational complexity and energy consumption. Additionally, by utilizing soft spiking neurons and a spatial-temporal attention mechanism, the ability to retain information is enhanced, thus improving the accuracy of facial expression detection. Experimental results indicate that our proposed CS3D method attains higher accuracy on multiple datasets compared to architectures such as the RNN, Transformer, and C3D, while the energy consumption of the CS3D method is just 21.97% of the original C3D required on the same device.
3.195Mastering Diverse, Unknown, and Cluttered Tracks for Robust Vision-Based Drone Racing¶
2025/12/11 05:03 GTM
Most reinforcement learning(RL)-based methods for drone racing target fixed, obstacle-free tracks, leaving the generalization to unknown, cluttered environments largely unaddressed. This challenge stems from the need to balance racing speed and collision avoidance, limited feasible space causing policy exploration trapped in local optima during training, and perceptual ambiguity between gates and obstacles in depth maps-especially when gate positions are only coarsely specified. To overcome these issues, we propose a two-phase learning framework: an initial soft-collision training phase that preserves policy exploration for high-speed flight, followed by a hard-collision refinement phase that enforces robust obstacle avoidance. An adaptive, noise-augmented curriculum with an asymmetric actor-critic architecture gradually shifts the policy’s reliance from privileged gate-state information to depth-based visual input. We further impose Lipschitz constraints and integrate a track-primitive generator to enhance motion stability and cross-environment generalization. We evaluate our framework through extensive simulation and ablation studies, and validate it in real-world experiments on a computationally constrained quadrotor. The system achieves agile flight while remaining robust to gate-position errors, developing a generalizable drone racing framework with the capability to operate in diverse, partially unknown and cluttered environments. https://
3.196REASAN: Learning Reactive Safe Navigation for Legged Robots¶
2025/12/11 05:03 GTM
We present a novel modularized end-to-end framework for legged reactive navigation in complex dynamic environments using a single light detection and ranging (LiDAR) sensor. The system comprises four simulation-trained modules: three reinforcement-learning (RL) policies for locomotion, safety shielding, and navigation, and a transformer-based exteroceptive estimator that processes raw point-cloud inputs. This modular decomposition of complex legged motor-control tasks enables lightweight neural networks with simple architectures, trained using standard RL practices with targeted reward shaping and curriculum design, without reliance on heuristics or sophisticated policy-switching mechanisms. We conduct comprehensive ablations to validate our design choices and demonstrate improved robustness compared to existing approaches in challenging navigation tasks. The resulting reactive safe navigation (REASAN) system achieves fully onboard and real-time reactive navigation across both single- and multi-robot settings in complex environments. We release our training and deployment code at https://
3.197ViTA-Seg: Vision Transformer for Amodal Segmentation in Robotics¶
2025/12/11 05:03 GTM
Occlusions in robotic bin picking compromise accurate and reliable grasp planning. We present ViTA-Seg, a class-agnostic Vision Transformer framework for real-time amodal segmentation that leverages global attention to recover complete object masks, including hidden regions. We proposte two architectures: a) Single-Head for amodal mask prediction; b) Dual-Head for amodal and occluded mask prediction. We also introduce ViTA-SimData, a photo-realistic synthetic dataset tailored to industrial bin-picking scenario. Extensive experiments on two amodal benchmarks, COOCA and KINS, demonstrate that ViTA-Seg Dual Head achieves strong amodal and occlusion segmentation accuracy with computational efficiency, enabling robust, real-time robotic manipulation.
