Generated at 2025-11-26 05:00:01
We have 272 news from different sources.
2paper¶
2.1Wanderland: Geometrically Grounded Simulation for Open-World Embodied AI¶
2025/11/26 04:58 GTM
Reproducible closed-loop evaluation remains a major bottleneck in Embodied AI such as visual navigation. A promising path forward is high-fidelity simulation that combines photorealistic sensor rendering with geometrically grounded interaction in complex, open-world urban environments. Although recent video-3DGS methods ease open-world scene capturing, they are still unsuitable for benchmarking due to large visual and geometric sim-to-real gaps. To address these challenges, we introduce Wanderland, a real-to-sim framework that features multi-sensor capture, reliable reconstruction, accurate geometry, and robust view synthesis. Using this pipeline, we curate a diverse dataset of indoor-outdoor urban scenes and systematically demonstrate how image-only pipelines scale poorly, how geometry quality impacts novel view synthesis, and how all of these adversely affect navigation policy learning and evaluation reliability. Beyond serving as a trusted testbed for embodied navigation, Wanderland’s rich raw sensor data further allows benchmarking of 3D reconstruction and novel view synthesis models. Our work establishes a new foundation for reproducible research in open-world embodied AI. Project website is at https://
2.2Optimization of Sums of Bivariate Functions: An Introduction to Relaxation-Based Methods for the Case of Finite Domains¶
2025/11/26 04:58 GTM
We study the optimization of functions with arguments that have a representation as a sum of several functions that have only 2 of the arguments each, termed sums of bivariates, on finite domains. The complexity of optimizing sums of bivariates is shown to be NP-equivalent and it is shown that there exists free lunch in the optimization of sums of bivariates. Based on measure-valued extensions of the objective function, so-called relaxations, -approximation, and entropy-regularization, we derive several tractable problem formulations solvable with linear programming, coordinate ascent as well as with closed-form solutions. The limits of applying tractable versions of such relaxations to sums of bivariates are investigated using general results for reconstructing measures from their bivariate marginals. Experiments in which the derived algorithms are applied to random functions, vertex coloring, and signal reconstruction problems provide insights into qualitatively different function classes that can be modeled as sums of bivariates.
2.3Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward¶
2025/11/26 04:58 GTM
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://
2.4BRIC: Bridging Kinematic Plans and Physical Control at Test Time¶
2025/11/26 04:58 GTM
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
2.5VibraVerse: A Large-Scale Geometry-Acoustics Alignment Dataset for Physically-Consistent Multimodal Learning¶
2025/11/26 04:58 GTM
Understanding the physical world requires perceptual models grounded in physical laws rather than mere statistical correlations. However, existing multimodal learning frameworks, focused on vision and language, lack physical consistency and overlook the intrinsic causal relationships among an object’s geometry, material, vibration modes, and the sounds it produces. We introduce VibraVerse, a large-scale geometry-acoustics alignment dataset that explicitly bridges the causal chain from 3D geometry -> physical attributes -> modal parameters -> acoustic signals. Each 3D model has explicit physical properties (density, Young’s modulus, Poisson’s ratio) and volumetric geometry, from which modal eigenfrequencies and eigenvectors are computed for impact sound synthesis under controlled excitations. To establish this coherence, we introduce CLASP, a contrastive learning framework for cross-modal alignment that preserves the causal correspondence between an object’s physical structure and its acoustic response. This framework enforces physically consistent alignment across modalities, ensuring that every sample is coherent, traceable to the governing equations, and embedded within a unified representation space spanning shape, image, and sound. Built upon VibraVerse, we define a suite of benchmark tasks for geometry-to-sound prediction, sound-guided shape reconstruction, and cross-modal representation learning. Extensive validations on these tasks demonstrate that models trained on VibraVerse exhibit superior accuracy, interpretability, and generalization across modalities. These results establish VibraVerse as a benchmark for physically consistent and causally interpretable multimodal learning, providing a foundation for sound-guided embodied perception and a deeper understanding of the physical world. The dataset will be open-sourced.
2.6StableTrack: Stabilizing Multi-Object Tracking on Low-Frequency Detections¶
2025/11/26 04:58 GTM
Multi-object tracking (MOT) is one of the most challenging tasks in computer vision, where it is important to correctly detect objects and associate these detections across frames. Current approaches mainly focus on tracking objects in each frame of a video stream, making it almost impossible to run the model under conditions of limited computing resources. To address this issue, we propose StableTrack, a novel approach that stabilizes the quality of tracking on low-frequency detections. Our method introduces a new two-stage matching strategy to improve the cross-frame association between low-frequency detections. We propose a novel Bbox-Based Distance instead of the conventional Mahalanobis distance, which allows us to effectively match objects using the Re-ID model. Furthermore, we integrate visual tracking into the Kalman Filter and the overall tracking pipeline. Our method outperforms current state-of-the-art trackers in the case of low-frequency detections, achieving \textit{11.6%} HOTA improvement at Hz on MOT17-val, while keeping up with the best approaches on the standard MOT17, MOT20, and DanceTrack benchmarks with full-frequency detections.
2.7MajutsuCity: Language-driven Aesthetic-adaptive City Generation with Controllable 3D Assets and Layouts¶
2025/11/26 04:58 GTM
Generating realistic 3D cities is fundamental to world models, virtual reality, and game development, where an ideal urban scene must satisfy both stylistic diversity, fine-grained, and controllability. However, existing methods struggle to balance the creative flexibility offered by text-based generation with the object-level editability enabled by explicit structural representations. We introduce MajutsuCity, a natural language-driven and aesthetically adaptive framework for synthesizing structurally consistent and stylistically diverse 3D urban scenes. MajutsuCity represents a city as a composition of controllable layouts, assets, and materials, and operates through a four-stage pipeline. To extend controllability beyond initial generation, we further integrate MajutsuAgent, an interactive language-grounded editing agent} that supports five object-level operations. To support photorealistic and customizable scene synthesis, we also construct MajutsuDataset, a high-quality multimodal dataset} containing 2D semantic layouts and height maps, diverse 3D building assets, and curated PBR materials and skyboxes, each accompanied by detailed annotations. Meanwhile, we develop a practical set of evaluation metrics, covering key dimensions such as structural consistency, scene complexity, material fidelity, and lighting atmosphere. Extensive experiments demonstrate MajutsuCity reduces layout FID by 83.7% compared with CityDreamer and by 20.1% over CityCraft. Our method ranks first across all AQS and RDR scores, outperforming existing methods by a clear margin. These results confirm MajutsuCity as a new state-of-the-art in geometric fidelity, stylistic adaptability, and semantic controllability for 3D city generation. We expect our framework can inspire new avenues of research in 3D city generation. Our dataset and code will be released at https://
2.8Image-Free Timestep Distillation via Continuous-Time Consistency with Trajectory-Sampled Pairs¶
2025/11/26 04:58 GTM
Timestep distillation is an effective approach for improving the generation efficiency of diffusion models. The Consistency Model (CM), as a trajectory-based framework, demonstrates significant potential due to its strong theoretical foundation and high-quality few-step generation. Nevertheless, current continuous-time consistency distillation methods still rely heavily on training data and computational resources, hindering their deployment in resource-constrained scenarios and limiting their scalability to diverse domains. To address this issue, we propose Trajectory-Backward Consistency Model (TBCM), which eliminates the dependence on external training data by extracting latent representations directly from the teacher model’s generation trajectory. Unlike conventional methods that require VAE encoding and large-scale datasets, our self-contained distillation paradigm significantly improves both efficiency and simplicity. Moreover, the trajectory-extracted samples naturally bridge the distribution gap between training and inference, thereby enabling more effective knowledge transfer. Empirically, TBCM achieves 6.52 FID and 28.08 CLIP scores on MJHQ-30k under one-step generation, while reducing training time by approximately 40% compared to Sana-Sprint and saving a substantial amount of GPU memory, demonstrating superior efficiency without sacrificing quality. We further reveal the diffusion-generation space discrepancy in continuous-time consistency distillation and analyze how sampling strategies affect distillation performance, offering insights for future distillation research. GitHub Link: https://
2.9A Training-Free Approach for Multi-ID Customization via Attention Adjustment and Spatial Control¶
2025/11/26 04:58 GTM
Multi-ID customization is an interesting topic in computer vision and attracts considerable attention recently. Given the ID images of multiple individuals, its purpose is to generate a customized image that seamlessly integrates them while preserving their respective identities. Compared to single-ID customization, multi-ID customization is much more difficult and poses two major challenges. First, since the multi-ID customization model is trained to reconstruct an image from the cropped person regions, it often encounters the copy-paste issue during inference, leading to lower quality. Second, the model also suffers from inferior text controllability. The generated result simply combines multiple persons into one image, regardless of whether it is aligned with the input text. In this work, we propose MultiID to tackle this challenging task in a training-free manner. Since the existing single-ID customization models have less copy-paste issue, our key idea is to adapt these models to achieve multi-ID customization. To this end, we present an ID-decoupled cross-attention mechanism, injecting distinct ID embeddings into the corresponding image regions and thus generating multi-ID outputs. To enhance the generation controllability, we introduce three critical strategies, namely the local prompt, depth-guided spatial control, and extended self-attention, making the results more consistent with the text prompts and ID images. We also carefully build a benchmark, called IDBench, for evaluation. The extensive qualitative and quantitative results demonstrate the effectiveness of MultiID in solving the aforementioned two challenges. Its performance is comparable or even better than the training-based multi-ID customization methods.
2.10FREE: Uncertainty-Aware Autoregression for Parallel Diffusion Transformers¶
2025/11/26 04:58 GTM
Diffusion Transformers (DiTs) achieve state-of-the-art generation quality but require long sequential denoising trajectories, leading to high inference latency. Recent speculative inference methods enable lossless parallel sampling in U-Net-based diffusion models via a drafter-verifier scheme, but their acceleration is limited on DiTs due to insufficient draft accuracy during verification. To address this limitation, we analyze the DiTs’ feature dynamics and find the features of the final transformer layer (top-block) exhibit strong temporal consistency and rich semantic abstraction. Based on this insight, we propose FREE, a novel framework that employs a lightweight drafter to perform feature-level autoregression with parallel verification, guaranteeing lossless acceleration with theoretical and empirical support. Meanwhile, prediction variance (uncertainty) of DiTs naturally increases in later denoising steps, reducing acceptance rates under speculative sampling. To mitigate this effect, we further introduce an uncertainty-guided relaxation strategy, forming FREE (relax), which dynamically adjusts the acceptance probability in response to uncertainty levels. Experiments on ImageNet-5122 show that FREE achieves up to acceleration, and FREE (relax) further reaches speedup while maintaining high perceptual and quantitative fidelity in generation quality.
2.11VGGTFace: Topologically Consistent Facial Geometry Reconstruction in the Wild¶
2025/11/26 04:58 GTM
Reconstructing topologically consistent facial geometry is crucial for the digital avatar creation pipelines. Existing methods either require tedious manual efforts, lack generalization to in-the-wild data, or are constrained by the limited expressiveness of 3D Morphable Models. To address these limitations, we propose VGGTFace, an automatic approach that innovatively applies the 3D foundation model, \emph{i.e.} VGGT, for topologically consistent facial geometry reconstruction from in-the-wild multi-view images captured by everyday users. Our key insight is that, by leveraging VGGT, our method naturally inherits strong generalization ability and expressive power from its large-scale training and point map representation. However, it is unclear how to reconstruct a topologically consistent mesh from VGGT, as the topology information is missing in its prediction. To this end, we augment VGGT with Pixel3DMM for injecting topology information via pixel-aligned UV values. In this manner, we convert the pixel-aligned point map of VGGT to a point cloud with topology. Tailored to this point cloud with known topology, we propose a novel Topology-Aware Bundle Adjustment strategy to fuse them, where we construct a Laplacian energy for the Bundle Adjustment objective. Our method achieves high-quality reconstruction in 10 seconds for 16 views on a single NVIDIA RTX 4090. Experiments demonstrate state-of-the-art results on benchmarks and impressive generalization to in-the-wild data. Code is available at https://
2.12From Passive Perception to Active Memory: A Weakly Supervised Image Manipulation Localization Framework Driven by Coarse-Grained Annotations¶
2025/11/26 04:58 GTM
Image manipulation localization (IML) faces a fundamental trade-off between minimizing annotation cost and achieving fine-grained localization accuracy. Existing fully-supervised IML methods depend heavily on dense pixel-level mask annotations, which limits scalability to large datasets or real-world deployment.In contrast, the majority of existing weakly-supervised IML approaches are based on image-level labels, which greatly reduce annotation effort but typically lack precise spatial localization. To address this dilemma, we propose BoxPromptIML, a novel weakly-supervised IML framework that effectively balances annotation cost and localization performance. Specifically, we propose a coarse region annotation strategy, which can generate relatively accurate manipulation masks at lower cost. To improve model efficiency and facilitate deployment, we further design an efficient lightweight student model, which learns to perform fine-grained localization through knowledge distillation from a fixed teacher model based on the Segment Anything Model (SAM). Moreover, inspired by the human subconscious memory mechanism, our feature fusion module employs a dual-guidance strategy that actively contextualizes recalled prototypical patterns with real-time observational cues derived from the input. Instead of passive feature extraction, this strategy enables a dynamic process of knowledge recollection, where long-term memory is adapted to the specific context of the current image, significantly enhancing localization accuracy and robustness. Extensive experiments across both in-distribution and out-of-distribution datasets show that BoxPromptIML outperforms or rivals fully-supervised models, while maintaining strong generalization, low annotation cost, and efficient deployment characteristics.
2.13GS-Checker: Tampering Localization for 3D Gaussian Splatting¶
2025/11/26 04:58 GTM
Recent advances in editing technologies for 3D Gaussian Splatting (3DGS) have made it simple to manipulate 3D scenes. However, these technologies raise concerns about potential malicious manipulation of 3D content. To avoid such malicious applications, localizing tampered regions becomes crucial. In this paper, we propose GS-Checker, a novel method for locating tampered areas in 3DGS models. Our approach integrates a 3D tampering attribute into the 3D Gaussian parameters to indicate whether the Gaussian has been tampered. Additionally, we design a 3D contrastive mechanism by comparing the similarity of key attributes between 3D Gaussians to seek tampering cues at 3D level. Furthermore, we introduce a cyclic optimization strategy to refine the 3D tampering attribute, enabling more accurate tampering localization. Notably, our approach does not require expensive 3D labels for supervision. Extensive experimental results demonstrate the effectiveness of our proposed method to locate the tampered 3DGS area.
2.14Thinking in 360°: Humanoid Visual Search in the Wild¶
2025/11/26 04:58 GTM
Humans rely on the synergistic control of head (cephalomotor) and eye (oculomotor) to efficiently search for visual information in 360°. However, prior approaches to visual search are limited to a static image, neglecting the physical embodiment and its interaction with the 3D world. How can we develop embodied visual search agents as efficient as humans while bypassing the constraints imposed by real-world hardware? To this end, we propose humanoid visual search where a humanoid agent actively rotates its head to search for objects or paths in an immersive world represented by a 360° panoramic image. To study visual search in visually-crowded real-world scenarios, we build H* Bench, a new benchmark that moves beyond household scenes to challenging in-the-wild scenes that necessitate advanced visual-spatial reasoning capabilities, such as transportation hubs, large-scale retail spaces, urban streets, and public institutions. Our experiments first reveal that even top-tier proprietary models falter, achieving only ~30% success in object and path search. We then use post-training techniques to enhance the open-source Qwen2.5-VL, increasing its success rate by over threefold for both object search (14.83% to 47.38%) and path search (6.44% to 24.94%). Notably, the lower ceiling of path search reveals its inherent difficulty, which we attribute to the demand for sophisticated spatial commonsense. Our results not only show a promising path forward but also quantify the immense challenge that remains in building MLLM agents that can be seamlessly integrated into everyday human life.
2.15Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin¶
2025/11/26 04:58 GTM
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
2.16AMB3R: Accurate Feed-forward Metric-scale 3D Reconstruction with Backend¶
2025/11/26 04:58 GTM
We present AMB3R, a multi-view feed-forward model for dense 3D reconstruction on a metric-scale that addresses diverse 3D vision tasks. The key idea is to leverage a sparse, yet compact, volumetric scene representation as our backend, enabling geometric reasoning with spatial compactness. Although trained solely for multi-view reconstruction, we demonstrate that AMB3R can be seamlessly extended to uncalibrated visual odometry (online) or large-scale structure from motion without the need for task-specific fine-tuning or test-time optimization. Compared to prior pointmap-based models, our approach achieves state-of-the-art performance in camera pose, depth, and metric-scale estimation, 3D reconstruction, and even surpasses optimization-based SLAM and SfM methods with dense reconstruction priors on common benchmarks.
2.17ShelfRectNet: Single View Shelf Image Rectification with Homography Estimation¶
2025/11/26 04:58 GTM
Estimating homography from a single image remains a challenging yet practically valuable task, particularly in domains like retail, where only one viewpoint is typically available for shelf monitoring and product alignment. In this paper, we present a deep learning framework that predicts a 4-point parameterized homography matrix to rectify shelf images captured from arbitrary angles. Our model leverages a ConvNeXt-based backbone for enhanced feature representation and adopts normalized coordinate regression for improved stability. To address data scarcity and promote generalization, we introduce a novel augmentation strategy by modeling and sampling synthetic homographies. Our method achieves a mean corner error of 1.298 pixels on the test set. When compared with both classical computer vision and deep learning-based approaches, our method demonstrates competitive performance in both accuracy and inference speed. Together, these results establish our approach as a robust and efficient solution for realworld single-view rectification. To encourage further research in this domain, we will make our dataset, ShelfRectSet, and code publicly available
2.183D Motion Perception of Binocular Vision Target with PID-CNN¶
2025/11/26 04:58 GTM
This article trained a network for perceiving three-dimensional motion information of binocular vision target, which can provide real-time three-dimensional coordinate, velocity, and acceleration, and has a basic spatiotemporal perception capability. Understood the ability of neural networks to fit nonlinear problems from the perspective of PID. Considered a single-layer neural network as using a second-order difference equation and a nonlinearity to describe a local problem. Multilayer networks gradually transform the raw representation to the desired representation through multiple such combinations. Analysed some reference principles for designing neural networks. Designed a relatively small PID convolutional neural network, with a total of 17 layers and 413 thousand parameters. Implemented a simple but practical feature reuse method by concatenation and pooling. The network was trained and tested using the simulated randomly moving ball datasets, and the experimental results showed that the prediction accuracy was close to the upper limit that the input image resolution can represent. Analysed the experimental results and errors, as well as the existing shortcomings and possible directions for improvement. Finally, discussed the advantages of high-dimensional convolution in improving computational efficiency and feature space utilization. As well as the potential advantages of using PID information to implement memory and attention mechanisms.
2.19ArtiBench and ArtiBrain: Benchmarking Generalizable Vision-Language Articulated Object Manipulation¶
2025/11/26 04:58 GTM
Interactive articulated manipulation requires long-horizon, multi-step interactions with appliances while maintaining physical consistency. Existing vision-language and diffusion-based policies struggle to generalize across parts, instances, and categories. We first introduce ArtiBench, a five-level benchmark covering kitchen, storage, office, and tool environments. ArtiBench enables structured evaluation from cross-part and cross-instance variation to long-horizon multi-object tasks, revealing the core generalization challenges of articulated object manipulation. Building on this benchmark, we propose ArtiBrain, a modular framework that unifies high-level reasoning with adaptive low-level control. ArtiBrain uses a VLM-based Task Reasoner (GPT-4.1) to decompose and validate subgoals, and employs a Hybrid Controller that combines geometry-aware keyframe execution with affordance-guided diffusion for precise and interpretable manipulation. An Affordance Memory Bank continually accumulates successful execution episodes and propagates part-level actionable affordances to unseen articulated parts and configurations. Extensive experiments on ArtiBench show that our ArtiBrain significantly outperforms state-of-the-art multimodal and diffusion-based methods in robustness and generalization. Code and dataset will be released upon acceptance.
2.20AD-R1: Closed-Loop Reinforcement Learning for End-to-End Autonomous Driving with Impartial World Models¶
2025/11/26 04:58 GTM
End-to-end models for autonomous driving hold the promise of learning complex behaviors directly from sensor data, but face critical challenges in safety and handling long-tail events. Reinforcement Learning (RL) offers a promising path to overcome these limitations, yet its success in autonomous driving has been elusive. We identify a fundamental flaw hindering this progress: a deep seated optimistic bias in the world models used for RL. To address this, we introduce a framework for post-training policy refinement built around an Impartial World Model. Our primary contribution is to teach this model to be honest about danger. We achieve this with a novel data synthesis pipeline, Counterfactual Synthesis, which systematically generates a rich curriculum of plausible collisions and off-road events. This transforms the model from a passive scene completer into a veridical forecaster that remains faithful to the causal link between actions and outcomes. We then integrate this Impartial World Model into our closed-loop RL framework, where it serves as an internal critic. During refinement, the agent queries the critic to ``dream" of the outcomes for candidate actions. We demonstrate through extensive experiments, including on a new Risk Foreseeing Benchmark, that our model significantly outperforms baselines in predicting failures. Consequently, when used as a critic, it enables a substantial reduction in safety violations in challenging simulations, proving that teaching a model to dream of danger is a critical step towards building truly safe and intelligent autonomous agents.
2.21IrisNet: Infrared Image Status Awareness Meta Decoder for Infrared Small Targets Detection¶
2025/11/26 04:58 GTM
Infrared Small Target Detection (IRSTD) faces significant challenges due to low signal-to-noise ratios, complex backgrounds, and the absence of discernible target features. While deep learning-based encoder-decoder frameworks have advanced the field, their static pattern learning suffers from pattern drift across diverse scenarios (\emph{e.g.}, day/night variations, sky/maritime/ground domains), limiting robustness. To address this, we propose IrisNet, a novel meta-learned framework that dynamically adapts detection strategies to the input infrared image status. Our approach establishes a dynamic mapping between infrared image features and entire decoder parameters via an image-to-decoder transformer. More concretely, we represent the parameterized decoder as a structured 2D tensor preserving hierarchical layer correlations and enable the transformer to model inter-layer dependencies through self-attention while generating adaptive decoding patterns via cross-attention. To further enhance the perception ability of infrared images, we integrate high-frequency components to supplement target-position and scene-edge information. Experiments on NUDT-SIRST, NUAA-SIRST, and IRSTD-1K datasets demonstrate the superiority of our IrisNet, achieving state-of-the-art performance.
2.22TReFT: Taming Rectified Flow Models For One-Step Image Translation¶
2025/11/26 04:58 GTM
Rectified Flow (RF) models have advanced high-quality image and video synthesis via optimal transport theory. However, when applied to image-to-image translation, they still depend on costly multi-step denoising, hindering real-time applications. Although the recent adversarial training paradigm, CycleGAN-Turbo, works in pretrained diffusion models for one-step image translation, we find that directly applying it to RF models leads to severe convergence issues. In this paper, we analyze these challenges and propose TReFT, a novel method to Tame Rectified Flow models for one-step image Translation. Unlike previous works, TReFT directly uses the velocity predicted by pretrained DiT or UNet as output-a simple yet effective design that tackles the convergence issues under adversarial training with one-step inference. This design is mainly motivated by a novel observation that, near the end of the denoising process, the velocity predicted by pretrained RF models converges to the vector from origin to the final clean image, a property we further justify through theoretical analysis. When applying TReFT to large pretrained RF models such as SD3.5 and FLUX, we introduce memory-efficient latent cycle-consistency and identity losses during training, as well as lightweight architectural simplifications for faster inference. Pretrained RF models finetuned with TReFT achieve performance comparable to sota methods across multiple image translation datasets while enabling real-time inference.
2.23TaCo: Capturing Spatio-Temporal Semantic Consistency in Remote Sensing Change Detection¶
2025/11/26 04:58 GTM
Remote sensing change detection (RSCD) aims to identify surface changes across bi-temporal satellite images. Most previous methods rely solely on mask supervision, which effectively guides spatial localization but provides limited constraints on the temporal semantic transitions. Consequently, they often produce spatially coherent predictions while still suffering from unresolved semantic inconsistencies. To address this limitation, we propose TaCo, a spatio-temporal semantic consistent network, which enriches the existing mask-supervised framework with a spatio-temporal semantic joint constraint. TaCo conceptualizes change as a semantic transition between bi-temporal states, in which one temporal feature representation can be derived from the other via dedicated transition features. To realize this, we introduce a Text-guided Transition Generator that integrates textual semantics with bi-temporal visual features to construct the cross-temporal transition features. In addition, we propose a spatio-temporal semantic joint constraint consisting of bi-temporal reconstruct constraints and a transition constraint: the former enforces alignment between reconstructed and original features, while the latter enhances discrimination for changes. This design can yield substantial performance gains without introducing any additional computational overhead during inference. Extensive experiments on six public datasets, spanning both binary and semantic change detection tasks, demonstrate that TaCo consistently achieves SOTA performance.
2.24CrossEarth-Gate: Fisher-Guided Adaptive Tuning Engine for Efficient Adaptation of Cross-Domain Remote Sensing Semantic Segmentation¶
2025/11/26 04:58 GTM
In Remote Sensing (RS), Parameter-Efficient Fine-Tuning (PEFT) has emerged as a key approach to activate the generalizable representation ability of foundation models for downstream tasks. However, existing specialized PEFT methods often fail when applied to large-scale Earth observation tasks, as they are unable to fully handle the multifaceted and unpredictable domain gaps (\eg, spatial, semantic, and frequency shifts) inherent in RS data. To overcome this, we propose CrossEarth-Gate, which introduces two primary contributions. First, we establish a comprehensive RS module toolbox to address multifaceted domain gaps, comprising spatial, semantic, and frequency modules. Second, we develop a Fisher-guided adaptive selection mechanism that operates on this toolbox. This selection is guided by Fisher Information to quantify each module’s importance by measuring its contribution to the task-specific gradient flow. It dynamically activates only the most critical modules at the appropriate layers, guiding the gradient flow to maximize adaptation effectiveness and efficiency. Comprehensive experiments validate the efficacy and generalizability of our method, where CrossEarth-Gate achieves state-of-the-art performance across 16 cross-domain benchmarks for RS semantic segmentation. The code of the work will be released.
2.25Prompting Lipschitz-constrained network for multiple-in-one sparse-view CT reconstruction¶
2025/11/26 04:58 GTM
Despite significant advancements in deep learning-based sparse-view computed tomography (SVCT) reconstruction algorithms, these methods still encounter two primary limitations: (i) It is challenging to explicitly prove that the prior networks of deep unfolding algorithms satisfy Lipschitz constraints due to their empirically designed nature. (ii) The substantial storage costs of training a separate model for each setting in the case of multiple views hinder practical clinical applications. To address these issues, we elaborate an explicitly provable Lipschitz-constrained network, dubbed LipNet, and integrate an explicit prompt module to provide discriminative knowledge of different sparse sampling settings, enabling the treatment of multiple sparse view configurations within a single model. Furthermore, we develop a storage-saving deep unfolding framework for multiple-in-one SVCT reconstruction, termed PromptCT, which embeds LipNet as its prior network to ensure the convergence of its corresponding iterative algorithm. In simulated and real data experiments, PromptCT outperforms benchmark reconstruction algorithms in multiple-in-one SVCT reconstruction, achieving higher-quality reconstructions with lower storage costs. On the theoretical side, we explicitly demonstrate that LipNet satisfies boundary property, further proving its Lipschitz continuity and subsequently analyzing the convergence of the proposed iterative algorithms. The data and code are publicly available at https://
2.26Back to the Feature: Explaining Video Classifiers with Video Counterfactual Explanations¶
2025/11/26 04:58 GTM
Counterfactual explanations (CFEs) are minimal and semantically meaningful modifications of the input of a model that alter the model predictions. They highlight the decisive features the model relies on, providing contrastive interpretations for classifiers. State-of-the-art visual counterfactual explanation methods are designed to explain image classifiers. The generation of CFEs for video classifiers remains largely underexplored. For the counterfactual videos to be useful, they have to be physically plausible, temporally coherent, and exhibit smooth motion trajectories. Existing CFE image-based methods, designed to explain image classifiers, lack the capacity to generate temporally coherent, smooth and physically plausible video CFEs. To address this, we propose Back To The Feature (BTTF), an optimization framework that generates video CFEs. Our method introduces two novel features, 1) an optimization scheme to retrieve the initial latent noise conditioned by the first frame of the input video, 2) a two-stage optimization strategy to enable the search for counterfactual videos in the vicinity of the input video. Both optimization processes are guided solely by the target classifier, ensuring the explanation is faithful. To accelerate convergence, we also introduce a progressive optimization strategy that incrementally increases the number of denoising steps. Extensive experiments on video datasets such as Shape-Moving (motion classification), MEAD (emotion classification), and NTU RGB+D (action classification) show that our BTTF effectively generates valid, visually similar and realistic counterfactual videos that provide concrete insights into the classifier’s decision-making mechanism.
2.27Bootstrapping Physics-Grounded Video Generation through VLM-Guided Iterative Self-Refinement¶
2025/11/26 04:58 GTM
Recent progress in video generation has led to impressive visual quality, yet current models still struggle to produce results that align with real-world physical principles. To this end, we propose an iterative self-refinement framework that leverages large language models and vision-language models to provide physics-aware guidance for video generation. Specifically, we introduce a multimodal chain-of-thought (MM-CoT) process that refines prompts based on feedback from physical inconsistencies, progressively enhancing generation quality. This method is training-free and plug-and-play, making it readily applicable to a wide range of video generation models. Experiments on the PhyIQ benchmark show that our method improves the Physics-IQ score from 56.31 to 62.38. We hope this work serves as a preliminary exploration of physics-consistent video generation and may offer insights for future research.
2.28SelfMOTR: Revisiting MOTR with Self-Generating Detection Priors¶
2025/11/26 04:58 GTM
Despite progress toward end-to-end tracking with transformer architectures, poor detection performance and the conflict between detection and association in a joint architecture remain critical concerns. Recent approaches aim to mitigate these issues by (i) employing advanced denoising or label assignment strategies, or (ii) incorporating detection priors from external object detectors via distillation or anchor proposal techniques. Inspired by the success of integrating detection priors and by the key insight that MOTR-like models are secretly strong detection models, we introduce SelfMOTR, a novel tracking transformer that relies on self-generated detection priors. Through extensive analysis and ablation studies, we uncover and demonstrate the hidden detection capabilities of MOTR-like models, and present a practical set of tools for leveraging them effectively. On DanceTrack, SelfMOTR achieves strong performance, competing with recent state-of-the-art end-to-end tracking methods.
2.29DAPointMamba: Domain Adaptive Point Mamba for Point Cloud Completion¶
2025/11/26 04:58 GTM
Domain adaptive point cloud completion (DA PCC) aims to narrow the geometric and semantic discrepancies between the labeled source and unlabeled target domains. Existing methods either suffer from limited receptive fields or quadratic complexity due to using CNNs or vision Transformers. In this paper, we present the first work that studies the adaptability of State Space Models (SSMs) in DA PCC and find that directly applying SSMs to DA PCC will encounter several challenges: directly serializing 3D point clouds into 1D sequences often disrupts the spatial topology and local geometric features of the target domain. Besides, the overlook of designs in the learning domain-agnostic representations hinders the adaptation performance. To address these issues, we propose a novel framework, DAPointMamba for DA PCC, that exhibits strong adaptability across domains and has the advantages of global receptive fields and efficient linear complexity. It has three novel modules. In particular, Cross-Domain Patch-Level Scanning introduces patch-level geometric correspondences, enabling effective local alignment. Cross-Domain Spatial SSM Alignment further strengthens spatial consistency by modulating patch features based on cross-domain similarity, effectively mitigating fine-grained structural discrepancies. Cross-Domain Channel SSM Alignment actively addresses global semantic gaps by interleaving and aligning feature channels. Extensive experiments on both synthetic and real-world benchmarks demonstrate that our DAPointMamba outperforms state-of-the-art methods with less computational complexity and inference latency.
2.30ScenarioCLIP: Pretrained Transferable Visual Language Models and Action-Genome Dataset for Natural Scene Analysis¶
2025/11/26 04:58 GTM
Until recently, the general corpus of CLIP-type fundamental models has widely explored either the retrieval of short descriptions or the classification of objects in the scene as SINGLE-object image classification task. The same holds for retrieving the image embedding (image retrieval task) given a text prompt. However, real-world scene images exhibit rich compositional structure involving multiple objects and actions. The latest methods in the CLIP-based literature improve class-level discrimination by mining harder negative image-text pairs and by refining permanent text prompts, often using LLMs. However, these improvements remain confined to predefined class lists and do not explicitly model relational or compositional structure. PyramidCLIP partially addresses this gap by aligning global and local visual features, yet it still lacks explicit modeling of inter-object relations. Hence, to further leverage this aspect for scene analysis, the proposed ScenarioCLIP model accepts input texts, grounded relations, and input images, along with focused regions highlighting relations. The proposed model is pretrained on curated scenario data, and finetuned for specialized downstream tasks, such as cross-modal retrieval and fine-grained visual understanding tasks. To address the lack of domain-specific datasets, we generate a novel dataset by extending image-text pairs from existing diverse indoor and outdoor scenario datasets that are publicly available. We used a pipeline of existing language models to ground action, object, and relations, filled by manual and automatic curation. We established a comprehensive benchmark for several scenario-based tasks and compared it with many baseline methods. ScenarioCLIP demonstrates robust zero-shot and finetune performance on various domain-specific tasks. Our code and dataset are available at https://
2.31VKnowU: Evaluating Visual Knowledge Understanding in Multimodal LLMs¶
2025/11/26 04:58 GTM
While Multimodal Large Language Models (MLLMs) have become adept at recognizing objects, they often lack the intuitive, human-like understanding of the world’s underlying physical and social principles. This high-level vision-grounded semantics, which we term visual knowledge, forms a bridge between perception and reasoning, yet remains an underexplored area in current MLLMs. To systematically evaluate this capability, we present VKnowU, a comprehensive benchmark featuring 1,680 questions in 1,249 videos, covering 8 core types of visual knowledge spanning both world-centric (e.g., intuitive physics) and human-centric (e.g., subjective intentions). Evaluation of 23 SOTA MLLMs reveals that leading models still fall short of human performance, with particularly notable gaps in the world-centric. To bridge this gap, we introduce a new dataset, VKnowQA, and VideoKnow+, a baseline model that explicitly incorporates visual knowledge into MLLMs. VideoKnow+ follows a structured See-Think-Answer paradigm and adopts reinforcement learning with visual knowledge reward, achieving a +3.7% improvement on VKnowU and consistent gains on MVBench, Video-MME, and MMVU. Our work highlights visual knowledge as a missing cornerstone for developing more generalizable MLLMs that can not only see but also truly understand our physical and social worlds.
2.32DRL-Guided Neural Batch Sampling for Semi-Supervised Pixel-Level Anomaly Detection¶
2025/11/26 04:58 GTM
Anomaly detection in industrial visual inspection is challenging due to the scarcity of defective samples. Most existing methods rely on unsupervised reconstruction using only normal data, often resulting in overfitting and poor detection of subtle defects. We propose a semi-supervised deep reinforcement learning framework that integrates a neural batch sampler, an autoencoder, and a predictor. The RL-based sampler adaptively selects informative patches by balancing exploration and exploitation through a composite reward. The autoencoder generates loss profiles highlighting abnormal regions, while the predictor performs segmentation in the loss-profile space. This interaction enables the system to effectively learn both normal and defective patterns with limited labeled data. Experiments on the MVTec AD dataset demonstrate that our method achieves higher accuracy and better localization of subtle anomalies than recent state-of-the-art approaches while maintaining low complexity, yielding an average improvement of 0.15 in F1_max and 0.06 in AUC, with a maximum gain of 0.37 in F1_max in the best case.
2.33Advancing Image Classification with Discrete Diffusion Classification Modeling¶
2025/11/26 04:58 GTM
Image classification is a well-studied task in computer vision, and yet it remains challenging under high-uncertainty conditions, such as when input images are corrupted or training data are limited. Conventional classification approaches typically train models to directly predict class labels from input images, but this might lead to suboptimal performance in such scenarios. To address this issue, we propose Discrete Diffusion Classification Modeling (DiDiCM), a novel framework that leverages a diffusion-based procedure to model the posterior distribution of class labels conditioned on the input image. DiDiCM supports diffusion-based predictions either on class probabilities or on discrete class labels, providing flexibility in computation and memory trade-offs. We conduct a comprehensive empirical study demonstrating the superior performance of DiDiCM over standard classifiers, showing that a few diffusion iterations achieve higher classification accuracy on the ImageNet dataset compared to baselines, with accuracy gains increasing as the task becomes more challenging. We release our code at https://
2.34Modality-Balanced Collaborative Distillation for Multi-Modal Domain Generalization¶
2025/11/26 04:58 GTM
Weight Averaging (WA) has emerged as a powerful technique for enhancing generalization by promoting convergence to a flat loss landscape, which correlates with stronger out-of-distribution performance. However, applying WA directly to multi-modal domain generalization (MMDG) is challenging: differences in optimization speed across modalities lead WA to overfit to faster-converging ones in early stages, suppressing the contribution of slower yet complementary modalities, thereby hindering effective modality fusion and skewing the loss surface toward sharper, less generalizable minima. To address this issue, we propose MBCD, a unified collaborative distillation framework that retains WA’s flatness-inducing advantages while overcoming its shortcomings in multi-modal contexts. MBCD begins with adaptive modality dropout in the student model to curb early-stage bias toward dominant modalities. A gradient consistency constraint then aligns learning signals between uni-modal branches and the fused representation, encouraging coordinated and smoother optimization. Finally, a WA-based teacher conducts cross-modal distillation by transferring fused knowledge to each uni-modal branch, which strengthens cross-modal interactions and steer convergence toward flatter solutions. Extensive experiments on MMDG benchmarks show that MBCD consistently outperforms existing methods, achieving superior accuracy and robustness across diverse unseen domains.
2.35The Image as Its Own Reward: Reinforcement Learning with Adversarial Reward for Image Generation¶
2025/11/26 04:58 GTM
A reliable reward function is essential for reinforcement learning (RL) in image generation. Most current RL approaches depend on pre-trained preference models that output scalar rewards to approximate human preferences. However, these rewards often fail to capture human perception and are vulnerable to reward hacking, where higher scores do not correspond to better images. To address this, we introduce Adv-GRPO, an RL framework with an adversarial reward that iteratively updates both the reward model and the generator. The reward model is supervised using reference images as positive samples and can largely avoid being hacked. Unlike KL regularization that constrains parameter updates, our learned reward directly guides the generator through its visual outputs, leading to higher-quality images. Moreover, while optimizing existing reward functions can alleviate reward hacking, their inherent biases remain. For instance, PickScore may degrade image quality, whereas OCR-based rewards often reduce aesthetic fidelity. To address this, we take the image itself as a reward, using reference images and vision foundation models (e.g., DINO) to provide rich visual rewards. These dense visual signals, instead of a single scalar, lead to consistent gains across image quality, aesthetics, and task-specific metrics. Finally, we show that combining reference samples with foundation-model rewards enables distribution transfer and flexible style customization. In human evaluation, our method outperforms Flow-GRPO and SD3, achieving 70.0% and 72.4% win rates in image quality and aesthetics, respectively. Code and models have been released.
