Skip to article frontmatterSkip to article content

1Daily News

Generated at 2025-11-20 04:58:08

We have 184 news from different sources.

2feed

2.1清华团队“密度法则”登上Nature子刊,揭示大模型高效化发展新规律

src root src

2025/11/19 10:36 GTM

参数越大越强的时代结束了?

2.2点击下载!中国科研人员AI使用率全面领跑:Wiley发布全新调研报告

src root src

2025/11/19 10:36 GTM

3paper

3.1First Frame Is the Place to Go for Video Content Customization

arxiv html pdf kimi

2025/11/20 04:56 GTM

What role does the first frame play in video generation models? Traditionally, it’s viewed as the spatial-temporal starting point of a video, merely a seed for subsequent animation. In this work, we reveal a fundamentally different perspective: video models implicitly treat the first frame as a conceptual memory buffer that stores visual entities for later reuse during generation. Leveraging this insight, we show that it’s possible to achieve robust and generalized video content customization in diverse scenarios, using only 20-50 training examples without architectural changes or large-scale finetuning. This unveils a powerful, overlooked capability of video generation models for reference-based video customization.

3.2MoDES: Accelerating Mixture-of-Experts Multimodal Large Language Models via Dynamic Expert Skipping

arxiv html pdf kimi

2025/11/20 04:56 GTM

Mixture-of-Experts (MoE) Multimodal large language models (MLLMs) excel at vision-language tasks, but they suffer from high computational inefficiency. To reduce inference overhead, expert skipping methods have been proposed to deactivate redundant experts based on the current input tokens. However, we find that applying these methods-originally designed for unimodal large language models (LLMs)-to MLLMs results in considerable performance degradation. This is primarily because such methods fail to account for the heterogeneous contributions of experts across MoE layers and modality-specific behaviors of tokens within these layers. Motivated by these findings, we propose MoDES, the first training-free framework that adaptively skips experts to enable efficient and accurate MoE MLLM inference. It incorporates a globally-modulated local gating (GMLG) mechanism that integrates global layer-wise importance into local routing probabilities to accurately estimate per-token expert importance. A dual-modality thresholding (DMT) method is then applied, which processes tokens from each modality separately, to derive the skipping schedule. To set the optimal thresholds, we introduce a frontier search algorithm that exploits monotonicity properties, cutting convergence time from several days to a few hours. Extensive experiments for 3 model series across 13 benchmarks demonstrate that MoDES far outperforms previous approaches. For instance, when skipping 88% experts for Qwen3-VL-MoE-30B-A3B-Instruct, the performance boost is up to 10.67% (97.33% vs. 86.66%). Furthermore, MoDES significantly enhances inference speed, improving the prefilling time by 2.16×\times and the decoding time by 1.26×\times.

3.3VisPlay: Self-Evolving Vision-Language Models from Images

arxiv html pdf kimi

2025/11/20 04:56 GTM

Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/

3.4FlashMesh: Faster and Better Autoregressive Mesh Synthesis via Structured Speculation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Autoregressive models can generate high-quality 3D meshes by sequentially producing vertices and faces, but their token-by-token decoding results in slow inference, limiting practical use in interactive and large-scale applications. We present FlashMesh, a fast and high-fidelity mesh generation framework that rethinks autoregressive decoding through a predict-correct-verify paradigm. The key insight is that mesh tokens exhibit strong structural and geometric correlations that enable confident multi-token speculation. FlashMesh leverages this by introducing a speculative decoding scheme tailored to the commonly used hourglass transformer architecture, enabling parallel prediction across face, point, and coordinate levels. Extensive experiments show that FlashMesh achieves up to a 2 x speedup over standard autoregressive models while also improving generation fidelity. Our results demonstrate that structural priors in mesh data can be systematically harnessed to accelerate and enhance autoregressive generation.

3.5US-X Complete: A Multi-Modal Approach to Anatomical 3D Shape Recovery

arxiv html pdf kimi

2025/11/20 04:56 GTM

Ultrasound offers a radiation-free, cost-effective solution for real-time visualization of spinal landmarks, paraspinal soft tissues and neurovascular structures, making it valuable for intraoperative guidance during spinal procedures. However, ultrasound suffers from inherent limitations in visualizing complete vertebral anatomy, in particular vertebral bodies, due to acoustic shadowing effects caused by bone. In this work, we present a novel multi-modal deep learning method for completing occluded anatomical structures in 3D ultrasound by leveraging complementary information from a single X-ray image. To enable training, we generate paired training data consisting of: (1) 2D lateral vertebral views that simulate X-ray scans, and (2) 3D partial vertebrae representations that mimic the limited visibility and occlusions encountered during ultrasound spine imaging. Our method integrates morphological information from both imaging modalities and demonstrates significant improvements in vertebral reconstruction (p < 0.001) compared to state of art in 3D ultrasound vertebral completion. We perform phantom studies as an initial step to future clinical translation, and achieve a more accurate, complete volumetric lumbar spine visualization overlayed on the ultrasound scan without the need for registration with preoperative modalities such as computed tomography. This demonstrates that integrating a single X-ray projection mitigates ultrasound’s key limitation while preserving its strengths as the primary imaging modality. Code and data can be found at https://github.com/miruna20/US-X-Complete

3.6Learning from Mistakes: Loss-Aware Memory Enhanced Continual Learning for LiDAR Place Recognition

arxiv html pdf kimi

2025/11/20 04:56 GTM

LiDAR place recognition plays a crucial role in SLAM, robot navigation, and autonomous driving. However, existing LiDAR place recognition methods often struggle to adapt to new environments without forgetting previously learned knowledge, a challenge widely known as catastrophic forgetting. To address this issue, we propose KDF+, a novel continual learning framework for LiDAR place recognition that extends the KDF paradigm with a loss-aware sampling strategy and a rehearsal enhancement mechanism. The proposed sampling strategy estimates the learning difficulty of each sample via its loss value and selects samples for replay according to their estimated difficulty. Harder samples, which tend to encode more discriminative information, are sampled with higher probability while maintaining distributional coverage across the dataset. In addition, the rehearsal enhancement mechanism encourages memory samples to be further refined during new-task training by slightly reducing their loss relative to previous tasks, thereby reinforcing long-term knowledge retention. Extensive experiments across multiple benchmarks demonstrate that KDF+ consistently outperforms existing continual learning methods and can be seamlessly integrated into state-of-the-art continual learning for LiDAR place recognition frameworks to yield significant and stable performance gains. The code will be available at https://github.com/repo/KDF-plus.