3.198On Mobile Ad Hoc Networks for Coverage of Partially Observable Worlds¶
2025/12/11 05:03 GTM
This paper addresses the movement and placement of mobile agents to establish a communication network in initially unknown environments. We cast the problem in a computational-geometric framework by relating the coverage problem and line-of-sight constraints to the Cooperative Guard Art Gallery Problem, and introduce its partially observable variant, the Partially Observable Cooperative Guard Art Gallery Problem (POCGAGP). We then present two algorithms that solve POCGAGP: CADENCE, a centralized planner that incrementally selects 270 degree corners at which to deploy agents, and DADENCE, a decentralized scheme that coordinates agents using local information and lightweight messaging. Both approaches operate under partial observability and target simultaneous coverage and connectivity. We evaluate the methods in simulation across 1,500 test cases of varied size and structure, demonstrating consistent success in forming connected networks while covering and exploring unknown space. These results highlight the value of geometric abstractions for communication-driven exploration and show that decentralized policies are competitive with centralized performance while retaining scalability.
3.199Development of a Compliant Gripper for Safe Robot-Assisted Trouser Dressing-Undressing¶
2025/12/11 05:03 GTM
In recent years, many countries, including Japan, have rapidly aging populations, making the preservation of seniors’ quality of life a significant concern. For elderly people with impaired physical abilities, support for toileting is one of the most important issues. This paper details the design, development, experimental assessment, and potential application of the gripper system, with a focus on the unique requirements and obstacles involved in aiding elderly or hemiplegic individuals in dressing and undressing trousers. The gripper we propose seeks to find the right balance between compliance and grasping forces, ensuring precise manipulation while maintaining a safe and compliant interaction with the users. The gripper’s integration into a custom--built robotic manipulator system provides a comprehensive solution for assisting hemiplegic individuals in their dressing and undressing tasks. Experimental evaluations and comparisons with existing studies demonstrate the gripper’s ability to successfully assist in both dressing and dressing of trousers in confined spaces with a high success rate. This research contributes to the advancement of assistive robotics, empowering elderly, and physically impaired individuals to maintain their independence and improve their quality of life.
3.200Sequential Testing for Descriptor-Agnostic LiDAR Loop Closure in Repetitive Environments¶
2025/12/11 05:03 GTM
We propose a descriptor-agnostic, multi-frame loop closure verification method that formulates LiDAR loop closure as a truncated Sequential Probability Ratio Test (SPRT). Instead of deciding from a single descriptor comparison or using fixed thresholds with late-stage Iterative Closest Point (ICP) vetting, the verifier accumulates a short temporal stream of descriptor similarities between a query and each candidate. It then issues an accept/reject decision adaptively once sufficient multi-frame evidence has been observed, according to user-specified Type-I/II error design targets. This precision-first policy is designed to suppress false positives in structurally repetitive indoor environments. We evaluate the verifier on a five-sequence library dataset, using a fixed retrieval front-end with several representative LiDAR global descriptors. Performance is assessed via segment-level K-hit precision-recall and absolute trajectory error (ATE) and relative pose error (RPE) after pose graph optimization. Across descriptors, the sequential verifier consistently improves precision and reduces the impact of aliased loops compared with single-frame and heuristic multi-frame baselines. Our implementation and dataset will be released at: https://
3.201A Hierarchical, Model-Based System for High-Performance Humanoid Soccer¶
2025/12/11 05:03 GTM
The development of athletic humanoid robots has gained significant attention as advances in actuation, sensing, and control enable increasingly dynamic, real-world capabilities. RoboCup, an international competition of fully autonomous humanoid robots, provides a uniquely challenging benchmark for such systems, culminating in the long-term goal of competing against human soccer players by 2050. This paper presents the hardware and software innovations underlying our team’s victory in the RoboCup 2024 Adult-Sized Humanoid Soccer Competition. On the hardware side, we introduce an adult-sized humanoid platform built with lightweight structural components, high-torque quasi-direct-drive actuators, and a specialized foot design that enables powerful in-gait kicks while preserving locomotion robustness. On the software side, we develop an integrated perception and localization framework that combines stereo vision, object detection, and landmark-based fusion to provide reliable estimates of the ball, goals, teammates, and opponents. A mid-level navigation stack then generates collision-aware, dynamically feasible trajectories, while a centralized behavior manager coordinates high-level decision making, role selection, and kick execution based on the evolving game state. The seamless integration of these subsystems results in fast, precise, and tactically effective gameplay, enabling robust performance under the dynamic and adversarial conditions of real matches. This paper presents the design principles, system architecture, and experimental results that contributed to ARTEMIS’s success as the 2024 Adult-Sized Humanoid Soccer champion.