2.36XiCAD: Camera Activation Detection in the Da Vinci Xi User Interface¶
2025/11/26 04:58 GTM
Purpose: Robot-assisted minimally invasive surgery relies on endoscopic video as the sole intraoperative visual feedback. The DaVinci Xi system overlays a graphical user interface (UI) that indicates the state of each robotic arm, including the activation of the endoscope arm. Detecting this activation provides valuable metadata such as camera movement information, which can support downstream surgical data science tasks including tool tracking, skill assessment, or camera control automation. Methods: We developed a lightweight pipeline based on a ResNet18 convolutional neural network to automatically identify the position of the camera tile and its activation state within the DaVinci Xi UI. The model was fine-tuned on manually annotated data from the SurgToolLoc dataset and evaluated across three public datasets comprising over 70,000 frames. Results: The model achieved F1-scores between 0.993 and 1.000 for the binary detection of active cameras and correctly localized the camera tile in all cases without false multiple-camera detections. Conclusion: The proposed pipeline enables reliable, real-time extraction of camera activation metadata from surgical videos, facilitating automated preprocessing and analysis for diverse downstream applications. All code, trained models, and annotations are publicly available.
2.37Zoo3D: Zero-Shot 3D Object Detection at Scene Level¶
2025/11/26 04:58 GTM
3D object detection is fundamental for spatial understanding. Real-world environments demand models capable of recognizing diverse, previously unseen objects, which remains a major limitation of closed-set methods. Existing open-vocabulary 3D detectors relax annotation requirements but still depend on training scenes, either as point clouds or images. We take this a step further by introducing Zoo3D, the first training-free 3D object detection framework. Our method constructs 3D bounding boxes via graph clustering of 2D instance masks, then assigns semantic labels using a novel open-vocabulary module with best-view selection and view-consensus mask generation. Zoo3D operates in two modes: the zero-shot Zoo3D, which requires no training at all, and the self-supervised Zoo3D, which refines 3D box prediction by training a class-agnostic detector on Zoo3D-generated pseudo labels. Furthermore, we extend Zoo3D beyond point clouds to work directly with posed and even unposed images. Across ScanNet200 and ARKitScenes benchmarks, both Zoo3D and Zoo3D achieve state-of-the-art results in open-vocabulary 3D object detection. Remarkably, our zero-shot Zoo3D outperforms all existing self-supervised methods, hence demonstrating the power and adaptability of training-free, off-the-shelf approaches for real-world 3D understanding. Code is available at https://
2.38PromptMoG: Enhancing Diversity in Long-Prompt Image Generation via Prompt Embedding Mixture-of-Gaussian Sampling¶
2025/11/26 04:58 GTM
Recent advances in text-to-image (T2I) generation have achieved remarkable visual outcomes through large-scale rectified flow models. However, how these models behave under long prompts remains underexplored. Long prompts encode rich content, spatial, and stylistic information that enhances fidelity but often suppresses diversity, leading to repetitive and less creative outputs. In this work, we systematically study this fidelity-diversity dilemma and reveal that state-of-the-art models exhibit a clear drop in diversity as prompt length increases. To enable consistent evaluation, we introduce LPD-Bench, a benchmark designed for assessing both fidelity and diversity in long-prompt generation. Building on our analysis, we develop a theoretical framework that increases sampling entropy through prompt reformulation and propose a training-free method, PromptMoG, which samples prompt embeddings from a Mixture-of-Gaussians in the embedding space to enhance diversity while preserving semantics. Extensive experiments on four state-of-the-art models, SD3.5-Large, Flux.1-Krea-Dev, CogView4, and Qwen-Image, demonstrate that PromptMoG consistently improves long-prompt generation diversity without semantic drifting.
2.39Uplifting Table Tennis: A Robust, Real-World Application for 3D Trajectory and Spin Estimation¶
2025/11/26 04:58 GTM
Obtaining the precise 3D motion of a table tennis ball from standard monocular videos is a challenging problem, as existing methods trained on synthetic data struggle to generalize to the noisy, imperfect ball and table detections of the real world. This is primarily due to the inherent lack of 3D ground truth trajectories and spin annotations for real-world video. To overcome this, we propose a novel two-stage pipeline that divides the problem into a front-end perception task and a back-end 2D-to-3D uplifting task. This separation allows us to train the front-end components with abundant 2D supervision from our newly created TTHQ dataset, while the back-end uplifting network is trained exclusively on physically-correct synthetic data. We specifically re-engineer the uplifting model to be robust to common real-world artifacts, such as missing detections and varying frame rates. By integrating a ball detector and a table keypoint detector, our approach transforms a proof-of-concept uplifting method into a practical, robust, and high-performing end-to-end application for 3D table tennis trajectory and spin analysis.
2.40HistoSpeckle-Net: Mutual Information-Guided Deep Learning for high-fidelity reconstruction of complex OrganAMNIST images via perturbed Multimode Fiber...¶
2025/11/26 04:58 GTM
Existing deep learning methods in multimode fiber (MMF) imaging often focus on simpler datasets, limiting their applicability to complex, real-world imaging tasks. These models are typically data-intensive, a challenge that becomes more pronounced when dealing with diverse and complex images. In this work, we propose HistoSpeckle-Net, a deep learning architecture designed to reconstruct structurally rich medical images from MMF speckles. To build a clinically relevant dataset, we develop an optical setup that couples laser light through a spatial light modulator (SLM) into an MMF, capturing output speckle patterns corresponding to input OrganAMNIST images. Unlike previous MMF imaging approaches, which have not considered the underlying statistics of speckles and reconstructed images, we introduce a distribution-aware learning strategy. We employ a histogram-based mutual information loss to enhance model robustness and reduce reliance on large datasets. Our model includes a histogram computation unit that estimates smooth marginal and joint histograms for calculating mutual information loss. It also incorporates a unique Three-Scale Feature Refinement Module, which leads to multiscale Structural Similarity Index Measure (SSIM) loss computation. Together, these two loss functions enhance both the structural fidelity and statistical alignment of the reconstructed images. Our experiments on the complex OrganAMNIST dataset demonstrate that HistoSpeckle-Net achieves higher fidelity than baseline models such as U-Net and Pix2Pix. It gives superior performance even with limited training samples and across varying fiber bending conditions. By effectively reconstructing complex anatomical features with reduced data and under fiber perturbations, HistoSpeckle-Net brings MMF imaging closer to practical deployment in real-world clinical environments.
2.41V-Attack: Targeting Disentangled Value Features for Controllable Adversarial Attacks on LVLMs¶
2025/11/26 04:58 GTM
Adversarial attacks have evolved from simply disrupting predictions on conventional task-specific models to the more complex goal of manipulating image semantics on Large Vision-Language Models (LVLMs). However, existing methods struggle with controllability and fail to precisely manipulate the semantics of specific concepts in the image. We attribute this limitation to semantic entanglement in the patch-token representations on which adversarial attacks typically operate: global context aggregated by self-attention in the vision encoder dominates individual patch features, making them unreliable handles for precise local semantic manipulation. Our systematic investigation reveals a key insight: value features (V) computed within the transformer attention block serve as much more precise handles for manipulation. We show that V suppresses global-context channels, allowing it to retain high-entropy, disentangled local semantic information. Building on this discovery, we propose V-Attack, a novel method designed for precise local semantic attacks. V-Attack targets the value features and introduces two core components: (1) a Self-Value Enhancement module to refine V’s intrinsic semantic richness, and (2) a Text-Guided Value Manipulation module that leverages text prompts to locate source concept and optimize it toward a target concept. By bypassing the entangled patch features, V-Attack achieves highly effective semantic control. Extensive experiments across diverse LVLMs, including LLaVA, InternVL, DeepseekVL and GPT-4o, show that V-Attack improves the attack success rate by an average of 36% over state-of-the-art methods, exposing critical vulnerabilities in modern visual-language understanding. Our code and data are available https://
2.42Patch-Level Glioblastoma Subregion Classification with a Contrastive Learning-Based Encoder¶
2025/11/26 04:58 GTM
The significant molecular and pathological heterogeneity of glioblastoma, an aggressive brain tumor, complicates diagnosis and patient stratification. While traditional histopathological assessment remains the standard, deep learning offers a promising path toward objective and automated analysis of whole slide images. For the BraTS-Path 2025 Challenge, we developed a method that fine-tunes a pre-trained Vision Transformer (ViT) encoder with a dedicated classification head on the official training dataset. Our model’s performance on the online validation set, evaluated via the Synapse platform, yielded a Matthews Correlation Coefficient (MCC) of 0.7064 and an F1-score of 0.7676. On the final test set, the model achieved an MCC of 0.6509 and an F1-score of 0.5330, which secured our team second place in the BraTS-Pathology 2025 Challenge. Our results establish a solid baseline for ViT-based histopathological analysis, and future efforts will focus on bridging the performance gap observed on the unseen validation data.
2.43Text-guided Controllable Diffusion for Realistic Camouflage Images Generation¶
2025/11/26 04:58 GTM
Camouflage Images Generation (CIG) is an emerging research area that focuses on synthesizing images in which objects are harmoniously blended and exhibit high visual consistency with their surroundings. Existing methods perform CIG by either fusing objects into specific backgrounds or outpainting the surroundings via foreground object-guided diffusion. However, they often fail to obtain natural results because they overlook the logical relationship between camouflaged objects and background environments. To address this issue, we propose CT-CIG, a Controllable Text-guided Camouflage Images Generation method that produces realistic and logically plausible camouflage images. Leveraging Large Visual Language Models (VLM), we design a Camouflage-Revealing Dialogue Mechanism (CRDM) to annotate existing camouflage datasets with high-quality text prompts. Subsequently, the constructed image-prompt pairs are utilized to finetune Stable Diffusion, incorporating a lightweight controller to guide the location and shape of camouflaged objects for enhanced camouflage scene fitness. Moreover, we design a Frequency Interaction Refinement Module (FIRM) to capture high-frequency texture features, facilitating the learning of complex camouflage patterns. Extensive experiments, including CLIPScore evaluation and camouflage effectiveness assessment, demonstrate the semantic alignment of our generated text prompts and CT-CIG’s ability to produce photorealistic camouflage images.
2.44CostNav: A Navigation Benchmark for Cost-Aware Evaluation of Embodied Agents¶
2025/11/26 04:58 GTM
Existing navigation benchmarks focus on task success metrics while overlooking economic viability -- critical for commercial deployment of autonomous delivery robots. We introduce \emph{CostNav}, a \textbf{Micro-Navigation Economic Testbed} that evaluates embodied agents through comprehensive cost-revenue analysis aligned with real-world business operations. CostNav models the complete economic lifecycle including hardware, training, energy, maintenance costs, and delivery revenue with service-level agreements, using industry-derived parameters. \textbf{To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability}, revealing that optimizing for task success fundamentally differs from optimizing for economic deployment. Our cost model uses parameters derived from industry data sources (energy rates, delivery service pricing), and we project from a reduced-scale simulation to realistic deliveries. Under this projection, the baseline achieves 43.0% SLA compliance but is \emph{not} commercially viable: yielding a loss of $30.009 per run with no finite break-even point, because operating costs are dominated by collision-induced maintenance, which accounts for 99.7% of per-run costs and highlights collision avoidance as a key optimization target. We demonstrate a learning-based on-device navigation baseline and establish a foundation for evaluating rule-based navigation, imitation learning, and cost-aware RL training. CostNav bridges the gap between navigation research and commercial deployment, enabling data-driven decisions about economic trade-offs across navigation paradigms.
2.45OmniAlpha: A Sequence-to-Sequence Framework for Unified Multi-Task RGBA Generation¶
2025/11/26 04:58 GTM
Generative models have excelled in RGB synthesis, but real-world applications require RGBA manipulation. This has led to a fragmented landscape: specialized, single-task models handle alpha but lack versatility, while unified multi-task frameworks are confined to the RGB domain. To bridge this critical gap, we propose OmniAlpha, the first unified, multi-task generative framework for sequence-to-sequence RGBA image generation and editing. Its architecture features MSRoPE-BiL, a novel RoPE method with a bi-directionally extendable layer axis for its Diffusion Transformer (DiT) backbone, enabling the concurrent processing of multiple input and target RGBA layers. To power this framework, we introduce AlphaLayers, a new dataset of 1,000 high-quality, multi-layer triplets, built via a novel automated synthesis and filter pipeline. Jointly training OmniAlpha on this dataset across a comprehensive suite of 21 diverse tasks, extensive experiments demonstrate that our unified approach consistently outperforms strong, specialized baselines. Most notably, OmniAlpha achieves a dramatic 84.8% relative reduction in SAD for mask-free matting on AIM-500 and wins over 90% of human preferences in layer-conditioned completion. Our work proves that a unified, multi-task model can learn a superior shared representation for RGBA, paving the way for more powerful, layer-aware generative systems.
2.46Robust 3D Brain MRI Inpainting with Random Masking Augmentation¶
2025/11/26 04:58 GTM
The ASNR-MICCAI BraTS-Inpainting Challenge was established to mitigate dataset biases that limit deep learning models in the quantitative analysis of brain tumor MRI. This paper details our submission to the 2025 challenge, a novel deep learning framework for synthesizing healthy tissue in 3D scans. The core of our method is a U-Net architecture trained to inpaint synthetically corrupted regions, enhanced with a random masking augmentation strategy to improve generalization. Quantitative evaluation confirmed the efficacy of our approach, yielding an SSIM of 0.873±0.004, a PSNR of 24.996±4.694, and an MSE of 0.005±0.087 on the validation set. On the final online test set, our method achieved an SSIM of 0.919±0.088, a PSNR of 26.932±5.057, and an RMSE of 0.052±0.026. This performance secured first place in the BraTS-Inpainting 2025 challenge and surpassed the winning solutions from the 2023 and 2024 competitions on the official leaderboard.
2.47GHR-VQA: Graph-guided Hierarchical Relational Reasoning for Video Question Answering¶
2025/11/26 04:58 GTM
We propose GHR-VQA, Graph-guided Hierarchical Relational Reasoning for Video Question Answering (Video QA), a novel human-centric framework that incorporates scene graphs to capture intricate human-object interactions within video sequences. Unlike traditional pixel-based methods, each frame is represented as a scene graph and human nodes across frames are linked to a global root, forming the video-level graph and enabling cross-frame reasoning centered on human actors. The video-level graphs are then processed by Graph Neural Networks (GNNs), transforming them into rich, context-aware embeddings for efficient processing. Finally, these embeddings are integrated with question features in a hierarchical network operating across different abstraction levels, enhancing both local and global understanding of video content. This explicit human-rooted structure enhances interpretability by decomposing actions into human-object interactions and enables a more profound understanding of spatiotemporal dynamics. We validate our approach on the Action Genome Question Answering (AGQA) dataset, achieving significant performance improvements, including a 7.3% improvement in object-relation reasoning over the state of the art.
2.48SFA: Scan, Focus, and Amplify toward Guidance-aware Answering for Video TextVQA¶
2025/11/26 04:58 GTM
Video text-based visual question answering (Video TextVQA) task aims to answer questions about videos by leveraging the visual text appearing within the videos. This task poses significant challenges, requiring models to accurately perceive and comprehend scene text that varies in scale, orientation, and clarity across frames, while effectively integrating temporal and semantic context to generate precise answers. Moreover, the model must identify question-relevant textual cues and filter out redundant or irrelevant information to ensure answering is guided by the most relevant and informative cues. To address these challenges, we propose SFA, a training-free framework and the first Video-LLM-based method tailored for Video TextVQA, motivated by the human process of answering questions. By adaptively scanning video frames, selectively focusing on key regions, and directly amplifying them, SFA effectively guides the Video-LLM’s attention toward essential cues, enabling it to generate more accurate answers. SFA achieves new state-of-the-art results across several public Video TextVQA datasets and surpasses previous methods by a substantial margin, demonstrating its effectiveness and generalizability.
2.49Exo2EgoSyn: Unlocking Foundation Video Generation Models for Exocentric-to-Egocentric Video Synthesis¶
2025/11/26 04:58 GTM
Foundation video generation models such as WAN 2.2 exhibit strong text- and image-conditioned synthesis abilities but remain constrained to the same-view generation setting. In this work, we introduce Exo2EgoSyn, an adaptation of WAN 2.2 that unlocks Exocentric-to-Egocentric(Exo2Ego) cross-view video synthesis. Our framework consists of three key modules. Ego-Exo View Alignment(EgoExo-Align) enforces latent-space alignment between exocentric and egocentric first-frame representations, reorienting the generative space from the given exo view toward the ego view. Multi-view Exocentric Video Conditioning (MultiExoCon) aggregates multi-view exocentric videos into a unified conditioning signal, extending WAN2.2 beyond its vanilla single-image or text conditioning. Furthermore, Pose-Aware Latent Injection (PoseInj) injects relative exo-to-ego camera pose information into the latent state, guiding geometry-aware synthesis across viewpoints. Together, these modules enable high-fidelity ego view video generation from third-person observations without retraining from scratch. Experiments on ExoEgo4D validate that Exo2EgoSyn significantly improves Ego2Exo synthesis, paving the way for scalable cross-view video generation with foundation models. Source code and models will be released publicly.
2.50Realizing Fully-Integrated, Low-Power, Event-Based Pupil Tracking with Neuromorphic Hardware¶
2025/11/26 04:58 GTM
Eye tracking is fundamental to numerous applications, yet achieving robust, high-frequency tracking with ultra-low power consumption remains challenging for wearable platforms. While event-based vision sensors offer microsecond resolution and sparse data streams, they have lacked fully integrated, low-power processing solutions capable of real-time inference. In this work, we present the first battery-powered, wearable pupil-center-tracking system with complete on-device integration, combining event-based sensing and neuromorphic processing on the commercially available Speck2f system-on-chip with lightweight coordinate decoding on a low-power microcontroller. Our solution features a novel uncertainty-quantifying spiking neural network with gated temporal decoding, optimized for strict memory and bandwidth constraints, complemented by systematic deployment mechanisms that bridge the reality gap. We validate our system on a new multi-user dataset and demonstrate a wearable prototype with dual neuromorphic devices achieving robust binocular pupil tracking at 100 Hz with an average power consumption below 5 mW per eye. Our work demonstrates that end-to-end neuromorphic computing enables practical, always-on eye tracking for next-generation energy-efficient wearable systems.
2.51ADNet: A Large-Scale and Extensible Multi-Domain Benchmark for Anomaly Detection Across 380 Real-World Categories¶
2025/11/26 04:58 GTM
Anomaly detection (AD) aims to identify defects using normal-only training data. Existing anomaly detection benchmarks (e.g., MVTec-AD with 15 categories) cover only a narrow range of categories, limiting the evaluation of cross-context generalization and scalability. We introduce ADNet, a large-scale, multi-domain benchmark comprising 380 categories aggregated from 49 publicly available datasets across Electronics, Industry, Agrifood, Infrastructure, and Medical domains. The benchmark includes a total of 196,294 RGB images, consisting of 116,192 normal samples for training and 80,102 test images, of which 60,311 are anomalous. All images are standardized with MVTec-style pixel-level annotations and structured text descriptions spanning both spatial and visual attributes, enabling multimodal anomaly detection tasks. Extensive experiments reveal a clear scalability challenge: existing state-of-the-art methods achieve 90.6% I-AUROC in one-for-one settings but drop to 78.5% when scaling to all 380 categories in a multi-class setting. To address this, we propose Dinomaly-m, a context-guided Mixture-of-Experts extension of Dinomaly that expands decoder capacity without increasing inference cost. It achieves 83.2% I-AUROC and 93.1% P-AUROC, demonstrating superior performance over existing approaches. ADNet is designed as a standardized and extensible benchmark, supporting the community in expanding anomaly detection datasets across diverse domains and providing a scalable foundation for future anomaly detection foundation models. Dataset: https://
2.52While recognizing actions, LMMs struggle to detect core interaction events¶
2025/11/26 04:58 GTM
Large multi-modal models (LMMs) show increasing performance in realistic visual tasks for images and, more recently, for videos. For example, given a video sequence, such models are able to describe in detail objects, the surroundings and dynamic actions. In this study, we explored the extent to which these models ground their semantic understanding in the actual visual input. Specifically, given sequences of hands interacting with objects, we asked models when and where the interaction begins or ends. For this purpose, we introduce a first of its kind, large-scale dataset with more than 20K annotated interactions on videos from the Something-Something-V2 dataset. 250 AMTurk human annotators labeled core interaction events, particularly when and where objects and agents become attached (‘contact’) or detached (‘release’). We asked two LMMs (Qwen-2.5VL and GPT-4o) to locate these events in short videos, each with a single event. The results show that although the models can reliably name the target objects, identify the action and provide coherent reasoning, they consistently fail to identify the frame where the interaction begins or ends and cannot localize the event within the scene. Our findings suggest that in struggling to pinpoint the moment and location of physical contact that defines the interaction, the models lack the perceptual grounding required for deeper understanding of dynamic scenes.
2.53Harmonious Parameter Adaptation in Continual Visual Instruction Tuning for Safety-Aligned MLLMs¶
2025/11/26 04:58 GTM
While continual visual instruction tuning (CVIT) has shown promise in adapting multimodal large language models (MLLMs), existing studies predominantly focus on models without safety alignment. This critical oversight ignores the fact that real-world MLLMs inherently require such mechanisms to mitigate potential risks. In this work, we shift our focus to CVIT for safety-aligned MLLMs and observe that during continual adaptation, the model not only suffers from task forgetting but also exhibits degradation in its safety. Achieving a harmonious balance between safety and task performance remains a crucial challenge. To address this, we propose Harmonious Parameter Adaptation (HPA), a post-training framework composed of focusing-based parameter partition, harmoniously balanced parameter selection, and orthogonal parameter adjustment. Specifically, HPA partitions parameters into two types based on their focus on safety or task performance, and selects the focused ones to preserve from a balanced perspective. In addition, HPA imposes orthogonality constraints on parameter updates to further alleviate catastrophic forgetting. Extensive experiments on the CVIT benchmark and safety evaluation datasets demonstrate that HPA better maintains high safety and mitigates forgetting than existing baselines.
2.54SKEL-CF: Coarse-to-Fine Biomechanical Skeleton and Surface Mesh Recovery¶
2025/11/26 04:58 GTM
Parametric 3D human models such as SMPL have driven significant advances in human pose and shape estimation, yet their simplified kinematics limit biomechanical realism. The recently proposed SKEL model addresses this limitation by re-rigging SMPL with an anatomically accurate skeleton. However, estimating SKEL parameters directly remains challenging due to limited training data, perspective ambiguities, and the inherent complexity of human articulation. We introduce SKEL-CF, a coarse-to-fine framework for SKEL parameter estimation. SKEL-CF employs a transformer-based encoder-decoder architecture, where the encoder predicts coarse camera and SKEL parameters, and the decoder progressively refines them in successive layers. To ensure anatomically consistent supervision, we convert the existing SMPL-based dataset 4DHuman into a SKEL-aligned version, 4DHuman-SKEL, providing high-quality training data for SKEL estimation. In addition, to mitigate depth and scale ambiguities, we explicitly incorporate camera modeling into the SKEL-CF pipeline and demonstrate its importance across diverse viewpoints. Extensive experiments validate the effectiveness of the proposed design. On the challenging MOYO dataset, SKEL-CF achieves 85.0 MPJPE / 51.4 PA-MPJPE, significantly outperforming the previous SKEL-based state-of-the-art HSMR (104.5 / 79.6). These results establish SKEL-CF as a scalable and anatomically faithful framework for human motion analysis, bridging the gap between computer vision and biomechanics. Our implementation is available on the project page: https://
2.55Map-World: Masked Action planning and Path-Integral World Model for Autonomous Driving¶
2025/11/26 04:58 GTM
Motion planning for autonomous driving must handle multiple plausible futures while remaining computationally efficient. Recent end-to-end systems and world-model-based planners predict rich multi-modal trajectories, but typically rely on handcrafted anchors or reinforcement learning to select a single best mode for training and control. This selection discards information about alternative futures and complicates optimization. We propose MAP-World, a prior-free multi-modal planning framework that couples masked action planning with a path-weighted world model. The Masked Action Planning (MAP) module treats future ego motion as masked sequence completion: past waypoints are encoded as visible tokens, future waypoints are represented as mask tokens, and a driving-intent path provides a coarse scaffold. A compact latent planning state is expanded into multiple trajectory queries with injected noise, yielding diverse, temporally consistent modes without anchor libraries or teacher policies. A lightweight world model then rolls out future BEV semantics conditioned on each candidate trajectory. During training, semantic losses are computed as an expectation over modes, using trajectory probabilities as discrete path weights, so the planner learns from the full distribution of plausible futures instead of a single selected path. On NAVSIM, our method matches anchor-based approaches and achieves state-of-the-art performance among world-model-based methods, while avoiding reinforcement learning and maintaining real-time inference latency.
2.56Alzheimers Disease Progression Prediction Based on Manifold Mapping of Irregularly Sampled Longitudinal Data¶
2025/11/26 04:58 GTM
The uncertainty of clinical examinations frequently leads to irregular observation intervals in longitudinal imaging data, posing challenges for modeling disease progression.Most existing imaging-based disease prediction models operate in Euclidean space, which assumes a flat representation of data and fails to fully capture the intrinsic continuity and nonlinear geometric structure of irregularly sampled longitudinal images. To address the challenge of modeling Alzheimers disease (AD) progression from irregularly sampled longitudinal structural Magnetic Resonance Imaging (sMRI) data, we propose a Riemannian manifold mapping, a Time-aware manifold Neural ordinary differential equation, and an Attention-based riemannian Gated recurrent unit (R-TNAG) framework. Our approach first projects features extracted from high-dimensional sMRI into a manifold space to preserve the intrinsic geometry of disease progression. On this representation, a time-aware Neural Ordinary Differential Equation (TNODE) models the continuous evolution of latent states between observations, while an Attention-based Riemannian Gated Recurrent Unit (ARGRU) adaptively integrates historical and current information to handle irregular intervals. This joint design improves temporal consistency and yields robust AD trajectory prediction under irregular sampling.Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art models in both disease status prediction and cognitive score regression. Ablation studies verify the contributions of each module, highlighting their complementary roles in enhancing predictive accuracy. Moreover, the model exhibits stable performance across varying sequence lengths and missing data rates, indicating strong temporal generalizability. Cross-dataset validation further confirms its robustness and applicability in diverse clinical settings.
2.57Restora-Flow: Mask-Guided Image Restoration with Flow Matching¶
2025/11/26 04:58 GTM
Flow matching has emerged as a promising generative approach that addresses the lengthy sampling times associated with state-of-the-art diffusion models and enables a more flexible trajectory design, while maintaining high-quality image generation. This capability makes it suitable as a generative prior for image restoration tasks. Although current methods leveraging flow models have shown promising results in restoration, some still suffer from long processing times or produce over-smoothed results. To address these challenges, we introduce Restora-Flow, a training-free method that guides flow matching sampling by a degradation mask and incorporates a trajectory correction mechanism to enforce consistency with degraded inputs. We evaluate our approach on both natural and medical datasets across several image restoration tasks involving a mask-based degradation, i.e., inpainting, super-resolution and denoising. We show superior perceptual quality and processing time compared to diffusion and flow matching-based reference methods.
2.58Hybrid Convolution and Frequency State Space Network for Image Compression¶
2025/11/26 04:58 GTM
Learned image compression (LIC) has recently benefited from Transformer based and state space model (SSM) based architectures. Convolutional neural networks (CNNs) effectively capture local high frequency details, whereas Transformers and SSMs provide strong long range modeling capabilities but may cause structural information loss or ignore frequency characteristics that are crucial for compression. In this work we propose HCFSSNet, a Hybrid Convolution and Frequency State Space Network for LIC. HCFSSNet uses CNNs to extract local high frequency structures and introduces a Vision Frequency State Space (VFSS) block that models long range low frequency information. The VFSS block combines an Omni directional Neighborhood State Space (VONSS) module, which scans features horizontally, vertically and diagonally, with an Adaptive Frequency Modulation Module (AFMM) that applies content adaptive weighting of discrete cosine transform frequency components for more efficient bit allocation. To further reduce redundancy in the entropy model, we integrate AFMM with a Swin Transformer to form a Frequency Swin Transformer Attention Module (FSTAM) for frequency aware side information modeling. Experiments on the Kodak, Tecnick and CLIC Professional Validation datasets show that HCFSSNet achieves competitive rate distortion performance compared with recent SSM based codecs such as MambaIC, while using significantly fewer parameters. On Kodak, Tecnick and CLIC, HCFSSNet reduces BD rate over the VTM anchor by 18.06, 24.56 and 22.44 percent, respectively, providing an efficient and interpretable hybrid architecture for future learned image compression systems.
2.59Vision-Language Models for Automated 3D PET/CT Report Generation¶
2025/11/26 04:58 GTM
Positron emission tomography/computed tomography (PET/CT) is essential in oncology, yet the rapid expansion of scanners has outpaced the availability of trained specialists, making automated PET/CT report generation (PETRG) increasingly important for reducing clinical workload. Compared with structural imaging (e.g., X-ray, CT, and MRI), functional PET poses distinct challenges: metabolic patterns vary with tracer physiology, and whole-body 3D contextual information is required rather than local-region interpretation. To advance PETRG, we propose PETRG-3D, an end-to-end 3D dual-branch framework that separately encodes PET and CT volumes and incorporates style-adaptive prompts to mitigate inter-hospital variability in reporting practices. We construct PETRG-Lym, a multi-center lymphoma dataset collected from four hospitals (824 reports w/ 245,509 paired PET/CT slices), and construct AutoPET-RG-Lym, a publicly accessible PETRG benchmark derived from open imaging data but equipped with new expert-written, clinically validated reports (135 cases). To assess clinical utility, we introduce PETRG-Score, a lymphoma-specific evaluation protocol that jointly measures metabolic and structural findings across curated anatomical regions. Experiments show that PETRG-3D substantially outperforms existing methods on both natural language metrics (e.g., +31.49% ROUGE-L) and clinical efficacy metrics (e.g., +8.18% PET-All), highlighting the benefits of volumetric dual-modality modeling and style-aware prompting. Overall, this work establishes a foundation for future PET/CT-specific models emphasizing disease-aware reasoning and clinically reliable evaluation. Codes, models, and AutoPET-RG-Lym will be released.
2.60UltraViCo: Breaking Extrapolation Limits in Video Diffusion Transformers¶
2025/11/26 04:58 GTM
Despite advances, video diffusion transformers still struggle to generalize beyond their training length, a challenge we term video length extrapolation. We identify two failure modes: model-specific periodic content repetition and a universal quality degradation. Prior works attempt to solve repetition via positional encodings, overlooking quality degradation and achieving only limited extrapolation. In this paper, we revisit this challenge from a more fundamental view: attention maps, which directly govern how context influences outputs. We identify that both failure modes arise from a unified cause: attention dispersion, where tokens beyond the training window dilute learned attention patterns. This leads to quality degradation and repetition emerges as a special case when this dispersion becomes structured into periodic attention patterns, induced by harmonic properties of positional encodings. Building on this insight, we propose UltraViCo, a training-free, plug-and-play method that suppresses attention for tokens beyond the training window via a constant decay factor. By jointly addressing both failure modes, we outperform a broad set of baselines largely across models and extrapolation ratios, pushing the extrapolation limit from 2x to 4x. Remarkably, it improves Dynamic Degree and Imaging Quality by 233% and 40.5% over the previous best method at 4x extrapolation. Furthermore, our method generalizes seamlessly to downstream tasks such as controllable video synthesis and editing.
2.61LungEvaty: A Scalable, Open-Source Transformer-based Deep Learning Model for Lung Cancer Risk Prediction in LDCT Screening¶
2025/11/26 04:58 GTM
Lung cancer risk estimation is gaining increasing importance as more countries introduce population-wide screening programs using low-dose CT (LDCT). As imaging volumes grow, scalable methods that can process entire lung volumes efficiently are essential to tap into the full potential of these large screening datasets. Existing approaches either over-rely on pixel-level annotations, limiting scalability, or analyze the lung in fragments, weakening performance. We present LungEvaty, a fully transformer-based framework for predicting 1-6 year lung cancer risk from a single LDCT scan. The model operates on whole-lung inputs, learning directly from large-scale screening data to capture comprehensive anatomical and pathological cues relevant for malignancy risk. Using only imaging data and no region supervision, LungEvaty matches state-of-the-art performance, refinable by an optional Anatomically Informed Attention Guidance (AIAG) loss that encourages anatomically focused attention. In total, LungEvaty was trained on more than 90,000 CT scans, including over 28,000 for fine-tuning and 6,000 for evaluation. The framework offers a simple, data-efficient, and fully open-source solution that provides an extensible foundation for future research in longitudinal and multimodal lung cancer risk prediction.
2.62Multi Head Attention Enhanced Inception v3 for Cardiomegaly Detection¶
2025/11/26 04:58 GTM
The healthcare industry has been revolutionized significantly by novel imaging technologies, not just in the diagnosis of cardiovascular diseases but also by the visualization of structural abnormalities like cardiomegaly. This article explains an integrated approach to the use of deep learning tools and attention mechanisms for automatic detection of cardiomegaly using X-ray images. The initiation of the project is grounded on a strong Data Collection phase and gathering the data of annotated X-ray images of various types. Then, while the Preprocessing module fine-tunes image quality, it is feasible to utilize the best out of the data quality in the proposed system. In our proposed system, the process is a CNN configuration leveraging the inception V3 model as one of the key blocks. Besides, we also employ a multilayer attention mechanism to enhance the strength. The most important feature of the method is the multi-head attention mechanism that can learn features automatically. By exact selective focusing on only some regions of input, the model can thus identify cardiomegaly in a sensitive manner. Attention rating is calculated, duplicated, and applied to enhance representation of main data, and therefore there is a successful diagnosis. The Evaluation stage will be extremely strict and it will thoroughly evaluate the model based on such measures as accuracy and precision. This will validate that the model can identify cardiomegaly and will also show the clinical significance of this method. The model has accuracy of 95.6, precision of 95.2, recall of 96.2, sensitivity of 95.7, specificity of 96.1 and an Area Under Curve(AUC) of 96.0 and their respective graphs are plotted for visualisation.
2.63Exploring State-of-the-art models for Early Detection of Forest Fires¶
2025/11/26 04:58 GTM
There have been many recent developments in the use of Deep Learning Neural Networks for fire detection. In this paper, we explore an early warning system for detection of forest fires. Due to the lack of sizeable datasets and models tuned for this task, existing methods suffer from missed detection. In this work, we first propose a dataset for early identification of forest fires through visual analysis. Unlike existing image corpuses that contain images of wide-spread fire, our dataset consists of multiple instances of smoke plumes and fire that indicates the initiation of fire. We obtained this dataset synthetically by utilising game simulators such as Red Dead Redemption 2. We also combined our dataset with already published images to obtain a more comprehensive set. Finally, we compared image classification and localisation methods on the proposed dataset. More specifically we used YOLOv7 (You Only Look Once) and different models of detection transformer.
2.64WPT: World-to-Policy Transfer via Online World Model Distillation¶
2025/11/26 04:58 GTM
Recent years have witnessed remarkable progress in world models, which primarily aim to capture the spatio-temporal correlations between an agent’s actions and the evolving environment. However, existing approaches often suffer from tight runtime coupling or depend on offline reward signals, resulting in substantial inference overhead or hindering end-to-end optimization. To overcome these limitations, we introduce WPT, a World-to-Policy Transfer training paradigm that enables online distillation under the guidance of an end-to-end world model. Specifically, we develop a trainable reward model that infuses world knowledge into a teacher policy by aligning candidate trajectories with the future dynamics predicted by the world model. Subsequently, we propose policy distillation and world reward distillation to transfer the teacher’s reasoning ability into a lightweight student policy, enhancing planning performance while preserving real-time deployability. Extensive experiments on both open-loop and closed-loop benchmarks show that our WPT achieves state-of-the-art performance with a simple policy architecture: it attains a 0.11 collision rate (open-loop) and achieves a 79.23 driving score (closed-loop) surpassing both world-model-based and imitation-learning methods in accuracy and safety. Moreover, the student sustains up to 4.9x faster inference, while retaining most of the gains.
2.65Explainable Visual Anomaly Detection via Concept Bottleneck Models¶
2025/11/26 04:58 GTM
In recent years, Visual Anomaly Detection (VAD) has gained significant attention due to its ability to identify anomalous images using only normal images during training. Many VAD models work without supervision but are still able to provide visual explanations by highlighting the anomalous regions within an image. However, although these visual explanations can be helpful, they lack a direct and semantically meaningful interpretation for users. To address this limitation, we propose extending Concept Bottleneck Models (CBMs) to the VAD setting. By learning meaningful concepts, the network can provide human-interpretable descriptions of anomalies, offering a novel and more insightful way to explain them. Our contributions are threefold: (i) we develop a Concept Dataset to support research on CBMs for VAD; (ii) we improve the CBM architecture to generate both concept-based and visual explanations, bridging semantic and localization interpretability; and (iii) we introduce a pipeline for synthesizing artificial anomalies, preserving the VAD paradigm of minimizing dependence on rare anomalous samples. Our approach, Concept-Aware Visual Anomaly Detection (CONVAD), achieves performance comparable to classic VAD methods while providing richer, concept-driven explanations that enhance interpretability and trust in VAD systems.
2.66Blind Adaptive Local Denoising for CEST Imaging¶
2025/11/26 04:58 GTM
Chemical Exchange Saturation Transfer (CEST) MRI enables molecular-level visualization of low-concentration metabolites by leveraging proton exchange dynamics. However, its clinical translation is hindered by inherent challenges: spatially varying noise arising from hardware limitations, and complex imaging protocols introduce heteroscedasticity in CEST data, perturbing the accuracy of quantitative contrast mapping such as amide proton transfer (APT) imaging. Traditional denoising methods are not designed for this complex noise and often alter the underlying information that is critical for biomedical analysis. To overcome these limitations, we propose a new Blind Adaptive Local Denoising (BALD) method. BALD exploits the self-similar nature of CEST data to derive an adaptive variance-stabilizing transform that equalizes the noise distributions across CEST pixels without prior knowledge of noise characteristics. Then, BALD performs two-stage denoising on a linear transformation of data to disentangle molecular signals from noise. A local SVD decomposition is used as a linear transform to prevent spatial and spectral denoising artifacts. We conducted extensive validation experiments on multiple phantoms and \textit{in vivo} CEST scans. In these experiments, BALD consistently outperformed state-of-the-art CEST denoisers in both denoising metrics and downstream tasks such as molecular concentration maps estimation and cancer detection.
2.67Learning Procedural-aware Video Representations through State-Grounded Hierarchy Unfolding¶
2025/11/26 04:58 GTM
Learning procedural-aware video representations is a key step towards building agents that can reason about and execute complex tasks. Existing methods typically address this problem by aligning visual content with textual descriptions at the task and step levels to inject procedural semantics into video representations. However, due to their high level of abstraction, ‘task’ and ‘step’ descriptions fail to form a robust alignment with the concrete, observable details in visual data. To address this, we introduce ‘states’, i.e., textual snapshots of object configurations, as a visually-grounded semantic layer that anchors abstract procedures to what a model can actually see. We formalize this insight in a novel Task-Step-State (TSS) framework, where tasks are achieved via steps that drive transitions between observable states. To enforce this structure, we propose a progressive pre-training strategy that unfolds the TSS hierarchy, forcing the model to ground representations in states while associating them with steps and high-level tasks. Extensive experiments on the COIN and CrossTask datasets show that our method outperforms baseline models on multiple downstream tasks, including task recognition, step recognition, and next step prediction. Ablation studies show that introducing state supervision is a key driver of performance gains across all tasks. Additionally, our progressive pretraining strategy proves more effective than standard joint training, as it better enforces the intended hierarchical structure.