3.7MHR: Momentum Human Rig

arxiv html pdf kimi

2025/11/20 04:56 GTM

We present MHR, a parametric human body model that combines the decoupled skeleton/shape paradigm of ATLAS with a flexible, modern rig and pose corrective system inspired by the Momentum library. Our model enables expressive, anatomically plausible human animation, supporting non-linear pose correctives, and is designed for robust integration in AR/VR and graphics pipelines.

3.8CompTrack: Information Bottleneck-Guided Low-Rank Dynamic Token Compression for Point Cloud Tracking

arxiv html pdf kimi

2025/11/20 04:56 GTM

3D single object tracking (SOT) in LiDAR point clouds is a critical task in computer vision and autonomous driving. Despite great success having been achieved, the inherent sparsity of point clouds introduces a dual-redundancy challenge that limits existing trackers: (1) vast spatial redundancy from background noise impairs accuracy, and (2) informational redundancy within the foreground hinders efficiency. To tackle these issues, we propose CompTrack, a novel end-to-end framework that systematically eliminates both forms of redundancy in point clouds. First, CompTrack incorporates a Spatial Foreground Predictor (SFP) module to filter out irrelevant background noise based on information entropy, addressing spatial redundancy. Subsequently, its core is an Information Bottleneck-guided Dynamic Token Compression (IB-DTC) module that eliminates the informational redundancy within the foreground. Theoretically grounded in low-rank approximation, this module leverages an online SVD analysis to adaptively compress the redundant foreground into a compact and highly informative set of proxy tokens. Extensive experiments on KITTI, nuScenes and Waymo datasets demonstrate that CompTrack achieves top-performing tracking performance with superior efficiency, running at a real-time 90 FPS on a single RTX 3090 GPU.

3.9AVATAAR: Agentic Video Answering via Temporal Adaptive Alignment and Reasoning

arxiv html pdf kimi

2025/11/20 04:56 GTM

With the increasing prevalence of video content, effectively understanding and answering questions about long form videos has become essential for numerous applications. Although large vision language models (LVLMs) have enhanced performance, they often face challenges with nuanced queries that demand both a comprehensive understanding and detailed analysis. To overcome these obstacles, we introduce AVATAAR, a modular and interpretable framework that combines global and local video context, along with a Pre Retrieval Thinking Agent and a Rethink Module. AVATAAR creates a persistent global summary and establishes a feedback loop between the Rethink Module and the Pre Retrieval Thinking Agent, allowing the system to refine its retrieval strategies based on partial answers and replicate human-like iterative reasoning. On the CinePile benchmark, AVATAAR demonstrates significant improvements over a baseline, achieving relative gains of +5.6% in temporal reasoning, +5% in technical queries, +8% in theme-based questions, and +8.2% in narrative comprehension. Our experiments confirm that each module contributes positively to the overall performance, with the feedback loop being crucial for adaptability. These findings highlight AVATAAR’s effectiveness in enhancing video understanding capabilities. Ultimately, AVATAAR presents a scalable solution for long-form Video Question Answering (QA), merging accuracy, interpretability, and extensibility.

3.10From Low-Rank Features to Encoding Mismatch: Rethinking Feature Distillation in Vision Transformers

arxiv html pdf kimi

2025/11/20 04:56 GTM

Feature-map knowledge distillation (KD) is highly effective for convolutional networks but often fails for Vision Transformers (ViTs). To understand this failure and guide method design, we conduct a two-view representation analysis of ViTs. First, a layer-wise Singular Value Decomposition (SVD) of full feature matrices shows that final-layer representations are globally low-rank: for CaiT-S24, only 121/61/34/14121/61/34/14 dimensions suffice to capture 99%/95%/90%/80%99\%/95\%/90\%/80\% of the energy. In principle, this suggests that a compact student plus a simple linear projector should be enough for feature alignment, contradicting the weak empirical performance of standard feature KD. To resolve this paradox, we introduce a token-level Spectral Energy Pattern (SEP) analysis that measures how each token uses channel capacity. SEP reveals that, despite the global low-rank structure, individual tokens distribute energy over most channels, forming a high-bandwidth encoding pattern. This results in an encoding mismatch between wide teachers and narrow students. Motivated by this insight, we propose two minimal, mismatch-driven strategies: (1) post-hoc feature lifting with a lightweight projector retained during inference, or (2) native width alignment that widens only the student’s last block to the teacher’s width. On ImageNet-1K, these strategies reactivate simple feature-map distillation in ViTs, raising DeiT-Tiny accuracy from 74.86%74.86\% to 77.53%77.53\% and 78.23%78.23\% when distilling from CaiT-S24, while also improving standalone students trained without any teacher. Our analysis thus explains why ViT feature distillation fails and shows how exploiting low-rank structure yields effective, interpretable remedies and concrete design guidance for compact ViTs.

3.11Transferable Dual-Domain Feature Importance Attack against AI-Generated Image Detector

arxiv html pdf kimi

2025/11/20 04:56 GTM

Recent AI-generated image (AIGI) detectors achieve impressive accuracy under clean condition. In view of antiforensics, it is significant to develop advanced adversarial attacks for evaluating the security of such detectors, which remains unexplored sufficiently. This letter proposes a Dual-domain Feature Importance Attack (DuFIA) scheme to invalidate AIGI detectors to some extent. Forensically important features are captured by the spatially interpolated gradient and frequency-aware perturbation. The adversarial transferability is enhanced by jointly modeling spatial and frequency-domain feature importances, which are fused to guide the optimization-based adversarial example generation. Extensive experiments across various AIGI detectors verify the cross-model transferability, transparency and robustness of DuFIA.

3.12Computer-Use Agents as Judges for Generative User Interface

arxiv html pdf kimi

2025/11/20 04:56 GTM

Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.