3.202DGSLAM: 4D Dynamic Gaussian Splatting SLAM¶
2025/12/11 05:03 GTM
Recent advances in Dense Simultaneous Localization and Mapping (SLAM) have demonstrated remarkable performance in static environments. However, dense SLAM in dynamic environments remains challenging. Most methods directly remove dynamic objects and focus solely on static scene reconstruction, which ignores the motion information contained in these dynamic objects. In this paper, we present DGSLAM, a novel dynamic SLAM system utilizing Gaussian representation, which simultaneously performs accurate dynamic reconstruction and robust tracking within dynamic environments. Our system is composed of four key components: (i) We propose a geometric-prompt dynamic separation method to distinguish between static and dynamic elements of the scene. This approach leverages the geometric consistency of Gaussian representation and scene geometry to obtain coarse dynamic regions. The regions then serve as prompts to guide the refinement of the coarse mask for achieving accurate motion mask. (ii) To facilitate accurate and efficient mapping of the dynamic scene, we introduce dynamic-static composite representation that integrates static 3D Gaussians with dynamic 4D Gaussians. This representation allows for modeling the transitions between static and dynamic states of objects in the scene for composite mapping and optimization. (iii) We employ a progressive pose refinement strategy that leverages both the multi-view consistency of static scene geometry and motion information from dynamic objects to achieve accurate camera tracking. (iv) We introduce a motion consistency loss, which leverages the temporal continuity in object motions for accurate dynamic modeling. Our DGSLAM demonstrates superior performance on dynamic scenes in terms of mapping and tracking accuracy, while also showing capability in accurate dynamic modeling.
3.203Generalizable Collaborative Search-and-Capture in Cluttered Environments via Path-Guided MAPPO and Directional Frontier Allocation¶
2025/12/11 05:03 GTM
Collaborative pursuit-evasion in cluttered environments presents significant challenges due to sparse rewards and constrained Fields of View (FOV). Standard Multi-Agent Reinforcement Learning (MARL) often suffers from inefficient exploration and fails to scale to large scenarios. We propose PGF-MAPPO (Path-Guided Frontier MAPPO), a hierarchical framework bridging topological planning with reactive control. To resolve local minima and sparse rewards, we integrate an A*-based potential field for dense reward shaping. Furthermore, we introduce Directional Frontier Allocation, combining Farthest Point Sampling (FPS) with geometric angle suppression to enforce spatial dispersion and accelerate coverage. The architecture employs a parameter-shared decentralized critic, maintaining O(1) model complexity suitable for robotic swarms. Experiments demonstrate that PGF-MAPPO achieves superior capture efficiency against faster evaders. Policies trained on 10x10 maps exhibit robust zero-shot generalization to unseen 20x20 environments, significantly outperforming rule-based and learning-based baselines.