2.68PRADA: Probability-Ratio-Based Attribution and Detection of Autoregressive-Generated Images¶
2025/11/26 04:58 GTM
Autoregressive (AR) image generation has recently emerged as a powerful paradigm for image synthesis. Leveraging the generation principle of large language models, they allow for efficiently generating deceptively real-looking images, further increasing the need for reliable detection methods. However, to date there is a lack of work specifically targeting the detection of images generated by AR image generators. In this work, we present PRADA (Probability-Ratio-Based Attribution and Detection of Autoregressive-Generated Images), a simple and interpretable approach that can reliably detect AR-generated images and attribute them to their respective source model. The key idea is to inspect the ratio of a model’s conditional and unconditional probability for the autoregressive token sequence representing a given image. Whenever an image is generated by a particular model, its probability ratio shows unique characteristics which are not present for images generated by other models or real images. We exploit these characteristics for threshold-based attribution and detection by calibrating a simple, model-specific score function. Our experimental evaluation shows that PRADA is highly effective against eight class-to-image and four text-to-image models.
2.69FLaTEC: Frequency-Disentangled Latent Triplanes for Efficient Compression of LiDAR Point Clouds¶
2025/11/26 04:58 GTM
Point cloud compression methods jointly optimize bitrates and reconstruction distortion. However, balancing compression ratio and reconstruction quality is difficult because low-frequency and high-frequency components contribute differently at the same resolution. To address this, we propose FLaTEC, a frequency-aware compression model that enables the compression of a full scan with high compression ratios. Our approach introduces a frequency-aware mechanism that decouples low-frequency structures and high-frequency textures, while hybridizing latent triplanes as a compact proxy for point cloud. Specifically, we convert voxelized embeddings into triplane representations to reduce sparsity, computational cost, and storage requirements. We then devise a frequency-disentangling technique that extracts compact low-frequency content while collecting high-frequency details across scales. The decoupled low-frequency and high-frequency components are stored in binary format. During decoding, full-spectrum signals are progressively recovered via a modulation block. Additionally, to compensate for the loss of 3D correlation, we introduce an efficient frequency-based attention mechanism that fosters local connectivity and outputs arbitrary resolution points. Our method achieves state-of-the-art rate-distortion performance and outperforms the standard codecs by 78% and 94% in BD-rate on both SemanticKITTI and Ford datasets.
2.70DeLightMono: Enhancing Self-Supervised Monocular Depth Estimation in Endoscopy by Decoupling Uneven Illumination¶
2025/11/26 04:58 GTM
Self-supervised monocular depth estimation serves as a key task in the development of endoscopic navigation systems. However, performance degradation persists due to uneven illumination inherent in endoscopic images, particularly in low-intensity regions. Existing low-light enhancement techniques fail to effectively guide the depth network. Furthermore, solutions from other fields, like autonomous driving, require well-lit images, making them unsuitable and increasing data collection burdens. To this end, we present DeLight-Mono - a novel self-supervised monocular depth estimation framework with illumination decoupling. Specifically, endoscopic images are represented by a designed illumination-reflectance-depth model, and are decomposed with auxiliary networks. Moreover, a self-supervised joint-optimizing framework with novel losses leveraging the decoupled components is proposed to mitigate the effects of uneven illumination on depth estimation. The effectiveness of the proposed methods was rigorously verified through extensive comparisons and an ablation study performed on two public datasets.
2.71History-Augmented Contrastive Meta-Learning for Unsupervised Blind Super-Resolution of Planetary Remote Sensing Images¶
2025/11/26 04:58 GTM
Planetary remote sensing images are affected by diverse and unknown degradations caused by imaging environments and hardware constraints. These factors limit image quality and hinder supervised blind super-resolution due to the lack of ground-truth images. This work presents History-Augmented Contrastive Blind Super-Resolution (HACBSR), an unsupervised framework for blind super-resolution that operates without ground-truth images and external kernel priors. HACBSR comprises two components: (1) a contrastive kernel sampling mechanism with kernel similarity control to mitigate distribution bias from Gaussian sampling, and (2) a history-augmented contrastive learning that uses historical models to generate negative samples to enable less greedy optimization and to induce strong convexity without ground-truth. A convergence analysis of the history-augmented contrastive learning is given in the Appendix. To support evaluation in planetary applications, we introduce Ceres-50, a dataset with diverse geological features simulated degradation patterns. Experiments show that HACBSR achieves competitive performance compared with state-of-the-art unsupervised methods across multiple upscaling factors. The code is available at https://
2.72MFM-point: Multi-scale Flow Matching for Point Cloud Generation¶
2025/11/26 04:58 GTM
In recent years, point cloud generation has gained significant attention in 3D generative modeling. Among existing approaches, point-based methods directly generate point clouds without relying on other representations such as latent features, meshes, or voxels. These methods offer low training cost and algorithmic simplicity, but often underperform compared to representation-based approaches. In this paper, we propose MFM-Point, a multi-scale Flow Matching framework for point cloud generation that substantially improves the scalability and performance of point-based methods while preserving their simplicity and efficiency. Our multi-scale generation algorithm adopts a coarse-to-fine generation paradigm, enhancing generation quality and scalability without incurring additional training or inference overhead. A key challenge in developing such a multi-scale framework lies in preserving the geometric structure of unordered point clouds while ensuring smooth and consistent distributional transitions across resolutions. To address this, we introduce a structured downsampling and upsampling strategy that preserves geometry and maintains alignment between coarse and fine resolutions. Our experimental results demonstrate that MFM-Point achieves best-in-class performance among point-based methods and challenges the best representation-based methods. In particular, MFM-point demonstrates strong results in multi-category and high-resolution generation tasks.
2.73Clair Obscur: an Illumination-Aware Method for Real-World Image Vectorization¶
2025/11/26 04:58 GTM
Image vectorization aims to convert raster images into editable, scalable vector representations while preserving visual fidelity. Existing vectorization methods struggle to represent complex real-world images, often producing fragmented shapes at the cost of semantic conciseness. In this paper, we propose COVec, an illumination-aware vectorization framework inspired by the Clair-Obscur principle of light-shade contrast. COVec is the first to introduce intrinsic image decomposition in the vector domain, separating an image into albedo, shade, and light layers in a unified vector representation. A semantic-guided initialization and two-stage optimization refine these layers with differentiable rendering. Experiments on various datasets demonstrate that COVec achieves higher visual fidelity and significantly improved editability compared to existing methods.
2.74Tell Model Where to Look: Mitigating Hallucinations in MLLMs by Vision-Guided Attention¶
2025/11/26 04:58 GTM
Visual attention serves as the primary mechanism through which MLLMs interpret visual information; however, its limited localization capability often leads to hallucinations. We observe that although MLLMs can accurately extract visual semantics from visual tokens, they fail to fully leverage this advantage during subsequent inference. To address this limitation, we propose Vision-Guided Attention (VGA), a training-free method that first constructs precise visual grounding by exploiting the semantic content of visual tokens, and then uses this grounding to guide the model’s focus toward relevant visual regions. In image captioning, VGA further refines this guidance dynamically during generation by suppressing regions that have already been described. In VGA, each token undergoes only a single forward pass, introducing a negligible latency overhead of just 4.36%. In addition, VGA is fully compatible with efficient attention implementations such as FlashAttention. Extensive experiments across diverse MLLMs and multiple hallucination benchmarks demonstrate that VGA achieves state-of-the-art dehallucination performance. Further analysis confirms that explicit visual guidance plays a crucial role in enhancing the visual understanding capabilities of MLLMs.
2.75SAM-MI: A Mask-Injected Framework for Enhancing Open-Vocabulary Semantic Segmentation with SAM¶
2025/11/26 04:58 GTM
Open-vocabulary semantic segmentation (OVSS) aims to segment and recognize objects universally. Trained on extensive high-quality segmentation data, the segment anything model (SAM) has demonstrated remarkable universal segmentation capabilities, offering valuable support for OVSS. Although previous methods have made progress in leveraging SAM for OVSS, there are still some challenges: (1) SAM’s tendency to over-segment and (2) hard combinations between fixed masks and labels. This paper introduces a novel mask-injected framework, SAM-MI, which effectively integrates SAM with OVSS models to address these challenges. Initially, SAM-MI employs a Text-guided Sparse Point Prompter to sample sparse prompts for SAM instead of previous dense grid-like prompts, thus significantly accelerating the mask generation process. The framework then introduces Shallow Mask Aggregation (SMAgg) to merge partial masks to mitigate the SAM’s over-segmentation issue. Finally, Decoupled Mask Injection (DMI) incorporates SAM-generated masks for guidance at low-frequency and high-frequency separately, rather than directly combining them with labels. Extensive experiments on multiple benchmarks validate the superiority of SAM-MI. Notably, the proposed method achieves a 16.7% relative improvement in mIoU over Grounded-SAM on the MESS benchmark, along with a 1.6 speedup. We hope SAM-MI can serve as an alternative methodology to effectively equip the OVSS model with SAM.
2.76WaymoQA: A Multi-View Visual Question Answering Dataset for Safety-Critical Reasoning in Autonomous Driving¶
2025/11/26 04:58 GTM
Recent advancements in multimodal large language models (MLLMs) have shown strong understanding of driving scenes, drawing interest in their application to autonomous driving. However, high-level reasoning in safety-critical scenarios, where avoiding one traffic risk can create another, remains a major challenge. Such reasoning is often infeasible with only a single front view and requires a comprehensive view of the environment, which we achieve through multi-view inputs. We define Safety-Critical Reasoning as a new task that leverages multi-view inputs to address this challenge. Then, we distill Safety-Critical Reasoning into two stages: first resolve the immediate risk, then mitigate the decision-induced downstream risks. To support this, we introduce WaymoQA, a dataset of 35,000 human-annotated question-answer pairs covering complex, high-risk driving scenarios. The dataset includes multiple-choice and open-ended formats across both image and video modalities. Experiments reveal that existing MLLMs underperform in safety-critical scenarios compared to normal scenes, but fine-tuning with WaymoQA significantly improves their reasoning ability, highlighting the effectiveness of our dataset in developing safer and more reasoning-capable driving agents.
2.77ACIT: Attention-Guided Cross-Modal Interaction Transformer for Pedestrian Crossing Intention Prediction¶
2025/11/26 04:58 GTM
Predicting pedestrian crossing intention is crucial for autonomous vehicles to prevent pedestrian-related collisions. However, effectively extracting and integrating complementary cues from different types of data remains one of the major challenges. This paper proposes an attention-guided cross-modal interaction Transformer (ACIT) for pedestrian crossing intention prediction. ACIT leverages six visual and motion modalities, which are grouped into three interaction pairs: (1) Global semantic map and global optical flow, (2) Local RGB image and local optical flow, and (3) Ego-vehicle speed and pedestrian’s bounding box. Within each visual interaction pair, a dual-path attention mechanism enhances salient regions within the primary modality through intra-modal self-attention and facilitates deep interactions with the auxiliary modality (i.e., optical flow) via optical flow-guided attention. Within the motion interaction pair, cross-modal attention is employed to model the cross-modal dynamics, enabling the effective extraction of complementary motion features. Beyond pairwise interactions, a multi-modal feature fusion module further facilitates cross-modal interactions at each time step. Furthermore, a Transformer-based temporal feature aggregation module is introduced to capture sequential dependencies. Experimental results demonstrate that ACIT outperforms state-of-the-art methods, achieving accuracy rates of 70% and 89% on the JAADbeh and JAADall datasets, respectively. Extensive ablation studies are further conducted to investigate the contribution of different modules of ACIT.
2.78Multi-Context Fusion Transformer for Pedestrian Crossing Intention Prediction in Urban Environments¶
2025/11/26 04:58 GTM
Pedestrian crossing intention prediction is essential for autonomous vehicles to improve pedestrian safety and reduce traffic accidents. However, accurate pedestrian intention prediction in urban environments remains challenging due to the multitude of factors affecting pedestrian behavior. In this paper, we propose a multi-context fusion Transformer (MFT) that leverages diverse numerical contextual attributes across four key dimensions, encompassing pedestrian behavior context, environmental context, pedestrian localization context and vehicle motion context, to enable accurate pedestrian intention prediction. MFT employs a progressive fusion strategy, where mutual intra-context attention enables reciprocal interactions within each context, thereby facilitating feature sequence fusion and yielding a context token as a context-specific representation. This is followed by mutual cross-context attention, which integrates features across contexts with a global CLS token serving as a compact multi-context representation. Finally, guided intra-context attention refines context tokens within each context through directed interactions, while guided cross-context attention strengthens the global CLS token to promote multi-context fusion via guided information propagation, yielding deeper and more efficient integration. Experimental results validate the superiority of MFT over state-of-the-art methods, achieving accuracy rates of 73%, 93%, and 90% on the JAADbeh, JAADall, and PIE datasets, respectively. Extensive ablation studies are further conducted to investigate the effectiveness of the network architecture and contribution of different input context. Our code is open-source: https://
2.79Pedestrian Crossing Intention Prediction Using Multimodal Fusion Network¶
2025/11/26 04:58 GTM
Pedestrian crossing intention prediction is essential for the deployment of autonomous vehicles (AVs) in urban environments. Ideal prediction provides AVs with critical environmental cues, thereby reducing the risk of pedestrian-related collisions. However, the prediction task is challenging due to the diverse nature of pedestrian behavior and its dependence on multiple contextual factors. This paper proposes a multimodal fusion network that leverages seven modality features from both visual and motion branches, aiming to effectively extract and integrate complementary cues across different modalities. Specifically, motion and visual features are extracted from the raw inputs using multiple Transformer-based extraction modules. Depth-guided attention module leverages depth information to guide attention towards salient regions in another modality through comprehensive spatial feature interactions. To account for the varying importance of different modalities and frames, modality attention and temporal attention are designed to selectively emphasize informative modalities and effectively capture temporal dependencies. Extensive experiments on the JAAD dataset validate the effectiveness of the proposed network, achieving superior performance compared to the baseline methods.
2.80Zero-Shot Transfer Capabilities of the Sundial Foundation Model for Leaf Area Index Forecasting¶
2025/11/26 04:58 GTM
This work investigates the zero-shot forecasting capability of time-series foundation models for Leaf Area Index (LAI) forecasting in agricultural monitoring. Using the HiQ dataset (U.S., 2000-2022), we systematically compare statistical baselines, a fully supervised LSTM, and the Sundial foundation model under multiple evaluation protocols. We find that Sundial, in the zero-shot setting, can outperform a fully trained LSTM provided that the input context window is sufficiently long-specifically, when covering more than one or two full seasonal cycles. This demonstrates, for the first time, that a general-purpose foundation model can surpass specialized supervised models on remote-sensing time series prediction without any task-specific tuning. These results highlight the strong potential of pretrained time-series foundation models to serve as effective plug-and-play forecasters in agricultural and environmental applications.
2.81Redefining Radar Segmentation: Simultaneous Static-Moving Segmentation and Ego-Motion Estimation using Radar Point Clouds¶
2025/11/26 04:58 GTM
Conventional radar segmentation research has typically focused on learning category labels for different moving objects. Although fundamental differences between radar and optical sensors lead to differences in the reliability of predicting accurate and consistent category labels, a review of common radar perception tasks in automotive reveals that determining whether an object is moving or static is a prerequisite for most tasks. To fill this gap, this study proposes a neural network based solution that can simultaneously segment static and moving objects from radar point clouds. Furthermore, since the measured radial velocity of static objects is correlated with the motion of the radar, this approach can also estimate the instantaneous 2D velocity of the moving platform or vehicle (ego motion). However, despite performing dual tasks, the proposed method employs very simple yet effective building blocks for feature extraction: multi layer perceptrons (MLPs) and recurrent neural networks (RNNs). In addition to being the first of its kind in the literature, the proposed method also demonstrates the feasibility of extracting the information required for the dual task directly from unprocessed point clouds, without the need for cloud aggregation, Doppler compensation, motion compensation, or any other intermediate signal processing steps. To measure its performance, this study introduces a set of novel evaluation metrics and tests the proposed method using a challenging real world radar dataset, RadarScenes. The results show that the proposed method not only performs well on the dual tasks, but also has broad application potential in other radar perception tasks.
2.82On the Feasibility of Hijacking MLLMs’ Decision Chain via One Perturbation¶
2025/11/26 04:58 GTM
Conventional adversarial attacks focus on manipulating a single decision of neural networks. However, real-world models often operate in a sequence of decisions, where an isolated mistake can be easily corrected, but cascading errors can lead to severe risks. This paper reveals a novel threat: a single perturbation can hijack the whole decision chain. We demonstrate the feasibility of manipulating a model’s outputs toward multiple, predefined outcomes, such as simultaneously misclassifying “non-motorized lane” signs as “motorized lane” and “pedestrian” as “plastic bag”. To expose this threat, we introduce Semantic-Aware Universal Perturbations (SAUPs), which induce varied outcomes based on the semantics of the inputs. We overcome optimization challenges by developing an effective algorithm, which searches for perturbations in normalized space with a semantic separation strategy. To evaluate the practical threat of SAUPs, we present RIST, a new real-world image dataset with fine-grained semantic annotations. Extensive experiments on three multimodal large language models demonstrate their vulnerability, achieving a 70% attack success rate when controlling five distinct targets using just an adversarial frame.
2.83CREward: A Type-Specific Creativity Reward Model¶
2025/11/26 04:58 GTM
Creativity is a complex phenomenon. When it comes to representing and assessing creativity, treating it as a single undifferentiated quantity would appear naive and underwhelming. In this work, we learn the \emph{first type-specific creativity reward model}, coined CREward, which spans three creativity ``axes," geometry, material, and texture, to allow us to view creativity through the lens of the image formation pipeline. To build our reward model, we first conduct a human benchmark evaluation to capture human perception of creativity for each type across various creative images. We then analyze the correlation between human judgments and predictions by large vision-language models (LVLMs), confirming that LVLMs exhibit strong alignment with human perception. Building on this observation, we collect LVLM-generated labels to train our CREward model that is applicable to both evaluation and generation of creative images. We explore three applications of CREward: creativity assessment, explainable creativity, and creative sample acquisition for both human design inspiration and guiding creative generation through low-rank adaptation.
2.84OmniRefiner: Reinforcement-Guided Local Diffusion Refinement¶
2025/11/26 04:58 GTM
Reference-guided image generation has progressed rapidly, yet current diffusion models still struggle to preserve fine-grained visual details when refining a generated image using a reference. This limitation arises because VAE-based latent compression inherently discards subtle texture information, causing identity- and attribute-specific cues to vanish. Moreover, post-editing approaches that amplify local details based on existing methods often produce results inconsistent with the original image in terms of lighting, texture, or shape. To address this, we introduce \ourMthd{}, a detail-aware refinement framework that performs two consecutive stages of reference-driven correction to enhance pixel-level consistency. We first adapt a single-image diffusion editor by fine-tuning it to jointly ingest the draft image and the reference image, enabling globally coherent refinement while maintaining structural fidelity. We then apply reinforcement learning to further strengthen localized editing capability, explicitly optimizing for detail accuracy and semantic consistency. Extensive experiments demonstrate that \ourMthd{} significantly improves reference alignment and fine-grained detail preservation, producing faithful and visually coherent edits that surpass both open-source and commercial models on challenging reference-guided restoration benchmarks.
2.85GazeProphetV2: Head-Movement-Based Gaze Prediction Enabling Efficient Foveated Rendering on Mobile VR¶
2025/11/26 04:58 GTM
Predicting gaze behavior in virtual reality environments remains a significant challenge with implications for rendering optimization and interface design. This paper introduces a multimodal approach to VR gaze prediction that combines temporal gaze patterns, head movement data, and visual scene information. By leveraging a gated fusion mechanism with cross-modal attention, the approach learns to adaptively weight gaze history, head movement, and scene content based on contextual relevance. Evaluations using a dataset spanning 22 VR scenes with 5.3M gaze samples demonstrate improvements in predictive accuracy when combining modalities compared to using individual data streams alone. The results indicate that integrating past gaze trajectories with head orientation and scene content enhances prediction accuracy across 1-3 future frames. Cross-scene generalization testing shows consistent performance with 93.1% validation accuracy and temporal consistency in predicted gaze trajectories. These findings contribute to understanding attention mechanisms in virtual environments while suggesting potential applications in rendering optimization, interaction design, and user experience evaluation. The approach represents a step toward more efficient virtual reality systems that can anticipate user attention patterns without requiring expensive eye tracking hardware.
2.86On-Demand Multi-Task Sparsity for Efficient Large-Model Deployment on Edge Devices¶
2025/11/26 04:58 GTM
Sparsity is essential for deploying large models on resource constrained edge platforms. However, optimizing sparsity patterns for individual tasks in isolation ignores the significant I/O overhead incurred during frequent task switching. We introduce an on-demand multi-task sparsity framework specifically designed to minimize switching costs by maximizing parameter reuse. Unlike monolithic approaches, we decompose weights into reusable block-granular units and align sparse structures across tasks to maximize overlap. By dynamically loading only the small differential set of blocks required for the next task, our method effectively mitigates the cold-start latency inherent in traditional monolithic approaches.Experiments on a real-world autonomous driving platform demonstrate that our framework achieves superior switching efficiency, accelerating task switching by over 6.6X on average compared to existing sparsity methods.
2.87SONIC: Spectral Optimization of Noise for Inpainting with Consistency¶
2025/11/26 04:58 GTM
We propose a novel training-free method for inpainting with off-the-shelf text-to-image models. While guidance-based methods in theory allow generic models to be used for inverse problems such as inpainting, in practice, their effectiveness is limited, leading to the necessity of specialized inpainting-specific models. In this work, we argue that the missing ingredient for training-free inpainting is the optimization (guidance) of the initial seed noise. We propose to optimize the initial seed noise to approximately match the unmasked parts of the data - with as few as a few tens of optimization steps. We then apply conventional training-free inpainting methods on top of our optimized initial seed noise. Critically, we propose two core ideas to effectively implement this idea: (i) to avoid the costly unrolling required to relate the initial noise and the generated outcome, we perform linear approximation; and (ii) to stabilize the optimization, we optimize the initial seed noise in the spectral domain. We demonstrate the effectiveness of our method on various inpainting tasks, outperforming the state of the art. Project page: https://
2.88EmoFeedback2: Reinforcement of Continuous Emotional Image Generation via LVLM-based Reward and Textual Feedback¶
2025/11/26 04:58 GTM
Continuous emotional image generation (C-EICG) is emerging rapidly due to its ability to produce images aligned with both user descriptions and continuous emotional values. However, existing approaches lack emotional feedback from generated images, limiting the control of emotional continuity. Additionally, their simple alignment between emotions and naively generated texts fails to adaptively adjust emotional prompts according to image content, leading to insufficient emotional fidelity. To address these concerns, we propose a novel generation-understanding-feedback reinforcement paradigm (EmoFeedback2) for C-EICG, which exploits the reasoning capability of the fine-tuned large vision-language model (LVLM) to provide reward and textual feedback for generating high-quality images with continuous emotions. Specifically, we introduce an emotion-aware reward feedback strategy, where the LVLM evaluates the emotional values of generated images and computes the reward against target emotions, guiding the reinforcement fine-tuning of the generative model and enhancing the emotional continuity of images. Furthermore, we design a self-promotion textual feedback framework, in which the LVLM iteratively analyzes the emotional content of generated images and adaptively produces refinement suggestions for the next-round prompt, improving the emotional fidelity with fine-grained content. Extensive experimental results demonstrate that our approach effectively generates high-quality images with the desired emotions, outperforming existing state-of-the-art methods in our custom dataset. The code and dataset will be released soon.
2.89Boosting Reasoning in Large Multimodal Models via Activation Replay¶
2025/11/26 04:58 GTM
Recently, Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an effective approach to incentivizing reasoning capability in Large Multimodal Models (LMMs), while the underlying mechanisms behind this post-training paradigm are poorly understood. We begin by exploring how input activations are affected by RLVR through the perspective of logit lens. Our systematic investigations across multiple post-trained LMMs suggest that RLVR shifts low-entropy activations unexpectedly, while high-entropy ones are less affected. We further demonstrate that such phenomena are associated with LMM reasoning by controlled experiments, suggesting a potentially beneficial role of modulating low-entropy activations. To this end, we propose Activation Replay, a novel simple yet effective training-free approach that boosts multimodal reasoning of post-trained LMMs without requiring expensive policy optimization. Our design involves manipulation of visual tokens at test time, replaying low-entropy activations from the input context of base LMMs to regulating the RLVR counterparts. Activation Replay triggers better reasoning across diverse scenarios, including mathematics, o3-like visual agents, and video reasoning. We further show that Activation Replay boosts Pass@K and mitigates narrower reasoning coverage of RLVR. Our design is compared against alternative choices, such as replaying high-entropy activations instead of low-entropy ones, or direct cross-model intervention instead of manipulating input tokens, demonstrating the superiority of our implementation. Codes will be made publicly available.
2.90VGGT4D: Mining Motion Cues in Visual Geometry Transformers for 4D Scene Reconstruction¶
2025/11/26 04:58 GTM
Reconstructing dynamic 4D scenes is challenging, as it requires robust disentanglement of dynamic objects from the static background. While 3D foundation models like VGGT provide accurate 3D geometry, their performance drops markedly when moving objects dominate. Existing 4D approaches often rely on external priors, heavy post-optimization, or require fine-tuning on 4D datasets. In this paper, we propose VGGT4D, a training-free framework that extends the 3D foundation model VGGT for robust 4D scene reconstruction. Our approach is motivated by the key finding that VGGT’s global attention layers already implicitly encode rich, layer-wise dynamic cues. To obtain masks that decouple static and dynamic elements, we mine and amplify global dynamic cues via gram similarity and aggregate them across a temporal window. To further sharpen mask boundaries, we introduce a refinement strategy driven by projection gradient. We then integrate these precise masks into VGGT’s early-stage inference, effectively mitigating motion interference in both pose estimation and geometric reconstruction. Across six datasets, our method achieves superior performance in dynamic object segmentation, camera pose estimation, and dense reconstruction. It also supports single-pass inference on sequences longer than 500 frames.
2.91HiCoGen: Hierarchical Compositional Text-to-Image Generation in Diffusion Models via Reinforcement Learning¶
2025/11/26 04:58 GTM
Recent advances in diffusion models have demonstrated impressive capability in generating high-quality images for simple prompts. However, when confronted with complex prompts involving multiple objects and hierarchical structures, existing models struggle to accurately follow instructions, leading to issues such as concept omission, confusion, and poor compositionality. To address these limitations, we propose a Hierarchical Compositional Generative framework (HiCoGen) built upon a novel Chain of Synthesis (CoS) paradigm. Instead of monolithic generation, HiCoGen first leverages a Large Language Model (LLM) to decompose complex prompts into minimal semantic units. It then synthesizes these units iteratively, where the image generated in each step provides crucial visual context for the next, ensuring all textual concepts are faithfully constructed into the final scene. To further optimize this process, we introduce a reinforcement learning (RL) framework. Crucially, we identify that the limited exploration of standard diffusion samplers hinders effective RL. We theoretically prove that sample diversity is maximized by concentrating stochasticity in the early generation stages and, based on this insight, propose a novel Decaying Stochasticity Schedule to enhance exploration. Our RL algorithm is then guided by a hierarchical reward mechanism that jointly evaluates the image at the global, subject, and relationship levels. We also construct HiCoPrompt, a new text-to-image benchmark with hierarchical prompts for rigorous evaluation. Experiments show our approach significantly outperforms existing methods in both concept coverage and compositional accuracy.
2.92MambaEye: A Size-Agnostic Visual Encoder with Causal Sequential Processing¶
2025/11/26 04:58 GTM
Despite decades of progress, a truly input-size agnostic visual encoder-a fundamental characteristic of human vision-has remained elusive. We address this limitation by proposing \textbf{MambaEye}, a novel, causal sequential encoder that leverages the low complexity and causal-process based pure Mamba2 backbone. Unlike previous Mamba-based vision encoders that often employ bidirectional processing, our strictly unidirectional approach preserves the inherent causality of State Space Models, enabling the model to generate a prediction at any point in its input sequence. A core innovation is our use of relative move embedding, which encodes the spatial shift between consecutive patches, providing a strong inductive bias for translation invariance and making the model inherently adaptable to arbitrary image resolutions and scanning patterns. To achieve this, we introduce a novel diffusion-inspired loss function that provides dense, step-wise supervision, training the model to build confidence as it gathers more visual evidence. We demonstrate that MambaEye exhibits robust performance across a wide range of image resolutions, especially at higher resolutions such as 15362 on the ImageNet-1K classification task. This feat is achieved while maintaining linear time and memory complexity relative to the number of patches.
2.93GFT-GCN: Privacy-Preserving 3D Face Mesh Recognition with Spectral Diffusion¶
2025/11/26 04:58 GTM
3D face recognition offers a robust biometric solution by capturing facial geometry, providing resilience to variations in illumination, pose changes, and presentation attacks. Its strong spoof resistance makes it suitable for high-security applications, but protecting stored biometric templates remains critical. We present GFT-GCN, a privacy-preserving 3D face recognition framework that combines spectral graph learning with diffusion-based template protection. Our approach integrates the Graph Fourier Transform (GFT) and Graph Convolutional Networks (GCN) to extract compact, discriminative spectral features from 3D face meshes. To secure these features, we introduce a spectral diffusion mechanism that produces irreversible, renewable, and unlinkable templates. A lightweight client-server architecture ensures that raw biometric data never leaves the client device. Experiments on the BU-3DFE and FaceScape datasets demonstrate high recognition accuracy and strong resistance to reconstruction attacks. Results show that GFT-GCN effectively balances privacy and performance, offering a practical solution for secure 3D face authentication.
2.94Supervise Less, See More: Training-free Nuclear Instance Segmentation with Prototype-Guided Prompting¶
2025/11/26 04:58 GTM
Accurate nuclear instance segmentation is a pivotal task in computational pathology, supporting data-driven clinical insights and facilitating downstream translational applications. While large vision foundation models have shown promise for zero-shot biomedical segmentation, most existing approaches still depend on dense supervision and computationally expensive fine-tuning. Consequently, training-free methods present a compelling research direction, yet remain largely unexplored. In this work, we introduce SPROUT, a fully training- and annotation-free prompting framework for nuclear instance segmentation. SPROUT leverages histology-informed priors to construct slide-specific reference prototypes that mitigate domain gaps. These prototypes progressively guide feature alignment through a partial optimal transport scheme. The resulting foreground and background features are transformed into positive and negative point prompts, enabling the Segment Anything Model (SAM) to produce precise nuclear delineations without any parameter updates. Extensive experiments across multiple histopathology benchmarks demonstrate that SPROUT achieves competitive performance without supervision or retraining, establishing a novel paradigm for scalable, training-free nuclear instance segmentation in pathology.
2.95Low-Resolution Editing is All You Need for High-Resolution Editing¶
2025/11/26 04:58 GTM
High-resolution content creation is rapidly emerging as a central challenge in both the vision and graphics communities. While images serve as the most fundamental modality for visual expression, content generation that aligns with the user intent requires effective, controllable high-resolution image manipulation mechanisms. However, existing approaches remain limited to low-resolution settings, typically supporting only up to 1K resolution. In this work, we introduce the task of high-resolution image editing and propose a test-time optimization framework to address it. Our method performs patch-wise optimization on high-resolution source images, followed by a fine-grained detail transfer module and a novel synchronization strategy to maintain consistency across patches. Extensive experiments show that our method produces high-quality edits, facilitating the way toward high-resolution content creation.
2.96Image Diffusion Models Exhibit Emergent Temporal Propagation in Videos¶
2025/11/26 04:58 GTM
Image diffusion models, though originally developed for image generation, implicitly capture rich semantic structures that enable various recognition and localization tasks beyond synthesis. In this work, we investigate their self-attention maps can be reinterpreted as semantic label propagation kernels, providing robust pixel-level correspondences between relevant image regions. Extending this mechanism across frames yields a temporal propagation kernel that enables zero-shot object tracking via segmentation in videos. We further demonstrate the effectiveness of test-time optimization strategies-DDIM inversion, textual inversion, and adaptive head weighting-in adapting diffusion features for robust and consistent label propagation. Building on these findings, we introduce DRIFT, a framework for object tracking in videos leveraging a pretrained image diffusion model with SAM-guided mask refinement, achieving state-of-the-art zero-shot performance on standard video object segmentation benchmarks.
2.97Context-Aware Token Pruning and Discriminative Selective Attention for Transformer Tracking¶
2025/11/26 04:58 GTM
One-stream Transformer-based trackers have demonstrated remarkable performance by concatenating template and search region tokens, thereby enabling joint attention across all tokens. However, enabling an excessive proportion of background search tokens to attend to the target template tokens weakens the tracker’s discriminative capability. Several token pruning methods have been proposed to mitigate background interference; however, they often remove tokens near the target, leading to the loss of essential contextual information and degraded tracking performance. Moreover, the presence of distractors within the search tokens further reduces the tracker’s ability to accurately identify the target. To address these limitations, we propose CPDATrack, a novel tracking framework designed to suppress interference from background and distractor tokens while enhancing computational efficiency. First, a learnable module is integrated between two designated encoder layers to estimate the probability of each search token being associated with the target. Based on these estimates, less-informative background tokens are pruned from the search region while preserving the contextual cues surrounding the target. To further suppress background interference, a discriminative selective attention mechanism is employed that fully blocks search-to-template attention in the early layers. In the subsequent encoder layers, high-probability target tokens are selectively extracted from a localized region to attend to the template tokens, thereby reducing the influence of background and distractor tokens. The proposed CPDATrack achieves state-of-the-art performance across multiple benchmarks, particularly on GOT-10k, where it attains an average overlap of 75.1 percent.
2.98CounterVQA: Evaluating and Improving Counterfactual Reasoning in Vision-Language Models for Video Understanding¶
2025/11/26 04:58 GTM
Vision Language Models (VLMs) have recently shown significant advancements in video understanding, especially in feature alignment, event reasoning, and instruction-following tasks. However, their capability for counterfactual reasoning, inferring alternative outcomes under hypothetical conditions, remains underexplored. This capability is essential for robust video understanding, as it requires identifying underlying causal structures and reasoning about unobserved possibilities, rather than merely recognizing observed patterns. To systematically evaluate this capability, we introduce CounterVQA, a video-based benchmark featuring three progressive difficulty levels that assess different aspects of counterfactual reasoning. Through comprehensive evaluation of both state-of-the-art open-source and closed-source models, we uncover a substantial performance gap: while these models achieve reasonable accuracy on simple counterfactual questions, performance degrades significantly on complex multi-hop causal chains. To address these limitations, we develop a post-training method, CFGPT, that enhances a model’s visual counterfactual reasoning ability by distilling its counterfactual reasoning capability from the language modality, yielding consistent improvements across all CounterVQA difficulty levels. Dataset and code will be further released.
2.99Intelligent Image Search Algorithms Fusing Visual Large Models¶
2025/11/26 04:58 GTM
Fine-grained image retrieval, which aims to find images containing specific object components and assess their detailed states, is critical in fields like security and industrial inspection. However, conventional methods face significant limitations: manual features (e.g., SIFT) lack robustness; deep learning-based detectors (e.g., YOLO) can identify component presence but cannot perform state-specific retrieval or zero-shot search; Visual Large Models (VLMs) offer semantic and zero-shot capabilities but suffer from poor spatial grounding and high computational cost, making them inefficient for direct retrieval. To bridge these gaps, this paper proposes DetVLM, a novel intelligent image search framework that synergistically fuses object detection with VLMs. The framework pioneers a search-enhancement paradigm via a two-stage pipeline: a YOLO detector first conducts efficient, high-recall component-level screening to determine component presence; then, a VLM acts as a recall-enhancement unit, performing secondary verification for components missed by the detector. This architecture directly enables two advanced capabilities: 1) State Search: Guided by task-specific prompts, the VLM refines results by verifying component existence and executing sophisticated state judgments (e.g., “sun visor lowered”), allowing retrieval based on component state. 2) Zero-shot Search: The framework leverages the VLM’s inherent zero-shot capability to recognize and retrieve images containing unseen components or attributes (e.g., “driver wearing a mask”) without any task-specific training. Experiments on a vehicle component dataset show DetVLM achieves a state-of-the-art overall retrieval accuracy of 94.82%, significantly outperforming detection-only baselines. It also attains 94.95% accuracy in zero-shot search for driver mask-wearing and over 90% average accuracy in state search tasks.
2.100HybriDLA: Hybrid Generation for Document Layout Analysis¶
2025/11/26 04:58 GTM
Conventional document layout analysis (DLA) traditionally depends on empirical priors or a fixed set of learnable queries executed in a single forward pass. While sufficient for early-generation documents with a small, predetermined number of regions, this paradigm struggles with contemporary documents, which exhibit diverse element counts and increasingly complex layouts. To address challenges posed by modern documents, we present HybriDLA, a novel generative framework that unifies diffusion and autoregressive decoding within a single layer. The diffusion component iteratively refines bounding-box hypotheses, whereas the autoregressive component injects semantic and contextual awareness, enabling precise region prediction even in highly varied layouts. To further enhance detection quality, we design a multi-scale feature-fusion encoder that captures both fine-grained and high-level visual cues. This architecture elevates performance to 83.5% mean Average Precision (mAP). Extensive experiments on the DocLayNet and MDoc benchmarks demonstrate that HybriDLA sets a state-of-the-art performance, outperforming previous approaches. All data and models will be made publicly available at https://
2.101Scale Where It Matters: Training-Free Localized Scaling for Diffusion Models¶
2025/11/26 04:58 GTM
Diffusion models have become the dominant paradigm in text-to-image generation, and test-time scaling (TTS) further improves quality by allocating more computation during inference. However, existing TTS methods operate at the full-image level, overlooking the fact that image quality is often spatially heterogeneous. This leads to unnecessary computation on already satisfactory regions and insufficient correction of localized defects. In this paper, we explore a new direction - Localized TTS - that adaptively resamples defective regions while preserving high-quality regions, thereby substantially reducing the search space. This paradigm poses two central challenges: accurately localizing defects and maintaining global consistency. We propose LoTTS, the first fully training-free framework for localized TTS. For defect localization, LoTTS contrasts cross- and self-attention signals under quality-aware prompts (e.g., high-quality vs. low-quality) to identify defective regions, and then refines them into coherent masks. For consistency, LoTTS perturbs only defective regions and denoises them locally, ensuring that corrections remain confined while the rest of the image remains undisturbed. Extensive experiments on SD2.1, SDXL, and FLUX demonstrate that LoTTS achieves state-of-the-art performance: it consistently improves both local quality and global fidelity, while reducing GPU cost by 2-4x compared to Best-of-N sampling. These findings establish localized TTS as a promising new direction for scaling diffusion models at inference time.