3.13Scriboora: Rethinking Human Pose Forecasting

arxiv html pdf kimi

2025/11/20 04:56 GTM

Human pose forecasting predicts future poses based on past observations, and has many significant applications in areas such as action recognition, autonomous driving or human-robot interaction. This paper evaluates a wide range of pose forecasting algorithms in the task of absolute pose forecasting, revealing many reproducibility issues, and provides a unified training and evaluation pipeline. After drawing a high-level analogy to the task of speech understanding, it is shown that recent speech models can be efficiently adapted to the task of pose forecasting, and improve current state-of-the-art performance. At last the robustness of the models is evaluated, using noisy joint coordinates obtained from a pose estimator model, to reflect a realistic type of noise, which is more close to real-world applications. For this a new dataset variation is introduced, and it is shown that estimated poses result in a substantial performance degradation, and how much of it can be recovered again by unsupervised finetuning.

3.14Multimodal Evaluation of Russian-language Architectures

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.

3.15A Hybrid CNN-ViT-GNN Framework with GAN-Based Augmentation for Intelligent Weed Detection in Precision Agriculture

arxiv html pdf kimi

2025/11/20 04:56 GTM

The task of weed detection is an essential element of precision agriculture since accurate species identification allows a farmer to selectively apply herbicides and fits into sustainable agriculture crop management. This paper proposes a hybrid deep learning framework recipe for weed detection that utilizes Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), and Graph Neural Networks (GNNs) to build robustness to multiple field conditions. A Generative Adversarial Network (GAN)-based augmentation method was imposed to balance class distributions and better generalize the model. Further, a self-supervised contrastive pre-training method helps to learn more features from limited annotated data. Experimental results yield superior results with 99.33% accuracy, precision, recall, and F1-score on multi-benchmark datasets. The proposed model architecture enables local, global, and relational feature representations and offers high interpretability and adaptability. Practically, the framework allows real-time, efficient deployment to edge devices for automated weed detecting, reducing over-reliance on herbicides and providing scalable, sustainable precision-farming options.

3.16Multi-Text Guided Few-Shot Semantic Segmentation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Recent CLIP-based few-shot semantic segmentation methods introduce class-level textual priors to assist segmentation by typically using a single prompt (e.g., a photo of class). However, these approaches often result in incomplete activation of target regions, as a single textual description cannot fully capture the semantic diversity of complex categories. Moreover, they lack explicit cross-modal interaction and are vulnerable to noisy support features, further degrading visual prior quality. To address these issues, we propose the Multi-Text Guided Few-Shot Semantic Segmentation Network (MTGNet), a dual-branch framework that enhances segmentation performance by fusing diverse textual prompts to refine textual priors and guide the cross-modal optimization of visual priors. Specifically, we design a Multi-Textual Prior Refinement (MTPR) module that suppresses interference and aggregates complementary semantic cues to enhance foreground activation and expand semantic coverage for structurally complex objects. We introduce a Text Anchor Feature Fusion (TAFF) module, which leverages multi-text embeddings as semantic anchors to facilitate the transfer of discriminative local prototypes from support images to query images, thereby improving semantic consistency and alleviating intra-class variations. Furthermore, a Foreground Confidence-Weighted Attention (FCWA) module is presented to enhance visual prior robustness by leveraging internal self-similarity within support foreground features. It adaptively down-weights inconsistent regions and effectively suppresses interference in the query segmentation process. Extensive experiments on standard FSS benchmarks validate the effectiveness of MTGNet. In the 1-shot setting, it achieves 76.8% mIoU on PASCAL-5i and 57.4% on COCO-20i, with notable improvements in folds exhibiting high intra-class variations.

3.17Learning to Expand Images for Efficient Visual Autoregressive Modeling

arxiv html pdf kimi

2025/11/20 04:56 GTM

Autoregressive models have recently shown great promise in visual generation by leveraging discrete token sequences akin to language modeling. However, existing approaches often suffer from inefficiency, either due to token-by-token decoding or the complexity of multi-scale representations. In this work, we introduce Expanding Autoregressive Representation (EAR), a novel generation paradigm that emulates the human visual system’s center-outward perception pattern. EAR unfolds image tokens in a spiral order from the center and progressively expands outward, preserving spatial continuity and enabling efficient parallel decoding. To further enhance flexibility and speed, we propose a length-adaptive decoding strategy that dynamically adjusts the number of tokens predicted at each step. This biologically inspired design not only reduces computational cost but also improves generation quality by aligning the generation order with perceptual relevance. Extensive experiments on ImageNet demonstrate that EAR achieves state-of-the-art trade-offs between fidelity and efficiency on single-scale autoregressive models, setting a new direction for scalable and cognitively aligned autoregressive image generation.

3.18Evaluating Low-Light Image Enhancement Across Multiple Intensity Levels

arxiv html pdf kimi

2025/11/20 04:56 GTM

Imaging in low-light environments is challenging due to reduced scene radiance, which leads to elevated sensor noise and reduced color saturation. Most learning-based low-light enhancement methods rely on paired training data captured under a single low-light condition and a well-lit reference. The lack of radiance diversity limits our understanding of how enhancement techniques perform across varying illumination intensities. We introduce the Multi-Illumination Low-Light (MILL) dataset, containing images captured at diverse light intensities under controlled conditions with fixed camera settings and precise illuminance measurements. MILL enables comprehensive evaluation of enhancement algorithms across variable lighting conditions. We benchmark several state-of-the-art methods and reveal significant performance variations across intensity levels. Leveraging the unique multi-illumination structure of our dataset, we propose improvements that enhance robustness across diverse illumination scenarios. Our modifications achieve up to 10 dB PSNR improvement for DSLR and 2 dB for the smartphone on Full HD images.

3.19NTK-Guided Implicit Neural Teaching

arxiv html pdf kimi

2025/11/20 04:56 GTM

Implicit Neural Representations (INRs) parameterize continuous signals via multilayer perceptrons (MLPs), enabling compact, resolution-independent modeling for tasks like image, audio, and 3D reconstruction. However, fitting high-resolution signals demands optimizing over millions of coordinates, incurring prohibitive computational costs. To address it, we propose NTK-Guided Implicit Neural Teaching (NINT), which accelerates training by dynamically selecting coordinates that maximize global functional updates. Leveraging the Neural Tangent Kernel (NTK), NINT scores examples by the norm of their NTK-augmented loss gradients, capturing both fitting errors and heterogeneous leverage (self-influence and cross-coordinate coupling). This dual consideration enables faster convergence compared to existing methods. Through extensive experiments, we demonstrate that NINT significantly reduces training time by nearly half while maintaining or improving representation quality, establishing state-of-the-art acceleration among recent sampling-based strategies.