3.204H2R-Grounder: A Paired-Data-Free Paradigm for Translating Human Interaction Videos into Physically Grounded Robot Videos¶
2025/12/11 05:03 GTM
Robots that learn manipulation skills from everyday human videos could acquire broad capabilities without tedious robot data collection. We propose a video-to-video translation framework that converts ordinary human-object interaction videos into motion-consistent robot manipulation videos with realistic, physically grounded interactions. Our approach does not require any paired human-robot videos for training only a set of unpaired robot videos, making the system easy to scale. We introduce a transferable representation that bridges the embodiment gap: by inpainting the robot arm in training videos to obtain a clean background and overlaying a simple visual cue (a marker and arrow indicating the gripper’s position and orientation), we can condition a generative model to insert the robot arm back into the scene. At test time, we apply the same process to human videos (inpainting the person and overlaying human pose cues) and generate high-quality robot videos that mimic the human’s actions. We fine-tune a SOTA video diffusion model (Wan 2.2) in an in-context learning manner to ensure temporal coherence and leveraging of its rich prior knowledge. Empirical results demonstrate that our approach achieves significantly more realistic and grounded robot motions compared to baselines, pointing to a promising direction for scaling up robot learning from unlabeled human videos. Project page: https://
3.205Observability Analysis and Composite Disturbance Filtering for a Bar Tethered to Dual UAVs Subject to Multi-source Disturbances¶
2025/12/11 05:03 GTM
Cooperative suspended aerial transportation is highly susceptible to multi-source disturbances such as aerodynamic effects and thrust uncertainties. To achieve precise load manipulation, existing methods often rely on extra sensors to measure cable directions or the payload’s pose, which increases the system cost and complexity. A fundamental question remains: is the payload’s pose observable under multi-source disturbances using only the drones’ odometry information? To answer this question, this work focuses on the two-drone-bar system and proves that the whole system is observable when only two or fewer types of lumped disturbances exist by using the observability rank criterion. To the best of our knowledge, we are the first to present such a conclusion and this result paves the way for more cost-effective and robust systems by minimizing their sensor suites. Next, to validate this analysis, we consider the situation where the disturbances are only exerted on the drones, and develop a composite disturbance filtering scheme. A disturbance observer-based error-state extended Kalman filter is designed for both state and disturbance estimation, which renders improved estimation performance for the whole system evolving on the manifold . Our simulation and experimental tests have validated that it is possible to fully estimate the state and disturbance of the system with only odometry information of the drones.
3.206COVLM-RL: Critical Object-Oriented Reasoning for Autonomous Driving Using VLM-Guided Reinforcement Learning¶
2025/12/11 05:03 GTM
End-to-end autonomous driving frameworks face persistent challenges in generalization, training efficiency, and interpretability. While recent methods leverage Vision-Language Models (VLMs) through supervised learning on large-scale datasets to improve reasoning, they often lack robustness in novel scenarios. Conversely, reinforcement learning (RL)-based approaches enhance adaptability but remain data-inefficient and lack transparent decision-making. % contribution To address these limitations, we propose COVLM-RL, a novel end-to-end driving framework that integrates Critical Object-oriented (CO) reasoning with VLM-guided RL. Specifically, we design a Chain-of-Thought (CoT) prompting strategy that enables the VLM to reason over critical traffic elements and generate high-level semantic decisions, effectively transforming multi-view visual inputs into structured semantic decision priors. These priors reduce the input dimensionality and inject task-relevant knowledge into the RL loop, accelerating training and improving policy interpretability. However, bridging high-level semantic guidance with continuous low-level control remains non-trivial. To this end, we introduce a consistency loss that encourages alignment between the VLM’s semantic plans and the RL agent’s control outputs, enhancing interpretability and training stability. Experiments conducted in the CARLA simulator demonstrate that COVLM-RL significantly improves the success rate by 30% in trained driving environments and by 50% in previously unseen environments, highlighting its strong generalization capability.