2.102Coupled Physics-Gated Adaptation: Spatially Decoding Volumetric Photochemical Conversion in Complex 3D-Printed Objects¶
2025/11/26 04:58 GTM
We present a framework that pioneers the prediction of photochemical conversion in complex three-dimensionally printed objects, introducing a challenging new computer vision task: predicting dense, non-visual volumetric physical properties from 3D visual data. This approach leverages the largest-ever optically printed 3D specimen dataset, comprising a large family of parametrically designed complex minimal surface structures that have undergone terminal chemical characterisation. Conventional vision models are ill-equipped for this task, as they lack an inductive bias for the coupled, non-linear interactions of optical physics (diffraction, absorption) and material physics (diffusion, convection) that govern the final chemical state. To address this, we propose Coupled Physics-Gated Adaptation (C-PGA), a novel multimodal fusion architecture. Unlike standard concatenation, C-PGA explicitly models physical coupling by using sparse geometrical and process parameters (e.g., surface transport, print layer height) as a Query to dynamically gate and adapt the dense visual features via feature-wise linear modulation (FiLM). This mechanism spatially modulates dual 3D visual streams-extracted by parallel 3D-CNNs processing raw projection stacks and their diffusion-diffraction corrected counterparts allowing the model to recalibrate its visual perception based on the physical context. This approach offers a breakthrough in virtual chemical characterisation, eliminating the need for traditional post-print measurements and enabling precise control over the chemical conversion state.
2.103Reasoning-VLA: A Fast and General Vision-Language-Action Reasoning Model for Autonomous Driving¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) models have recently shown strong decision-making capabilities in autonomous driving. However, existing VLAs often struggle with achieving efficient inference and generalizing to novel autonomous vehicle configurations and driving scenarios. In this paper, we propose Reasoning-VLA, a general and fast action-generation VLA framework. The proposed model employs a set of learnable action queries, initialized via Gaussian sampling from ground-truth trajectories within the training corpus. These learnable queries interact with reasoning-enhanced vision-language features to generate continuous action trajectories in parallel. To promote robust generalization, we consolidate eight publicly available autonomous driving datasets into a standardized, Chain-of-Thought reasoning-based, and easy-to-use data format for model training. Leveraging both supervised learning and reinforcement learning fine-tuning, extensive empirical evaluations across multiple benchmarks demonstrate that Reasoning-VLA achieves state-of-the-art performance, superior generalization capability, and the excellent inference speed reported to date.
2.104DLADiff: A Dual-Layer Defense Framework against Fine-Tuning and Zero-Shot Customization of Diffusion Models¶
2025/11/26 04:58 GTM
With the rapid advancement of diffusion models, a variety of fine-tuning methods have been developed, enabling high-fidelity image generation with high similarity to the target content using only 3 to 5 training images. More recently, zero-shot generation methods have emerged, capable of producing highly realistic outputs from a single reference image without altering model weights. However, technological advancements have also introduced significant risks to facial privacy. Malicious actors can exploit diffusion model customization with just a few or even one image of a person to create synthetic identities nearly identical to the original identity. Although research has begun to focus on defending against diffusion model customization, most existing defense methods target fine-tuning approaches and neglect zero-shot generation defenses. To address this issue, this paper proposes Dual-Layer Anti-Diffusion (DLADiff) to defense both fine-tuning methods and zero-shot methods. DLADiff contains a dual-layer protective mechanism. The first layer provides effective protection against unauthorized fine-tuning by leveraging the proposed Dual-Surrogate Models (DSUR) mechanism and Alternating Dynamic Fine-Tuning (ADFT), which integrates adversarial training with the prior knowledge derived from pre-fine-tuned models. The second layer, though simple in design, demonstrates strong effectiveness in preventing image generation through zero-shot methods. Extensive experimental results demonstrate that our method significantly outperforms existing approaches in defending against fine-tuning of diffusion models and achieves unprecedented performance in protecting against zero-shot generation.
2.105Motion Marionette: Rethinking Rigid Motion Transfer via Prior Guidance¶
2025/11/26 04:58 GTM
We present Motion Marionette, a zero-shot framework for rigid motion transfer from monocular source videos to single-view target images. Previous works typically employ geometric, generative, or simulation priors to guide the transfer process, but these external priors introduce auxiliary constraints that lead to trade-offs between generalizability and temporal consistency. To address these limitations, we propose guiding the motion transfer process through an internal prior that exclusively captures the spatial-temporal transformations and is shared between the source video and any transferred target video. Specifically, we first lift both the source video and the target image into a unified 3D representation space. Motion trajectories are then extracted from the source video to construct a spatial-temporal (SpaT) prior that is independent of object geometry and semantics, encoding relative spatial variations over time. This prior is further integrated with the target object to synthesize a controllable velocity field, which is subsequently refined using Position-Based Dynamics to mitigate artifacts and enhance visual coherence. The resulting velocity field can be flexibly employed for efficient video production. Empirical results demonstrate that Motion Marionette generalizes across diverse objects, produces temporally consistent videos that align well with the source motion, and supports controllable video generation.
2.106MHB: Multimodal Handshape-aware Boundary Detection for Continuous Sign Language Recognition¶
2025/11/26 04:58 GTM
This paper presents a multimodal approach for continuous sign recognition that first uses machine learning to detect the start and end frames of signs in videos of American Sign Language (ASL) sentences, and then recognizes the segmented signs. For improved robustness, we use 3D skeletal features extracted from sign language videos to capture the convergence of sign properties and their dynamics, which tend to cluster at sign boundaries. Another focus of this work is the incorporation of information from 3D handshape for boundary detection. To detect handshapes normally expected at the beginning and end of signs, we pretrain a handshape classifier for 87 linguistically defined canonical handshape categories using a dataset that we created by integrating and normalizing several existing datasets. A multimodal fusion module is then used to unify the pretrained sign video segmentation framework and the handshape classification models. Finally, the estimated boundaries are used for sign recognition, where the recognition model is trained on a large database containing both citation-form isolated signs and signs pre-segmented (based on manual annotations) from continuous signing, as such signs often differ in certain respects. We evaluate our method on the ASLLRP corpus and demonstrate significant improvements over previous work.
2.107Agent0-VL: Exploring Self-Evolving Agent for Tool-Integrated Vision-Language Reasoning¶
2025/11/26 04:58 GTM
Vision-language agents have achieved remarkable progress in a variety of multimodal reasoning tasks; however, their learning remains constrained by the limitations of human-annotated supervision. Recent self-rewarding approaches attempt to overcome this constraint by allowing models to act as their own critics or reward providers. Yet, purely text-based self-evaluation struggles to verify complex visual reasoning steps and often suffers from evaluation hallucinations. To address these challenges, inspired by recent advances in tool-integrated reasoning, we propose Agent0-VL, a self-evolving vision-language agent that achieves continual improvement with tool-integrated reasoning. Agent0-VL incorporates tool usage not only into reasoning but also into self-evaluation and self-repair, enabling the model to introspect, verify, and refine its reasoning through evidence-grounded analysis. It unifies two synergistic roles within a single LVLM: a Solver that performs multi-turn tool-integrated reasoning, and a Verifier that generates structured feedback and fine-grained self-rewards through tool-grounded critique. These roles interact through a Self-Evolving Reasoning Cycle, where tool-based verification and reinforcement learning jointly align the reasoning and evaluation distributions for stable self-improvement. Through this zero-external-reward evolution, Agent0-VL aligns its reasoning and verification behaviors without any human annotation or external reward models, achieving continual self-improvement. Experiments on geometric problem solving and visual scientific analysis show that Agent0-VL achieves an 12.5% improvement over the base model. Our code is available at \href{https://
2.108VeriSciQA: An Auto-Verified Dataset for Scientific Visual Question Answering¶
2025/11/26 04:58 GTM
Large Vision-Language Models (LVLMs) show promise for scientific applications, yet open-source models still struggle with Scientific Visual Question Answering (SVQA), namely answering questions about figures from scientific papers. A key bottleneck lies in the lack of public, large-scale, high-quality SVQA datasets. Although recent work uses LVLMs to synthesize data at scale, we identify systematic errors in their resulting QA pairs, stemming from LVLMs’ inherent limitations and information asymmetry between figures and text. To address these challenges, we propose a verification-centric Generate-then-Verify framework that first generates QA pairs with figure-associated textual context, then applies cross-modal consistency checks against figures along with auxiliary filters to eliminate erroneous pairs. We instantiate this framework to curate VeriSciQA, a dataset of 20,351 QA pairs spanning 20 scientific domains and 12 figure types. VeriSciQA poses a challenging benchmark for open-source models, with a substantial accuracy gap between the leading open-source models (64%) and a proprietary model (82%). Moreover, models fine-tuned on VeriSciQA achieve consistent improvements on SVQA benchmarks, with performance gains that scale with data size and surpass models trained on existing datasets. Human evaluation further validates the superior correctness of VeriSciQA. Together, these evidences demonstrate that continued data expansion by our scalable framework can further advance SVQA capability in the open-source community.
2.109LiMT: A Multi-task Liver Image Benchmark Dataset¶
2025/11/26 04:58 GTM
Computer-aided diagnosis (CAD) technology can assist clinicians in evaluating liver lesions and intervening with treatment in time. Although CAD technology has advanced in recent years, the application scope of existing datasets remains relatively limited, typically supporting only single tasks, which has somewhat constrained the development of CAD technology. To address the above limitation, in this paper, we construct a multi-task liver dataset (LiMT) used for liver and tumor segmentation, multi-label lesion classification, and lesion detection based on arterial phase-enhanced computed tomography (CT), potentially providing an exploratory solution that is able to explore the correlation between tasks and does not need to worry about the heterogeneity between task-specific datasets during training. The dataset includes CT volumes from 150 different cases, comprising four types of liver diseases as well as normal cases. Each volume has been carefully annotated and calibrated by experienced clinicians. This public multi-task dataset may become a valuable resource for the medical imaging research community in the future. In addition, this paper not only provides relevant baseline experimental results but also reviews existing datasets and methods related to liver-related tasks. Our dataset is available at https://
2.110Distilling Cross-Modal Knowledge via Feature Disentanglement¶
2025/11/26 04:58 GTM
Knowledge distillation (KD) has proven highly effective for compressing large models and enhancing the performance of smaller ones. However, its effectiveness diminishes in cross-modal scenarios, such as vision-to-language distillation, where inconsistencies in representation across modalities lead to difficult knowledge transfer. To address this challenge, we propose frequency-decoupled cross-modal knowledge distillation, a method designed to decouple and balance knowledge transfer across modalities by leveraging frequency-domain features. We observed that low-frequency features exhibit high consistency across different modalities, whereas high-frequency features demonstrate extremely low cross-modal similarity. Accordingly, we apply distinct losses to these features: enforcing strong alignment in the low-frequency domain and introducing relaxed alignment for high-frequency features. We also propose a scale consistency loss to address distributional shifts between modalities, and employ a shared classifier to unify feature spaces. Extensive experiments across multiple benchmark datasets show our method substantially outperforms traditional KD and state-of-the-art cross-modal KD approaches. Code is available at https://
2.111Frequency Bias Matters: Diving into Robust and Generalized Deep Image Forgery Detection¶
2025/11/26 04:58 GTM
As deep image forgery powered by AI generative models, such as GANs, continues to challenge today’s digital world, detecting AI-generated forgeries has become a vital security topic. Generalizability and robustness are two critical concerns of a forgery detector, determining its reliability when facing unknown GANs and noisy samples in an open world. Although many studies focus on improving these two properties, the root causes of these problems have not been fully explored, and it is unclear if there is a connection between them. Moreover, despite recent achievements in addressing these issues from image forensic or anti-forensic aspects, a universal method that can contribute to both sides simultaneously remains practically significant yet unavailable. In this paper, we provide a fundamental explanation of these problems from a frequency perspective. Our analysis reveals that the frequency bias of a DNN forgery detector is a possible cause of generalization and robustness issues. Based on this finding, we propose a two-step frequency alignment method to remove the frequency discrepancy between real and fake images, offering double-sided benefits: it can serve as a strong black-box attack against forgery detectors in the anti-forensic context or, conversely, as a universal defense to improve detector reliability in the forensic context. We also develop corresponding attack and defense implementations and demonstrate their effectiveness, as well as the effect of the frequency alignment method, in various experimental settings involving twelve detectors, eight forgery models, and five metrics.
2.112ChessMamba: Structure-Aware Interleaving of State Spaces for Change Detection in Remote Sensing Images¶
2025/11/26 04:58 GTM
Change detection (CD) in multitemporal remote sensing imagery presents significant challenges for fine-grained recognition, owing to heterogeneity and spatiotemporal misalignment. However, existing methodologies based on vision transformers or state-space models typically disrupt local structural consistency during temporal serialization, obscuring discriminative cues under misalignment and hindering reliable change localization. To address this, we introduce ChessMamba, a structure-aware framework leveraging interleaved state-space modeling for robust CD with multi-temporal inputs. ChessMamba integrates a SpatialMamba encoder with a lightweight cross-source interaction module, featuring two key innovations: (i) Chessboard interleaving with snake scanning order, which serializes multi-temporal features into a unified sequence within a single forward pass, thereby shortening interaction paths and enabling direct comparison for accurate change localization; and (ii) Structure-aware fusion via multi-dilated convolutions, selectively capturing center-and-corner neighborhood contexts within each mono-temporal. Comprehensive evaluations on three CD tasks, including binary CD, semantic CD and multimodal building damage assessment, demonstrate that ChessMamba effectively fuses heterogeneous features and achieves substantial accuracy improvements over state-of-the-art methods.The relevant code will be available at: github
2.113MAPS: Preserving Vision-Language Representations via Module-Wise Proximity Scheduling for Better Vision-Language-Action Generalization¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) models inherit strong priors from pretrained Vision-Language Models (VLMs), but naive fine-tuning often disrupts these representations and harms generalization. Existing fixes -- freezing modules or applying uniform regularization -- either overconstrain adaptation or ignore the differing roles of VLA components. We present MAPS (Module-Wise Proximity Scheduling), the first robust fine-tuning framework for VLAs. Through systematic analysis, we uncover an empirical order in which proximity constraints should be relaxed to balance stability and flexibility. MAPS linearly schedules this relaxation, enabling visual encoders to stay close to their pretrained priors while action-oriented language layers adapt more freely. MAPS introduces no additional parameters or data, and can be seamlessly integrated into existing VLAs. Across MiniVLA-VQ, MiniVLA-OFT, OpenVLA-OFT, and challenging benchmarks such as SimplerEnv, CALVIN, LIBERO, as well as real-world evaluations on the Franka Emika Panda platform, MAPS consistently boosts both in-distribution and out-of-distribution performance (up to +30%). Our findings highlight empirically guided proximity to pretrained VLMs as a simple yet powerful principle for preserving broad generalization in VLM-to-VLA transfer.
2.114It Hears, It Sees too: Multi-Modal LLM for Depression Detection By Integrating Visual Understanding into Audio Language Models¶
2025/11/26 04:58 GTM
Depression is one of the most prevalent mental health disorders globally. In recent years, multi-modal data, such as speech, video, and transcripts, has been increasingly used to develop AI-assisted depression assessment systems. Large language models have further advanced this field due to their strong language understanding and generalization capabilities. However, conventional LLMs remain text-centric and cannot process the rich non-verbal cues found in audio and visual modalities, which are critical components in mental health evaluation. While multi-modal LLMs offer a promising direction, few are tailored for psychological applications. In this study, we propose a novel multi-modal LLM framework for depression detection. Our approach augments an audio language model with visual understanding and aligns audio-visual features at the timestamp level. This fine-grained alignment improves modeling of temporal dynamics across modalities while reducing the need for extensive training data and computational resources. Experiments on the DAIC-WoZ dataset demonstrate that our model outperforms both single-modality approaches and previous multi-modal methods. Moreover, the proposed framework can be extended to incorporate additional physiological signals, paving the way for broader clinical applications beyond mental health.
2.115GigaWorld-0: World Models as Data Engine to Empower Embodied AI¶
2025/11/26 04:58 GTM
World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.
2.116Temporal-Visual Semantic Alignment: A Unified Architecture for Transferring Spatial Priors from Vision Models to Zero-Shot Temporal Tasks¶
2025/11/26 04:58 GTM
Large Multimodal Models (LMMs) have achieved remarkable progress in aligning and generating content across text and image modalities. However, the potential of using non-visual, continuous sequential, as a conditioning signal for high-fidelity image generation remains largely unexplored. Furthermore, existing methods that convert series into “pseudo-images” for temporal forecasting fail to establish semantic-level alignment. In this paper, we propose TimeArtist, a temporal-visual conversion framework that pioneers semantic-level alignment between time series fluctuations and visual concepts. It pioneers a “warmup-align” paradigm: first, a dual-autoencoder and shared quantizer are self-supervised trained on large-scale datasets to learn modality-shared representations. Then, the encoders and quantizer are frozen, and a projection is introduced to align temporal and visual samples at the representation level. TimeArtist establishes a versatile cross-modal framework, enabling high-quality, diverse image generation directly from time series, while capturing temporal fluctuation patterns to render images as styles transfer. Extensive experiments show that TimeArtist achieves satisfactory performance in image generation metrics, while also attaining superior results in zero-shot temporal tasks. Our work establishes a new paradigm for cross-modal generation, bridging the gap between temporal dynamics and visual semantics.
2.117STAvatar: Soft Binding and Temporal Density Control for Monocular 3D Head Avatars Reconstruction¶
2025/11/26 04:58 GTM
Reconstructing high-fidelity and animatable 3D head avatars from monocular videos remains a challenging yet essential task. Existing methods based on 3D Gaussian Splatting typically bind Gaussians to mesh triangles and model deformations solely via Linear Blend Skinning, which results in rigid motion and limited expressiveness. Moreover, they lack specialized strategies to handle frequently occluded regions (e.g., mouth interiors, eyelids). To address these limitations, we propose STAvatar, which consists of two key components: (1) a UV-Adaptive Soft Binding framework that leverages both image-based and geometric priors to learn per-Gaussian feature offsets within the UV space. This UV representation supports dynamic resampling, ensuring full compatibility with Adaptive Density Control (ADC) and enhanced adaptability to shape and textural variations. (2) a Temporal ADC strategy, which first clusters structurally similar frames to facilitate more targeted computation of the densification criterion. It further introduces a novel fused perceptual error as clone criterion to jointly capture geometric and textural discrepancies, encouraging densification in regions requiring finer details. Extensive experiments on four benchmark datasets demonstrate that STAvatar achieves state-of-the-art reconstruction performance, especially in capturing fine-grained details and reconstructing frequently occluded regions. The code will be publicly available.
2.118DOGE: Differentiable Bezier Graph Optimization for Road Network Extraction¶
2025/11/26 04:58 GTM
Automatic extraction of road networks from aerial imagery is a fundamental task, yet prevailing methods rely on polylines that struggle to model curvilinear geometry. We maintain that road geometry is inherently curve-based and introduce the Bézier Graph, a differentiable parametric curve-based representation. The primary obstacle to this representation is to obtain the difficult-to-construct vector ground-truth (GT). We sidestep this bottleneck by reframing the task as a global optimization problem over the Bézier Graph. Our framework, DOGE, operationalizes this paradigm by learning a parametric Bézier Graph directly from segmentation masks, eliminating the need for curve GT. DOGE holistically optimizes the graph by alternating between two complementary modules: DiffAlign continuously optimizes geometry via differentiable rendering, while TopoAdapt uses discrete operators to refine its topology. Our method sets a new state-of-the-art on the large-scale SpaceNet and CityScale benchmarks, presenting a new paradigm for generating high-fidelity vector maps of road networks. We will release our code and related data.
2.119Face, Whole-Person, and Object Classification in a Unified Space Via The Interleaved Multi-Domain Identity Curriculum¶
2025/11/26 04:58 GTM
Vision foundation models can perform generalized object classification in zero-shot mode, and face/person recognition when they are fine-tuned. However, fine-tuned models suffer from catastrophic forgetting. We create models that perform four tasks (object recognition, face recognition from high- and low-quality images, and person recognition from whole-body images) in a single embedding space -- without incurring substantial catastrophic forgetting. To accomplish this, we introduce two variants of the Interleaved Multi-Domain Identity Curriculum (IMIC): a gradient-coupled, interleaving training schedule that fine-tunes a foundation backbone simultaneously on all four tasks. The IMIC method proved effective with three foundation model bases: DINOv3, CLIP, and EVA-02. Two of these (EVA-02 and CLIP) performed comparably with domain experts on all four tasks concurrently and were more accurate than humans at multi-tasking across face, body, and object datasets. Further, we demonstrate that our approach does not substantially harm out-of-distribution generalization, thus maintaining a key property of foundation models. Analysis of the most accurate model variants (EVA-02 + IMIC A and B) showed linearly separable representations of the four tasks in the unified embedding space, but with substantial sharing of features across tasks. Fewer than 100 PCs calculated from any one task could perform all other tasks with nearly zero performance degradation.
2.1204DWorldBench: A Comprehensive Evaluation Framework for 3D/4D World Generation Models¶
2025/11/26 04:58 GTM
World Generation Models are emerging as a cornerstone of next-generation multimodal intelligence systems. Unlike traditional 2D visual generation, World Models aim to construct realistic, dynamic, and physically consistent 3D/4D worlds from images, videos, or text. These models not only need to produce high-fidelity visual content but also maintain coherence across space, time, physics, and instruction control, enabling applications in virtual reality, autonomous driving, embodied intelligence, and content creation. However, prior benchmarks emphasize different evaluation dimensions and lack a unified assessment of world-realism capability. To systematically evaluate World Models, we introduce the 4DWorldBench, which measures models across four key dimensions: Perceptual Quality, Condition-4D Alignment, Physical Realism, and 4D Consistency. The benchmark covers tasks such as Image-to-3D/4D, Video-to-4D, Text-to-3D/4D. Beyond these, we innovatively introduce adaptive conditioning across multiple modalities, which not only integrates but also extends traditional evaluation paradigms. To accommodate different modality-conditioned inputs, we map all modality conditions into a unified textual space during evaluation, and further integrate LLM-as-judge, MLLM-as-judge, and traditional network-based methods. This unified and adaptive design enables more comprehensive and consistent evaluation of alignment, physical realism, and cross-modal coherence. Preliminary human studies further demonstrate that our adaptive tool selection achieves closer agreement with subjective human judgments. We hope this benchmark will serve as a foundation for objective comparisons and improvements, accelerating the transition from “visual generation” to “world generation.” Our project can be found at https://
2.121Rectified SpaAttn: Revisiting Attention Sparsity for Efficient Video Generation¶
2025/11/26 04:58 GTM
Diffusion Transformers dominate video generation, but the quadratic complexity of attention computation introduces substantial latency. Attention sparsity reduces computational costs by focusing on critical tokens while ignoring non-critical tokens. However, existing methods suffer from severe performance degradation. In this paper, we revisit attention sparsity and reveal that existing methods induce systematic biases in attention allocation: (1) excessive focus on critical tokens amplifies their attention weights; (2) complete neglect of non-critical tokens causes the loss of relevant attention weights. To address these issues, we propose Rectified SpaAttn, which rectifies attention allocation with implicit full attention reference, thereby enhancing the alignment between sparse and full attention maps. Specifically: (1) for critical tokens, we show that their bias is proportional to the sparse attention weights, with the ratio governed by the amplified weights. Accordingly, we propose Isolated-Pooling Attention Reallocation, which calculates accurate rectification factors by reallocating multimodal pooled weights. (2) for non-critical tokens, recovering attention weights from the pooled query-key yields attention gains but also introduces pooling errors. Therefore, we propose Gain-Aware Pooling Rectification, which ensures that the rectified gain consistently surpasses the induced error. Moreover, we customize and integrate the Rectified SpaAttn kernel using Triton, achieving up to 3.33 and 2.08 times speedups on HunyuanVideo and Wan 2.1, respectively, while maintaining high generation quality. We release Rectified SpaAttn as open-source at https://
2.122Large Language Model Aided Birt-Hogg-Dube Syndrome Diagnosis with Multimodal Retrieval-Augmented Generation¶
2025/11/26 04:58 GTM
Deep learning methods face dual challenges of limited clinical samples and low inter-class differentiation among Diffuse Cystic Lung Diseases (DCLDs) in advancing Birt-Hogg-Dube syndrome (BHD) diagnosis via Computed Tomography (CT) imaging. While Multimodal Large Language Models (MLLMs) demonstrate diagnostic potential fo such rare diseases, the absence of domain-specific knowledge and referable radiological features intensify hallucination risks. To address this problem, we propose BHD-RAG, a multimodal retrieval-augmented generation framework that integrates DCLD-specific expertise and clinical precedents with MLLMs to improve BHD diagnostic accuracy. BHDRAG employs: (1) a specialized agent generating imaging manifestation descriptions of CT images to construct a multimodal corpus of DCLDs cases. (2) a cosine similarity-based retriever pinpointing relevant imagedescription pairs for query images, and (3) an MLLM synthesizing retrieved evidence with imaging data for diagnosis. BHD-RAG is validated on the dataset involving four types of DCLDs, achieving superior accuracy and generating evidence-based descriptions closely aligned with expert insights.
2.123ReDirector: Creating Any-Length Video Retakes with Rotary Camera Encoding¶
2025/11/26 04:58 GTM
We present ReDirector, a novel camera-controlled video retake generation method for dynamically captured variable-length videos. In particular, we rectify a common misuse of RoPE in previous works by aligning the spatiotemporal positions of the input video and the target retake. Moreover, we introduce Rotary Camera Encoding (RoCE), a camera-conditioned RoPE phase shift that captures and integrates multi-view relationships within and across the input and target videos. By integrating camera conditions into RoPE, our method generalizes to out-of-distribution camera trajectories and video lengths, yielding improved dynamic object localization and static background preservation. Extensive experiments further demonstrate significant improvements in camera controllability, geometric consistency, and video quality across various trajectories and lengths.
2.124CropVLM: Learning to Zoom for Fine-Grained Vision-Language Perception¶
2025/11/26 04:58 GTM
Vision-Language Models (VLMs) often struggle with tasks that require fine-grained image understanding, such as scene-text recognition or document analysis, due to perception limitations and visual fragmentation. To address these challenges, we introduce CropVLM as an external low-cost method for boosting performance, enabling VLMs to dynamically ‘‘zoom in’’ on relevant image regions, enhancing their ability to capture fine details. CropVLM is trained using reinforcement learning, without using human-labeled bounding boxes as a supervision signal, and without expensive synthetic evaluations. The model is trained once and can be paired with both open-source and proprietary VLMs to improve their performance. Our approach delivers significant improvements on tasks that require high-resolution image understanding, notably for benchmarks that are out-of-domain for the target VLM, without modifying or fine-tuning the VLM, thus avoiding catastrophic forgetting.
2.125Training-Free Generation of Diverse and High-Fidelity Images via Prompt Semantic Space Optimization¶
2025/11/26 04:58 GTM
Image diversity remains a fundamental challenge for text-to-image diffusion models. Low-diversity models tend to generate repetitive outputs, increasing sampling redundancy and hindering both creative exploration and downstream applications. A primary cause is that generation often collapses toward a strong mode in the learned distribution. Existing attempts to improve diversity, such as noise resampling, prompt rewriting, or steering-based guidance, often still collapse to dominant modes or introduce distortions that degrade image quality. In light of this, we propose Token-Prompt embedding Space Optimization (TPSO), a training-free and model-agnostic module. TPSO introduces learnable parameters to explore underrepresented regions of the token embedding space, reducing the tendency of the model to repeatedly generate samples from strong modes of the learned distribution. At the same time, the prompt-level space provides a global semantic constraint that regulates distribution shifts, preventing quality degradation while maintaining high fidelity. Extensive experiments on MS-COCO and three diffusion backbones show that TPSO significantly enhances generative diversity, improving baseline performance from 1.10 to 4.18 points, without sacrificing image quality. Code will be released upon acceptance.
2.126Reading Between the Lines: Abstaining from VLM-Generated OCR Errors via Latent Representation Probes¶
2025/11/26 04:58 GTM
As VLMs are deployed in safety-critical applications, their ability to abstain from answering when uncertain becomes crucial for reliability, especially in Scene Text Visual Question Answering (STVQA) tasks. For example, OCR errors like misreading “50 mph” as “60 mph” could cause severe traffic accidents. This leads us to ask: Can VLMs know when they can’t see? Existing abstention methods suggest pessimistic answers: they either rely on miscalibrated output probabilities or require semantic agreement unsuitable for OCR tasks. However, this failure may indicate we are looking in the wrong place: uncertainty signals could be hidden in VLMs’ internal representations. Building on this insight, we propose Latent Representation Probing (LRP): training lightweight probes on hidden states or attention patterns. We explore three probe designs: concatenating representations across all layers, aggregating attention over visual tokens, and ensembling single layer probes by majority vote. Experiments on four benchmarks across image and video modalities show LRP improves abstention accuracy by 7.6% over best baselines. Our analysis reveals: probes generalize across various uncertainty sources and datasets, and optimal signals emerge from intermediate rather than final layers. This establishes a principled framework for building deployment-ready AI systems by detecting confidence signals from internal states rather than unreliable outputs.
2.127Terminal Velocity Matching¶
2025/11/26 04:58 GTM
We propose Terminal Velocity Matching (TVM), a generalization of flow matching that enables high-fidelity one- and few-step generative modeling. TVM models the transition between any two diffusion timesteps and regularizes its behavior at its terminal time rather than at the initial time. We prove that TVM provides an upper bound on the 2-Wasserstein distance between data and model distributions when the model is Lipschitz continuous. However, since Diffusion Transformers lack this property, we introduce minimal architectural changes that achieve stable, single-stage training. To make TVM efficient in practice, we develop a fused attention kernel that supports backward passes on Jacobian-Vector Products, which scale well with transformer architectures. On ImageNet-256x256, TVM achieves 3.29 FID with a single function evaluation (NFE) and 1.99 FID with 4 NFEs. It similarly achieves 4.32 1-NFE FID and 2.94 4-NFE FID on ImageNet-512x512, representing state-of-the-art performance for one/few-step models from scratch.
2.128One Attention, One Scale: Phase-Aligned Rotary Positional Embeddings for Mixed-Resolution Diffusion Transformer¶
2025/11/26 04:58 GTM
We identify a core failure mode that occurs when using the usual linear interpolation on rotary positional embeddings (RoPE) for mixed-resolution denoising with Diffusion Transformers. When tokens from different spatial grids are mixed, the attention mechanism collapses. The issue is structural. Linear coordinate remapping forces a single attention head to compare RoPE phases sampled at incompatible rates, creating phase aliasing that destabilizes the score landscape. Pretrained DiTs are especially brittle-many heads exhibit extremely sharp, periodic phase selectivity-so even tiny cross-rate inconsistencies reliably cause blur, artifacts, or full collapse. To this end, our main contribution is Cross-Resolution Phase-Aligned Attention (CRPA), a training-free drop-in fix that eliminates this failure at its source. CRPA modifies only the RoPE index map for each attention call: all Q/K positions are expressed on the query’s stride so that equal physical distances always induce identical phase increments. This restores the precise phase patterns that DiTs rely on. CRPA is fully compatible with pretrained DiTs, stabilizes all heads and layers uniformly. We demonstrate that CRPA enables high-fidelity and efficient mixed-resolution generation, outperforming previous state-of-the-art methods on image and video generation.
2.129Scaling Agentic Reinforcement Learning for Tool-Integrated Reasoning in VLMs¶
2025/11/26 04:58 GTM
While recent vision-language models (VLMs) demonstrate strong image understanding, their ability to “think with images”, i.e., to reason through multi-step visual interactions, remains limited. We introduce VISTA-Gym, a scalable training environment for incentivizing tool-integrated visual reasoning capabilities in VLMs. VISTA-Gym unifies diverse real-world multimodal reasoning tasks (7 tasks from 13 datasets in total) with a standardized interface for visual tools (e.g., grounding, parsing), executable interaction loops, verifiable feedback signals, and efficient trajectory logging, enabling visual agentic reinforcement learning at scale. While recent VLMs exhibit strong text-only reasoning, both proprietary and open-source models still struggle with tool selection, invocation, and coordination. With VISTA-Gym, we train VISTA-R1 to interleave tool-use with agentic reasoning via multi-turn trajectory sampling and end-to-end reinforcement learning. Extensive experiments across 11 public reasoning-intensive VQA benchmarks show that VISTA-R1-8B outperforms state-of-the-art baselines with similar sizes by 9.51%-18.72%, demonstrating VISTA-Gym as an effective training ground to unlock the tool-integrated reasoning capabilities for VLMs.
2.130Prune-Then-Plan: Step-Level Calibration for Stable Frontier Exploration in Embodied Question Answering¶
2025/11/26 04:58 GTM
Large vision-language models (VLMs) have improved embodied question answering (EQA) agents by providing strong semantic priors for open-vocabulary reasoning. However, when used directly for step-level exploration, VLMs often exhibit frontier oscillations, unstable back-and-forth movements caused by overconfidence and miscalibration, leading to inefficient navigation and degraded answer quality. We propose Prune-Then-Plan, a simple and effective framework that stabilizes exploration through step-level calibration. Instead of trusting raw VLM scores, our method prunes implausible frontier choices using a Holm-Bonferroni inspired pruning procedure and then delegates final decisions to a coverage-based planner. This separation converts overconfident predictions into conservative, interpretable actions by relying on human-level judgments to calibrate the step-level behavior of VLMs. Integrated into the 3D-Mem EQA framework, our approach achieves relative improvements of up to 49% and 33% in visually grounded SPL and LLM-Match metrics respectively over baselines. Overall, our method achieves better scene coverage under equal exploration budgets on both OpenEQA and EXPRESS-Bench datasets.
2.131Lightweight Transformer Framework for Weakly Supervised Semantic Segmentation¶
2025/11/26 04:58 GTM
Weakly supervised semantic segmentation (WSSS) must learn dense masks from noisy, under-specified cues. We revisit the SegFormer decoder and show that three small, synergistic changes make weak supervision markedly more effective-without altering the MiT backbone or relying on heavy post-processing. Our method, CrispFormer, augments the decoder with: (1) a boundary branch that supervises thin object contours using a lightweight edge head and a boundary-aware loss; (2) an uncertainty-guided refiner that predicts per-pixel aleatoric uncertainty and uses it to weight losses and gate a residual correction of the segmentation logits; and (3) a dynamic multi-scale fusion layer that replaces static concatenation with spatial softmax gating over multi-resolution features, optionally modulated by uncertainty. The result is a single-pass model that preserves crisp boundaries, selects appropriate scales per location, and resists label noise from weak cues. Integrated into a standard WSSS pipeline (seed, student, and EMA relabeling), CrispFormer consistently improves boundary F-score, small-object recall, and mIoU over SegFormer baselines trained on the same seeds, while adding minimal compute. Our decoder-centric formulation is simple to implement, broadly compatible with existing SegFormer variants, and offers a reproducible path to higher-fidelity masks from image-level supervision.
2.132A Storage-Efficient Feature for 3D Concrete Defect Segmentation to Replace Normal Vector¶
2025/11/26 04:58 GTM
Point cloud reconstruction of damage offers an effective solution to image-based methods vulnerable to background noise, yet its application is constrained by the high volume of 3D data. This study proposes a new feature, relative angle, computed as the angle between the normal vector of a point and the average normal vector of its parent point cloud. This single-dimensional feature provides directionality information equivalent to normal vectors for concrete surface defect characteristics. Through entropy-based feature evaluation, this study demonstrates the ability of relative angle to filter out redundant information in undamaged sections while retaining effective information in damaged sections. By training and testing with PointNet++, models based on the relative angles achieved similar performance to that of models based on normal vectors while delivering 27.6% storage reduction and 83% input channel compression. This novel feature has the potential to enable larger-batch execution on resource-constrained hardware without the necessity of architectural modifications to models.
2.133Vision--Language Enhanced Foundation Model for Semi-supervised Medical Image Segmentation¶
2025/11/26 04:58 GTM
Semi-supervised learning (SSL) has emerged as an effective paradigm for medical image segmentation, reducing the reliance on extensive expert annotations. Meanwhile, vision-language models (VLMs) have demonstrated strong generalization and few-shot capabilities across diverse visual domains. In this work, we integrate VLM-based segmentation into semi-supervised medical image segmentation by introducing a Vision-Language Enhanced Semi-supervised Segmentation Assistant (VESSA) that incorporates foundation-level visual-semantic understanding into SSL frameworks. Our approach consists of two stages. In Stage 1, the VLM-enhanced segmentation foundation model VESSA is trained as a reference-guided segmentation assistant using a template bank containing gold-standard exemplars, simulating learning from limited labeled data. Given an input-template pair, VESSA performs visual feature matching to extract representative semantic and spatial cues from exemplar segmentations, generating structured prompts for a SAM2-inspired mask decoder to produce segmentation masks. In Stage 2, VESSA is integrated into a state-of-the-art SSL framework, enabling dynamic interaction with the student model: as student predictions become more refined, they are fed back to VESSA as prompts, allowing it to generate higher-quality pseudo-labels and stronger guidance. Extensive experiments across multiple segmentation datasets and domains show that VESSA-augmented SSL significantly enhances segmentation accuracy, outperforming state-of-the-art baselines under extremely limited annotation conditions.
2.134What You See is (Usually) What You Get: Multimodal Prototype Networks that Abstain from Expensive Modalities¶
2025/11/26 04:58 GTM
Species detection is important for monitoring the health of ecosystems and identifying invasive species, serving a crucial role in guiding conservation efforts. Multimodal neural networks have seen increasing use for identifying species to help automate this task, but they have two major drawbacks. First, their black-box nature prevents the interpretability of their decision making process. Second, collecting genetic data is often expensive and requires invasive procedures, often necessitating researchers to capture or kill the target specimen. We address both of these problems by extending prototype networks (ProtoPNets), which are a popular and interpretable alternative to traditional neural networks, to the multimodal, cost-aware setting. We ensemble prototypes from each modality, using an associated weight to determine how much a given prediction relies on each modality. We further introduce methods to identify cases for which we do not need the expensive genetic information to make confident predictions. We demonstrate that our approach can intelligently allocate expensive genetic data for fine-grained distinctions while using abundant image data for clearer visual classifications and achieving comparable accuracy to models that consistently use both modalities.
2.135Leveraging Foundation Models for Histological Grading in Cutaneous Squamous Cell Carcinoma using PathFMTools¶
2025/11/26 04:58 GTM
Despite the promise of computational pathology foundation models, adapting them to specific clinical tasks remains challenging due to the complexity of whole-slide image (WSI) processing, the opacity of learned features, and the wide range of potential adaptation strategies. To address these challenges, we introduce PathFMTools, a lightweight, extensible Python package that enables efficient execution, analysis, and visualization of pathology foundation models. We use this tool to interface with and evaluate two state-of-the-art vision-language foundation models, CONCH and MUSK, on the task of histological grading in cutaneous squamous cell carcinoma (cSCC), a critical criterion that informs cSCC staging and patient management. Using a cohort of 440 cSCC H&E WSIs, we benchmark multiple adaptation strategies, demonstrating trade-offs across prediction approaches and validating the potential of using foundation model embeddings to train small specialist models. These findings underscore the promise of pathology foundation models for real-world clinical applications, with PathFMTools enabling efficient analysis and validation.