3.20A Novel CustNetGC Boosted Model with Spectral Features for Parkinson’s Disease Prediction

arxiv html pdf kimi

2025/11/20 04:56 GTM

Parkinson’s disease is a neurodegenerative disorder that can be very tricky to diagnose and treat. Such early symptoms can include tremors, wheezy breathing, and changes in voice quality as critical indicators of neural damage. Notably, there has been growing interest in utilizing changes in vocal attributes as markers for the detection of PD early on. Based on this understanding, the present paper was designed to focus on the acoustic feature analysis based on voice recordings of patients diagnosed with PD and healthy controls (HC). In this paper, we introduce a novel classification and visualization model known as CustNetGC, combining a Convolutional Neural Network (CNN) with Custom Network Grad-CAM and CatBoost to enhance the efficiency of PD diagnosis. We use a publicly available dataset from Figshare, including voice recordings of 81 participants: 40 patients with PD and 41 healthy controls. From these recordings, we extracted the key spectral features: L-mHP and Spectral Slopes. The L-mHP feature combines three spectrogram representations: Log-Mel spectrogram, harmonic spectrogram, and percussive spectrogram, which are derived using Harmonic-Percussive Source Separation (HPSS). Grad-CAM was used to highlight the important regions in the data, thus making the PD predictions interpretable and effective. Our proposed CustNetGC model achieved an accuracy of 99.06% and precision of 95.83%, with the area under the ROC curve (AUC) recorded at 0.90 for the PD class and 0.89 for the HC class. Additionally, the combination of CatBoost, a gradient boosting algorithm, enhanced the robustness and the prediction performance by properly classifying PD and non-PD samples. Therefore, the results provide the potential improvement in the CustNetGC system in enhancing diagnostic accuracy and the interpretability of the Parkinson’s Disease prediction model.

3.21FunnyNodules: A Customizable Medical Dataset Tailored for Evaluating Explainable AI

arxiv html pdf kimi

2025/11/20 04:56 GTM

Densely annotated medical image datasets that capture not only diagnostic labels but also the underlying reasoning behind these diagnoses are scarce. Such reasoning-related annotations are essential for developing and evaluating explainable AI (xAI) models that reason similarly to radiologists: making correct predictions for the right reasons. To address this gap, we introduce FunnyNodules, a fully parameterized synthetic dataset designed for systematic analysis of attribute-based reasoning in medical AI models. The dataset generates abstract, lung nodule-like shapes with controllable visual attributes such as roundness, margin sharpness, and spiculation. Target class is derived from a predefined attribute combination, allowing full control over the decision rule that links attributes to the diagnostic class. We demonstrate how FunnyNodules can be used in model-agnostic evaluations to assess whether models learn correct attribute-target relations, to interpret over- or underperformance in attribute prediction, and to analyze attention alignment with attribute-specific regions of interest. The framework is fully customizable, supporting variations in dataset complexity, target definitions, class balance, and beyond. With complete ground truth information, FunnyNodules provides a versatile foundation for developing, benchmarking, and conducting in-depth analyses of explainable AI methods in medical image analysis.

3.22RS-CA-HSICT: A Residual and Spatial Channel Augmented CNN Transformer Framework for Monkeypox Detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

This work proposes a hybrid deep learning approach, namely Residual and Spatial Learning based Channel Augmented Integrated CNN-Transformer architecture, that leverages the strengths of CNN and Transformer towards enhanced MPox detection. The proposed RS-CA-HSICT framework is composed of an HSICT block, a residual CNN module, a spatial CNN block, and a CA, which enhances the diverse feature space, detailed lesion information, and long-range dependencies. The new HSICT module first integrates an abstract representation of the stem CNN and customized ICT blocks for efficient multihead attention and structured CNN layers with homogeneous (H) and structural (S) operations. The customized ICT blocks learn global contextual interactions and local texture extraction. Additionally, H and S layers learn spatial homogeneity and fine structural details by reducing noise and modeling complex morphological variations. Moreover, inverse residual learning enhances vanishing gradient, and stage-wise resolution reduction ensures scale invariance. Furthermore, the RS-CA-HSICT framework augments the learned HSICT channels with the TL-driven Residual and Spatial CNN maps for enhanced multiscale feature space capturing global and localized structural cues, subtle texture, and contrast variations. These channels, preceding augmentation, are refined through the Channel-Fusion-and-Attention block, which preserves discriminative channels while suppressing redundant ones, thereby enabling efficient computation. Finally, the spatial attention mechanism refines pixel selection to detect subtle patterns and intra-class contrast variations in Mpox. Experimental results on both the Kaggle benchmark and a diverse MPox dataset reported classification accuracy as high as 98.30% and an F1-score of 98.13%, which outperforms the existing CNNs and ViTs.

3.23Deep Learning for Accurate Vision-based Catch Composition in Tropical Tuna Purse Seiners

arxiv html pdf kimi

2025/11/20 04:56 GTM

Purse seiners play a crucial role in tuna fishing, as approximately 69% of the world’s tropical tuna is caught using this gear. All tuna Regional Fisheries Management Organizations have established minimum standards to use electronic monitoring (EM) in fisheries in addition to traditional observers. The EM systems produce a massive amount of video data that human analysts must process. Integrating artificial intelligence (AI) into their workflow can decrease that workload and improve the accuracy of the reports. However, species identification still poses significant challenges for AI, as achieving balanced performance across all species requires appropriate training data. Here, we quantify the difficulty experts face to distinguish bigeye tuna (BET, Thunnus Obesus) from yellowfin tuna (YFT, Thunnus Albacares) using images captured by EM systems. We found inter-expert agreements of 42.9% ± 35.6% for BET and 57.1% ± 35.6% for YFT. We then present a multi-stage pipeline to estimate the species composition of the catches using a reliable ground-truth dataset based on identifications made by observers on board. Three segmentation approaches are compared: Mask R-CNN, a combination of DINOv2 with SAM2, and a integration of YOLOv9 with SAM2. We found that the latest performs the best, with a validation mean average precision of 0.66 ± 0.03 and a recall of 0.88 ± 0.03. Segmented individuals are tracked using ByteTrack. For classification, we evaluate a standard multiclass classification model and a hierarchical approach, finding a superior generalization by the hierarchical. All our models were cross-validated during training and tested on fishing operations with fully known catch composition. Combining YOLOv9-SAM2 with the hierarchical classification produced the best estimations, with 84.8% of the individuals being segmented and classified with a mean average error of 4.5%.