3.207Development and Testing for Perception Based Autonomous Landing of a Long-Range QuadPlane¶
2025/12/11 05:03 GTM
QuadPlanes combine the range efficiency of fixed-wing aircraft with the maneuverability of multi-rotor platforms for long-range autonomous missions. In GPS-denied or cluttered urban environments, perception-based landing is vital for reliable operation. Unlike structured landing zones, real-world sites are unstructured and highly variable, requiring strong generalization capabilities from the perception system. Deep neural networks (DNNs) provide a scalable solution for learning landing site features across diverse visual and environmental conditions. While perception-driven landing has been shown in simulation, real-world deployment introduces significant challenges. Payload and volume constraints limit high-performance edge AI devices like the NVIDIA Jetson Orin Nano, which are crucial for real-time detection and control. Accurate pose estimation during descent is necessary, especially in the absence of GPS, and relies on dependable visual-inertial odometry. Achieving this with limited edge AI resources requires careful optimization of the entire deployment framework. The flight characteristics of large QuadPlanes further complicate the problem. These aircraft exhibit high inertia, reduced thrust vectoring, and slow response times further complicate stable landing maneuvers. This work presents a lightweight QuadPlane system for efficient vision-based autonomous landing and visual-inertial odometry, specifically developed for long-range QuadPlane operations such as aerial monitoring. It describes the hardware platform, sensor configuration, and embedded computing architecture designed to meet demanding real-time, physical constraints. This establishes a foundation for deploying autonomous landing in dynamic, unstructured, GPS-denied environments.
3.208Scene-agnostic Hierarchical Bimanual Task Planning via Visual Affordance Reasoning¶
2025/12/11 05:03 GTM
Embodied agents operating in open environments must translate high-level instructions into grounded, executable behaviors, often requiring coordinated use of both hands. While recent foundation models offer strong semantic reasoning, existing robotic task planners remain predominantly unimanual and fail to address the spatial, geometric, and coordination challenges inherent to bimanual manipulation in scene-agnostic settings. We present a unified framework for scene-agnostic bimanual task planning that bridges high-level reasoning with 3D-grounded two-handed execution. Our approach integrates three key modules. Visual Point Grounding (VPG) analyzes a single scene image to detect relevant objects and generate world-aligned interaction points. Bimanual Subgoal Planner (BSP) reasons over spatial adjacency and cross-object accessibility to produce compact, motion-neutralized subgoals that exploit opportunities for coordinated two-handed actions. Interaction-Point-Driven Bimanual Prompting (IPBP) binds these subgoals to a structured skill library, instantiating synchronized unimanual or bimanual action sequences that satisfy hand-state and affordance constraints. Together, these modules enable agents to plan semantically meaningful, physically feasible, and parallelizable two-handed behaviors in cluttered, previously unseen scenes. Experiments show that it produces coherent, feasible, and compact two-handed plans, and generalizes to cluttered scenes without retraining, demonstrating robust scene-agnostic affordance reasoning for bimanual tasks.
3.209One-Shot Real-World Demonstration Synthesis for Scalable Bimanual Manipulation¶
2025/12/11 05:03 GTM
Learning dexterous bimanual manipulation policies critically depends on large-scale, high-quality demonstrations, yet current paradigms face inherent trade-offs: teleoperation provides physically grounded data but is prohibitively labor-intensive, while simulation-based synthesis scales efficiently but suffers from sim-to-real gaps. We present BiDemoSyn, a framework that synthesizes contact-rich, physically feasible bimanual demonstrations from a single real-world example. The key idea is to decompose tasks into invariant coordination blocks and variable, object-dependent adjustments, then adapt them through vision-guided alignment and lightweight trajectory optimization. This enables the generation of thousands of diverse and feasible demonstrations within several hour, without repeated teleoperation or reliance on imperfect simulation. Across six dual-arm tasks, we show that policies trained on BiDemoSyn data generalize robustly to novel object poses and shapes, significantly outperforming recent baselines. By bridging the gap between efficiency and real-world fidelity, BiDemoSyn provides a scalable path toward practical imitation learning for complex bimanual manipulation without compromising physical grounding.