2.136Efficient Transferable Optimal Transport via Min-Sliced Transport Plans¶
2025/11/26 04:58 GTM
Optimal Transport (OT) offers a powerful framework for finding correspondences between distributions and addressing matching and alignment problems in various areas of computer vision, including shape analysis, image generation, and multimodal tasks. The computation cost of OT, however, hinders its scalability. Slice-based transport plans have recently shown promise for reducing the computational cost by leveraging the closed-form solutions of 1D OT problems. These methods optimize a one-dimensional projection (slice) to obtain a conditional transport plan that minimizes the transport cost in the ambient space. While efficient, these methods leave open the question of whether learned optimal slicers can transfer to new distribution pairs under distributional shift. Understanding this transferability is crucial in settings with evolving data or repeated OT computations across closely related distributions. In this paper, we study the min-Sliced Transport Plan (min-STP) framework and investigate the transferability of optimized slicers: can a slicer trained on one distribution pair yield effective transport plans for new, unseen pairs? Theoretically, we show that optimized slicers remain close under slight perturbations of the data distributions, enabling efficient transfer across related tasks. To further improve scalability, we introduce a minibatch formulation of min-STP and provide statistical guarantees on its accuracy. Empirically, we demonstrate that the transferable min-STP achieves strong one-shot matching performance and facilitates amortized training for point cloud alignment and flow-based generative modeling.
2.137Maritime Small Object Detection from UAVs using Deep Learning with Altitude-Aware Dynamic Tiling¶
2025/11/26 04:58 GTM
Unmanned Aerial Vehicles (UAVs) are crucial in Search and Rescue (SAR) missions due to their ability to monitor vast maritime areas. However, small objects often remain difficult to detect from high altitudes due to low object-to-background pixel ratios. We propose an altitude-aware dynamic tiling method that scales and adaptively subdivides the image into tiles for enhanced small object detection. By integrating altitude-dependent scaling with an adaptive tiling factor, we reduce unnecessary computation while maintaining detection performance. Tested on the SeaDronesSee dataset [1] with YOLOv5 [2] and Slicing Aided Hyper Inference (SAHI) framework [3], our approach improves Mean Average Precision (mAP) for small objects by 38% compared to a baseline and achieves more than double the inference speed compared to static tiling. This approach enables more efficient and accurate UAV-based SAR operations under diverse conditions.
2.138Rethinking Vision Transformer Depth via Structural Reparameterization¶
2025/11/26 04:58 GTM
The computational overhead of Vision Transformers in practice stems fundamentally from their deep architectures, yet existing acceleration strategies have primarily targeted algorithmic-level optimizations such as token pruning and attention speedup. This leaves an underexplored research question: can we reduce the number of stacked transformer layers while maintaining comparable representational capacity? To answer this, we propose a branch-based structural reparameterization technique that operates during the training phase. Our approach leverages parallel branches within transformer blocks that can be systematically consolidated into streamlined single-path models suitable for inference deployment. The consolidation mechanism works by gradually merging branches at the entry points of nonlinear components, enabling both feed-forward networks (FFN) and multi-head self-attention (MHSA) modules to undergo exact mathematical reparameterization without inducing approximation errors at test time. When applied to ViT-Tiny, the framework successfully reduces the original 12-layer architecture to 6, 4, or as few as 3 layers while maintaining classification accuracy on ImageNet-1K. The resulting compressed models achieve inference speedups of up to 37% on mobile CPU platforms. Our findings suggest that the conventional wisdom favoring extremely deep transformer stacks may be unnecessarily restrictive, and point toward new opportunities for constructing efficient vision transformers.
2.139The Selective Disk Bispectrum and Its Inversion, with Application to Multi-Reference Alignment¶
2025/11/26 04:58 GTM
In many computer vision and shape analysis tasks, practitioners are interested in learning from the shape of the object in an image, while disregarding the object’s orientation. To this end, it is valuable to define a rotation-invariant representation of images, retaining all information about that image, but disregarding the way an object is rotated in the frame. To be practical for learning tasks, this representation must be computationally efficient for large datasets and invertible, so the representation can be visualized in image space. To this end, we present the selective disk bispectrum: a fast, rotation-invariant representation for image shape analysis. While the translational bispectrum has long been used as a translational invariant representation for 1-D and 2-D signals, its extension to 2-D (disk) rotational invariance on images has been hindered by the absence of an invertible formulation and its cubic complexity. In this work, we derive an explicit inverse for the disk bispectrum, which allows us to define a “selective” disk bispectrum, which only uses the minimal number of coefficients needed for faithful shape recovery. We show that this representation enables multi-reference alignment for rotated images-a task previously intractable for disk bispectrum methods. These results establish the disk bispectrum as a practical and theoretically grounded tool for learning on rotation-invariant shape data.
2.140RADSeg: Unleashing Parameter and Compute Efficient Zero-Shot Open-Vocabulary Segmentation Using Agglomerative Models¶
2025/11/26 04:58 GTM
Open-vocabulary semantic segmentation (OVSS) underpins many vision and robotics tasks that require generalizable semantic understanding. Existing approaches either rely on limited segmentation training data, which hinders generalization, or apply zero-shot heuristics to vision-language models (e.g CLIP), while the most competitive approaches combine multiple models to improve performance at the cost of high computational and memory demands. In this work, we leverage an overlooked agglomerative vision foundation model, RADIO, to improve zero-shot OVSS along three key axes simultaneously: mIoU, latency, and parameter efficiency. We present the first comprehensive study of RADIO for zero-shot OVSS and enhance its performance through self-correlating recursive attention, self-correlating global aggregation, and computationally efficient mask refinement. Our approach, RADSeg, achieves 6-30% mIoU improvement in the base ViT class while being 3.95x faster and using 2.5x fewer parameters. Surprisingly, RADSeg-base (105M) outperforms previous combinations of huge vision models (850-1350M) in mIoU, achieving state-of-the-art accuracy with substantially lower computational and memory cost.
2.141CountXplain: Interpretable Cell Counting with Prototype-Based Density Map Estimation¶
2025/11/26 04:58 GTM
Cell counting in biomedical imaging is pivotal for various clinical applications, yet the interpretability of deep learning models in this domain remains a significant challenge. We propose a novel prototype-based method for interpretable cell counting via density map estimation. Our approach integrates a prototype layer into the density estimation network, enabling the model to learn representative visual patterns for both cells and background artifacts. The learned prototypes were evaluated through a survey of biologists, who confirmed the relevance of the visual patterns identified, further validating the interpretability of the model. By generating interpretations that highlight regions in the input image most similar to each prototype, our method offers a clear understanding of how the model identifies and counts cells. Extensive experiments on two public datasets demonstrate that our method achieves interpretability without compromising counting effectiveness. This work provides researchers and clinicians with a transparent and reliable tool for cell counting, potentially increasing trust and accelerating the adoption of deep learning in critical biomedical applications. Code is available at https://
2.142IndEgo: A Dataset of Industrial Scenarios and Collaborative Work for Egocentric Assistants¶
2025/11/26 04:58 GTM
We introduce IndEgo, a multimodal egocentric and exocentric dataset addressing common industrial tasks, including assembly/disassembly, logistics and organisation, inspection and repair, woodworking, and others. The dataset contains 3,460 egocentric recordings (approximately 197 hours), along with 1,092 exocentric recordings (approximately 97 hours). A key focus of the dataset is collaborative work, where two workers jointly perform cognitively and physically intensive tasks. The egocentric recordings include rich multimodal data and added context via eye gaze, narration, sound, motion, and others. We provide detailed annotations (actions, summaries, mistake annotations, narrations), metadata, processed outputs (eye gaze, hand pose, semi-dense point cloud), and benchmarks on procedural and non-procedural task understanding, Mistake Detection, and reasoning-based Question Answering. Baseline evaluations for Mistake Detection, Question Answering and collaborative task understanding show that the dataset presents a challenge for the state-of-the-art multimodal models. Our dataset is available at: https://
2.143INTERLACE: Interleaved Layer Pruning and Efficient Adaptation in Large Vision-Language Models¶
2025/11/26 04:58 GTM
We introduce INTERLACE, a novel framework that prunes redundant layers in VLMs while maintaining performance through sample-efficient finetuning. Existing layer pruning methods lead to significant performance drop when applied to VLMs. Instead, we analyze triplets of consecutive layers to identify local redundancy, removing the most redundant of the first two layers, finetune the remaining layer to compensate for the lost capacity, and freeze the third layer to serve as a stable anchor during finetuning. We found that this interleaved finetune-freeze design enables rapid convergence with minimal data after pruning. By finetuning only a subset of layers on just 1% of the FineVision dataset for one epoch, Interlace achieves 88.9% average performance retention after dropping 25% of the network, achieving SOTA performance. Our code is available at: https://
2.144OncoVision: Integrating Mammography and Clinical Data through Attention-Driven Multimodal AI for Enhanced Breast Cancer Diagnosis¶
2025/11/26 04:58 GTM
OncoVision is a multimodal AI pipeline that combines mammography images and clinical data for better breast cancer diagnosis. Employing an attention-based encoder-decoder backbone, it jointly segments four ROIs - masses, calcifications, axillary findings, and breast tissues - with state-of-the-art accuracy and robustly predicts ten structured clinical features: mass morphology, calcification type, ACR breast density, and BI-RADS categories. To fuse imaging and clinical insights, we developed two late-fusion strategies. By utilizing complementary multimodal data, late fusion strategies improve diagnostic precision and reduce inter-observer variability. Operationalized as a secure, user-friendly web application, OncoVision produces structured reports with dual-confidence scoring and attention-weighted visualizations for real-time diagnostic support to improve clinician trust and facilitate medical teaching. It can be easily incorporated into the clinic, making screening available in underprivileged areas around the world, such as rural South Asia. Combining accurate segmentation with clinical intuition, OncoVision raises the bar for AI-based mammography, offering a scalable and equitable solution to detect breast cancer at an earlier stage and enhancing treatment through timely interventions.
2.145Fara-7B: An Efficient Agentic Model for Computer Use¶
2025/11/26 04:58 GTM
Progress in computer use agents (CUAs) has been constrained by the absence of large and high-quality datasets that capture how humans interact with a computer. While LLMs have thrived on abundant textual data, no comparable corpus exists for CUA trajectories. To address these gaps, we introduce FaraGen, a novel synthetic data generation system for multi-step web tasks. FaraGen can propose diverse tasks from frequently used websites, generate multiple solution attempts, and filter successful trajectories using multiple verifiers. It achieves high throughput, yield, and diversity for multi-step web tasks, producing verified trajectories at approximately $1 each. We use this data to train Fara-7B, a native CUA model that perceives the computer using only screenshots, executes actions via predicted coordinates, and is small enough to run on-device. We find that Fara-7B outperforms other CUA models of comparable size on benchmarks like WebVoyager, Online-Mind2Web, and WebTailBench -- our novel benchmark that better captures under-represented web tasks in pre-existing benchmarks. Furthermore, Fara-7B is competitive with much larger frontier models, illustrating key benefits of scalable data generation systems in advancing small efficient agentic models. We are making Fara-7B open-weight on Microsoft Foundry and HuggingFace, and we are releasing WebTailBench.
2.146CodeV: Code with Images for Faithful Visual Reasoning via Tool-Aware Policy Optimization¶
2025/11/26 04:58 GTM
Agentic vision-language models are increasingly trained to “think with images” by calling image operations. However, we show that high final-answer accuracy often hides unfaithful visual reasoning: models may invoke tools on irrelevant regions or ignore tool outputs entirely, yet still guess the correct answer. In this work, we first propose a faithfulness evaluation protocol that measures whether intermediate visual tool outputs (e.g., crops) actually contain the queried evidence. This reveals that recent visual agents achieve high final-answer accuracy but exhibit low rates of faithful tool-use on visual search benchmarks. We then introduce CodeV, a code-based visual agent trained with Tool-Aware Policy Optimization (TAPO). TAPO is a process-level RL framework that augments GRPO with dense rewards defined directly on visual tool inputs and outputs, rather than on chain-of-thought tokens, making supervision easier to verify and less susceptible to reward hacking. CodeV represents visual tools as executable Python code, and TAPO assigns step-wise rewards based solely on the question and tool output, encouraging both necessary and evidence-consistent tool use. In a two-stage SFT+RL pipeline, CodeV achieves competitive or superior accuracy while substantially increasing faithful tool-use rates on related visual search benchmarks. Beyond visual search, CodeV attains strong performance on a range of multimodal reasoning and math benchmarks, suggesting that explicitly supervising intermediate tool behavior is crucial for building trustworthy, agentic visual reasoning systems.
2.147Navigating Gigapixel Pathology Images with Large Multimodal Models¶
2025/11/26 04:58 GTM
Despite being widely used to support clinical care, general-purpose large multimodal models (LMMs) have generally shown poor or inconclusive performance in medical image interpretation, particularly in pathology, where gigapixel images are used. However, prior studies have used either low-resolution thumbnails or random patches, which likely underestimated model performance. Here, we ask whether LMMs can be adapted to reason coherently and accurately in the evaluation of such images. In this study, we introduce Gigapixel Image Agent for Navigating Tissue (GIANT), the first framework that allows LMMs to iteratively navigate whole-slide images (WSIs) like a pathologist. Accompanying GIANT, we release MultiPathQA, a new benchmark, which comprises 934 WSI-level questions, encompassing five clinically-relevant tasks ranging from cancer diagnosis to open-ended reasoning. MultiPathQA also includes 128 questions, authored by two professional pathologists, requiring direct slide interpretation. Using MultiPathQA, we show that our simple agentic system substantially outperforms conventional patch- and thumbnail-based baselines, approaching or surpassing the performance of specialized models trained on millions of images. For example, on pathologist-authored questions, GPT-5 with GIANT achieves 62.5% accuracy, outperforming specialist pathology models such as TITAN (43.8%) and SlideChat (37.5%). Our findings reveal the strengths and limitations of current foundation models and ground future development of LMMs for expert reasoning in pathology.
2.148On the Utility of Foundation Models for Fast MRI: Vision-Language-Guided Image Reconstruction¶
2025/11/26 04:58 GTM
Purpose: To investigate whether a vision-language foundation model can enhance undersampled MRI reconstruction by providing high-level contextual information beyond conventional priors. Methods: We proposed a semantic distribution-guided reconstruction framework that uses a pre-trained vision-language foundation model to encode both the reconstructed image and auxiliary information into high-level semantic features. A contrastive objective aligns the reconstructed representation with the target semantic distribution, ensuring consistency with high-level perceptual cues. The proposed objective works with various deep learning-based reconstruction methods and can flexibly incorporate semantic priors from multimodal sources. To test the effectiveness of these semantic priors, we evaluated reconstruction results guided by priors derived from either image-only or image-language auxiliary information. Results: Experiments on knee and brain datasets demonstrate that semantic priors from images preserve fine anatomical structures and achieve superior perceptual quality, as reflected in lower LPIPS values, higher Tenengrad scores, and improved scores in the reader study, compared with conventional regularization. The image-language information further expands the semantic distribution and enables high-level control over reconstruction attributes. Across all evaluations, the contrastive objective consistently guided the reconstructed features toward the desired semantic distributions while maintaining data fidelity, demonstrating the effectiveness of the proposed optimization framework. Conclusion: The study highlights that vision-language foundation models can improve undersampled MRI reconstruction through semantic-space optimization.
2.149SkillSight: Efficient First-Person Skill Assessment with Gaze¶
2025/11/26 04:58 GTM
Egocentric perception on smart glasses could transform how we learn new skills in the physical world, but automatic skill assessment remains a fundamental technical challenge. We introduce SkillSight for power-efficient skill assessment from first-person data. Central to our approach is the hypothesis that skill level is evident not only in how a person performs an activity (video), but also in how they direct their attention when doing so (gaze). Our two-stage framework first learns to jointly model gaze and egocentric video when predicting skill level, then distills a gaze-only student model. At inference, the student model requires only gaze input, drastically reducing power consumption by eliminating continuous video processing. Experiments on three datasets spanning cooking, music, and sports establish, for the first time, the valuable role of gaze in skill understanding across diverse real-world settings. Our SkillSight teacher model achieves state-of-the-art performance, while our gaze-only student variant maintains high accuracy using 73x less power than competing methods. These results pave the way for in-the-wild AI-supported skill learning.
2.150Learning Massively Multitask World Models for Continuous Control¶
2025/11/26 04:58 GTM
General-purpose control demands agents that act across many tasks and embodiments, yet research on reinforcement learning (RL) for continuous control remains dominated by single-task or offline regimes, reinforcing a view that online RL does not scale. Inspired by the foundation model recipe (large-scale pretraining followed by light RL) we ask whether a single agent can be trained on hundreds of tasks with online interaction. To accelerate research in this direction, we introduce a new benchmark with 200 diverse tasks spanning many domains and embodiments, each with language instructions, demonstrations, and optionally image observations. We then present \emph{Newt}, a language-conditioned multitask world model that is first pretrained on demonstrations to acquire task-aware representations and action priors, and then jointly optimized with online interaction across all tasks. Experiments show that Newt yields better multitask performance and data-efficiency than a set of strong baselines, exhibits strong open-loop control, and enables rapid adaptation to unseen tasks. We release our environments, demonstrations, code for training and evaluation, as well as 200+ checkpoints.
2.151Multiscale Vector-Quantized Variational Autoencoder for Endoscopic Image Synthesis¶
2025/11/26 04:58 GTM
Gastrointestinal (GI) imaging via Wireless Capsule Endoscopy (WCE) generates a large number of images requiring manual screening. Deep learning-based Clinical Decision Support (CDS) systems can assist screening, yet their performance relies on the existence of large, diverse, training medical datasets. However, the scarcity of such data, due to privacy constraints and annotation costs, hinders CDS development. Generative machine learning offers a viable solution to combat this limitation. While current Synthetic Data Generation (SDG) methods, such as Generative Adversarial Networks and Variational Autoencoders have been explored, they often face challenges with training stability and capturing sufficient visual diversity, especially when synthesizing abnormal findings. This work introduces a novel VAE-based methodology for medical image synthesis and presents its application for the generation of WCE images. The novel contributions of this work include a) multiscale extension of the Vector Quantized VAE model, named as Multiscale Vector Quantized Variational Autoencoder (MSVQ-VAE); b) unlike other VAE-based SDG models for WCE image generation, MSVQ-VAE is used to seamlessly introduce abnormalities into normal WCE images; c) it enables conditional generation of synthetic images, enabling the introduction of different types of abnormalities into the normal WCE images; d) it performs experiments with a variety of abnormality types, including polyps, vascular and inflammatory conditions. The utility of the generated images for CDS is assessed via image classification. Comparative experiments demonstrate that training a CDS classifier using the abnormal images generated by the proposed methodology yield comparable results with a classifier trained with only real data. The generality of the proposed methodology promises its applicability to various domains related to medical multimedia.
2.152Leveraging Unlabeled Scans for NCCT Image Segmentation in Early Stroke Diagnosis: A Semi-Supervised GAN Approach¶
2025/11/26 04:58 GTM
Ischemic stroke is a time-critical medical emergency where rapid diagnosis is essential for improving patient outcomes. Non-contrast computed tomography (NCCT) serves as the frontline imaging tool, yet it often fails to reveal the subtle ischemic changes present in the early, hyperacute phase. This limitation can delay crucial interventions. To address this diagnostic challenge, we introduce a semi-supervised segmentation method using generative adversarial networks (GANs) to accurately delineate early ischemic stroke regions. The proposed method employs an adversarial framework to effectively learn from a limited number of annotated NCCT scans, while simultaneously leveraging a larger pool of unlabeled scans. By employing Dice loss, cross-entropy loss, a feature matching loss and a self-training loss, the model learns to identify and delineate early infarcts, even when they are faint or their size is small. Experiments on the publicly available Acute Ischemic Stroke Dataset (AISD) demonstrate the potential of the proposed method to enhance diagnostic capabilities, reduce the burden of manual annotation, and support more efficient clinical decision-making in stroke care.
2.153HunyuanOCR Technical Report¶
2025/11/26 04:58 GTM
This paper presents HunyuanOCR, a commercial-grade, open-source, and lightweight (1B parameters) Vision-Language Model (VLM) dedicated to OCR tasks. The architecture comprises a Native Vision Transformer (ViT) and a lightweight LLM connected via an MLP adapter. HunyuanOCR demonstrates superior performance, outperforming commercial APIs, traditional pipelines, and larger models (e.g., Qwen3-VL-4B). Specifically, it surpasses current public solutions in perception tasks (Text Spotting, Parsing) and excels in semantic tasks (IE, Text Image Translation), securing first place in the ICDAR 2025 DIMT Challenge (Small Model Track). Furthermore, it achieves state-of-the-art (SOTA) results on OCRBench among VLMs with fewer than 3B parameters. HunyuanOCR achieves breakthroughs in three key aspects: 1) Unifying Versatility and Efficiency: We implement comprehensive support for core capabilities including spotting, parsing, IE, VQA, and translation within a lightweight framework. This addresses the limitations of narrow “OCR expert models” and inefficient “General VLMs”. 2) Streamlined End-to-End Architecture: Adopting a pure end-to-end paradigm eliminates dependencies on pre-processing modules (e.g., layout analysis). This fundamentally resolves error propagation common in traditional pipelines and simplifies system deployment. 3) Data-Driven and RL Strategies: We confirm the critical role of high-quality data and, for the first time in the industry, demonstrate that Reinforcement Learning (RL) strategies yield significant performance gains in OCR tasks. HunyuanOCR is officially open-sourced on HuggingFace. We also provide a high-performance deployment solution based on vLLM, placing its production efficiency in the top tier. We hope this model will advance frontier research and provide a solid foundation for industrial applications.
2.154Merging without Forgetting: Continual Fusion of Task-Specific Models via Optimal Transport¶
2025/11/26 04:58 GTM
Merging models fine-tuned for different tasks into a single unified model has become an increasingly important direction for building versatile, efficient multi-task systems. Existing approaches predominantly rely on parameter interpolation in weight space, which we show introduces significant distribution shift in the feature space and undermines task-specific knowledge. In this paper, we propose OTMF (Optimal Transport-based Masked Fusion), a novel model merging framework rooted in optimal transport theory to address the distribution shift that arises from naive parameter interpolation. Instead of directly aggregating features or weights, OTMF aligns the semantic geometry of task-specific models by discovering common masks applied to task vectors through optimal transport plans. These masks selectively extract transferable and task-agnostic components while preserving the unique structural identities of each task. To ensure scalability in real-world settings, OTMF further supports a continual fusion paradigm that incrementally integrates each new task vector without revisiting previous ones, maintaining a bounded memory footprint and enabling efficient fusion across a growing number of tasks. We conduct comprehensive experiments on multiple vision and language benchmarks, and results show that OTMF achieves state-of-the-art performance in terms of both accuracy and efficiency. These findings highlight the practical and theoretical value of our approach to model merging.
2.155SPQR: A Standardized Benchmark for Modern Safety Alignment Methods in Text-to-Image Diffusion Models¶
2025/11/26 04:58 GTM
Text-to-image diffusion models can emit copyrighted, unsafe, or private content. Safety alignment aims to suppress specific concepts, yet evaluations seldom test whether safety persists under benign downstream fine-tuning routinely applied after deployment (e.g., LoRA personalization, style/domain adapters). We study the stability of current safety methods under benign fine-tuning and observe frequent breakdowns. As true safety alignment must withstand even benign post-deployment adaptations, we introduce the SPQR benchmark (Safety-Prompt adherence-Quality-Robustness). SPQR is a single-scored metric that provides a standardized and reproducible framework to evaluate how well safety-aligned diffusion models preserve safety, utility, and robustness under benign fine-tuning, by reporting a single leaderboard score to facilitate comparisons. We conduct multilingual, domain-specific, and out-of-distribution analyses, along with category-wise breakdowns, to identify when safety alignment fails after benign fine-tuning, ultimately showcasing SPQR as a concise yet comprehensive benchmark for T2I safety alignment techniques for T2I models.
2.156Development of a fully deep learning model to improve the reproducibility of sector classification systems for predicting unerupted maxillary canine l...¶
2025/11/26 04:58 GTM
Objectives. The aim of the present study was to develop a fully deep learning model to reduce the intra- and inter-operator reproducibility of sector classification systems for predicting unerupted maxillary canine likelihood of impaction. Methods. Three orthodontists (Os) and three general dental practitioners (GDPs) classified the position of unerupted maxillary canines on 306 radiographs (T0) according to the three different sector classification systems (5-, 4-, and 3-sector classification system). The assessment was repeated after four weeks (T1). Intra- and inter-observer agreement were evaluated with Cohen’s K and Fleiss K, and between group differences with a z-test. The same radiographs were tested on different artificial intelligence (AI) models, pre-trained on an extended dataset of 1,222 radiographs. The best-performing model was identified based on its sensitivity and precision. Results. The 3-sector system was found to be the classification method with highest reproducibility, with an agreement (Cohen’s K values) between observations (T0 versus T1) for each examiner ranged from 0.80 to 0.92, and an overall agreement of 0.85 [95% confidence interval (CI) = 0.83-0.87]. The overall inter-observer agreement (Fleiss K) ranged from 0.69 to 0.7. The educational background did not affect either intra- or inter-observer agreement (p>0.05). DenseNet121 proved to be the best-performing model in allocating impacted canines in the three different classes, with an overall accuracy of 76.8%. Conclusion. AI models can be designed to automatically classify the position of unerupted maxillary canines.
2.157Think First, Assign Next (ThiFAN-VQA): A Two-stage Chain-of-Thought Framework for Post-Disaster Damage Assessment¶
2025/11/26 04:58 GTM
Timely and accurate assessment of damages following natural disasters is essential for effective emergency response and recovery. Recent AI-based frameworks have been developed to analyze large volumes of aerial imagery collected by Unmanned Aerial Vehicles, providing actionable insights rapidly. However, creating and annotating data for training these models is costly and time-consuming, resulting in datasets that are limited in size and diversity. Furthermore, most existing approaches rely on traditional classification-based frameworks with fixed answer spaces, restricting their ability to provide new information without additional data collection or model retraining. Using pre-trained generative models built on in-context learning (ICL) allows for flexible and open-ended answer spaces. However, these models often generate hallucinated outputs or produce generic responses that lack domain-specific relevance. To address these limitations, we propose ThiFAN-VQA, a two-stage reasoning-based framework for visual question answering (VQA) in disaster scenarios. ThiFAN-VQA first generates structured reasoning traces using chain-of-thought (CoT) prompting and ICL to enable interpretable reasoning under limited supervision. A subsequent answer selection module evaluates the generated responses and assigns the most coherent and contextually accurate answer, effectively improve the model performance. By integrating a custom information retrieval system, domain-specific prompting, and reasoning-guided answer selection, ThiFAN-VQA bridges the gap between zero-shot and supervised methods, combining flexibility with consistency. Experiments on FloodNet and RescueNet-VQA, UAV-based datasets from flood- and hurricane-affected regions, demonstrate that ThiFAN-VQA achieves superior accuracy, interpretability, and adaptability for real-world post-disaster damage assessment tasks.
2.158Proxy-Free Gaussian Splats Deformation with Splat-Based Surface Estimation¶
2025/11/26 04:58 GTM
We introduce SpLap, a proxy-free deformation method for Gaussian splats (GS) based on a Laplacian operator computed from our novel surface-aware splat graph. Existing approaches to GS deformation typically rely on deformation proxies such as cages or meshes, but they suffer from dependency on proxy quality and additional computational overhead. An alternative is to directly apply Laplacian-based deformation techniques by treating splats as point clouds. However, this often fail to properly capture surface information due to lack of explicit structure. To address this, we propose a novel method that constructs a surface-aware splat graph, enabling the Laplacian operator derived from it to support more plausible deformations that preserve details and topology. Our key idea is to leverage the spatial arrangement encoded in splats, defining neighboring splats not merely by the distance between their centers, but by their intersections. Furthermore, we introduce a Gaussian kernel adaptation technique that preserves surface structure under deformation, thereby improving rendering quality after deformation. In our experiments, we demonstrate the superior performance of our method compared to both proxy-based and proxy-free baselines, evaluated on 50 challenging objects from the ShapeNet, Objaverse, and Sketchfab datasets, as well as the NeRF-Synthetic dataset. Code is available at https://
2.159PhysDNet: Physics-Guided Decomposition Network of Side-Scan Sonar Imagery¶
2025/11/26 04:58 GTM
Side-scan sonar (SSS) imagery is widely used for seafloor mapping and underwater remote sensing, yet the measured intensity is strongly influenced by seabed reflectivity, terrain elevation, and acoustic path loss. This entanglement makes the imagery highly view-dependent and reduces the robustness of downstream analysis. In this letter, we present PhysDNet, a physics-guided multi-branch network that decouples SSS images into three interpretable fields: seabed reflectivity, terrain elevation, and propagation loss. By embedding the Lambertian reflection model, PhysDNet reconstructs sonar intensity from these components, enabling self-supervised training without ground-truth annotations. Experiments show that the decomposed representations preserve stable geological structures, capture physically consistent illumination and attenuation, and produce reliable shadow maps. These findings demonstrate that physics-guided decomposition provides a stable and interpretable domain for SSS analysis, improving both physical consistency and downstream tasks such as registration and shadow interpretation.
2.160Studying Maps at Scale: A Digital Investigation of Cartography and the Evolution of Figuration¶
2025/11/26 04:58 GTM
This thesis presents methods and datasets to investigate cartographic heritage on a large scale and from a cultural perspective. Heritage institutions worldwide have digitized more than one million maps, and automated techniques now enable large-scale recognition and extraction of map content. Yet these methods have engaged little with the history of cartography, or the view that maps are semantic-symbolic systems, and cultural objects reflecting political and epistemic expectations. This work leverages a diverse corpus of 771,561 map records and 99,715 digitized images aggregated from 38 digital catalogs. After normalization, the dataset includes 236,925 contributors and spans six centuries, from 1492 to 1948. These data make it possible to chart geographic structures and the global chronology of map publication. The spatial focus of cartography is analyzed in relation to political dynamics, evidencing links between Atlantic maritime charting, the triangular trade, and colonial expansion. Further results document the progression of national, domestic focus and the impact of military conflicts on publication volumes. The research introduces semantic segmentation techniques and object detection models for the generic recognition of land classes and cartographic signs, trained on annotated data and synthetic images. The analysis of land classes shows that maps are designed images whose framing and composition emphasize features through centering and semantic symmetries. The study of cartographic figuration encodes 63 M signs and 25 M fragments into a latent visual space, revealing figurative shifts such as the replacement of relief hachures by terrain contours and showing that signs tend to form locally consistent systems. Analyses of collaboration and diffusion highlight the role of legitimacy, larger actors, and major cities in the spread of figurative norms and semiotic cultures.
2.161Cross-Domain Generalization of Multimodal LLMs for Global Photovoltaic Assessment¶
2025/11/26 04:58 GTM
The rapid expansion of distributed photovoltaic (PV) systems poses challenges for power grid management, as many installations remain undocumented. While satellite imagery provides global coverage, traditional computer vision (CV) models such as CNNs and U-Nets require extensive labeled data and fail to generalize across regions. This study investigates the cross-domain generalization of a multimodal large language model (LLM) for global PV assessment. By leveraging structured prompts and fine-tuning, the model integrates detection, localization, and quantification within a unified schema. Cross-regional evaluation using the F1 metric demonstrates that the proposed model achieves the smallest performance degradation across unseen regions, outperforming conventional CV and transformer baselines. These results highlight the robustness of multimodal LLMs under domain shift and their potential for scalable, transferable, and interpretable global PV mapping.
2.162Vidi2: Large Multimodal Models for Video Understanding and Creation¶
2025/11/26 04:58 GTM
Video has emerged as the primary medium for communication and creativity on the Internet, driving strong demand for scalable, high-quality video production. Vidi models continue to evolve toward next-generation video creation and have achieved state-of-the-art performance in multimodal temporal retrieval (TR). In its second release, Vidi2 advances video understanding with fine-grained spatio-temporal grounding (STG) and extends its capability to video question answering (Video QA), enabling comprehensive multimodal reasoning. Given a text query, Vidi2 can identify not only the corresponding timestamps but also the bounding boxes of target objects within the output time ranges. This end-to-end spatio-temporal grounding capability enables potential applications in complex editing scenarios, such as plot or character understanding, automatic multi-view switching, and intelligent, composition-aware reframing and cropping. To enable comprehensive evaluation of STG in practical settings, we introduce a new benchmark, VUE-STG, which offers four key improvements over existing STG datasets: 1) Video duration: spans from roughly 10s to 30 mins, enabling long-context reasoning; 2) Query format: queries are mostly converted into noun phrases while preserving sentence-level expressiveness; 3) Annotation quality: all ground-truth time ranges and bounding boxes are manually annotated with high accuracy; 4) Evaluation metric: a refined vIoU/tIoU/vIoU-Intersection scheme. In addition, we upgrade the previous VUE-TR benchmark to VUE-TR-V2, achieving a more balanced video-length distribution and more user-style queries. Remarkably, the Vidi2 model substantially outperforms leading proprietary systems, such as Gemini 3 Pro (Preview) and GPT-5, on both VUE-TR-V2 and VUE-STG, while achieving competitive results with popular open-source models with similar scale on video QA benchmarks.
2.163MapRF: Weakly Supervised Online HD Map Construction via NeRF-Guided Self-Training¶
2025/11/26 04:58 GTM
Autonomous driving systems benefit from high-definition (HD) maps that provide critical information about road infrastructure. The online construction of HD maps offers a scalable approach to generate local maps from on-board sensors. However, existing methods typically rely on costly 3D map annotations for training, which limits their generalization and scalability across diverse driving environments. In this work, we propose MapRF, a weakly supervised framework that learns to construct 3D maps using only 2D image labels. To generate high-quality pseudo labels, we introduce a novel Neural Radiance Fields (NeRF) module conditioned on map predictions, which reconstructs view-consistent 3D geometry and semantics. These pseudo labels are then iteratively used to refine the map network in a self-training manner, enabling progressive improvement without additional supervision. Furthermore, to mitigate error accumulation during self-training, we propose a Map-to-Ray Matching strategy that aligns map predictions with camera rays derived from 2D labels. Extensive experiments on the Argoverse 2 and nuScenes datasets demonstrate that MapRF achieves performance comparable to fully supervised methods, attaining around 75% of the baseline while surpassing several approaches using only 2D labels. This highlights the potential of MapRF to enable scalable and cost-effective online HD map construction for autonomous driving.
2.164Perceptual Taxonomy: Evaluating and Guiding Hierarchical Scene Reasoning in Vision-Language Models¶
2025/11/26 04:58 GTM
We propose Perceptual Taxonomy, a structured process of scene understanding that first recognizes objects and their spatial configurations, then infers task-relevant properties such as material, affordance, function, and physical attributes to support goal-directed reasoning. While this form of reasoning is fundamental to human cognition, current vision-language benchmarks lack comprehensive evaluation of this ability and instead focus on surface-level recognition or image-text alignment. To address this gap, we introduce Perceptual Taxonomy, a benchmark for physically grounded visual reasoning. We annotate 3173 objects with four property families covering 84 fine-grained attributes. Using these annotations, we construct a multiple-choice question benchmark with 5802 images across both synthetic and real domains. The benchmark contains 28033 template-based questions spanning four types (object description, spatial reasoning, property matching, and taxonomy reasoning), along with 50 expert-crafted questions designed to evaluate models across the full spectrum of perceptual taxonomy reasoning. Experimental results show that leading vision-language models perform well on recognition tasks but degrade by 10 to 20 percent on property-driven questions, especially those requiring multi-step reasoning over structured attributes. These findings highlight a persistent gap in structured visual understanding and the limitations of current models that rely heavily on pattern matching. We also show that providing in-context reasoning examples from simulated scenes improves performance on real-world and expert-curated questions, demonstrating the effectiveness of perceptual-taxonomy-guided prompting.
2.165Shortcut Invariance: Targeted Jacobian Regularization in Disentangled Latent Space¶
2025/11/26 04:58 GTM
Deep neural networks are prone to learning shortcuts, spurious and easily learned correlations in training data that cause severe failures in out-of-distribution (OOD) generalization. A dominant line of work seeks robustness by learning a robust representation, often explicitly partitioning the latent space into core and spurious components; this approach can be complex, brittle, and difficult to scale. We take a different approach, instead of a robust representation, we learn a robust function. We present a simple and effective training method that renders the classifier functionally invariant to shortcut signals. Our method operates within a disentangled latent space, which is essential as it isolates spurious and core features into distinct dimensions. This separation enables the identification of candidate shortcut features by their strong correlation with the label, used as a proxy for semantic simplicity. The classifier is then desensitized to these features by injecting targeted, anisotropic latent noise during training. We analyze this as targeted Jacobian regularization, which forces the classifier to ignore spurious features and rely on more complex, core semantic signals. The result is state-of-the-art OOD performance on established shortcut learning benchmarks.
2.166VideoChat-M1: Collaborative Policy Planning for Video Understanding via Multi-Agent Reinforcement Learning¶
2025/11/26 04:58 GTM
By leveraging tool-augmented Multimodal Large Language Models (MLLMs), multi-agent frameworks are driving progress in video understanding. However, most of them adopt static and non-learnable tool invocation mechanisms, which limit the discovery of diverse clues essential for robust perception and reasoning regarding temporally or spatially complex videos. To address this challenge, we propose a novel Multi-agent system for video understanding, namely VideoChat-M1. Instead of using a single or fixed policy, VideoChat-M1 adopts a distinct Collaborative Policy Planning (CPP) paradigm with multiple policy agents, which comprises three key processes. (1) Policy Generation: Each agent generates its unique tool invocation policy tailored to the user’s query; (2) Policy Execution: Each agent sequentially invokes relevant tools to execute its policy and explore the video content; (3) Policy Communication: During the intermediate stages of policy execution, agents interact with one another to update their respective policies. Through this collaborative framework, all agents work in tandem, dynamically refining their preferred policies based on contextual insights from peers to effectively respond to the user’s query. Moreover, we equip our CPP paradigm with a concise Multi-Agent Reinforcement Learning (MARL) method. Consequently, the team of policy agents can be jointly optimized to enhance VideoChat-M1’s performance, guided by both the final answer reward and intermediate collaborative process feedback. Extensive experiments demonstrate that VideoChat-M1 achieves SOTA performance across eight benchmarks spanning four tasks. Notably, on LongVideoBench, our method outperforms the SOTA model Gemini 2.5 pro by 3.6% and GPT-4o by 15.6%.
2.167Blinking Beyond EAR: A Stable Eyelid Angle Metric for Driver Drowsiness Detection and Data Augmentation¶
2025/11/26 04:58 GTM
Detecting driver drowsiness reliably is crucial for enhancing road safety and supporting advanced driver assistance systems (ADAS). We introduce the Eyelid Angle (ELA), a novel, reproducible metric of eye openness derived from 3D facial landmarks. Unlike conventional binary eye state estimators or 2D measures, such as the Eye Aspect Ratio (EAR), the ELA provides a stable geometric description of eyelid motion that is robust to variations in camera angle. Using the ELA, we design a blink detection framework that extracts temporal characteristics, including the closing, closed, and reopening durations, which are shown to correlate with drowsiness levels. To address the scarcity and risk of collecting natural drowsiness data, we further leverage ELA signals to animate rigged avatars in Blender 3D, enabling the creation of realistic synthetic datasets with controllable noise, camera viewpoints, and blink dynamics. Experimental results in public driver monitoring datasets demonstrate that the ELA offers lower variance under viewpoint changes compared to EAR and achieves accurate blink detection. At the same time, synthetic augmentation expands the diversity of training data for drowsiness recognition. Our findings highlight the ELA as both a reliable biometric measure and a powerful tool for generating scalable datasets in driver state monitoring.