3.24SIGMMA: Hierarchical Graph-Based Multi-Scale Multi-modal Contrastive Alignment of Histopathology Image and Spatial Transcriptome

arxiv html pdf kimi

2025/11/20 04:56 GTM

Recent advances in computational pathology have leveraged vision-language models to learn joint representations of Hematoxylin and Eosin (HE) images with spatial transcriptomic (ST) profiles. However, existing approaches typically align HE tiles with their corresponding ST profiles at a single scale, overlooking fine-grained cellular structures and their spatial organization. To address this, we propose Sigmma, a multi-modal contrastive alignment framework for learning hierarchical representations of HE images and spatial transcriptome profiles across multiple scales. Sigmma introduces multi-scale contrastive alignment, ensuring that representations learned at different scales remain coherent across modalities. Furthermore, by representing cell interactions as a graph and integrating inter- and intra-subgraph relationships, our approach effectively captures cell-cell interactions, ranging from fine to coarse, within the tissue microenvironment. We demonstrate that Sigmm learns representations that better capture cross-modal correspondences, leading to an improvement of avg. 9.78% in the gene-expression prediction task and avg. 26.93% in the cross-modal retrieval task across datasets. We further show that it learns meaningful multi-tissue organization in downstream analyses.

3.25Driving in Spikes: An Entropy-Guided Object Detector for Spike Cameras

arxiv html pdf kimi

2025/11/20 04:56 GTM

Object detection in autonomous driving suffers from motion blur and saturation under fast motion and extreme lighting. Spike cameras, offer microsecond latency and ultra high dynamic range for object detection by using per pixel asynchronous integrate and fire. However, their sparse, discrete output cannot be processed by standard image-based detectors, posing a critical challenge for end to end spike stream detection. We propose EASD, an end to end spike camera detector with a dual branch design: a Temporal Based Texture plus Feature Fusion branch for global cross slice semantics, and an Entropy Selective Attention branch for object centric details. To close the data gap, we introduce DSEC Spike, the first driving oriented simulated spike detection benchmark.

3.26A Dataset and Baseline for Deep Learning-Based Visual Quality Inspection in Remanufacturing

arxiv html pdf kimi

2025/11/20 04:56 GTM

Remanufacturing describes a process where worn products are restored to like-new condition and it offers vast ecological and economic potentials. A key step is the quality inspection of disassembled components, which is mostly done manually due to the high variety of parts and defect patterns. Deep neural networks show great potential to automate such visual inspection tasks but struggle to generalize to new product variants, components, or defect patterns. To tackle this challenge, we propose a novel image dataset depicting typical gearbox components in good and defective condition from two automotive transmissions. Depending on the train-test split of the data, different distribution shifts are generated to benchmark the generalization ability of a classification model. We evaluate different models using the dataset and propose a contrastive regularization loss to enhance model robustness. The results obtained demonstrate the ability of the loss to improve generalisation to unseen types of components.

3.27HV-Attack: Hierarchical Visual Attack for Multimodal Retrieval Augmented Generation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Advanced multimodal Retrieval-Augmented Generation (MRAG) techniques have been widely applied to enhance the capabilities of Large Multimodal Models (LMMs), but they also bring along novel safety issues. Existing adversarial research has revealed the vulnerability of MRAG systems to knowledge poisoning attacks, which fool the retriever into recalling injected poisoned contents. However, our work considers a different setting: visual attack of MRAG by solely adding imperceptible perturbations at the image inputs of users, without manipulating any other components. This is challenging due to the robustness of fine-tuned retrievers and large-scale generators, and the effect of visual perturbation may be further weakened by propagation through the RAG chain. We propose a novel Hierarchical Visual Attack that misaligns and disrupts the two inputs (the multimodal query and the augmented knowledge) of MRAG’s generator to confuse its generation. We further design a hierarchical two-stage strategy to obtain misaligned augmented knowledge. We disrupt the image input of the retriever to make it recall irrelevant knowledge from the original database, by optimizing the perturbation which first breaks the cross-modal alignment and then disrupts the multimodal semantic alignment. We conduct extensive experiments on two widely-used MRAG datasets: OK-VQA and InfoSeek. We use CLIP-based retrievers and two LMMs BLIP-2 and LLaVA as generators. Results demonstrate the effectiveness of our visual attack on MRAG through the significant decrease in both retrieval and generation performance.

3.28Representation Space Constrained Learning with Modality Decoupling for Multimodal Object Detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal object detection has attracted significant attention in both academia and industry for its enhanced robustness. Although numerous studies have focused on improving modality fusion strategies, most neglect fusion degradation, and none provide a theoretical analysis of its underlying causes. To fill this gap, this paper presents a systematic theoretical investigation of fusion degradation in multimodal detection and identifies two key optimization deficiencies: (1) the gradients of unimodal branch backbones are severely suppressed under multimodal architectures, resulting in under-optimization of the unimodal branches; (2) disparities in modality quality cause weaker modalities to experience stronger gradient suppression, which in turn results in imbalanced modality learning. To address these issues, this paper proposes a Representation Space Constrained Learning with Modality Decoupling (RSC-MD) method, which consists of two modules. The RSC module and the MD module are designed to respectively amplify the suppressed gradients and eliminate inter-modality coupling interference as well as modality imbalance, thereby enabling the comprehensive optimization of each modality-specific backbone. Extensive experiments conducted on the FLIR, LLVIP, M3FD, and MFAD datasets demonstrate that the proposed method effectively alleviates fusion degradation and achieves state-of-the-art performance across multiple benchmarks. The code and training procedures will be released at https://github.com/yikangshao/RSC-MD.