3.210UPETrack: Unidirectional Position Estimation for Tracking Occluded Deformable Linear Objects¶
2025/12/11 05:03 GTM
Real-time state tracking of Deformable Linear Objects (DLOs) is critical for enabling robotic manipulation of DLOs in industrial assembly, medical procedures, and daily-life applications. However, the high-dimensional configuration space, nonlinear dynamics, and frequent partial occlusions present fundamental barriers to robust real-time DLO tracking. To address these limitations, this study introduces UPETrack, a geometry-driven framework based on Unidirectional Position Estimation (UPE), which facilitates tracking without the requirement for physical modeling, virtual simulation, or visual markers. The framework operates in two phases: (1) visible segment tracking is based on a Gaussian Mixture Model (GMM) fitted via the Expectation Maximization (EM) algorithm, and (2) occlusion region prediction employing UPE algorithm we proposed. UPE leverages the geometric continuity inherent in DLO shapes and their temporal evolution patterns to derive a closed-form positional estimator through three principal mechanisms: (i) local linear combination displacement term, (ii) proximal linear constraint term, and (iii) historical curvature term. This analytical formulation allows efficient and stable estimation of occluded nodes through explicit linear combinations of geometric components, eliminating the need for additional iterative optimization. Experimental results demonstrate that UPETrack surpasses two state-of-the-art tracking algorithms, including TrackDLO and CDCPD2, in both positioning accuracy and computational efficiency.
3.211MPC for momentum counter-balanced and zero-impulse contact with a free-spinning satellite¶
2025/12/11 05:03 GTM
In on-orbit robotics, a servicer satellite’s ability to make contact with a free-spinning target satellite is essential to completing most on-orbit servicing (OOS) tasks. This manuscript develops a nonlinear model predictive control (MPC) framework that generates feasible controls for a servicer satellite to achieve zero-impulse contact with a free-spinning target satellite. The overall maneuver requires coordination between two separately actuated modules of the servicer satellite: (1) a moment generation module and (2) a manipulation module. We apply MPC to control both modules by explicitly modeling the cross-coupling dynamics between them. We demonstrate that the MPC controller can enforce actuation and state constraints that prior control approaches could not account for. We evaluate the performance of the MPC controller by simulating zero-impulse contact scenarios with a free-spinning target satellite via numerical Monte Carlo (MC) trials and comparing the simulation results with prior control approaches. Our simulation results validate the effectiveness of the MPC controller in maintaining spin synchronization and zero-impulse contact under operation constraints, moving contact location, and observation and actuation noise.
3.212Semantic Trajectory Generation for Goal-Oriented Spacecraft Rendezvous¶
2025/12/11 05:03 GTM
Reliable real-time trajectory generation is essential for future autonomous spacecraft. While recent progress in nonconvex guidance and control is paving the way for onboard autonomous trajectory optimization, these methods still rely on extensive expert input (e.g., waypoints, constraints, mission timelines, etc.), which limits the operational scalability in real rendezvous missions.This paper introduces SAGES (Semantic Autonomous Guidance Engine for Space), a trajectory-generation framework that translates natural-language commands into spacecraft trajectories that reflect high-level intent while respecting nonconvex constraints. Experiments in two settings -- fault-tolerant proximity operations with continuous-time constraint enforcement and a free-flying robotic platform -- demonstrate that SAGES reliably produces trajectories aligned with human commands, achieving over 90% semantic-behavioral consistency across diverse behavior modes. Ultimately, this work marks an initial step toward language-conditioned, constraint-aware spacecraft trajectory generation, enabling operators to interactively guide both safety and behavior through intuitive natural-language commands with reduced expert burden.