2.168Towards Efficient VLMs: Information-Theoretic Driven Compression via Adaptive Structural Pruning¶
2025/11/26 04:58 GTM
Recent advances in vision-language models (VLMs) have shown remarkable performance across multimodal tasks, yet their ever-growing scale poses severe challenges for deployment and efficiency. Existing compression methods often rely on heuristic importance metrics or empirical pruning rules, lacking theoretical guarantees about information preservation. In this work, we propose InfoPrune, an information-theoretic framework for adaptive structural compression of VLMs. Grounded in the Information Bottleneck principle, we formulate pruning as a trade-off between retaining task-relevant semantics and discarding redundant dependencies. To quantify the contribution of each attention head, we introduce an entropy-based effective rank (eRank) and employ the Kolmogorov--Smirnov (KS) distance to measure the divergence between original and compressed structures. This yields a unified criterion that jointly considers structural sparsity and informational efficiency. Building on this foundation, we further design two complementary schemes: (1) a training-based head pruning guided by the proposed information loss objective, and (2) a training-free FFN compression via adaptive low-rank approximation. Extensive experiments on VQAv2, TextVQA, and GQA demonstrate that InfoPrune achieves up to 3.2x FLOP reduction and 1.8x acceleration with negligible performance degradation, establishing a theoretically grounded and practically effective step toward efficient multimodal large models.
2.169Connecting the Dots: Training-Free Visual Grounding via Agentic Reasoning¶
2025/11/26 04:58 GTM
Visual grounding, the task of linking textual queries to specific regions within images, plays a pivotal role in vision-language integration. Existing methods typically rely on extensive task-specific annotations and fine-tuning, limiting their ability to generalize effectively to novel or out-of-distribution scenarios. To address these limitations, we introduce GroundingAgent, a novel agentic visual grounding framework that operates without any task-specific fine-tuning. GroundingAgent employs a structured, iterative reasoning mechanism that integrates pretrained open-vocabulary object detectors, multimodal large language models (MLLMs), and large language models (LLMs) to progressively refine candidate regions through joint semantic and spatial analyses. Remarkably, GroundingAgent achieves an average zero-shot grounding accuracy of 65.1 % on widely-used benchmarks (RefCOCO, RefCOCO+, RefCOCOg), entirely without fine-tuning. Furthermore, by substituting MLLM-generated captions with the original query texts, the accuracy at the selection stage alone reaches approximately 90 %, closely matching supervised performance and underscoring the critical role of LLM reasoning capabilities. GroundingAgent also offers strong interpretability, transparently illustrating each reasoning step and providing clear insights into its decision-making process.
2.170Fewer Tokens, Greater Scaling: Self-Adaptive Visual Bases for Efficient and Expansive Representation Learning¶
2025/11/26 04:58 GTM
This paper investigates the fundamental relationship between model capacity and the minimal number of visual tokens required to preserve image semantics. Inspired by the Minimum Description Length principle, we reinterpret image tokens as vectors in a visual semantic space and define the intrinsic semantic complexity of an image as the smallest set of basis vectors needed to span this space. Building on this perspective, we propose Orthogonal Filtering, a lightweight module that adaptively clusters redundant tokens into a compact set of orthogonal bases. Through extensive experiments across a range of ViT models, we reveal a consistent token, model scaling law: larger models require significantly fewer tokens to span visual semantic space. Besides, we also contribute a visual long-context dataset.
2.171Single Image to High-Quality 3D Object via Latent Features¶
2025/11/26 04:58 GTM
3D assets are essential in the digital age. While automatic 3D generation, such as image-to-3d, has made significant strides in recent years, it often struggles to achieve fast, detailed, and high-fidelity generation simultaneously. In this work, we introduce LatentDreamer, a novel framework for generating 3D objects from single images. The key to our approach is a pre-trained variational autoencoder that maps 3D geometries to latent features, which greatly reducing the difficulty of 3D generation. Starting from latent features, the pipeline of LatentDreamer generates coarse geometries, refined geometries, and realistic textures sequentially. The 3D objects generated by LatentDreamer exhibit high fidelity to the input images, and the entire generation process can be completed within a short time (typically in 70 seconds). Extensive experiments show that with only a small amount of training, LatentDreamer demonstrates competitive performance compared to contemporary approachs.
2.172The Determinant Ratio Matrix Approach to Solving 3D Matching and 2D Orthographic Projection Alignment Tasks¶
2025/11/26 04:58 GTM
Pose estimation is a general problem in computer vision with wide applications. The relative orientation of a 3D reference object can be determined from a 3D rotated version of that object, or from a projection of the rotated object to a 2D planar image. This projection can be a perspective projection (the PnP problem) or an orthographic projection (the OnP problem). We restrict our attention here to the OnP problem and the full 3D pose estimation task (the EnP problem). Here we solve the least squares systems for both the error-free EnP and OnP problems in terms of the determinant ratio matrix (DRaM) approach. The noisy-data case can be addressed with a straightforward rotation correction scheme. While the SVD and optimal quaternion eigensystem methods solve the noisy EnP 3D-3D alignment exactly, the noisy 3D-2D orthographic (OnP) task has no known comparable closed form, and can be solved by DRaM-class methods. We note that while previous similar work has been presented in the literature exploiting both the QR decomposition and the Moore-Penrose pseudoinverse transformations, here we place these methods in a larger context that has not previously been fully recognized in the absence of the corresponding DRaM solution. We term this class of solutions as the DRaM family, and conduct comparisons of the behavior of the families of solutions for the EnP and OnP rotation estimation problems. Overall, this work presents both a new solution to the 3D and 2D orthographic pose estimation problems and provides valuable insight into these classes of problems. With hindsight, we are able to show that our DRaM solutions to the exact EnP and OnP problems possess derivations that could have been discovered in the time of Gauss, and in fact generalize to all analogous N-dimensional Euclidean pose estimation problems.
2.173Splatblox: Traversability-Aware Gaussian Splatting for Outdoor Robot Navigation¶
2025/11/26 04:58 GTM
We present Splatblox, a real-time system for autonomous navigation in outdoor environments with dense vegetation, irregular obstacles, and complex terrain. Our method fuses segmented RGB images and LiDAR point clouds using Gaussian Splatting to construct a traversability-aware Euclidean Signed Distance Field (ESDF) that jointly encodes geometry and semantics. Updated online, this field enables semantic reasoning to distinguish traversable vegetation (e.g., tall grass) from rigid obstacles (e.g., trees), while LiDAR ensures 360-degree geometric coverage for extended planning horizons. We validate Splatblox on a quadruped robot and demonstrate transfer to a wheeled platform. In field trials across vegetation-rich scenarios, it outperforms state-of-the-art methods with over 50% higher success rate, 40% fewer freezing incidents, 5% shorter paths, and up to 13% faster time to goal, while supporting long-range missions up to 100 meters. Experiment videos and more details can be found on our project page: https://
2.174Beyond Binary Classification: A Semi-supervised Approach to Generalized AI-generated Image Detection¶
2025/11/26 04:58 GTM
The rapid advancement of generators (e.g., StyleGAN, Midjourney, DALL-E) has produced highly realistic synthetic images, posing significant challenges to digital media authenticity. These generators are typically based on a few core architectural families, primarily Generative Adversarial Networks (GANs) and Diffusion Models (DMs). A critical vulnerability in current forensics is the failure of detectors to achieve cross-generator generalization, especially when crossing architectural boundaries (e.g., from GANs to DMs). We hypothesize that this gap stems from fundamental differences in the artifacts produced by these \textbf{distinct architectures}. In this work, we provide a theoretical analysis explaining how the distinct optimization objectives of the GAN and DM architectures lead to different manifold coverage behaviors. We demonstrate that GANs permit partial coverage, often leading to boundary artifacts, while DMs enforce complete coverage, resulting in over-smoothing patterns. Motivated by this analysis, we propose the \textbf{Tri}archy \textbf{Detect}or (TriDetect), a semi-supervised approach that enhances binary classification by discovering latent architectural patterns within the “fake” class. TriDetect employs balanced cluster assignment via the Sinkhorn-Knopp algorithm and a cross-view consistency mechanism, encouraging the model to learn fundamental architectural distincts. We evaluate our approach on two standard benchmarks and three in-the-wild datasets against 13 baselines to demonstrate its generalization capability to unseen generators.
2.175A Multi-Stage Deep Learning Framework with PKCP-MixUp Augmentation for Pediatric Liver Tumor Diagnosis Using Multi-Phase Contrast-Enhanced CT¶
2025/11/26 04:58 GTM
Pediatric liver tumors are one of the most common solid tumors in pediatrics, with differentiation of benign or malignant status and pathological classification critical for clinical treatment. While pathological examination is the gold standard, the invasive biopsy has notable limitations: the highly vascular pediatric liver and fragile tumor tissue raise complication risks such as bleeding; additionally, young children with poor compliance require anesthesia for biopsy, increasing medical costs or psychological trauma. Although many efforts have been made to utilize AI in clinical settings, most researchers have overlooked its importance in pediatric liver tumors. To establish a non-invasive examination procedure, we developed a multi-stage deep learning (DL) framework for automated pediatric liver tumor diagnosis using multi-phase contrast-enhanced CT. Two retrospective and prospective cohorts were enrolled. We established a novel PKCP-MixUp data augmentation method to address data scarcity and class imbalance. We also trained a tumor detection model to extract ROIs, and then set a two-stage diagnosis pipeline with three backbones with ROI-masked images. Our tumor detection model has achieved high performance (mAP=0.871), and the first stage classification model between benign and malignant tumors reached an excellent performance (AUC=0.989). Final diagnosis models also exhibited robustness, including benign subtype classification (AUC=0.915) and malignant subtype classification (AUC=0.979). We also conducted multi-level comparative analyses, such as ablation studies on data and training pipelines, as well as Shapley-Value and CAM interpretability analyses. This framework fills the pediatric-specific DL diagnostic gap, provides actionable insights for CT phase selection and model design, and paves the way for precise, accessible pediatric liver tumor diagnosis.
2.176Tracking and Segmenting Anything in Any Modality¶
2025/11/26 04:58 GTM
Tracking and segmentation play essential roles in video understanding, providing basic positional information and temporal association of objects within video sequences. Despite their shared objective, existing approaches often tackle these tasks using specialized architectures or modality-specific parameters, limiting their generalization and scalability. Recent efforts have attempted to unify multiple tracking and segmentation subtasks from the perspectives of any modality input or multi-task inference. However, these approaches tend to overlook two critical challenges: the distributional gap across different modalities and the feature representation gap across tasks. These issues hinder effective cross-task and cross-modal knowledge sharing, ultimately constraining the development of a true generalist model. To address these limitations, we propose a universal tracking and segmentation framework named SATA, which unifies a broad spectrum of tracking and segmentation subtasks with any modality input. Specifically, a Decoupled Mixture-of-Expert (DeMoE) mechanism is presented to decouple the unified representation learning task into the modeling process of cross-modal shared knowledge and specific information, thus enabling the model to maintain flexibility while enhancing generalization. Additionally, we introduce a Task-aware Multi-object Tracking (TaMOT) pipeline to unify all the task outputs as a unified set of instances with calibrated ID information, thereby alleviating the degradation of task-specific knowledge during multi-task training. SATA demonstrates superior performance on 18 challenging tracking and segmentation benchmarks, offering a novel perspective for more generalizable video understanding.
2.177Pistachio: Towards Synthetic, Balanced, and Long-Form Video Anomaly Benchmarks¶
2025/11/26 04:58 GTM
Automatically detecting abnormal events in videos is crucial for modern autonomous systems, yet existing Video Anomaly Detection (VAD) benchmarks lack the scene diversity, balanced anomaly coverage, and temporal complexity needed to reliably assess real-world performance. Meanwhile, the community is increasingly moving toward Video Anomaly Understanding (VAU), which requires deeper semantic and causal reasoning but remains difficult to benchmark due to the heavy manual annotation effort it demands. In this paper, we introduce Pistachio, a new VAD/VAU benchmark constructed entirely through a controlled, generation-based pipeline. By leveraging recent advances in video generation models, Pistachio provides precise control over scenes, anomaly types, and temporal narratives, effectively eliminating the biases and limitations of Internet-collected datasets. Our pipeline integrates scene-conditioned anomaly assignment, multi-step storyline generation, and a temporally consistent long-form synthesis strategy that produces coherent 41-second videos with minimal human intervention. Extensive experiments demonstrate the scale, diversity, and complexity of Pistachio, revealing new challenges for existing methods and motivating future research on dynamic and multi-event anomaly understanding.
2.178Not Quite Anything: Overcoming SAMs Limitations for 3D Medical Imaging¶
2025/11/26 04:58 GTM
Foundation segmentation models such as SAM and SAM-2 perform well on natural images but struggle with brain MRIs where structures like the caudate and thalamus lack sharp boundaries and have low contrast. Rather than fine tune these models (for example MedSAM), we propose a compositional alternative where the foundation model output is treated as an additional input channel and passed alongside the MRI to highlight regions of interest. We generate SAM-2 prompts by using a lightweight 3D U-Net that was previously trained on MRI segmentation. The U-Net may have been trained on a different dataset, so its guesses are often imprecise but usually in the correct region. The edges of the resulting foundation model guesses are smoothed to improve alignment with the MRI. We also test prompt free segmentation using DINO attention maps in the same framework. This has-a architecture avoids modifying foundation weights and adapts to domain shift without retraining the foundation model. It reaches about 96 percent volume accuracy on basal ganglia segmentation, which is sufficient for our study of longitudinal volume change. The approach is fast, label efficient, and robust to out of distribution scans. We apply it to study inflammation linked changes in sudden onset pediatric OCD.
2.179SG-OIF: A Stability-Guided Online Influence Framework for Reliable Vision Data¶
2025/11/26 04:58 GTM
Approximating training-point influence on test predictions is critical for deploying deep-learning vision models, essential for locating noisy data. Though the influence function was proposed for attributing how infinitesimal up-weighting or removal of individual training examples affects model outputs, its implementation is still challenging in deep-learning vision models: inverse-curvature computations are expensive, and training non-stationarity invalidates static approximations. Prior works use iterative solvers and low-rank surrogates to reduce cost, but offline computation lags behind training dynamics, and missing confidence calibration yields fragile rankings that misidentify critical examples. To address these challenges, we introduce a Stability-Guided Online Influence Framework (SG-OIF), the first framework that treats algorithmic stability as a real-time controller, which (i) maintains lightweight anchor IHVPs via stochastic Richardson and preconditioned Neumann; (ii) proposes modular curvature backends to modulate per-example influence scores using stability-guided residual thresholds, anomaly gating, and confidence. Experimental results show that SG-OIF achieves SOTA (State-Of-The-Art) on noise-label and out-of-distribution detection tasks across multiple datasets with various corruption. Notably, our approach achieves 91.1% accuracy in the top 1% prediction samples on the CIFAR-10 (20% asym), and gets 99.8% AUPR score on MNIST, effectively demonstrating that this framework is a practical controller for online influence estimation.
2.180Personalized Reward Modeling for Text-to-Image Generation¶
2025/11/26 04:58 GTM
Recent text-to-image (T2I) models generate semantically coherent images from textual prompts, yet evaluating how well they align with individual user preferences remains an open challenge. Conventional evaluation methods, general reward functions or similarity-based metrics, fail to capture the diversity and complexity of personal visual tastes. In this work, we present PIGReward, a personalized reward model that dynamically generates user-conditioned evaluation dimensions and assesses images through CoT reasoning. To address the scarcity of user data, PIGReward adopt a self-bootstrapping strategy that reasons over limited reference data to construct rich user contexts, enabling personalization without user-specific training. Beyond evaluation, PIGReward provides personalized feedback that drives user-specific prompt optimization, improving alignment between generated images and individual intent. We further introduce PIGBench, a per-user preference benchmark capturing diverse visual interpretations of shared prompts. Extensive experiments demonstrate that PIGReward surpasses existing methods in both accuracy and interpretability, establishing a scalable and reasoning-based foundation for personalized T2I evaluation and optimization. Taken together, our findings highlight PIGReward as a robust steptoward individually aligned T2I generation.
2.181Dual-Path Knowledge-Augmented Contrastive Alignment Network for Spatially Resolved Transcriptomics¶
2025/11/26 04:58 GTM
Spatial Transcriptomics (ST) is a technology that measures gene expression profiles within tissue sections while retaining spatial context. It reveals localized gene expression patterns and tissue heterogeneity, both of which are essential for understanding disease etiology. However, its high cost has driven efforts to predict spatial gene expression from whole slide images. Despite recent advancements, current methods still face significant limitations, such as under-exploitation of high-level biological context, over-reliance on exemplar retrievals, and inadequate alignment of heterogeneous modalities. To address these challenges, we propose DKAN, a novel Dual-path Knowledge-Augmented contrastive alignment Network that predicts spatially resolved gene expression by integrating histopathological images and gene expression profiles through a biologically informed approach. Specifically, we introduce an effective gene semantic representation module that leverages the external gene database to provide additional biological insights, thereby enhancing gene expression prediction. Further, we adopt a unified, one-stage contrastive learning paradigm, seamlessly combining contrastive learning and supervised learning to eliminate reliance on exemplars, complemented with an adaptive weighting mechanism. Additionally, we propose a dual-path contrastive alignment module that employs gene semantic features as dynamic cross-modal coordinators to enable effective heterogeneous feature integration. Through extensive experiments across three public ST datasets, DKAN demonstrates superior performance over state-of-the-art models, establishing a new benchmark for spatial gene expression prediction and offering a powerful tool for advancing biological and clinical research.
2.182PuzzlePoles: Cylindrical Fiducial Markers Based on the PuzzleBoard Pattern¶
2025/11/26 04:58 GTM
Reliable perception of the environment is a key enabler for autonomous systems, where calibration and localization tasks often rely on robust visual markers. We introduce the PuzzlePole, a new type of fiducial markers derived from the recently proposed PuzzleBoard calibration pattern. The PuzzlePole is a cylindrical marker, enabling reliable recognition and pose estimation from 360° viewing direction. By leveraging the unique combinatorial structure of the PuzzleBoard pattern, PuzzlePoles provide a high accuracy in localization and orientation while being robust to occlusions. The design offers flexibility for deployment in diverse autonomous systems scenarios, ranging from robot navigation and SLAM to tangible interfaces.
2.183Does Understanding Inform Generation in Unified Multimodal Models? From Analysis to Path Forward¶
2025/11/26 04:58 GTM
Recent years have witnessed significant progress in Unified Multimodal Models, yet a fundamental question remains: Does understanding truly inform generation? To investigate this, we introduce UniSandbox, a decoupled evaluation framework paired with controlled, synthetic datasets to avoid data leakage and enable detailed analysis. Our findings reveal a significant understanding-generation gap, which is mainly reflected in two key dimensions: reasoning generation and knowledge transfer. Specifically, for reasoning generation tasks, we observe that explicit Chain-of-Thought (CoT) in the understanding module effectively bridges the gap, and further demonstrate that a self-training approach can successfully internalize this ability, enabling implicit reasoning during generation. Additionally, for knowledge transfer tasks, we find that CoT assists the generative process by helping retrieve newly learned knowledge, and also discover that query-based architectures inherently exhibit latent CoT-like properties that affect this transfer. UniSandbox provides preliminary insights for designing future unified architectures and training strategies that truly bridge the gap between understanding and generation. Code and data are available at https://
2.184A Task-Oriented Evaluation Framework for Text Normalization in Modern NLP Pipelines¶
2025/11/26 04:58 GTM
Text normalization is an essential preprocessing step in many natural language processing (NLP) tasks, and stemming is one such normalization technique that reduces words to their base or root form. However, evaluating stemming methods is challenging because current evaluation approaches are limited and do not capture the potential harm caused by excessive stemming; therefore, it is essential to develop new approaches to evaluate stemming methods. To address this issue, this study propose a novel, task-oriented approach to evaluate stemming methods, which considers three aspects: (1) the utility of stemming using Stemming Effectiveness Score (SES), (2) the impact of stemming on downstream tasks using Model Performance Delta (MPD), and (3) the semantic similarity between stemmed and original words using Average Normalized Levenshtein Distance (ANLD), thus providing a comprehensive evaluation framework. We apply our evaluation framework to compare two stemmers for Bangla (BNLTK) and English (Snowball), and our results reveal a significant issue, prompting us to analyze their performance in detail. While the Bangla stemmer achieves the highest SES (1.67) due to effective word reduction (CR = 1.90), SES alone is insufficient because our proposed safety measure, ANLD, reveals that this high SES is due to harmful over-stemming (ANLD = 0.26), which correlates with the observed decrease in downstream performance.In contrast, the English stemmer achieves a moderate SES (1.31) with a safe meaning distance (ANLD = 0.14), allowing its word reduction to contribute positively to downstream performance; therefore, it is a more reliable stemmer. Our study provides a valuable tool for distinguishing between potential efficiency gains (high SES) and meaning preservation (low ANLD).
2.185BengaliFig: A Low-Resource Challenge for Figurative and Culturally Grounded Reasoning in Bengali¶
2025/11/26 04:58 GTM
Large language models excel on broad multilingual benchmarks but remain to be evaluated extensively in figurative and culturally grounded reasoning, especially in low-resource contexts. We present BengaliFig, a compact yet richly annotated challenge set that targets this gap in Bengali, a widely spoken low-resourced language. The dataset contains 435 unique riddles drawn from Bengali oral and literary traditions. Each item is annotated along five orthogonal dimensions capturing reasoning type, trap type, cultural depth, answer category, and difficulty, and is automatically converted to multiple-choice format through a constraint-aware, AI-assisted pipeline. We evaluate eight frontier LLMs from major providers under zero-shot and few-shot chain-of-thought prompting, revealing consistent weaknesses in metaphorical and culturally specific reasoning. BengaliFig thus contributes both a diagnostic probe for evaluating LLM robustness in low-resource cultural contexts and a step toward inclusive and heritage-aware NLP evaluation.
2.186Soft Adaptive Policy Optimization¶
2025/11/26 04:58 GTM
Reinforcement learning (RL) plays an increasingly important role in enhancing the reasoning capabilities of large language models (LLMs), yet stable and performant policy optimization remains challenging. Token-level importance ratios often exhibit high variance-a phenomenon exacerbated in Mixture-of-Experts models-leading to unstable updates. Existing group-based policy optimization methods, such as GSPO and GRPO, alleviate this problem via hard clipping, making it difficult to maintain both stability and effective learning. We propose Soft Adaptive Policy Optimization (SAPO), which replaces hard clipping with a smooth, temperature-controlled gate that adaptively attenuates off-policy updates while preserving useful learning signals. Compared with GSPO and GRPO, SAPO is both sequence-coherent and token-adaptive. Like GSPO, SAPO maintains sequence-level coherence, but its soft gating forms a continuous trust region that avoids the brittle hard clipping band used in GSPO. When a sequence contains a few highly off-policy tokens, GSPO suppresses all gradients for that sequence, whereas SAPO selectively down-weights only the offending tokens and preserves the learning signal from the near-on-policy ones, improving sample efficiency. Relative to GRPO, SAPO replaces hard token-level clipping with smooth, temperature-controlled scaling, enabling more informative and stable updates. Empirical results on mathematical reasoning benchmarks indicate that SAPO exhibits improved training stability and higher Pass@1 performance under comparable training budgets. Moreover, we employ SAPO to train the Qwen3-VL model series, demonstrating that SAPO yields consistent performance gains across diverse tasks and different model sizes. Overall, SAPO provides a more reliable, scalable, and effective optimization strategy for RL training of LLMs.
2.187The Curious Case of Analogies: Investigating Analogical Reasoning in Large Language Models¶
2025/11/26 04:58 GTM
Analogical reasoning is at the core of human cognition, serving as an important foundation for a variety of intellectual activities. While prior work has shown that LLMs can represent task patterns and surface-level concepts, it remains unclear whether these models can encode high-level relational concepts and apply them to novel situations through structured comparisons. In this work, we explore this fundamental aspect using proportional and story analogies, and identify three key findings. First, LLMs effectively encode the underlying relationships between analogous entities; both attributive and relational information propagate through mid-upper layers in correct cases, whereas reasoning failures reflect missing relational information within these layers. Second, unlike humans, LLMs often struggle not only when relational information is missing, but also when attempting to apply it to new entities. In such cases, strategically patching hidden representations at critical token positions can facilitate information transfer to a certain extent. Lastly, successful analogical reasoning in LLMs is marked by strong structural alignment between analogous situations, whereas failures often reflect degraded or misplaced alignment. Overall, our findings reveal that LLMs exhibit emerging but limited capabilities in encoding and applying high-level relational concepts, highlighting both parallels and gaps with human cognition.
2.188Scaling LLM Speculative Decoding: Non-Autoregressive Forecasting in Large-Batch Scenarios¶
2025/11/26 04:58 GTM
Speculative decoding accelerates LLM inference by utilizing otherwise idle computational resources during memory-to-chip data transfer. Current speculative decoding methods typically assume a considerable amount of available computing power, then generate a complex and massive draft tree using a small autoregressive language model to improve overall prediction accuracy. However, methods like batching have been widely applied in mainstream model inference systems as a superior alternative to speculative decoding, as they compress the available idle computing power. Therefore, performing speculative decoding with low verification resources and low scheduling costs has become an important research problem. We believe that more capable models that allow for parallel generation on draft sequences are what we truly need. Recognizing the fundamental nature of draft models to only generate sequences of limited length, we propose SpecFormer, a novel architecture that integrates unidirectional and bidirectional attention mechanisms. SpecFormer combines the autoregressive model’s ability to extract information from the entire input sequence with the parallel generation benefits of non-autoregressive models. This design eliminates the reliance on large prefix trees and achieves consistent acceleration, even in large-batch scenarios. Through lossless speculative decoding experiments across models of various scales, we demonstrate that SpecFormer sets a new standard for scaling LLM inference with lower training demands and reduced computational costs.
2.189Geometry of Decision Making in Language Models¶
2025/11/26 04:58 GTM
Large Language Models (LLMs) show strong generalization across diverse tasks, yet the internal decision-making processes behind their predictions remain opaque. In this work, we study the geometry of hidden representations in LLMs through the lens of \textit{intrinsic dimension} (ID), focusing specifically on decision-making dynamics in a multiple-choice question answering (MCQA) setting. We perform a large-scale study, with 28 open-weight transformer models and estimate ID across layers using multiple estimators, while also quantifying per-layer performance on MCQA tasks. Our findings reveal a consistent ID pattern across models: early layers operate on low-dimensional manifolds, middle layers expand this space, and later layers compress it again, converging to decision-relevant representations. Together, these results suggest LLMs implicitly learn to project linguistic inputs onto structured, low-dimensional manifolds aligned with task-specific decisions, providing new geometric insights into how generalization and reasoning emerge in language models.
2.190Beyond Components: Singular Vector-Based Interpretability of Transformer Circuits¶
2025/11/26 04:58 GTM
Transformer-based language models exhibit complex and distributed behavior, yet their internal computations remain poorly understood. Existing mechanistic interpretability methods typically treat attention heads and multilayer perceptron layers (MLPs) (the building blocks of a transformer architecture) as indivisible units, overlooking possibilities of functional substructure learned within them. In this work, we introduce a more fine-grained perspective that decomposes these components into orthogonal singular directions, revealing superposed and independent computations within a single head or MLP. We validate our perspective on widely used standard tasks like Indirect Object Identification (IOI), Gender Pronoun (GP), and Greater Than (GT), showing that previously identified canonical functional heads, such as the name mover, encode multiple overlapping subfunctions aligned with distinct singular directions. Nodes in a computational graph, that are previously identified as circuit elements show strong activation along specific low-rank directions, suggesting that meaningful computations reside in compact subspaces. While some directions remain challenging to interpret fully, our results highlight that transformer computations are more distributed, structured, and compositional than previously assumed. This perspective opens new avenues for fine-grained mechanistic interpretability and a deeper understanding of model internals.
2.191REFLEX: Self-Refining Explainable Fact-Checking via Disentangling Truth into Style and Substance¶
2025/11/26 04:58 GTM
The prevalence of misinformation on social media threatens public trust, demanding automated fact-checking systems that provide accurate verdicts with interpretable explanations. However, existing large language model-based (LLM-based) approaches often rely heavily on external knowledge sources, introducing substantial latency and even hallucinations that undermine reliability, interpretability, and responsiveness, which is crucial for real-time use. To address these challenges, we propose REason-guided Fact-checking with Latent EXplanations REFLEX paradigm, a plug-and-play, self-refining paradigm that leverages the internal knowledge in backbone model to improve both verdict accuracy and explanation quality. REFLEX reformulates fact-checking as a role-play dialogue and jointly trains verdict prediction and explanation generation. It adaptively extracts contrastive activation pairs between the backbone model and its fine-tuned variant to construct steering vectors that disentangle truth into style and substance naturally. These activation-level signals guide inference and suppress noisy explanations, enabling more faithful and efficient reasoning. Experiments on real-world datasets show that REFLEX outperforms previous methods that steer toward a single truth direction and underscores the challenge traditional approaches face when handling the subtle, human-unknown truth in fact-checking tasks. Remarkably, with only 465 self-refined training samples, RELFEX achieves state-of-the-art performance. Furthermore, models trained with explanatory objectives can effectively guide those without them, yielding up to a 7.57% improvement, highlighting that internal explanation signals play a dual role in both interpreting and enhancing factual reasoning.
2.192KyrgyzBERT: A Compact, Efficient Language Model for Kyrgyz NLP¶
2025/11/26 04:58 GTM
Kyrgyz remains a low-resource language with limited foundational NLP tools. To address this gap, we introduce KyrgyzBERT, the first publicly available monolingual BERT-based language model for Kyrgyz. The model has 35.9M parameters and uses a custom tokenizer designed for the language’s morphological structure. To evaluate performance, we create kyrgyz-sst2, a sentiment analysis benchmark built by translating the Stanford Sentiment Treebank and manually annotating the full test set. KyrgyzBERT fine-tuned on this dataset achieves an F1-score of 0.8280, competitive with a fine-tuned mBERT model five times larger. All models, data, and code are released to support future research in Kyrgyz NLP.
2.193SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models¶
2025/11/26 04:58 GTM
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
2.194“When Data is Scarce, Prompt Smarter”... Approaches to Grammatical Error Correction in Low-Resource Settings¶
2025/11/26 04:58 GTM
Grammatical error correction (GEC) is an important task in Natural Language Processing that aims to automatically detect and correct grammatical mistakes in text. While recent advances in transformer-based models and large annotated datasets have greatly improved GEC performance for high-resource languages such as English, the progress has not extended equally. For most Indic languages, GEC remains a challenging task due to limited resources, linguistic diversity and complex morphology. In this work, we explore prompting-based approaches using state-of-the-art large language models (LLMs), such as GPT-4.1, Gemini-2.5 and LLaMA-4, combined with few-shot strategy to adapt them to low-resource settings. We observe that even basic prompting strategies, such as zero-shot and few-shot approaches, enable these LLMs to substantially outperform fine-tuned Indic-language models like Sarvam-22B, thereby illustrating the exceptional multilingual generalization capabilities of contemporary LLMs for GEC. Our experiments show that carefully designed prompts and lightweight adaptation significantly enhance correction quality across multiple Indic languages. We achieved leading results in the shared task--ranking 1st in Tamil (GLEU: 91.57) and Hindi (GLEU: 85.69), 2nd in Telugu (GLEU: 85.22), 4th in Bangla (GLEU: 92.86), and 5th in Malayalam (GLEU: 92.97). These findings highlight the effectiveness of prompt-driven NLP techniques and underscore the potential of large-scale LLMs to bridge resource gaps in multilingual GEC.
2.195Mispronunciation Detection and Diagnosis Without Model Training: A Retrieval-Based Approach¶
2025/11/26 04:58 GTM
Mispronunciation Detection and Diagnosis (MDD) is crucial for language learning and speech therapy. Unlike conventional methods that require scoring models or training phoneme-level models, we propose a novel training-free framework that leverages retrieval techniques with a pretrained Automatic Speech Recognition model. Our method avoids phoneme-specific modeling or additional task-specific training, while still achieving accurate detection and diagnosis of pronunciation errors. Experiments on the L2-ARCTIC dataset show that our method achieves a superior F1 score of 69.60% while avoiding the complexity of model training.
2.196EM2LDL: A Multilingual Speech Corpus for Mixed Emotion Recognition through Label Distribution Learning¶
2025/11/26 04:58 GTM
This study introduces EM2LDL, a novel multilingual speech corpus designed to advance mixed emotion recognition through label distribution learning. Addressing the limitations of predominantly monolingual and single-label emotion corpora \textcolor{black}{that restrict linguistic diversity, are unable to model mixed emotions, and lack ecological validity}, EM2LDL comprises expressive utterances in English, Mandarin, and Cantonese, capturing the intra-utterance code-switching prevalent in multilingual regions like Hong Kong and Macao. The corpus integrates spontaneous emotional expressions from online platforms, annotated with fine-grained emotion distributions across 32 categories. Experimental baselines using self-supervised learning models demonstrate robust performance in speaker-independent gender-, age-, and personality-based evaluations, with HuBERT-large-EN achieving optimal results. By incorporating linguistic diversity and ecological validity, EM2LDL enables the exploration of complex emotional dynamics in multilingual settings. This work provides a versatile testbed for developing adaptive, empathetic systems for applications in affective computing, including mental health monitoring and cross-cultural communication. The dataset, annotations, and baseline codes are publicly available at https://
2.197The Devil in the Details: Emergent Misalignment, Format and Coherence in Open-Weights LLMs¶
2025/11/26 04:58 GTM
Prior work has shown that fine-tuning models on a narrow domain with misaligned data can lead to broad misalignment - a phenomenon termed “emergent misalignment” (Betley et al. 2025). While all tested models were susceptible to emergent misalignment, some models showed more resistance than others. Specifically the Qwen-2.5 family proved to be relatively resistant, while GPT-4o exhibited the strongest misalignment. In this paper we evaluate if current-generation open-weights models exhibit similar resistance to the Qwen-2.5 family and measure misalignment robustness over a range of model architectures and scales. We replicate the effect across nine modern open-weights models (Gemma 3 and Qwen 3 families, 1B-32B parameters). Models fine-tuned on insecure code generation show a 0.68% misalignment rate (compared to 0.07% for base models), matching the lower end of prior open-model results but dramatically lower than GPT-4o’s 20%. We identify a critical format-dependent vulnerability: requiring JSON output doubles misalignment rates compared to natural language prompts (0.96% vs 0.42%). This suggests that structural constraints may bypass safety training by reducing the model’s ‘degrees of freedom’ to refuse. These findings confirm emergent misalignment as a reproducible phenomenon in modern open-weights models, with rates substantially lower than observed in proprietary systems.
2.198SSA: Sparse Sparse Attention by Aligning Full and Sparse Attention Outputs in Feature Space¶
2025/11/26 04:58 GTM
The quadratic complexity of full attention limits efficient long-context processing in large language models (LLMs). Sparse attention mitigates this cost by restricting each query to attend to a subset of previous tokens; however, training-free approaches often lead to severe performance degradation. Native sparse-attention methods (e.g., NSA, MoBA) alleviate this issue, yet exhibit a critical paradox: they produce lower attention sparsity than full-attention models, despite aiming to approximate full attention, which may constrain their effectiveness. We attribute this paradox to gradient update deficiency: low-ranked key-value pairs excluded during sparse training receive neither forward contribution nor backward gradients, and thus never learn proper suppression. To overcome this limitation, we propose SSA (Sparse Sparse Attention), a unified training framework that considers both sparse and full attention and enforces bidirectional alignment at every layer. This design preserves gradient flow to all tokens while explicitly encouraging sparse-attention outputs to align with their full-attention counterparts, thereby promoting stronger sparsity. As a result, SSA achieves state-of-the-art performance under both sparse and full attention inference across multiple commonsense benchmarks. Furthermore, SSA enables models to adapt smoothly to varying sparsity budgets; performance improves consistently as more tokens are allowed to attend, supporting flexible compute-performance trade-offs at inference time. Finally, we show that native sparse-attention training surprisingly improves long-context extrapolation by mitigating the over-allocation of attention values in sink areas, with SSA demonstrating the strongest extrapolation capability.
2.199QiMeng-Kernel: Macro-Thinking Micro-Coding Paradigm for LLM-Based High-Performance GPU Kernel Generation¶
2025/11/26 04:58 GTM
Developing high-performance GPU kernels is critical for AI and scientific computing, but remains challenging due to its reliance on expert crafting and poor portability. While LLMs offer promise for automation, both general-purpose and finetuned LLMs suffer from two fundamental and conflicting limitations: correctness and efficiency. The key reason is that existing LLM-based approaches directly generate the entire optimized low-level programs, requiring exploration of an extremely vast space encompassing both optimization policies and implementation codes. To address the challenge of exploring an intractable space, we propose Macro Thinking Micro Coding (MTMC), a hierarchical framework inspired by the staged optimization strategy of human experts. It decouples optimization strategy from implementation details, ensuring efficiency through high-level strategy and correctness through low-level implementation. Specifically, Macro Thinking employs reinforcement learning to guide lightweight LLMs in efficiently exploring and learning semantic optimization strategies that maximize hardware utilization. Micro Coding leverages general-purpose LLMs to incrementally implement the stepwise optimization proposals from Macro Thinking, avoiding full-kernel generation errors. Together, they effectively navigate the vast optimization space and intricate implementation details, enabling LLMs for high-performance GPU kernel generation. Comprehensive results on widely adopted benchmarks demonstrate the superior performance of MTMC on GPU kernel generation in both accuracy and running time. On KernelBench, MTMC achieves near 100% and 70% accuracy at Levels 1-2 and 3, over 50% than SOTA general-purpose and domain-finetuned LLMs, with up to 7.3x speedup over LLMs, and 2.2x over expert-optimized PyTorch Eager kernels. On the more challenging TritonBench, MTMC attains up to 59.64% accuracy and 34x speedup.
2.200More Bias, Less Bias: BiasPrompting for Enhanced Multiple-Choice Question Answering¶
2025/11/26 04:58 GTM
With the advancement of large language models (LLMs), their performance on multiple-choice question (MCQ) tasks has improved significantly. However, existing approaches face key limitations: answer choices are typically presented to LLMs without contextual grounding or explanation. This absence of context can lead to incomplete exploration of all possible answers, ultimately degrading the models’ reasoning capabilities. To address these challenges, we introduce BiasPrompting, a novel inference framework that guides LLMs to generate and critically evaluate reasoning across all plausible answer options before reaching a final prediction. It consists of two components: first, a reasoning generation stage, where the model is prompted to produce supportive reasonings for each answer option, and then, a reasoning-guided agreement stage, where the generated reasonings are synthesized to select the most plausible answer. Through comprehensive evaluations, BiasPrompting demonstrates significant improvements in five widely used multiple-choice question answering benchmarks. Our experiments showcase that BiasPrompting enhances the reasoning capabilities of LLMs and provides a strong foundation for tackling complex and challenging questions, particularly in settings where existing methods underperform.