3.29WarNav: An Autonomous Driving Benchmark for Segmentation of Navigable Zones in War Scenes

arxiv html pdf kimi

2025/11/20 04:56 GTM

We introduce WarNav, a novel real-world dataset constructed from images of the open-source DATTALION repository, specifically tailored to enable the development and benchmarking of semantic segmentation models for autonomous ground vehicle navigation in unstructured, conflict-affected environments. This dataset addresses a critical gap between conventional urban driving resources and the unique operational scenarios encountered by unmanned systems in hazardous and damaged war-zones. We detail the methodological challenges encountered, ranging from data heterogeneity to ethical considerations, providing guidance for future efforts that target extreme operational contexts. To establish performance references, we report baseline results on WarNav using several state-of-the-art semantic segmentation models trained on structured urban scenes. We further analyse the impact of training data environments and propose a first step towards effective navigability in challenging environments with the constraint of having no annotation of the targeted images. Our goal is to foster impactful research that enhances the robustness and safety of autonomous vehicles in high-risk scenarios while being frugal in annotated data.

3.30D4C: Data-free Quantization for Contrastive Language-Image Pre-training Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

Data-Free Quantization (DFQ) offers a practical solution for model compression without requiring access to real data, making it particularly attractive in privacy-sensitive scenarios. While DFQ has shown promise for unimodal models, its extension to Vision-Language Models such as Contrastive Language-Image Pre-training (CLIP) models remains underexplored. In this work, we reveal that directly applying existing DFQ techniques to CLIP results in substantial performance degradation due to two key limitations: insufficient semantic content and low intra-image diversity in synthesized samples. To tackle these challenges, we propose D4C, the first DFQ framework tailored for CLIP. D4C synthesizes semantically rich and structurally diverse pseudo images through three key components: (1) Prompt-Guided Semantic Injection aligns generated images with real-world semantics using text prompts; (2) Structural Contrastive Generation reproduces compositional structures of natural images by leveraging foreground-background contrastive synthesis; and (3) Perturbation-Aware Enhancement applies controlled perturbations to improve sample diversity and robustness. These components jointly empower D4C to synthesize images that are both semantically informative and structurally diverse, effectively bridging the performance gap of DFQ on CLIP. Extensive experiments validate the effectiveness of D4C, showing significant performance improvements on various bit-widths and models. For example, under the W4A8 setting with CLIP ResNet-50 and ViT-B/32, D4C achieves Top-1 accuracy improvement of 12.4% and 18.9% on CIFAR-10, 6.8% and 19.7% on CIFAR-100, and 1.4% and 5.7% on ImageNet-1K in zero-shot classification, respectively.

3.31IPR-1: Interactive Physical Reasoner

arxiv html pdf kimi

2025/11/20 04:56 GTM

Humans learn by observing, interacting with environments, and internalizing physics and causality. Here, we aim to ask whether an agent can similarly acquire human-like reasoning from interaction and keep improving with more experience. We study this in a Game-to-Unseen (G2U) setting, curating 1,000+ heterogeneous games with diverse physical and causal mechanisms, and evaluate at three human-like levels: Survival, Curiosity, Utility, from primitive intuition to goal-driven reasoning. Our analysis reveals complementary failures: VLM/VLA agents reason but lack look-ahead in interactive settings, while world models imagine but imitate visual patterns rather than analyze physics and causality. We therefore propose IPR (Interactive Physical Reasoner), using world-model rollouts to score and reinforce a VLM’s policy, and introduce PhysCode, a physics-centric action code aligning semantic intent with dynamics to provide a shared action space for prediction and reasoning. Pretrained on 1,000+ games, our IPR performs robustly on three levels, matches GPT-5 overall, and surpasses it on Curiosity. We find that performance improves with more training games and interaction steps, and that the model also zero-shot transfers to unseen games. These results support physics-centric interaction as a path to steadily improving physical reasoning.

3.32Controlling False Positives in Image Segmentation via Conformal Prediction

arxiv html pdf kimi

2025/11/20 04:56 GTM

Reliable semantic segmentation is essential for clinical decision making, yet deep models rarely provide explicit statistical guarantees on their errors. We introduce a simple post-hoc framework that constructs confidence masks with distribution-free, image-level control of false-positive predictions. Given any pretrained segmentation model, we define a nested family of shrunken masks obtained either by increasing the score threshold or by applying morphological erosion. A labeled calibration set is used to select a single shrink parameter via conformal prediction, ensuring that, for new images that are exchangeable with the calibration data, the proportion of false positives retained in the confidence mask stays below a user-specified tolerance with high probability. The method is model-agnostic, requires no retraining, and provides finite-sample guarantees regardless of the underlying predictor. Experiments on a polyp-segmentation benchmark demonstrate target-level empirical validity. Our framework enables practical, risk-aware segmentation in settings where over-segmentation can have clinical consequences. Code at https://github.com/deel-ai-papers/conseco.

3.33ShelfOcc: Native 3D Supervision beyond LiDAR for Vision-Based Occupancy Estimation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Recent progress in self- and weakly supervised occupancy estimation has largely relied on 2D projection or rendering-based supervision, which suffers from geometric inconsistencies and severe depth bleeding. We thus introduce ShelfOcc, a vision-only method that overcomes these limitations without relying on LiDAR. ShelfOcc brings supervision into native 3D space by generating metrically consistent semantic voxel labels from video, enabling true 3D supervision without any additional sensors or manual 3D annotations. While recent vision-based 3D geometry foundation models provide a promising source of prior knowledge, they do not work out of the box as a prediction due to sparse or noisy and inconsistent geometry, especially in dynamic driving scenes. Our method introduces a dedicated framework that mitigates these issues by filtering and accumulating static geometry consistently across frames, handling dynamic content and propagating semantic information into a stable voxel representation. This data-centric shift in supervision for weakly/shelf-supervised occupancy estimation allows the use of essentially any SOTA occupancy model architecture without relying on LiDAR data. We argue that such high-quality supervision is essential for robust occupancy learning and constitutes an important complementary avenue to architectural innovation. On the Occ3D-nuScenes benchmark, ShelfOcc substantially outperforms all previous weakly/shelf-supervised methods (up to a 34% relative improvement), establishing a new data-driven direction for LiDAR-free 3D scene understanding.