3.213Cognitive Trust in HRI: “Pay Attention to Me and I’ll Trust You Even if You are Wrong”¶
2025/12/11 05:03 GTM
Cognitive trust and the belief that a robot is capable of accurately performing tasks, are recognized as central factors in fostering high-quality human-robot interactions. It is well established that performance factors such as the robot’s competence and its reliability shape cognitive trust. Recent studies suggest that affective factors, such as robotic attentiveness, also play a role in building cognitive trust. This work explores the interplay between these two factors that shape cognitive trust. Specifically, we evaluated whether different combinations of robotic competence and attentiveness introduce a compensatory mechanism, where one factor compensates for the lack of the other. In the experiment, participants performed a search task with a robotic dog in a 2x2 experimental design that included two factors: competence (high or low) and attentiveness (high or low). The results revealed that high attentiveness can compensate for low competence. Participants who collaborated with a highly attentive robot that performed poorly reported trust levels comparable to those working with a highly competent robot. When the robot did not demonstrate attentiveness, low competence resulted in a substantial decrease in cognitive trust. The findings indicate that building cognitive trust in human-robot interaction may be more complex than previously believed, involving emotional processes that are typically overlooked. We highlight an affective compensatory mechanism that adds a layer to consider alongside traditional competence-based models of cognitive trust.
3.214Masked Generative Policy for Robotic Control¶
2025/12/11 05:03 GTM
We present Masked Generative Policy (MGP), a novel framework for visuomotor imitation learning. We represent actions as discrete tokens, and train a conditional masked transformer that generates tokens in parallel and then rapidly refines only low-confidence tokens. We further propose two new sampling paradigms: MGP-Short, which performs parallel masked generation with score-based refinement for Markovian tasks, and MGP-Long, which predicts full trajectories in a single pass and dynamically refines low-confidence action tokens based on new observations. With globally coherent prediction and robust adaptive execution capabilities, MGP-Long enables reliable control on complex and non-Markovian tasks that prior methods struggle with. Extensive evaluations on 150 robotic manipulation tasks spanning the Meta-World and LIBERO benchmarks show that MGP achieves both rapid inference and superior success rates compared to state-of-the-art diffusion and autoregressive policies. Specifically, MGP increases the average success rate by 9% across 150 tasks while cutting per-sequence inference time by up to 35x. It further improves the average success rate by 60% in dynamic and missing-observation environments, and solves two non-Markovian scenarios where other state-of-the-art methods fail.
3.215Characterizing Human Feedback-Based Control in Naturalistic Driving Interactions via Gaussian Process Regression with Linear Feedback¶
2025/12/11 05:03 GTM
Understanding driver interactions is critical to designing autonomous vehicles to interoperate safely with human-driven cars. We consider the impact of these interactions on the policies drivers employ when navigating unsigned intersections in a driving simulator. The simulator allows the collection of naturalistic decision-making and behavior data in a controlled environment. Using these data, we model the human driver responses as state-based feedback controllers learned via Gaussian Process regression methods. We compute the feedback gain of the controller using a weighted combination of linear and nonlinear priors. We then analyze how the individual gains are reflected in driver behavior. We also assess differences in these controllers across populations of drivers. Our work in data-driven analyses of how drivers determine their policies can facilitate future work in the design of socially responsive autonomy for vehicles.
3.216Inferring Operator Emotions from a Motion-Controlled Robotic Arm¶
2025/12/11 05:03 GTM
A remote robot operator’s affective state can significantly impact the resulting robot’s motions leading to unexpected consequences, even when the user follows protocol and performs permitted tasks. The recognition of a user operator’s affective states in remote robot control scenarios is, however, underexplored. Current emotion recognition methods rely on reading the user’s vital signs or body language, but the devices and user participation these measures require would add limitations to remote robot control. We demonstrate that the functional movements of a remote-controlled robotic avatar, which was not designed for emotional expression, can be used to infer the emotional state of the human operator via a machine-learning system. Specifically, our system achieved 83.3 accuracy in recognizing the user’s emotional state expressed by robot movements, as a result of their hand motions. We discuss the implications of this system on prominent current and future remote robot operation and affective robotic contexts.