2.201MTA: A Merge-then-Adapt Framework for Personalized Large Language Model¶
2025/11/26 04:58 GTM
Personalized Large Language Models (PLLMs) aim to align model outputs with individual user preferences, a crucial capability for user-centric applications. However, the prevalent approach of fine-tuning a separate module for each user faces two major limitations: (1) storage costs scale linearly with the number of users, rendering the method unscalable; and (2) fine-tuning a static model from scratch often yields suboptimal performance for users with sparse data. To address these challenges, we propose MTA, a Merge-then-Adapt framework for PLLMs. MTA comprises three key stages. First, we construct a shared Meta-LoRA Bank by selecting anchor users and pre-training meta-personalization traits within meta-LoRA modules. Second, to ensure scalability and enable dynamic personalization combination beyond static models, we introduce an Adaptive LoRA Fusion stage. This stage retrieves and dynamically merges the most relevant anchor meta-LoRAs to synthesize a user-specific one, thereby eliminating the need for user-specific storage and supporting more flexible personalization. Third, we propose a LoRA Stacking for Few-Shot Personalization stage, which applies an additional ultra-low-rank, lightweight LoRA module on top of the merged LoRA. Fine-tuning this module enables effective personalization under few-shot settings. Extensive experiments on the LaMP benchmark demonstrate that our approach outperforms existing SOTA methods across multiple tasks.
2.202Online-PVLM: Advancing Personalized VLMs with Online Concept Learning¶
2025/11/26 04:58 GTM
Personalized Visual Language Models (VLMs) are gaining increasing attention for their formidable ability in user-specific concepts aligned interactions (e.g., identifying a user’s bike). Existing methods typically require the learning of separate embeddings for each new concept, which fails to support real-time adaptation during testing. This limitation becomes particularly pronounced in large-scale scenarios, where efficient retrieval of concept embeddings is not achievable. To alleviate this gap, we propose Online-PVLM, a framework for online concept learning by leveraging hyperbolic representations. Our approach makes a train-free paradigm for concept embeddings generation at test time, making the use of personalized VLMs both scalable and efficient. In addition, we develop OP-Eval, a comprehensive and large-scale benchmark comprising 1,292 concepts and over 30K high-quality instances with diverse question types, designed to rigorously assess online concept learning in realistic scenarios. Extensive experiments demonstrate the state-of-the-art performance of our proposed framework. Our source code and dataset will be made available.
2.203A Machine Learning Approach for Detection of Mental Health Conditions and Cyberbullying from Social Media¶
2025/11/26 04:58 GTM
Mental health challenges and cyberbullying are increasingly prevalent in digital spaces, necessitating scalable and interpretable detection systems. This paper introduces a unified multiclass classification framework for detecting ten distinct mental health and cyberbullying categories from social media data. We curate datasets from Twitter and Reddit, implementing a rigorous “split-then-balance” pipeline to train on balanced data while evaluating on a realistic, held-out imbalanced test set. We conducted a comprehensive evaluation comparing traditional lexical models, hybrid approaches, and several end-to-end fine-tuned transformers. Our results demonstrate that end-to-end fine-tuning is critical for performance, with the domain-adapted MentalBERT emerging as the top model, achieving an accuracy of 0.92 and a Macro F1 score of 0.76, surpassing both its generic counterpart and a zero-shot LLM baseline. Grounded in a comprehensive ethical analysis, we frame the system as a human-in-the-loop screening aid, not a diagnostic tool. To support this, we introduce a hybrid SHAPLLM explainability framework and present a prototype dashboard (“Social Media Screener”) designed to integrate model predictions and their explanations into a practical workflow for moderators. Our work provides a robust baseline, highlighting future needs for multi-label, clinically-validated datasets at the critical intersection of online safety and computational mental health.
2.204Directional Optimization Asymmetry in Transformers: A Synthetic Stress Test¶
2025/11/26 04:58 GTM
Transformers are theoretically reversal-invariant: their function class does not prefer left-to-right over right-to-left mappings. Yet empirical studies on natural language repeatedly report a “reversal curse,” and recent work on temporal asymmetry in LLMs suggests that real-world corpora carry their own arrow of time. This leaves an unresolved question: do directional failures stem from linguistic statistics, or from the architecture itself? We cut through this ambiguity with a fully synthetic, entropy-controlled benchmark designed as a clean-room stress test for directional learning. Using random string mappings with tunable branching factor K, we construct forward tasks with zero conditional entropy and inverse tasks with analytically determined entropy floors. Excess loss above these floors reveals that even scratch-trained GPT-2 models exhibit a strong, reproducible directional optimization gap (e.g., 1.16 nats at K=5), far larger than that of an MLP trained on the same data. Pre-trained initializations shift optimization behavior but do not eliminate this gap, while LoRA encounters a sharp capacity wall on high-entropy inverse mappings. Together, these results isolate a minimal, semantics-free signature of directional friction intrinsic to causal Transformer training-one that persists even when linguistic priors, token frequencies, and corpus-level temporal asymmetries are removed. Our benchmark provides a controlled instrument for dissecting directional biases in modern sequence models and motivates deeper mechanistic study of why inversion remains fundamentally harder for Transformers.
2.205: A Route-to-Rerank Post-Training Framework for Multi-Domain Decoder-Only Rerankers¶
2025/11/26 04:58 GTM
Decoder-only rerankers are central to Retrieval-Augmented Generation (RAG). However, generalist models miss domain-specific nuances in high-stakes fields like finance and law, and naive fine-tuning causes surface-form overfitting and catastrophic forgetting. To address this challenge, we introduce R2R, a domain-aware framework that combines dynamic expert routing with a two-stage training strategy, Entity Abstraction for Generalization (EAG). EAG introduces a counter-shortcut mechanism by masking the most predictive surface cues, forcing the reranker to learn domain-invariant relevance patterns rather than memorizing dataset-specific entities. To efficiently activate domain experts, R2R employs a lightweight Latent Semantic Router that probes internal representations from the frozen backbone decoder to select the optimal LoRA expert per query. Extensive experiments across different reranker backbones and diverse domains (legal, medical, and financial) demonstrate that R2R consistently surpasses generalist and single-domain fine-tuned baselines. Our results confirm that R2R is a model-agnostic and modular approach to domain specialization with strong cross-domain robustness.
2.206AppSelectBench: Application-Level Tool Selection Benchmark¶
2025/11/26 04:58 GTM
Computer Using Agents (CUAs) are increasingly equipped with external tools, enabling them to perform complex and realistic tasks. For CUAs to operate effectively, application selection, which refers to deciding which application to use before invoking fine-grained tools such as APIs, is a fundamental capability. It determines whether the agent initializes the correct environment, avoids orchestration confusion, and efficiently focuses on relevant context. However, existing benchmarks primarily assess fine-grained API selection, offering limited insight into whether models can reason across and choose between different applications. To fill this gap, we introduce AppSelectBench, a comprehensive benchmark for evaluating application selection in CUAs. AppSelectBench contains a novel user task generation pipeline that produces realistic, diverse, and semantically grounded user intents at scale, together with unified evaluation protocols covering random, heuristic, zero-shot, few-shot, and retrieval-augmented-settings. AppSelectBench covers one hundred widely used desktop applications and includes more than one hundred thousand realistic, diverse, and semantically grounded user tasks. Extensive experiments across both closed-source and open-source large language models reveal systematic strengths and weaknesses in inter-application reasoning, showing that even the most capable models still struggle to make consistent application choices. Together, these results establish AppSelectBench as a foundation for studying and advancing application level reasoning, an essential yet underexplored capability of intelligent CUAs. The source is available at https://
2.207EfficientXpert: Efficient Domain Adaptation for Large Language Models via Propagation-Aware Pruning¶
2025/11/26 04:58 GTM
The rapid advancement of large language models (LLMs) has increased the demand for domain-specialized variants in areas such as law, healthcare, and finance. However, their large size remains a barrier to deployment in resource-constrained environments, and existing compression methods either generalize poorly across domains or incur high overhead. In this work, we propose \textbf{EfficientXpert}, a lightweight domain-pruning framework that combines a propagation-aware pruning criterion (Foresight Mask) with an efficient adapter-update algorithm (Partial Brain Surgeon). Integrated into the LoRA fine-tuning process, EfficientXpert enables a one-step transformation of general pretrained models into sparse, domain-adapted experts. Across health and legal tasks, it retains up to 98% of dense-model performance at 40% sparsity, outperforming state-of-the-art methods. Further analysis reveals substantial domain-dependent structural shifts that degrade the effectiveness of general pruning masks, underscoring the need for adaptive, domain-aware pruning strategies tailored to each domain.
2.208CounterVQA: Evaluating and Improving Counterfactual Reasoning in Vision-Language Models for Video Understanding¶
2025/11/26 04:58 GTM
Vision Language Models (VLMs) have recently shown significant advancements in video understanding, especially in feature alignment, event reasoning, and instruction-following tasks. However, their capability for counterfactual reasoning, inferring alternative outcomes under hypothetical conditions, remains underexplored. This capability is essential for robust video understanding, as it requires identifying underlying causal structures and reasoning about unobserved possibilities, rather than merely recognizing observed patterns. To systematically evaluate this capability, we introduce CounterVQA, a video-based benchmark featuring three progressive difficulty levels that assess different aspects of counterfactual reasoning. Through comprehensive evaluation of both state-of-the-art open-source and closed-source models, we uncover a substantial performance gap: while these models achieve reasonable accuracy on simple counterfactual questions, performance degrades significantly on complex multi-hop causal chains. To address these limitations, we develop a post-training method, CFGPT, that enhances a model’s visual counterfactual reasoning ability by distilling its counterfactual reasoning capability from the language modality, yielding consistent improvements across all CounterVQA difficulty levels. Dataset and code will be further released.
2.209MAPS: Preserving Vision-Language Representations via Module-Wise Proximity Scheduling for Better Vision-Language-Action Generalization¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) models inherit strong priors from pretrained Vision-Language Models (VLMs), but naive fine-tuning often disrupts these representations and harms generalization. Existing fixes -- freezing modules or applying uniform regularization -- either overconstrain adaptation or ignore the differing roles of VLA components. We present MAPS (Module-Wise Proximity Scheduling), the first robust fine-tuning framework for VLAs. Through systematic analysis, we uncover an empirical order in which proximity constraints should be relaxed to balance stability and flexibility. MAPS linearly schedules this relaxation, enabling visual encoders to stay close to their pretrained priors while action-oriented language layers adapt more freely. MAPS introduces no additional parameters or data, and can be seamlessly integrated into existing VLAs. Across MiniVLA-VQ, MiniVLA-OFT, OpenVLA-OFT, and challenging benchmarks such as SimplerEnv, CALVIN, LIBERO, as well as real-world evaluations on the Franka Emika Panda platform, MAPS consistently boosts both in-distribution and out-of-distribution performance (up to +30%). Our findings highlight empirically guided proximity to pretrained VLMs as a simple yet powerful principle for preserving broad generalization in VLM-to-VLA transfer.
2.210A Systematic Analysis of Large Language Models with RAG-enabled Dynamic Prompting for Medical Error Detection and Correction¶
2025/11/26 04:58 GTM
Objective: Clinical documentation contains factual, diagnostic, and management errors that can compromise patient safety. Large language models (LLMs) may help detect and correct such errors, but their behavior under different prompting strategies remains unclear. We evaluate zero-shot prompting, static prompting with random exemplars (SPR), and retrieval-augmented dynamic prompting (RDP) for three subtasks of medical error processing: error flag detection, error sentence detection, and error correction. Methods: Using the MEDEC dataset, we evaluated nine instruction-tuned LLMs (GPT, Claude, Gemini, and OpenAI o-series models). We measured performance using accuracy, recall, false-positive rate (FPR), and an aggregate score of ROUGE-1, BLEURT, and BERTScore for error correction. We also analyzed example outputs to identify failure modes and differences between LLM and clinician reasoning. Results: Zero-shot prompting showed low recall in both detection tasks, often missing abbreviation-heavy or atypical errors. SPR improved recall but increased FPR. Across all nine LLMs, RDP reduced FPR by about 15 percent, improved recall by 5 to 10 percent in error sentence detection, and generated more contextually accurate corrections. Conclusion: Across diverse LLMs, RDP outperforms zero-shot and SPR prompting. Using retrieved exemplars improves detection accuracy, reduces false positives, and enhances the reliability of medical error correction.
2.211Profile-LLM: Dynamic Profile Optimization for Realistic Personality Expression in LLMs¶
2025/11/26 04:58 GTM
Personalized Large Language Models (LLMs) have been shown to be an effective way to create more engaging and enjoyable user-AI interactions. While previous studies have explored using prompts to elicit specific personality traits in LLMs, they have not optimized these prompts to maximize personality expression. To address this limitation, we propose PersonaPulse: Dynamic Profile Optimization for Realistic Personality Expression in LLMs, a framework that leverages LLMs’ inherent knowledge of personality traits to iteratively enhance role-play prompts while integrating a situational response benchmark as a scoring tool, ensuring a more realistic and contextually grounded evaluation to guide the optimization process. Quantitative evaluations demonstrate that the prompts generated by PersonaPulse outperform those of prior work, which were designed based on personality descriptions from psychological studies. Additionally, we explore the relationship between model size and personality modeling through extensive experiments. Finally, we find that, for certain personality traits, the extent of personality evocation can be partially controlled by pausing the optimization process. These findings underscore the importance of prompt optimization in shaping personality expression within LLMs, offering valuable insights for future research on adaptive AI interactions.
2.212CropVLM: Learning to Zoom for Fine-Grained Vision-Language Perception¶
2025/11/26 04:58 GTM
Vision-Language Models (VLMs) often struggle with tasks that require fine-grained image understanding, such as scene-text recognition or document analysis, due to perception limitations and visual fragmentation. To address these challenges, we introduce CropVLM as an external low-cost method for boosting performance, enabling VLMs to dynamically ‘‘zoom in’’ on relevant image regions, enhancing their ability to capture fine details. CropVLM is trained using reinforcement learning, without using human-labeled bounding boxes as a supervision signal, and without expensive synthetic evaluations. The model is trained once and can be paired with both open-source and proprietary VLMs to improve their performance. Our approach delivers significant improvements on tasks that require high-resolution image understanding, notably for benchmarks that are out-of-domain for the target VLM, without modifying or fine-tuning the VLM, thus avoiding catastrophic forgetting.
2.213Language-Independent Sentiment Labelling with Distant Supervision: A Case Study for English, Sepedi and Setswana¶
2025/11/26 04:58 GTM
Sentiment analysis is a helpful task to automatically analyse opinions and emotions on various topics in areas such as AI for Social Good, AI in Education or marketing. While many of the sentiment analysis systems are developed for English, many African languages are classified as low-resource languages due to the lack of digital language resources like text labelled with corresponding sentiment classes. One reason for that is that manually labelling text data is time-consuming and expensive. Consequently, automatic and rapid processes are needed to reduce the manual effort as much as possible making the labelling process as efficient as possible. In this paper, we present and analyze an automatic language-independent sentiment labelling method that leverages information from sentiment-bearing emojis and words. Our experiments are conducted with tweets in the languages English, Sepedi and Setswana from SAfriSenti, a multilingual sentiment corpus for South African languages. We show that our sentiment labelling approach is able to label the English tweets with an accuracy of 66%, the Sepedi tweets with 69%, and the Setswana tweets with 63%, so that on average only 34% of the automatically generated labels remain to be corrected.
2.214Breaking Bad: Norms for Valence, Arousal, and Dominance for over 10k English Multiword Expressions¶
2025/11/26 04:58 GTM
Factor analysis studies have shown that the primary dimensions of word meaning are Valence (V), Arousal (A), and Dominance (D). Existing lexicons such as the NRC VAD Lexicon, published in 2018, include VAD association ratings for words. Here, we present a complement to it, which has human ratings of valence, arousal, and dominance for 10k English Multiword Expressions (MWEs) and their constituent words. We also increase the coverage of unigrams, especially words that have become more common since 2018. In all, the new NRC VAD Lexicon v2 now has entries for 10k MWEs and 25k words, in addition to the entries in v1. We show that the associations are highly reliable. We use the lexicon to examine emotional characteristics of MWEs, including: 1. The degree to which MWEs (idioms, noun compounds, and verb particle constructions) exhibit strong emotionality; 2. The degree of emotional compositionality in MWEs. The lexicon enables a wide variety of research in NLP, Psychology, Public Health, Digital Humanities, and Social Sciences. The NRC VAD Lexicon v2 is freely available through the project webpage: http://
2.215Training-Free Generation of Diverse and High-Fidelity Images via Prompt Semantic Space Optimization¶
2025/11/26 04:58 GTM
Image diversity remains a fundamental challenge for text-to-image diffusion models. Low-diversity models tend to generate repetitive outputs, increasing sampling redundancy and hindering both creative exploration and downstream applications. A primary cause is that generation often collapses toward a strong mode in the learned distribution. Existing attempts to improve diversity, such as noise resampling, prompt rewriting, or steering-based guidance, often still collapse to dominant modes or introduce distortions that degrade image quality. In light of this, we propose Token-Prompt embedding Space Optimization (TPSO), a training-free and model-agnostic module. TPSO introduces learnable parameters to explore underrepresented regions of the token embedding space, reducing the tendency of the model to repeatedly generate samples from strong modes of the learned distribution. At the same time, the prompt-level space provides a global semantic constraint that regulates distribution shifts, preventing quality degradation while maintaining high fidelity. Extensive experiments on MS-COCO and three diffusion backbones show that TPSO significantly enhances generative diversity, improving baseline performance from 1.10 to 4.18 points, without sacrificing image quality. Code will be released upon acceptance.
2.216Gender Bias in Emotion Recognition by Large Language Models¶
2025/11/26 04:58 GTM
The rapid advancement of large language models (LLMs) and their growing integration into daily life underscore the importance of evaluating and ensuring their fairness. In this work, we examine fairness within the domain of emotional theory of mind, investigating whether LLMs exhibit gender biases when presented with a description of a person and their environment and asked, “How does this person feel?”. Furthermore, we propose and evaluate several debiasing strategies, demonstrating that achieving meaningful reductions in bias requires training based interventions rather than relying solely on inference-time prompt-based approaches such as prompt engineering.
2.217Scaling Agentic Reinforcement Learning for Tool-Integrated Reasoning in VLMs¶
2025/11/26 04:58 GTM
While recent vision-language models (VLMs) demonstrate strong image understanding, their ability to “think with images”, i.e., to reason through multi-step visual interactions, remains limited. We introduce VISTA-Gym, a scalable training environment for incentivizing tool-integrated visual reasoning capabilities in VLMs. VISTA-Gym unifies diverse real-world multimodal reasoning tasks (7 tasks from 13 datasets in total) with a standardized interface for visual tools (e.g., grounding, parsing), executable interaction loops, verifiable feedback signals, and efficient trajectory logging, enabling visual agentic reinforcement learning at scale. While recent VLMs exhibit strong text-only reasoning, both proprietary and open-source models still struggle with tool selection, invocation, and coordination. With VISTA-Gym, we train VISTA-R1 to interleave tool-use with agentic reasoning via multi-turn trajectory sampling and end-to-end reinforcement learning. Extensive experiments across 11 public reasoning-intensive VQA benchmarks show that VISTA-R1-8B outperforms state-of-the-art baselines with similar sizes by 9.51%-18.72%, demonstrating VISTA-Gym as an effective training ground to unlock the tool-integrated reasoning capabilities for VLMs.
2.218What does it mean to understand language?¶
2025/11/26 04:58 GTM
Language understanding entails not just extracting the surface-level meaning of the linguistic input, but constructing rich mental models of the situation it describes. Here we propose that because processing within the brain’s core language system is fundamentally limited, deeply understanding language requires exporting information from the language system to other brain regions that compute perceptual and motor representations, construct mental models, and store our world knowledge and autobiographical memories. We review the existing evidence for this hypothesis, and argue that recent progress in cognitive neuroscience provides both the conceptual foundation and the methods to directly test it, thus opening up a new strategy to reveal what it means, cognitively and neurally, to understand language.
2.219Comparative Analysis of LoRA-Adapted Embedding Models for Clinical Cardiology Text Representation¶
2025/11/26 04:58 GTM
Domain-specific text embeddings are critical for clinical natural language processing, yet systematic comparisons across model architectures remain limited. This study evaluates ten transformer-based embedding models adapted for cardiology through Low-Rank Adaptation (LoRA) fine-tuning on 106,535 cardiology text pairs derived from authoritative medical textbooks. Results demonstrate that encoder-only architectures, particularly BioLinkBERT, achieve superior domain-specific performance (separation score: 0.510) compared to larger decoder-based models, while requiring significantly fewer computational resources. The findings challenge the assumption that larger language models necessarily produce better domain-specific embeddings and provide practical guidance for clinical NLP system development. All models, training code, and evaluation datasets are publicly available to support reproducible research in medical informatics.
2.220Can LLMs Faithfully Explain Themselves in Low-Resource Languages? A Case Study on Emotion Detection in Persian¶
2025/11/26 04:58 GTM
Large language models (LLMs) are increasingly used to generate self-explanations alongside their predictions, a practice that raises concerns about the faithfulness of these explanations, especially in low-resource languages. This study evaluates the faithfulness of LLM-generated explanations in the context of emotion classification in Persian, a low-resource language, by comparing the influential words identified by the model against those identified by human annotators. We assess faithfulness using confidence scores derived from token-level log-probabilities. Two prompting strategies, differing in the order of explanation and prediction (Predict-then-Explain and Explain-then-Predict), are tested for their impact on explanation faithfulness. Our results reveal that while LLMs achieve strong classification performance, their generated explanations often diverge from faithful reasoning, showing greater agreement with each other than with human judgments. These results highlight the limitations of current explanation methods and metrics, emphasizing the need for more robust approaches to ensure LLM reliability in multilingual and low-resource contexts.
2.221Fara-7B: An Efficient Agentic Model for Computer Use¶
2025/11/26 04:58 GTM
Progress in computer use agents (CUAs) has been constrained by the absence of large and high-quality datasets that capture how humans interact with a computer. While LLMs have thrived on abundant textual data, no comparable corpus exists for CUA trajectories. To address these gaps, we introduce FaraGen, a novel synthetic data generation system for multi-step web tasks. FaraGen can propose diverse tasks from frequently used websites, generate multiple solution attempts, and filter successful trajectories using multiple verifiers. It achieves high throughput, yield, and diversity for multi-step web tasks, producing verified trajectories at approximately $1 each. We use this data to train Fara-7B, a native CUA model that perceives the computer using only screenshots, executes actions via predicted coordinates, and is small enough to run on-device. We find that Fara-7B outperforms other CUA models of comparable size on benchmarks like WebVoyager, Online-Mind2Web, and WebTailBench -- our novel benchmark that better captures under-represented web tasks in pre-existing benchmarks. Furthermore, Fara-7B is competitive with much larger frontier models, illustrating key benefits of scalable data generation systems in advancing small efficient agentic models. We are making Fara-7B open-weight on Microsoft Foundry and HuggingFace, and we are releasing WebTailBench.
2.222Efficient Multi-Hop Question Answering over Knowledge Graphs via LLM Planning and Embedding-Guided Search¶
2025/11/26 04:58 GTM
Multi-hop question answering over knowledge graphs remains computationally challenging due to the combinatorial explosion of possible reasoning paths. Recent approaches rely on expensive Large Language Model (LLM) inference for both entity linking and path ranking, limiting their practical deployment. Additionally, LLM-generated answers often lack verifiable grounding in structured knowledge. We present two complementary hybrid algorithms that address both efficiency and verifiability: (1) LLM-Guided Planning that uses a single LLM call to predict relation sequences executed via breadth-first search, achieving near-perfect accuracy (micro-F1 > 0.90) while ensuring all answers are grounded in the knowledge graph, and (2) Embedding-Guided Neural Search that eliminates LLM calls entirely by fusing text and graph embeddings through a lightweight 6.7M-parameter edge scorer, achieving over 100 times speedup with competitive accuracy. Through knowledge distillation, we compress planning capability into a 4B-parameter model that matches large-model performance at zero API cost. Evaluation on MetaQA demonstrates that grounded reasoning consistently outperforms ungrounded generation, with structured planning proving more transferable than direct answer generation. Our results show that verifiable multi-hop reasoning does not require massive models at inference time, but rather the right architectural inductive biases combining symbolic structure with learned representations.
2.223Studying Maps at Scale: A Digital Investigation of Cartography and the Evolution of Figuration¶
2025/11/26 04:58 GTM
This thesis presents methods and datasets to investigate cartographic heritage on a large scale and from a cultural perspective. Heritage institutions worldwide have digitized more than one million maps, and automated techniques now enable large-scale recognition and extraction of map content. Yet these methods have engaged little with the history of cartography, or the view that maps are semantic-symbolic systems, and cultural objects reflecting political and epistemic expectations. This work leverages a diverse corpus of 771,561 map records and 99,715 digitized images aggregated from 38 digital catalogs. After normalization, the dataset includes 236,925 contributors and spans six centuries, from 1492 to 1948. These data make it possible to chart geographic structures and the global chronology of map publication. The spatial focus of cartography is analyzed in relation to political dynamics, evidencing links between Atlantic maritime charting, the triangular trade, and colonial expansion. Further results document the progression of national, domestic focus and the impact of military conflicts on publication volumes. The research introduces semantic segmentation techniques and object detection models for the generic recognition of land classes and cartographic signs, trained on annotated data and synthetic images. The analysis of land classes shows that maps are designed images whose framing and composition emphasize features through centering and semantic symmetries. The study of cartographic figuration encodes 63 M signs and 25 M fragments into a latent visual space, revealing figurative shifts such as the replacement of relief hachures by terrain contours and showing that signs tend to form locally consistent systems. Analyses of collaboration and diffusion highlight the role of legitimacy, larger actors, and major cities in the spread of figurative norms and semiotic cultures.
2.224Quantifying Modality Contributions via Disentangling Multimodal Representations¶
2025/11/26 04:58 GTM
Quantifying modality contributions in multimodal models remains a challenge, as existing approaches conflate the notion of contribution itself. Prior work relies on accuracy-based approaches, interpreting performance drops after removing a modality as indicative of its influence. However, such outcome-driven metrics fail to distinguish whether a modality is inherently informative or whether its value arises only through interaction with other modalities. This distinction is particularly important in cross-attention architectures, where modalities influence each other’s representations. In this work, we propose a framework based on Partial Information Decomposition (PID) that quantifies modality contributions by decomposing predictive information in internal embeddings into unique, redundant, and synergistic components. To enable scalable, inference-only analysis, we develop an algorithm based on the Iterative Proportional Fitting Procedure (IPFP) that computes layer and dataset-level contributions without retraining. This provides a principled, representation-level view of multimodal behavior, offering clearer and more interpretable insights than outcome-based metrics.
2.225BlockCert: Certified Blockwise Extraction of Transformer Mechanisms¶
2025/11/26 04:58 GTM
Mechanistic interpretability aspires to reverse-engineer neural networks into explicit algorithms, while model editing seeks to modify specific behaviours without retraining. Both areas are typically evaluated with informal evidence and ad-hoc experiments, with few explicit guarantees about how far an extracted or edited model can drift from the original on relevant inputs. We introduce BlockCert, a framework for certified blockwise extraction of transformer mechanisms, and outline how a lightweight extension can support certified local edits. Given a pre-trained transformer and a prompt distribution, BlockCert extracts structured surrogate implementations for residual blocks together with machine-checkable certificates that bound approximation error, record coverage metrics, and hash the underlying artifacts. We formalize a simple Lipschitz-based composition theorem in Lean 4 that lifts these local guarantees to a global deviation bound. Empirically, we apply the framework to GPT-2 small, TinyLlama-1.1B-Chat, and Llama-3.2-3B. Across these models we obtain high per-block coverage and small residual errors on the evaluated prompts, and in the TinyLlama setting we show that a fully stitched model matches the baseline perplexity within approximately 6e-5 on stress prompts. Our results suggest that blockwise extraction with explicit certificates is feasible for real transformer language models and offers a practical bridge between mechanistic interpretability and formal reasoning about model behaviour.
2.226Reinforcing Action Policies by Prophesying¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) policies excel in aligning language, perception, and robot control. However, most VLAs are trained purely by imitation, which overfits to demonstrations, and is brittle under distribution shift. Reinforcement learning (RL) directly optimizes task reward and thus addresses this misalignment, but real-robot interaction is expensive and conventional simulators are hard to engineer and transfer. We address both data efficiency and optimization stability in VLA post-training via a learned world model and an RL procedure tailored to flow-based action heads. Specifically, we introduce Prophet, a unified action-to-video robot actuation pretrained across large-scale, heterogeneous robot data to learn reusable action-outcome dynamics. It is able to few-shot adapt to new robots, objects, and environments, yielding a rollout-ready simulator. Upon Prophet, we reinforce action policies with Flow-action-GRPO (FA-GRPO), which adapts Flow-GRPO to operate on VLA actions, and with FlowScale, a stepwise reweighting that rescales per-step gradients in the flow head. Together, Prophet, FA-GRPO, and FlowScale constitute ProphRL, a practical, data- and compute-efficient path to VLA post-training. Experiments show 5-17% success gains on public benchmarks and 24-30% gains on real robots across different VLA variants.
2.227Wanderland: Geometrically Grounded Simulation for Open-World Embodied AI¶
2025/11/26 04:58 GTM
Reproducible closed-loop evaluation remains a major bottleneck in Embodied AI such as visual navigation. A promising path forward is high-fidelity simulation that combines photorealistic sensor rendering with geometrically grounded interaction in complex, open-world urban environments. Although recent video-3DGS methods ease open-world scene capturing, they are still unsuitable for benchmarking due to large visual and geometric sim-to-real gaps. To address these challenges, we introduce Wanderland, a real-to-sim framework that features multi-sensor capture, reliable reconstruction, accurate geometry, and robust view synthesis. Using this pipeline, we curate a diverse dataset of indoor-outdoor urban scenes and systematically demonstrate how image-only pipelines scale poorly, how geometry quality impacts novel view synthesis, and how all of these adversely affect navigation policy learning and evaluation reliability. Beyond serving as a trusted testbed for embodied navigation, Wanderland’s rich raw sensor data further allows benchmarking of 3D reconstruction and novel view synthesis models. Our work establishes a new foundation for reproducible research in open-world embodied AI. Project website is at https://
2.228Safe and Stable Neural Network Dynamical Systems for Robot Motion Planning¶
2025/11/26 04:58 GTM
Learning safe and stable robot motions from demonstrations remains a challenge, especially in complex, nonlinear tasks involving dynamic, obstacle-rich environments. In this paper, we propose Safe and Stable Neural Network Dynamical Systems S-NNDS, a learning-from-demonstration framework that simultaneously learns expressive neural dynamical systems alongside neural Lyapunov stability and barrier safety certificates. Unlike traditional approaches with restrictive polynomial parameterizations, S-NNDS leverages neural networks to capture complex robot motions providing probabilistic guarantees through split conformal prediction in learned certificates. Experimental results on various 2D and 3D datasets -- including LASA handwriting and demonstrations recorded kinesthetically from the Franka Emika Panda robot -- validate S-NNDS effectiveness in learning robust, safe, and stable motions from potentially unsafe demonstrations.
2.229Gated Uncertainty-Aware Runtime Dual Invariants for Neural Signal-Controlled Robotics¶
2025/11/26 04:58 GTM
Safety-critical assistive systems that directly decode user intent from neural signals require rigorous guarantees of reliability and trust. We present GUARDIAN (Gated Uncertainty-Aware Runtime Dual Invariants), a framework for real-time neuro-symbolic verification for neural signal-controlled robotics. GUARDIAN enforces both logical safety and physiological trust by coupling confidence-calibrated brain signal decoding with symbolic goal grounding and dual-layer runtime monitoring. On the BNCI2014 motor imagery electroencephalogram (EEG) dataset with 9 subjects and 5,184 trials, the system performs at a high safety rate of 94-97% even with lightweight decoder architectures with low test accuracies (27-46%) and high ECE confidence miscalibration (0.22-0.41). We demonstrate 1.7x correct interventions in simulated noise testing versus at baseline. The monitor operates at 100Hz and sub-millisecond decision latency, making it practically viable for closed-loop neural signal-based systems. Across 21 ablation results, GUARDIAN exhibits a graduated response to signal degradation, and produces auditable traces from intent, plan to action, helping to link neural evidence to verifiable robot action.
2.230MIMIC-MJX: Neuromechanical Emulation of Animal Behavior¶
2025/11/26 04:58 GTM
The primary output of the nervous system is movement and behavior. While recent advances have democratized pose tracking during complex behavior, kinematic trajectories alone provide only indirect access to the underlying control processes. Here we present MIMIC-MJX, a framework for learning biologically-plausible neural control policies from kinematics. MIMIC-MJX models the generative process of motor control by training neural controllers that learn to actuate biomechanically-realistic body models in physics simulation to reproduce real kinematic trajectories. We demonstrate that our implementation is accurate, fast, data-efficient, and generalizable to diverse animal body models. Policies trained with MIMIC-MJX can be utilized to both analyze neural control strategies and simulate behavioral experiments, illustrating its potential as an integrative modeling framework for neuroscience.
2.231Metric, inertially aligned monocular state estimation via kinetodynamic priors¶
2025/11/26 04:58 GTM
Accurate state estimation for flexible robotic systems poses significant challenges, particular for platforms with dynamically deforming structures that invalidate rigid-body assumptions. This paper tackles this problem and allows to extend existing rigid-body pose estimation methods to non-rigid systems. Our approach hinges on two core assumptions: first, the elastic properties are captured by an injective deformation-force model, efficiently learned via a Multi-Layer Perceptron; second, we solve the platform’s inherently smooth motion using continuous-time B-spline kinematic models. By continuously applying Newton’s Second Law, our method establishes a physical link between visually-derived trajectory acceleration and predicted deformation-induced acceleration. We demonstrate that our approach not only enables robust and accurate pose estimation on non-rigid platforms, but that the properly modeled platform physics instigate inertial sensing properties. We demonstrate this feasibility on a simple spring-camera system, and show how it robustly resolves the typically ill-posed problem of metric scale and gravity recovery in monocular visual odometry.
2.232Kleinkram: Open Robotic Data Management¶
2025/11/26 04:58 GTM
We introduce Kleinkram, a free and open-source system designed to solve the challenge of managing massive, unstructured robotic datasets. Designed as a modular, on-premises cloud solution, Kleinkram enables scalable storage, indexing, and sharing of datasets, ranging from individual experiments to large-scale research collections. Kleinkram natively integrates with standard formats such as ROS bags and MCAP and utilises S3-compatible storage for flexibility. Beyond storage, Kleinkram features an integrated “Action Runner” that executes customizable Docker-based workflows for data validation, curation, and benchmarking. Kleinkram has successfully managed over 30 TB of data from diverse robotic systems, streamlining the research lifecycle through a modern web interface and a robust Command Line Interface (CLI).
2.233Power-Efficient Autonomous Mobile Robots¶
2025/11/26 04:58 GTM
This paper presents pNav, a novel power-management system that significantly enhances the power/energy-efficiency of Autonomous Mobile Robots (AMRs) by jointly optimizing their physical/mechanical and cyber subsystems. By profiling AMRs’ power consumption, we identify three challenges in achieving CPS (cyber-physical system) power-efficiency that involve both cyber (C) and physical (P) subsystems: (1) variabilities of system power consumption breakdown, (2) environment-aware navigation locality, and (3) coordination of C and P subsystems. pNav takes a multi-faceted approach to achieve power-efficiency of AMRs. First, it integrates millisecond-level power consumption prediction for both C and P subsystems. Second, it includes novel real-time modeling and monitoring of spatial and temporal navigation localities for AMRs. Third, it supports dynamic coordination of AMR software (navigation, detection) and hardware (motors, DVFS driver) configurations. pNav is prototyped using the Robot Operating System (ROS) Navigation Stack, 2D LiDAR, and camera. Our in-depth evaluation with a real robot and Gazebo environments demonstrates a >96% accuracy in predicting power consumption and a 38.1% reduction in power consumption without compromising navigation accuracy and safety.
2.234BRIC: Bridging Kinematic Plans and Physical Control at Test Time¶
2025/11/26 04:58 GTM
We propose BRIC, a novel test-time adaptation (TTA) framework that enables long-term human motion generation by resolving execution discrepancies between diffusion-based kinematic motion planners and reinforcement learning-based physics controllers. While diffusion models can generate diverse and expressive motions conditioned on text and scene context, they often produce physically implausible outputs, leading to execution drift during simulation. To address this, BRIC dynamically adapts the physics controller to noisy motion plans at test time, while preserving pre-trained skills via a loss function that mitigates catastrophic forgetting. In addition, BRIC introduces a lightweight test-time guidance mechanism that steers the diffusion model in the signal space without updating its parameters. By combining both adaptation strategies, BRIC ensures consistent and physically plausible long-term executions across diverse environments in an effective and efficient manner. We validate the effectiveness of BRIC on a variety of long-term tasks, including motion composition, obstacle avoidance, and human-scene interaction, achieving state-of-the-art performance across all tasks.
2.235VibraVerse: A Large-Scale Geometry-Acoustics Alignment Dataset for Physically-Consistent Multimodal Learning¶
2025/11/26 04:58 GTM
Understanding the physical world requires perceptual models grounded in physical laws rather than mere statistical correlations. However, existing multimodal learning frameworks, focused on vision and language, lack physical consistency and overlook the intrinsic causal relationships among an object’s geometry, material, vibration modes, and the sounds it produces. We introduce VibraVerse, a large-scale geometry-acoustics alignment dataset that explicitly bridges the causal chain from 3D geometry -> physical attributes -> modal parameters -> acoustic signals. Each 3D model has explicit physical properties (density, Young’s modulus, Poisson’s ratio) and volumetric geometry, from which modal eigenfrequencies and eigenvectors are computed for impact sound synthesis under controlled excitations. To establish this coherence, we introduce CLASP, a contrastive learning framework for cross-modal alignment that preserves the causal correspondence between an object’s physical structure and its acoustic response. This framework enforces physically consistent alignment across modalities, ensuring that every sample is coherent, traceable to the governing equations, and embedded within a unified representation space spanning shape, image, and sound. Built upon VibraVerse, we define a suite of benchmark tasks for geometry-to-sound prediction, sound-guided shape reconstruction, and cross-modal representation learning. Extensive validations on these tasks demonstrate that models trained on VibraVerse exhibit superior accuracy, interpretability, and generalization across modalities. These results establish VibraVerse as a benchmark for physically consistent and causally interpretable multimodal learning, providing a foundation for sound-guided embodied perception and a deeper understanding of the physical world. The dataset will be open-sourced.
2.236Improved adaptive wind driven optimization algorithm for real-time path planning¶
2025/11/26 04:58 GTM
Recently, path planning has achieved remarkable progress in enhancing global search capability and convergence accuracy through heuristic and learning-inspired optimization frameworks. However, real-time adaptability in dynamic environments remains a critical challenge for autonomous navigation, particularly when robots must generate collision-free, smooth, and efficient trajectories under complex constraints. By analyzing the difficulties in dynamic path planning, the Wind Driven Optimization (WDO) algorithm emerges as a promising framework owing to its physically interpretable search dynamics. Motivated by these observations, this work revisits the WDO principle and proposes a variant formulation, Multi-hierarchical adaptive wind driven optimization(MAWDO), that improves adaptability and robustness in time-varying environments. To mitigate instability and premature convergence, a hierarchical-guidance mechanism divides the population into multiple groups guided by individual, regional, and global leaders to balance exploration and exploitation. Extensive evaluations on sixteen benchmark functions show that MAWDO achieves superior optimization accuracy, convergence stability, and adaptability over state-of-the art metaheuristics. In dynamic path planning, MAWDO shortens the path length to 469.28 pixels, improving over Multi-strategy ensemble wind driven optimization(MEWDO), Adaptive wind driven optimization(AWDO) and WDO by 3.51%, 11.63% and 14.93%, and achieves the smallest optimality gap (1.01) with smoothness 0.71 versus 13.50 and 15.67 for AWDO and WDO, leading to smoother, shorter, and collision-free trajectories that confirm its effectiveness for real-time path planning in complex environments.