3.34Breaking Expert Knowledge Limits: Self-Pruning for Large Language Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large language models (LLMs) have achieved remarkable performance on a wide range of tasks, hindering real-world deployment due to their massive size. Existing pruning methods (e.g., Wanda) tailored for LLMs rely heavily on manual design pruning algorithms, thereby leading to \textit{huge labor costs} and \textit{requires expert knowledge}. Furthermore, we are the first to identify the serious \textit{outlier value issue} behind dramatic performance degradation under high pruning ratios that are caused by uniform sparsity, raising an additional concern about how to design adaptive pruning sparsity ideal for LLMs. Can LLMs prune by themselves? In this work, we introduce an affirmative answer by proposing a novel pruning method called \textbf{AutoPrune}, which first overcomes expert knowledge limits by leveraging LLMs to design optimal pruning algorithms for themselves automatically without any expert knowledge. Specifically, to mitigate the black-box nature of LLMs, we propose a Graph-driven Chain-of-Thought (GCoT) to optimize prompts, significantly enhancing the reasoning process in learning the pruning algorithm and enabling us to generate pruning algorithms with superior performance and interpretability in the next generation. Finally, grounded in insights of outlier value issue, we introduce Skew-aware Dynamic Sparsity Allocation (SDSA) to overcome the outlier value issue, mitigating performance degradation under high pruning ratios. We conduct extensive experiments on mainstream LLMs benchmarks, demonstrating the superiority of AutoPrune, which consistently excels state-of-the-art competitors. The code is available at: https://anonymous.4open.science/r/AutoPrune.

3.35Zero-Shot Open-Vocabulary Human Motion Grounding with Test-Time Training

arxiv html pdf kimi

2025/11/20 04:56 GTM

Understanding complex human activities demands the ability to decompose motion into fine-grained, semantic-aligned sub-actions. This motion grounding process is crucial for behavior analysis, embodied AI and virtual reality. Yet, most existing methods rely on dense supervision with predefined action classes, which are infeasible in open-vocabulary, real-world settings. In this paper, we propose ZOMG, a zero-shot, open-vocabulary framework that segments motion sequences into semantically meaningful sub-actions without requiring any annotations or fine-tuning. Technically, ZOMG integrates (1) language semantic partition, which leverages large language models to decompose instructions into ordered sub-action units, and (2) soft masking optimization, which learns instance-specific temporal masks to focus on frames critical to sub-actions, while maintaining intra-segment continuity and enforcing inter-segment separation, all without altering the pretrained encoder. Experiments on three motion-language datasets demonstrate state-of-the-art effectiveness and efficiency of motion grounding performance, outperforming prior methods by +8.7% mAP on HumanML3D benchmark. Meanwhile, significant improvements also exist in downstream retrieval, establishing a new paradigm for annotation-free motion understanding.

3.36IPTQ-ViT: Post-Training Quantization of Non-linear Functions for Integer-only Vision Transformers

arxiv html pdf kimi

2025/11/20 04:56 GTM

Previous Quantization-Aware Training (QAT) methods for vision transformers rely on expensive retraining to recover accuracy loss in non-linear layer quantization, limiting their use in resource-constrained environments. In contrast, existing Post-Training Quantization (PTQ) methods either partially quantize non-linear functions or adjust activation distributions to maintain accuracy but fail to achieve fully integer-only inference. In this paper, we introduce IPTQ-ViT, a novel PTQ framework for fully integer-only vision transformers without retraining. We present approximation functions: a polynomial-based GELU optimized for vision data and a bit-shifting-based Softmax designed to improve approximation accuracy in PTQ. In addition, we propose a unified metric integrating quantization sensitivity, perturbation, and computational cost to select the optimal approximation function per activation layer. IPTQ-ViT outperforms previous PTQ methods, achieving up to 6.44%p (avg. 1.78%p) top-1 accuracy improvement for image classification, 1.0 mAP for object detection. IPTQ-ViT outperforms partial floating-point PTQ methods under W8A8 and W4A8, and achieves accuracy and latency comparable to integer-only QAT methods. We plan to release our code https://github.com/gihwan-kim/IPTQ-ViT.git.

3.37Octopus: Agentic Multimodal Reasoning with Six-Capability Orchestration

arxiv html pdf kimi

2025/11/20 04:56 GTM

Existing multimodal reasoning models and frameworks suffer from fundamental architectural limitations: most lack the human-like ability to autonomously explore diverse reasoning pathways-whether in direct inference, tool-driven visual exploration, programmatic visual manipulation, or intrinsic visual imagination. Consequently, they struggle to adapt to dynamically changing capability requirements in real-world tasks. Meanwhile, humans exhibit a complementary set of thinking abilities when addressing such tasks, whereas existing methods typically cover only a subset of these dimensions. Inspired by this, we propose Octopus: Agentic Multimodal Reasoning with Six-Capability Orchestration, a new paradigm for multimodal agentic reasoning. We define six core capabilities essential for multimodal reasoning and organize a comprehensive evaluation benchmark, Octopus-Bench, accordingly. Octopus is capable of autonomously exploring during reasoning and dynamically selecting the most appropriate capability based on the current state. Experimental results show that Octopus achieves the best performance on the vast majority of tasks in Octopus-Bench, highlighting the crucial role of capability coordination in agentic multimodal reasoning.

3.38Fast Post-Hoc Confidence Fusion for 3-Class Open-Set Aerial Object Detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Developing reliable UAV navigation systems requires robust air-to-air object detectors capable of distinguishing between objects seen during training and previously unseen objects. While many methods address closed-set detection and achieve high-confidence recognition of in-domain (ID) targets, they generally do not tackle open-set detection, which requires simultaneous handling of both ID and out-of-distribution (OOD) objects. Existing open-set approaches typically rely on a single uncertainty score with thresholding, limiting flexibility and often conflating OOD objects with background clutter. In contrast, we propose a lightweight, model-agnostic post-processing framework that explicitly separates background from unknown objects while preserving the base detector’s performance. Our approach extends open-set detection beyond binary ID/OOD classification to real-time three-way classification among ID targets, OOD objects, and background. To this end, we employ a fusion scheme that aggregates multiple confidence estimates and per-detection features using a compact multilayer perceptron (MLP). Incorporating different logit variants into the MLP consistently enhances performance across both binary and three-class classification without compromising throughput. Extensive ablation and comparative experiments confirm that our method surpasses threshold-based baselines in two-class classification by an average of 2.7% AUROC, while retaining or improving open-set mAP. Furthermore, our study uniquely enables robust three-class classification, a critical capability for safe UAV navigation, where OOD objects must be actively avoided and background regions safely ignored. Comparative analysis highlights that our method surpasses competitive techniques in AUROC across datasets, while improving closed-set mAP by up to 9 points, an 18% relative gain.