3.217Adaptive Thresholding for Visual Place Recognition using Negative Gaussian Mixture Statistics¶
2025/12/11 05:03 GTM
Visual place recognition (VPR) is an important component technology for camera-based mapping and navigation applications. This is a challenging problem because images of the same place may appear quite different for reasons including seasonal changes, weather illumination, structural changes to the environment, as well as transient pedestrian or vehicle traffic. Papers focusing on generating image descriptors for VPR report their results using metrics such as recall@K and ROC curves. However, for a robot implementation, determining which matches are sufficiently good is often reduced to a manually set threshold. And it is difficult to manually select a threshold that will work for a variety of visual scenarios. This paper addresses the problem of automatically selecting a threshold for VPR by looking at the ‘negative’ Gaussian mixture statistics for a place - image statistics indicating not this place. We show that this approach can be used to select thresholds that work well for a variety of image databases and image descriptors.
3.218ShelfAware: Real-Time Visual-Inertial Semantic Localization in Quasi-Static Environments with Low-Cost Sensors¶
2025/12/11 05:03 GTM
Many indoor workspaces are quasi-static: global layout is stable but local semantics change continually, producing repetitive geometry, dynamic clutter, and perceptual noise that defeat vision-based localization. We present ShelfAware, a semantic particle filter for robust global localization that treats scene semantics as statistical evidence over object categories rather than fixed landmarks. ShelfAware fuses a depth likelihood with a category-centric semantic similarity and uses a precomputed bank of semantic viewpoints to perform inverse semantic proposals inside MCL, yielding fast, targeted hypothesis generation on low-cost, vision-only hardware. Across 100 global-localization trials spanning four conditions (cart-mounted, wearable, dynamic obstacles, and sparse semantics) in a semantically dense, retail environment, ShelfAware achieves a 96% success rate (vs. 22% MCL and 10% AMCL) with a mean time-to-convergence of 1.91s, attains the lowest translational RMSE in all conditions, and maintains stable tracking in 80% of tested sequences, all while running in real time on a consumer laptop-class platform. By modeling semantics distributionally at the category level and leveraging inverse proposals, ShelfAware resolves geometric aliasing and semantic drift common to quasi-static domains. Because the method requires only vision sensors and VIO, it integrates as an infrastructure-free building block for mobile robots in warehouses, labs, and retail settings; as a representative application, it also supports the creation of assistive devices providing start-anytime, shared-control assistive navigation for people with visual impairments.
3.219Learning When to Ask: Simulation-Trained Humanoids for Mental-Health Diagnosis¶
2025/12/11 05:03 GTM
Testing humanoid robots with users is slow, causes wear, and limits iteration and diversity. Yet screening agents must master conversational timing, prosody, backchannels, and what to attend to in faces and speech for Depression and PTSD. Most simulators omit policy learning with nonverbal dynamics; many controllers chase task accuracy while underweighting trust, pacing, and rapport. We virtualise the humanoid as a conversational agent to train without hardware burden. Our agent-centred, simulation-first pipeline turns interview data into 276 Unreal Engine MetaHuman patients with synchronised speech, gaze/face, and head-torso poses, plus PHQ-8 and PCL-C flows. A perception-fusion-policy loop decides what and when to speak, when to backchannel, and how to avoid interruptions, under a safety shield. Training uses counterfactual replay (bounded nonverbal perturbations) and an uncertainty-aware turn manager that probes to reduce diagnostic ambiguity. Results are simulation-only; the humanoid is the transfer target. In comparing three controllers, a custom TD3 (Twin Delayed DDPG) outperformed PPO and CEM, achieving near-ceiling coverage with steadier pace at comparable rewards. Decision-quality analyses show negligible turn overlap, aligned cut timing, fewer clarification prompts, and shorter waits. Performance stays stable under modality dropout and a renderer swap, and rankings hold on a held-out patient split. Contributions: (1) an agent-centred simulator that turns interviews into 276 interactive patients with bounded nonverbal counterfactuals; (2) a safe learning loop that treats timing and rapport as first-class control variables; (3) a comparative study (TD3 vs PPO/CEM) with clear gains in completeness and social timing; and (4) ablations and robustness analyses explaining the gains and enabling clinician-supervised humanoid pilots.