2.237Quality-guided UAV Surface Exploration for 3D Reconstruction¶
2025/11/26 04:58 GTM
Reasons for mapping an unknown environment with autonomous robots are wide-ranging, but in practice, they are often overlooked when developing planning strategies. Rapid information gathering and comprehensive structural assessment of buildings have different requirements and therefore necessitate distinct methodologies. In this paper, we propose a novel modular Next-Best-View (NBV) planning framework for aerial robots that explicitly uses a reconstruction quality objective to guide the exploration planning. In particular, our approach introduces new and efficient methods for view generation and selection of viewpoint candidates that are adaptive to the user-defined quality requirements, fully exploiting the uncertainty encoded in a Truncated Signed Distance field (TSDF) representation of the environment. This results in informed and efficient exploration decisions tailored towards the predetermined objective. Finally, we validate our method via extensive simulations in realistic environments. We demonstrate that it successfully adjusts its behavior to the user goal while consistently outperforming conventional NBV strategies in terms of coverage, quality of the final 3D map and path efficiency.
2.238Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin¶
2025/11/26 04:58 GTM
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
2.239ArtiBench and ArtiBrain: Benchmarking Generalizable Vision-Language Articulated Object Manipulation¶
2025/11/26 04:58 GTM
Interactive articulated manipulation requires long-horizon, multi-step interactions with appliances while maintaining physical consistency. Existing vision-language and diffusion-based policies struggle to generalize across parts, instances, and categories. We first introduce ArtiBench, a five-level benchmark covering kitchen, storage, office, and tool environments. ArtiBench enables structured evaluation from cross-part and cross-instance variation to long-horizon multi-object tasks, revealing the core generalization challenges of articulated object manipulation. Building on this benchmark, we propose ArtiBrain, a modular framework that unifies high-level reasoning with adaptive low-level control. ArtiBrain uses a VLM-based Task Reasoner (GPT-4.1) to decompose and validate subgoals, and employs a Hybrid Controller that combines geometry-aware keyframe execution with affordance-guided diffusion for precise and interpretable manipulation. An Affordance Memory Bank continually accumulates successful execution episodes and propagates part-level actionable affordances to unseen articulated parts and configurations. Extensive experiments on ArtiBench show that our ArtiBrain significantly outperforms state-of-the-art multimodal and diffusion-based methods in robustness and generalization. Code and dataset will be released upon acceptance.
2.240How Robot Kinematics Influence Human Performance in Virtual Robot-to-Human Handover Tasks¶
2025/11/26 04:58 GTM
Recent advancements in robotics have increased the possibilities for integrating robotic systems into human-involved workplaces, highlighting the need to examine and optimize human-robot coordination in collaborative settings. This study explores human-robot interactions during handover tasks using Virtual Reality (VR) to investigate differences in human motor performance across various task dynamics and robot kinematics. A VR-based robot handover simulation afforded safe and controlled assessments of human-robot interactions. In separate experiments, four potential influences on human performance were examined (1) control over task initiation and robot movement synchrony (temporal and spatiotemporal); (2) partner appearance (human versus robotic); (3) robot velocity profiles (minimum jerk, constant velocity, constant acceleration, and biphasic); and (4) the timing of rotational object motion. Findings across experiments emphasize humans benefit from robots providing early and salient visual information about task-relevant object motion, and advantages of human-like smooth robot trajectories. To varying degrees, these manipulations improved predictive accuracy and synchronization during interaction. This suggests that human-robot interactions should be designed to allow humans to leverage their natural capabilities for detecting biological motion, which conversely may reduce the need for costly robotic computations or added cognitive adaptation on the human side.
2.241Dynamic-ICP: Doppler-Aware Iterative Closest Point Registration for Dynamic Scenes¶
2025/11/26 04:58 GTM
Reliable odometry in highly dynamic environments remains challenging when it relies on ICP-based registration: ICP assumes near-static scenes and degrades in repetitive or low-texture geometry. We introduce Dynamic-ICP, a Doppler-aware registration framework. The method (i) estimates ego motion from per-point Doppler velocity via robust regression and builds a velocity filter, (ii) clusters dynamic objects and reconstructs object-wise translational velocities from ego-compensated radial measurements, (iii) predicts dynamic points with a constant-velocity model, and (iv) aligns scans using a compact objective that combines point-to-plane geometry residual with a translation-invariant, rotation-only Doppler residual. The approach requires no external sensors or sensor-vehicle calibration and operates directly on FMCW LiDAR range and Doppler velocities. We evaluate Dynamic-ICP on three datasets-HeRCULES, HeLiPR, AevaScenes-focusing on highly dynamic scenes. Dynamic-ICP consistently improves rotational stability and translation accuracy over the state-of-the-art methods. Our approach is also simple to integrate into existing pipelines, runs in real time, and provides a lightweight solution for robust registration in dynamic environments. To encourage further research, the code is available at: https://
2.242HAFO: Humanoid Force-Adaptive Control for Intense External Force Interaction Environments¶
2025/11/26 04:58 GTM
Reinforcement learning controllers have made impressive progress in humanoid locomotion and light load manipulation. However, achieving robust and precise motion with strong force interaction remains a significant challenge. Based on the above limitations, this paper proposes HAFO, a dual-agent reinforcement learning control framework that simultaneously optimizes both a robust locomotion strategy and a precise upper-body manipulation strategy through coupled training under external force interaction environments. Simultaneously, we explicitly model the external pulling disturbances through a spring-damper system and achieve fine-grained force control by manipulating the virtual spring. During this process, the reinforcement-learning policy spontaneously generates disturbance-rejection response by exploiting environmental feedback. Moreover, HAFO employs an asymmetric Actor-Critic framework in which the Critic-network access to privileged spring-damping forces guides the actor-network to learn a generalizable, robust policy for resisting external disturbances. The experimental results demonstrate that HAFO achieves stable control of humanoid robot under various strong force interactions, showing remarkable performance in load tasks and ensuring stable robot operation under rope tension disturbances. Project website: hafo
2.243Toward generic control for soft robotic systems¶
2025/11/26 04:58 GTM
Soft robotics has advanced rapidly, yet its control methods remain fragmented: different morphologies and actuation schemes still require task-specific controllers, hindering theoretical integration and large-scale deployment. A generic control framework is therefore essential, and a key obstacle lies in the persistent use of rigid-body control logic, which relies on precise models and strict low-level execution. Such a paradigm is effective for rigid robots but fails for soft robots, where the ability to tolerate and exploit approximate action representations, i.e., control compliance, is the basis of robustness and adaptability rather than a disturbance to be eliminated. Control should thus shift from suppressing compliance to explicitly exploiting it. Human motor control exemplifies this principle: instead of computing exact dynamics or issuing detailed muscle-level commands, it expresses intention through high-level movement tendencies, while reflexes and biomechanical mechanisms autonomously resolve local details. This architecture enables robustness, flexibility, and cross-task generalization. Motivated by this insight, we propose a generic soft-robot control framework grounded in control compliance and validate it across robots with diverse morphologies and actuation mechanisms. The results demonstrate stable, safe, and cross-platform transferable behavior, indicating that embracing control compliance, rather than resisting it, may provide a widely applicable foundation for unified soft-robot control.
2.244CostNav: A Navigation Benchmark for Cost-Aware Evaluation of Embodied Agents¶
2025/11/26 04:58 GTM
Existing navigation benchmarks focus on task success metrics while overlooking economic viability -- critical for commercial deployment of autonomous delivery robots. We introduce \emph{CostNav}, a \textbf{Micro-Navigation Economic Testbed} that evaluates embodied agents through comprehensive cost-revenue analysis aligned with real-world business operations. CostNav models the complete economic lifecycle including hardware, training, energy, maintenance costs, and delivery revenue with service-level agreements, using industry-derived parameters. \textbf{To our knowledge, CostNav is the first work to quantitatively expose the gap between navigation research metrics and commercial viability}, revealing that optimizing for task success fundamentally differs from optimizing for economic deployment. Our cost model uses parameters derived from industry data sources (energy rates, delivery service pricing), and we project from a reduced-scale simulation to realistic deliveries. Under this projection, the baseline achieves 43.0% SLA compliance but is \emph{not} commercially viable: yielding a loss of $30.009 per run with no finite break-even point, because operating costs are dominated by collision-induced maintenance, which accounts for 99.7% of per-run costs and highlights collision avoidance as a key optimization target. We demonstrate a learning-based on-device navigation baseline and establish a foundation for evaluating rule-based navigation, imitation learning, and cost-aware RL training. CostNav bridges the gap between navigation research and commercial deployment, enabling data-driven decisions about economic trade-offs across navigation paradigms.
2.245Hibikino-Musashi@Home 2025 Team Description Paper¶
2025/11/26 04:58 GTM
This paper provides an overview of the techniques employed by Hibikino-Musashi@Home, which intends to participate in the domestic standard platform league. The team developed a dataset generator for training a robot vision system and an open-source development environment running on a Human Support Robot simulator. The large-language-model-powered task planner selects appropriate primitive skills to perform the task requested by the user. Moreover, the team has focused on research involving brain-inspired memory models for adaptation to individual home environments. This approach aims to provide intuitive and personalized assistance. Additionally, the team contributed to the reusability of the navigation system developed by Pumas in RoboCup2024. The team aimed to design a home service robot to assist humans in their homes and continuously attend competitions to evaluate and improve the developed system.
2.246Map-World: Masked Action planning and Path-Integral World Model for Autonomous Driving¶
2025/11/26 04:58 GTM
Motion planning for autonomous driving must handle multiple plausible futures while remaining computationally efficient. Recent end-to-end systems and world-model-based planners predict rich multi-modal trajectories, but typically rely on handcrafted anchors or reinforcement learning to select a single best mode for training and control. This selection discards information about alternative futures and complicates optimization. We propose MAP-World, a prior-free multi-modal planning framework that couples masked action planning with a path-weighted world model. The Masked Action Planning (MAP) module treats future ego motion as masked sequence completion: past waypoints are encoded as visible tokens, future waypoints are represented as mask tokens, and a driving-intent path provides a coarse scaffold. A compact latent planning state is expanded into multiple trajectory queries with injected noise, yielding diverse, temporally consistent modes without anchor libraries or teacher policies. A lightweight world model then rolls out future BEV semantics conditioned on each candidate trajectory. During training, semantic losses are computed as an expectation over modes, using trajectory probabilities as discrete path weights, so the planner learns from the full distribution of plausible futures instead of a single selected path. On NAVSIM, our method matches anchor-based approaches and achieves state-of-the-art performance among world-model-based methods, while avoiding reinforcement learning and maintaining real-time inference latency.
2.247Active3D: Active High-Fidelity 3D Reconstruction via Hierarchical Uncertainty Quantification¶
2025/11/26 04:58 GTM
In this paper, we present an active exploration framework for high-fidelity 3D reconstruction that incrementally builds a multi-level uncertainty space and selects next-best-views through an uncertainty-driven motion planner. We introduce a hybrid implicit-explicit representation that fuses neural fields with Gaussian primitives to jointly capture global structural priors and locally observed details. Based on this hybrid state, we derive a hierarchical uncertainty volume that quantifies both implicit global structure quality and explicit local surface confidence. To focus optimization on the most informative regions, we propose an uncertainty-driven keyframe selection strategy that anchors high-entropy viewpoints as sparse attention nodes, coupled with a viewpoint-space sliding window for uncertainty-aware local refinement. The planning module formulates next-best-view selection as an Expected Hybrid Information Gain problem and incorporates a risk-sensitive path planner to ensure efficient and safe exploration. Extensive experiments on challenging benchmarks demonstrate that our approach consistently achieves state-of-the-art accuracy, completeness, and rendering quality, highlighting its effectiveness for real-world active reconstruction and robotic perception tasks.
2.248ShapeForce: Low-Cost Soft Robotic Wrist for Contact-Rich Manipulation¶
2025/11/26 04:58 GTM
Contact feedback is essential for contact-rich robotic manipulation, as it allows the robot to detect subtle interaction changes and adjust its actions accordingly. Six- axis force-torque sensors are commonly used to obtain contact feedback, but their high cost and fragility have discouraged many researchers from adopting them in contact-rich tasks. To offer a more cost-efficient and easy-accessible source of contact feedback, we present ShapeForce, a low-cost, plug-and-play soft wrist that provides force-like signals for contact-rich robotic manipulation. Inspired by how humans rely on relative force changes in contact rather than precise force magnitudes, ShapeForce converts external force and torque into measurable deformations of its compliant core, which are then estimated via marker-based pose tracking and converted into force-like signals. Our design eliminates the need for calibration or specialized electronics to obtain exact values, and instead focuses on capturing force and torque changes sufficient for enabling contact-rich manipulation. Extensive experiments across diverse contact-rich tasks and manipulation policies demonstrate that ShapeForce delivers performance comparable to six-axis force-torque sensors at an extremely low cost.
2.249Collaborate sim and real: Robot Bin Packing Learning in Real-world and Physical Engine¶
2025/11/26 04:58 GTM
The 3D bin packing problem, with its diverse industrial applications, has garnered significant research attention in recent years. Existing approaches typically model it as a discrete and static process, while real-world applications involve continuous gravity-driven interactions. This idealized simplification leads to infeasible deployments (e.g., unstable packing) in practice. Simulations with physical engine offer an opportunity to emulate continuous gravity effects, enabling the training of reinforcement learning (RL) agents to address such limitations and improve packing stability. However, a simulation-to-reality gap persists due to dynamic variations in physical properties of real-world objects, such as various friction coefficients, elasticity, and non-uniform weight distributions. To bridge this gap, we propose a hybrid RL framework that collaborates with physical simulation with real-world data feedback. Firstly, domain randomization is applied during simulation to expose agents to a spectrum of physical parameters, enhancing their generalization capability. Secondly, the RL agent is fine-tuned with real-world deployment feedback, further reducing collapse rates. Extensive experiments demonstrate that our method achieves lower collapse rates in both simulated and real-world scenarios. Large-scale deployments in logistics systems validate the practical effectiveness, with a 35% reduction in packing collapse compared to baseline methods.
2.250CoC-VLA: Delving into Adversarial Domain Transfer for Explainable Autonomous Driving via Chain-of-Causality Visual-Language-Action Model¶
2025/11/26 04:58 GTM
Autonomous driving represents a prominent application of artificial intelligence. Recent approaches have shifted from focusing solely on common scenarios to addressing complex, long-tail situations such as subtle human behaviors, traffic accidents, and non-compliant driving patterns. Given the demonstrated capabilities of large language models (LLMs) in understanding visual and natural language inputs and following instructions, recent methods have integrated LLMs into autonomous driving systems to enhance reasoning, interpretability, and performance across diverse scenarios. However, existing methods typically rely either on real-world data, which is suitable for industrial deployment, or on simulation data tailored to rare or hard case scenarios. Few approaches effectively integrate the complementary advantages of both data sources. To address this limitation, we propose a novel VLM-guided, end-to-end adversarial transfer framework for autonomous driving that transfers long-tail handling capabilities from simulation to real-world deployment, named CoC-VLA. The framework comprises a teacher VLM model, a student VLM model, and a discriminator. Both the teacher and student VLM models utilize a shared base architecture, termed the Chain-of-Causality Visual-Language Model (CoC VLM), which integrates temporal information via an end-to-end text adapter. This architecture supports chain-of-thought reasoning to infer complex driving logic. The teacher and student VLM models are pre-trained separately on simulated and real-world datasets. The discriminator is trained adversarially to facilitate the transfer of long-tail handling capabilities from simulated to real-world environments by the student VLM model, using a novel backpropagation strategy.
2.251Reasoning-VLA: A Fast and General Vision-Language-Action Reasoning Model for Autonomous Driving¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) models have recently shown strong decision-making capabilities in autonomous driving. However, existing VLAs often struggle with achieving efficient inference and generalizing to novel autonomous vehicle configurations and driving scenarios. In this paper, we propose Reasoning-VLA, a general and fast action-generation VLA framework. The proposed model employs a set of learnable action queries, initialized via Gaussian sampling from ground-truth trajectories within the training corpus. These learnable queries interact with reasoning-enhanced vision-language features to generate continuous action trajectories in parallel. To promote robust generalization, we consolidate eight publicly available autonomous driving datasets into a standardized, Chain-of-Thought reasoning-based, and easy-to-use data format for model training. Leveraging both supervised learning and reinforcement learning fine-tuning, extensive empirical evaluations across multiple benchmarks demonstrate that Reasoning-VLA achieves state-of-the-art performance, superior generalization capability, and the excellent inference speed reported to date.
2.252Improved Linear-Time Construction of Minimal Dominating Set via Mobile Agents¶
2025/11/26 04:58 GTM
Mobile agents have emerged as a powerful framework for solving fundamental graph problems in distributed settings in recent times. These agents, modelled as autonomous physical or software entities, possess local computation power, finite memory and have the ability to traverse a graph, offering efficient solutions to a range of classical problems. In this work, we focus on the problem of computing a \emph{minimal dominating set} (mDS) in anonymous graphs using mobile agents. Building on the recently proposed optimal dispersion algorithm on the synchronous mobile agent model, we design two new algorithms that achieve a \emph{linear-time} solution for this problem in the synchronous setting. Specifically, given a connected -node graph with agents initially placed in either rooted or arbitrary configurations, we show that an mDS can be computed in rounds using only bits of memory per agent, without using any prior knowledge of any global parameters. This improves upon the best-known complexity results in the literature over the same model. In addition, as natural by-products of our methodology, our algorithms also construct a spanning tree and elect a unique leader in rounds, which are also important results of independent interest in the mobile-agent framework.
2.253MAPS: Preserving Vision-Language Representations via Module-Wise Proximity Scheduling for Better Vision-Language-Action Generalization¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) models inherit strong priors from pretrained Vision-Language Models (VLMs), but naive fine-tuning often disrupts these representations and harms generalization. Existing fixes -- freezing modules or applying uniform regularization -- either overconstrain adaptation or ignore the differing roles of VLA components. We present MAPS (Module-Wise Proximity Scheduling), the first robust fine-tuning framework for VLAs. Through systematic analysis, we uncover an empirical order in which proximity constraints should be relaxed to balance stability and flexibility. MAPS linearly schedules this relaxation, enabling visual encoders to stay close to their pretrained priors while action-oriented language layers adapt more freely. MAPS introduces no additional parameters or data, and can be seamlessly integrated into existing VLAs. Across MiniVLA-VQ, MiniVLA-OFT, OpenVLA-OFT, and challenging benchmarks such as SimplerEnv, CALVIN, LIBERO, as well as real-world evaluations on the Franka Emika Panda platform, MAPS consistently boosts both in-distribution and out-of-distribution performance (up to +30%). Our findings highlight empirically guided proximity to pretrained VLMs as a simple yet powerful principle for preserving broad generalization in VLM-to-VLA transfer.
2.254Human-Centered Cooperative Control Coupling Autonomous and Haptic Shared Control via Control Barrier Function¶
2025/11/26 04:58 GTM
Haptic shared control (HSC) is effective in teleoperation when full autonomy is limited by uncertainty or sensing constraints. However, autonomous control performance achieved by maximizing HSC strength is limited because the dynamics of the joystick and human arm affect the robot’s behavior. We propose a cooperative framework coupling a joystick-independent autonomous controller with HSC. A control barrier function ignores joystick inputs within a safe region determined by the human operator in real-time, while HSC is engaged otherwise. A pilot experiment on simulated tasks with tele-operated underwater robot in virtual environment demonstrated improved accuracy and reduced required time over conventional HSC.
2.255GigaWorld-0: World Models as Data Engine to Empower Embodied AI¶
2025/11/26 04:58 GTM
World models are emerging as a foundational paradigm for scalable, data-efficient embodied AI. In this work, we present GigaWorld-0, a unified world model framework designed explicitly as a data engine for Vision-Language-Action (VLA) learning. GigaWorld-0 integrates two synergistic components: GigaWorld-0-Video, which leverages large-scale video generation to produce diverse, texture-rich, and temporally coherent embodied sequences under fine-grained control of appearance, camera viewpoint, and action semantics; and GigaWorld-0-3D, which combines 3D generative modeling, 3D Gaussian Splatting reconstruction, physically differentiable system identification, and executable motion planning to ensure geometric consistency and physical realism. Their joint optimization enables the scalable synthesis of embodied interaction data that is visually compelling, spatially coherent, physically plausible, and instruction-aligned. Training at scale is made feasible through our efficient GigaTrain framework, which exploits FP8-precision and sparse attention to drastically reduce memory and compute requirements. We conduct comprehensive evaluations showing that GigaWorld-0 generates high-quality, diverse, and controllable data across multiple dimensions. Critically, VLA model (e.g., GigaBrain-0) trained on GigaWorld-0-generated data achieve strong real-world performance, significantly improving generalization and task success on physical robots without any real-world interaction during training.
2.256Unifying Perception and Action: A Hybrid-Modality Pipeline with Implicit Visual Chain-of-Thought for Robotic Action Generation¶
2025/11/26 04:58 GTM
Vision-Language-Action (VLA) models built upon Chain-of-Thought (CoT) have achieved remarkable success in advancing general-purpose robotic agents, owing to its significant perceptual comprehension. Recently, since text-only CoT struggles to adequately capture scene details in complex spatial environments, a highly promising strategy involves leveraging visual priors to guide robotic action generation. Nevertheless, these strategies face two inherent challenges: (i) a modality gap between visual observations and low-level actions, and (ii) unstable training due to competing objectives between visual prediction and action generation. To address these challenges, we propose a Vision-Integrated Trajectory Alignment (VITA) framework that learns a shared discrete latent space for vision and action, enabling joint modeling of perception and motor control. VITA introduces a implicit visual CoT: autoregressively generated tokens is simultaneously decoded into future frames predictions and robot actions, thereby internalizing visual dynamics as an inductive bias for motion planning. Extensive experiments on simulated and real-world environments demonstrate state-of-the-art performance. VITA improves 14.5%, 9.6% and 12.1% over existing baselines on CALVIN, LIBERO and SimplerEnv. Furthermore, VITA attains an average success rate of 80.5% across six real-world tasks, demonstrating its potential as a generalist robotic manipulation model.
2.257Prune-Then-Plan: Step-Level Calibration for Stable Frontier Exploration in Embodied Question Answering¶
2025/11/26 04:58 GTM
Large vision-language models (VLMs) have improved embodied question answering (EQA) agents by providing strong semantic priors for open-vocabulary reasoning. However, when used directly for step-level exploration, VLMs often exhibit frontier oscillations, unstable back-and-forth movements caused by overconfidence and miscalibration, leading to inefficient navigation and degraded answer quality. We propose Prune-Then-Plan, a simple and effective framework that stabilizes exploration through step-level calibration. Instead of trusting raw VLM scores, our method prunes implausible frontier choices using a Holm-Bonferroni inspired pruning procedure and then delegates final decisions to a coverage-based planner. This separation converts overconfident predictions into conservative, interpretable actions by relying on human-level judgments to calibrate the step-level behavior of VLMs. Integrated into the 3D-Mem EQA framework, our approach achieves relative improvements of up to 49% and 33% in visually grounded SPL and LLM-Match metrics respectively over baselines. Overall, our method achieves better scene coverage under equal exploration budgets on both OpenEQA and EXPRESS-Bench datasets.
2.258Maritime Small Object Detection from UAVs using Deep Learning with Altitude-Aware Dynamic Tiling¶
2025/11/26 04:58 GTM
Unmanned Aerial Vehicles (UAVs) are crucial in Search and Rescue (SAR) missions due to their ability to monitor vast maritime areas. However, small objects often remain difficult to detect from high altitudes due to low object-to-background pixel ratios. We propose an altitude-aware dynamic tiling method that scales and adaptively subdivides the image into tiles for enhanced small object detection. By integrating altitude-dependent scaling with an adaptive tiling factor, we reduce unnecessary computation while maintaining detection performance. Tested on the SeaDronesSee dataset [1] with YOLOv5 [2] and Slicing Aided Hyper Inference (SAHI) framework [3], our approach improves Mean Average Precision (mAP) for small objects by 38% compared to a baseline and achieves more than double the inference speed compared to static tiling. This approach enables more efficient and accurate UAV-based SAR operations under diverse conditions.
2.259Whole-Body Inverse Dynamics MPC for Legged Loco-Manipulation¶
2025/11/26 04:58 GTM
Loco-manipulation demands coordinated whole-body motion to manipulate objects effectively while maintaining locomotion stability, presenting significant challenges for both planning and control. In this work, we propose a whole-body model predictive control (MPC) framework that directly optimizes joint torques through full-order inverse dynamics, enabling unified motion and force planning and execution within a single predictive layer. This approach allows emergent, physically consistent whole-body behaviors that account for the system’s dynamics and physical constraints. We implement our MPC formulation using open software frameworks (Pinocchio and CasADi), along with the state-of-the-art interior-point solver Fatrop. In real-world experiments on a Unitree B2 quadruped equipped with a Unitree Z1 manipulator arm, our MPC formulation achieves real-time performance at 80 Hz. We demonstrate loco-manipulation tasks that demand fine control over the end-effector’s position and force to perform real-world interactions like pulling heavy loads, pushing boxes, and wiping whiteboards.
2.260Multi-Agent gatekeeper: Safe Flight Planning and Formation Control for Urban Air Mobility¶
2025/11/26 04:58 GTM
We present Multi-Agent gatekeeper, a framework that provides provable safety guarantees for leader-follower formation control in cluttered 3D environments. Existing methods face a trad-off: online planners and controllers lack formal safety guarantees, while offline planners lack adaptability to changes in the number of agents or desired formation. To address this gap, we propose a hybrid architecture where a single leader tracks a pre-computed, safe trajectory, which serves as a shared trajectory backup set for all follower agents. Followers execute a nominal formation-keeping tracking controller, and are guaranteed to remain safe by always possessing a known-safe backup maneuver along the leader’s path. We formally prove this method ensures collision avoidance with both static obstacles and other agents. The primary contributions are: (1) the multi-agent gatekeeper algorithm, which extends our single-agent gatekeeper framework to multi-agent systems; (2) the trajectory backup set for provably safe inter-agent coordination for leader-follower formation control; and (3) the first application of the gatekeeper framework in a 3D environment. We demonstrate our approach in a simulated 3D urban environment, where it achieved a 100% collision-avoidance success rate across 100 randomized trials, significantly outperforming baseline CBF and NMPC methods. Finally, we demonstrate the physical feasibility of the resulting trajectories on a team of quadcopters.
2.261IndEgo: A Dataset of Industrial Scenarios and Collaborative Work for Egocentric Assistants¶
2025/11/26 04:58 GTM
We introduce IndEgo, a multimodal egocentric and exocentric dataset addressing common industrial tasks, including assembly/disassembly, logistics and organisation, inspection and repair, woodworking, and others. The dataset contains 3,460 egocentric recordings (approximately 197 hours), along with 1,092 exocentric recordings (approximately 97 hours). A key focus of the dataset is collaborative work, where two workers jointly perform cognitively and physically intensive tasks. The egocentric recordings include rich multimodal data and added context via eye gaze, narration, sound, motion, and others. We provide detailed annotations (actions, summaries, mistake annotations, narrations), metadata, processed outputs (eye gaze, hand pose, semi-dense point cloud), and benchmarks on procedural and non-procedural task understanding, Mistake Detection, and reasoning-based Question Answering. Baseline evaluations for Mistake Detection, Question Answering and collaborative task understanding show that the dataset presents a challenge for the state-of-the-art multimodal models. Our dataset is available at: https://
2.262Anytime-Feasible First-Order Optimization via Safe Sequential QCQP¶
2025/11/26 04:58 GTM
This paper presents the Safe Sequential Quadratically Constrained Quadratic Programming (SS-QCQP) algorithm, a first-order method for smooth inequality-constrained nonconvex optimization that guarantees feasibility at every iteration. The method is derived from a continuous-time dynamical system whose vector field is obtained by solving a convex QCQP that enforces monotonic descent of the objective and forward invariance of the feasible set. The resulting continuous-time dynamics achieve an convergence rate to first-order stationary points under standard constraint qualification conditions. We then propose a safeguarded Euler discretization with adaptive step-size selection that preserves this convergence rate while maintaining both descent and feasibility in discrete time. To enhance scalability, we develop an active-set variant (SS-QCQP-AS) that selectively enforces constraints near the boundary, substantially reducing computational cost without compromising theoretical guarantees. Numerical experiments on a multi-agent nonlinear optimal control problem demonstrate that SS-QCQP and SS-QCQP-AS maintain feasibility, exhibit the predicted convergence behavior, and deliver solution quality comparable to second-order solvers such as SQP and IPOPT.
2.263Development of a Testbed for Autonomous Vehicles: Integrating MPC Control with Monocular Camera Lane Detection¶
2025/11/26 04:58 GTM
Autonomous vehicles are becoming popular day by day not only for autonomous road traversal but also for industrial automation, farming and military. Most of the standard vehicles follow the Ackermann style steering mechanism. This has become to de facto standard for large and long faring vehicles. The local planner of an autonomous vehicle controls the low-level vehicle movement upon which the vehicle will perform its motor actuation. In our work, we focus on autonomous vehicles in road and perform experiments to analyze the effect of low-level controllers in the simulation and a real environment. To increase the precision and stability of trajectory tracking in autonomous cars, a novel method that combines lane identification with Model Predictive Control (MPC) is presented. The research focuses on camera-equipped autonomous vehicles and uses methods like edge recognition, sliding window-based straight-line identification for lane line extraction, and dynamic region of interest (ROI) extraction. Next, to follow the identified lane line, an MPC built on a bicycle vehicle dynamics model is created. A single-lane road simulation model is built using ROS Gazebo and tested in order to verify the controller’s performance. The root mean square error between the optimal tracking trajectory and the target trajectory was reduced by 27.65% in the simulation results, demonstrating the high robustness and flexibility of the developed controller.
2.264Flow-Based Path Planning for Multiple Homogenous UAVs for Outdoor Formation-Flying¶
2025/11/26 04:58 GTM
Collision-free path planning is the most crucial component in multi-UAV formation-flying (MFF). We use unlabeled homogenous quadcopters (UAVs) to demonstrate the use of a flow network to create complete (inter-UAV) collision-free paths. This procedure has three main parts: 1) Creating a flow network graph from physical GPS coordinates, 2) Finding a path of minimum cost (least distance) using any graph-based path-finding algorithm, and 3) Implementing the Ford-Fulkerson Method to find the paths with the maximum flow (no collision). Simulations of up to 64 UAVs were conducted for various formations, followed by a practical experiment with 3 quadcopters for testing physical plausibility and feasibility. The results of these tests show the efficacy of this method’s ability to produce safe, collision-free paths.
2.265Online Learning-Enhanced High Order Adaptive Safety Control¶
2025/11/26 04:58 GTM
Control barrier functions (CBFs) are an effective model-based tool to formally certify the safety of a system. With the growing complexity of modern control problems, CBFs have received increasing attention in both optimization-based and learning-based control communities as a safety filter, owing to their provable guarantees. However, success in transferring these guarantees to real-world systems is critically tied to model accuracy. For example, payloads or wind disturbances can significantly influence the dynamics of an aerial vehicle and invalidate the safety guarantee. In this work, we propose an efficient yet flexible online learning-enhanced high-order adaptive control barrier function using Neural ODEs. Our approach improves the safety of a CBF-certified system on the fly, even under complex time-varying model perturbations. In particular, we deploy our hybrid adaptive CBF controller on a 38g nano quadrotor, keeping a safe distance from the obstacle, against 18km/h wind.
2.266Robot-Powered Data Flywheels: Deploying Robots in the Wild for Continual Data Collection and Foundation Model Adaptation¶
2025/11/26 04:58 GTM
Foundation models (FM) have unlocked powerful zero-shot capabilities in vision and language, yet their reliance on internet pretraining data leaves them brittle in unstructured, real-world settings. The messy, real-world data encountered during deployment (e.g. occluded or multilingual text) remains massively underrepresented in existing corpora. Robots, as embodied agents, are uniquely positioned to close this gap: they can act in physical environments to collect large-scale, real-world data that enriches FM training with precisely the examples current models lack. We introduce the Robot-Powered Data Flywheel, a framework that transforms robots from FM consumers into data generators. By deploying robots equipped with FMs in the wild, we enable a virtuous cycle: robots perform useful tasks while collecting real-world data that improves both domain-specific adaptation and domain-adjacent generalization. We instantiate this framework with Scanford, a mobile manipulator deployed in the East Asia Library for 2 weeks. Scanford autonomously scans shelves, identifies books using a vision-language model (VLM), and leverages the library catalog to label images without human annotation. This deployment both aids librarians and produces a dataset to finetune the underlying VLM, improving performance on the domain-specific in-the-wild library setting and on domain-adjacent multilingual OCR benchmarks. Using data collected from 2103 shelves, Scanford improves VLM performance on book identification from 32.0% to 71.8% and boosts domain-adjacent multilingual OCR from 24.8% to 46.6% (English) and 30.8% to 38.0% (Chinese), while saving an ~18.7 hrs of human time. These results highlight how robot-powered data flywheels can both reduce human effort in real deployments and unlock new pathways for continually adapting FMs to the messiness of reality. More details are at: https://
2.267Learning Massively Multitask World Models for Continuous Control¶
2025/11/26 04:58 GTM
General-purpose control demands agents that act across many tasks and embodiments, yet research on reinforcement learning (RL) for continuous control remains dominated by single-task or offline regimes, reinforcing a view that online RL does not scale. Inspired by the foundation model recipe (large-scale pretraining followed by light RL) we ask whether a single agent can be trained on hundreds of tasks with online interaction. To accelerate research in this direction, we introduce a new benchmark with 200 diverse tasks spanning many domains and embodiments, each with language instructions, demonstrations, and optionally image observations. We then present \emph{Newt}, a language-conditioned multitask world model that is first pretrained on demonstrations to acquire task-aware representations and action priors, and then jointly optimized with online interaction across all tasks. Experiments show that Newt yields better multitask performance and data-efficiency than a set of strong baselines, exhibits strong open-loop control, and enables rapid adaptation to unseen tasks. We release our environments, demonstrations, code for training and evaluation, as well as 200+ checkpoints.
2.268A Virtual Mechanical Interaction Layer Enables Resilient Human-to-Robot Object Handovers¶
2025/11/26 04:58 GTM
Object handover is a common form of interaction that is widely present in collaborative tasks. However, achieving it efficiently remains a challenge. We address the problem of ensuring resilient robotic actions that can adapt to complex changes in object pose during human-to-robot object handovers. We propose the use of Virtual Model Control to create an interaction layer that controls the robot and adapts to the dynamic changes in the handover process. Additionally, we propose the use of augmented reality to facilitate bidirectional communication between humans and robots during handovers. We assess the performance of our controller in a set of experiments that demonstrate its resilience to various sources of uncertainties, including complex changes to the object’s pose during the handover. Finally, we performed a user study with 16 participants to understand human preferences for different robot control profiles and augmented reality visuals in object handovers. Our results showed a general preference for the proposed approach and revealed insights that can guide further development in adapting the interaction with the user.
2.269Discover, Learn, and Reinforce: Scaling Vision-Language-Action Pretraining with Diverse RL-Generated Trajectories¶
2025/11/26 04:58 GTM
Scaling vision-language-action (VLA) model pre-training requires large volumes of diverse, high-quality manipulation trajectories. Most current data is obtained via human teleoperation, which is expensive and difficult to scale. Reinforcement learning (RL) methods learn useful skills through autonomous exploration, making them a viable approach for generating data. However, standard RL training collapses to a narrow execution pattern, limiting its utility for large-scale pre-training. We propose Discover, Lea rn and Reinforce (DLR), an information-theoretic pattern discovery framework that generates multiple distinct, high-success behavioral patterns for VLA pretraining. Empirically, DLR generates a markedly more diverse trajectory corpus on LIBERO. Specifically, it learns multiple distinct, high-success strategies for the same task where standard RL discovers only one, and hence it covers substantially broader regions of the state-action space. When adapted to unseen downstream task suites, VLA models pretrained on our diverse RL data surpass counterparts trained on equal-sized standard RL datasets. Moreover, DLR exhibits positive data-scaling behavior that single-pattern RL lacks. These results position multi-pattern RL as a practical, scalable data engine for embodied foundation models.
2.270A K-means Inspired Solution Framework for Large-Scale Multi-Traveling Salesman Problems¶
2025/11/26 04:58 GTM
The Multi-Traveling Salesman Problem (MTSP) is a commonly used mathematical model for multi-agent task allocation. However, as the number of agents and task targets increases, existing optimization-based methods often incur prohibitive computational costs, posing significant challenges to large-scale coordination in unmanned systems. To address this issue, this paper proposes a K-means-inspired task allocation framework that reformulates the MTSP as a spatially constrained classification process. By leveraging spatial coherence, the proposed method enables fast estimation of path costs and efficient task grouping, thereby fundamentally reducing overall computational complexity. Extensive simulation results demonstrate that the framework can maintain high solution quality even in extremely large-scale scenarios-for instance, in tasks involving 1000 agents and 5000 targets. The findings indicate that this “cluster-then-route” decomposition strategy offers an efficient and reliable solution for large-scale multi-agent task allocation.
2.271AVS: A Computational and Hierarchical Storage System for Autonomous Vehicles¶
2025/11/26 04:58 GTM
Autonomous vehicles (AVs) are evolving into mobile computing platforms, equipped with powerful processors and diverse sensors that generate massive heterogeneous data, for example 14 TB per day. Supporting emerging third-party applications calls for a general-purpose, queryable onboard storage system. Yet today’s data loggers and storage stacks in vehicles fail to deliver efficient data storage and retrieval. This paper presents AVS, an Autonomous Vehicle Storage system that co-designs computation with a hierarchical layout: modality-aware reduction and compression, hot-cold tiering with daily archival, and a lightweight metadata layer for indexing. The design is grounded with system-level benchmarks on AV data that cover SSD and HDD filesystems and embedded indexing, and is validated on embedded hardware with real L4 autonomous driving traces. The prototype delivers predictable real-time ingest, fast selective retrieval, and substantial footprint reduction under modest resource budgets. The work also outlines observations and next steps toward more scalable and longer deployments to motivate storage as a first-class component in AV stacks.
2.272Strong Duality and Dual Ascent Approach to Continuous-Time Chance-Constrained Stochastic Optimal Control¶
2025/11/26 04:58 GTM
The paper addresses a continuous-time continuous-space chance-constrained stochastic optimal control (SOC) problem where the probability of failure to satisfy given state constraints is explicitly bounded. We leverage the notion of exit time from continuous-time stochastic calculus to formulate a chance-constrained SOC problem. Without any conservative approximation, the chance constraint is transformed into an expectation of an indicator function which can be incorporated into the cost function by considering a dual formulation. We then express the dual function in terms of the solution to a Hamilton-Jacobi-Bellman partial differential equation parameterized by the dual variable. Under a certain assumption on the system dynamics and cost function, it is shown that a strong duality holds between the primal chance-constrained problem and its dual. The Path integral approach is utilized to numerically solve the dual problem via gradient ascent using open-loop samples of system trajectories. We present simulation studies on chance-constrained motion planning for spatial navigation of mobile robots and the solution of the path integral approach is compared with that of the finite difference method.