3.39Adaptive thresholding pattern for fingerprint forgery detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Fingerprint liveness detection systems have been affected by spoofing, which is a severe threat for fingerprint-based biometric systems. Therefore, it is crucial to develop some techniques to distinguish the fake fingerprints from the real ones. The software based techniques can detect the fingerprint forgery automatically. Also, the scheme shall be resistant against various distortions such as noise contamination, pixel missing and block missing, so that the forgers cannot deceive the detector by adding some distortions to the faked fingerprint. In this paper, we propose a fingerprint forgery detection algorithm based on a suggested adaptive thresholding pattern. The anisotropic diffusion of the input image is passed through three levels of the wavelet transform. The coefficients of different layers are adaptively thresholded and concatenated to produce the feature vector which is classified using the SVM classifier. Another contribution of the paper is to investigate the effect of various distortions such as pixel missing, block missing, and noise contamination. Our suggested approach includes a novel method that exhibits improved resistance against a range of distortions caused by environmental phenomena or manipulations by malicious users. In quantitative comparisons, our proposed method outperforms its counterparts by approximately 8% and 5% in accuracy for missing pixel scenarios of 90% and block missing scenarios of size 70x70 , respectively. This highlights the novelty approach in addressing such challenges.

3.40What Your Features Reveal: Data-Efficient Black-Box Feature Inversion Attack for Split DNNs

arxiv html pdf kimi

2025/11/20 04:56 GTM

Split DNNs enable edge devices by offloading intensive computation to a cloud server, but this paradigm exposes privacy vulnerabilities, as the intermediate features can be exploited to reconstruct the private inputs via Feature Inversion Attack (FIA). Existing FIA methods often produce limited reconstruction quality, making it difficult to assess the true extent of privacy leakage. To reveal the privacy risk of the leaked features, we introduce FIA-Flow, a black-box FIA framework that achieves high-fidelity image reconstruction from intermediate features. To exploit the semantic information within intermediate features, we design a Latent Feature Space Alignment Module (LFSAM) to bridge the semantic gap between the intermediate feature space and the latent space. Furthermore, to rectify distributional mismatch, we develop Deterministic Inversion Flow Matching (DIFM), which projects off-manifold features onto the target manifold with one-step inference. This decoupled design simplifies learning and enables effective training with few image-feature pairs. To quantify privacy leakage from a human perspective, we also propose two metrics based on a large vision-language model. Experiments show that FIA-Flow achieves more faithful and semantically aligned feature inversion across various models (AlexNet, ResNet, Swin Transformer, DINO, and YOLO11) and layers, revealing a more severe privacy threat in Split DNNs than previously recognized.

3.41A Multimodal Transformer Approach for UAV Detection and Aerial Object Recognition Using Radar, Audio, and Video Data

arxiv html pdf kimi

2025/11/20 04:56 GTM

Unmanned aerial vehicle (UAV) detection and aerial object recognition are critical for modern surveillance and security, prompting a need for robust systems that overcome limitations of single-modality approaches. This research addresses these challenges by designing and rigorously evaluating a novel multimodal Transformer model that integrates diverse data streams: radar, visual band video (RGB), infrared (IR) video, and audio. The architecture effectively fuses distinct features from each modality, leveraging the Transformer’s self-attention mechanisms to learn comprehensive, complementary, and highly discriminative representations for classification. The model demonstrated exceptional performance on an independent test set, achieving macro-averaged metrics of 0.9812 accuracy, 0.9873 recall, 0.9787 precision, 0.9826 F1-score, and 0.9954 specificity. Notably, it exhibited particularly high precision and recall in distinguishing drones from other aerial objects. Furthermore, computational analysis confirmed its efficiency, with 1.09 GFLOPs, 1.22 million parameters, and an inference speed of 41.11 FPS, highlighting its suitability for real-time applications. This study presents a significant advancement in aerial object classification, validating the efficacy of multimodal data fusion via a Transformer architecture for achieving state-of-the-art performance, thereby offering a highly accurate and resilient solution for UAV detection and monitoring in complex airspace.

3.42Adapt-As-You-Walk Through the Clouds: Training-Free Online Test-Time Adaptation of 3D Vision-Language Foundation Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

3D Vision-Language Foundation Models (VLFMs) have shown strong generalization and zero-shot recognition capabilities in open-world point cloud processing tasks. However, these models often underperform in practical scenarios where data are noisy, incomplete, or drawn from a different distribution than the training data. To address this, we propose Uni-Adapter, a novel training-free online test-time adaptation (TTA) strategy for 3D VLFMs based on dynamic prototype learning. We define a 3D cache to store class-specific cluster centers as prototypes, which are continuously updated to capture intra-class variability in heterogeneous data distributions. These dynamic prototypes serve as anchors for cache-based logit computation via similarity scoring. Simultaneously, a graph-based label smoothing module captures inter-prototype similarities to enforce label consistency among similar prototypes. Finally, we unify predictions from the original 3D VLFM and the refined 3D cache using entropy-weighted aggregation for reliable adaptation. Without retraining, Uni-Adapter effectively mitigates distribution shifts, achieving state-of-the-art performance on diverse 3D benchmarks over different 3D VLFMs, improving ModelNet-40C by 10.55%, ScanObjectNN-C by 8.26%, and ShapeNet-C by 4.49% over the source 3D VLFMs.

3.43Text2Loc++: Generalizing 3D Point Cloud Localization from Natural Language

arxiv html pdf kimi

2025/11/20 04:56 GTM

We tackle the problem of localizing 3D point cloud submaps using complex and diverse natural language descriptions, and present Text2Loc++, a novel neural network designed for effective cross-modal alignment between language and point clouds in a coarse-to-fine localization pipeline. To support benchmarking, we introduce a new city-scale dataset covering both color and non-color point clouds from diverse urban scenes, and organize location descriptions into three levels of linguistic complexity. In the global place recognition stage, Text2Loc++ combines a pretrained language model with a Hierarchical Transformer with Max pooling (HTM) for sentence-level semantics, and employs an attention-based point cloud encoder for spatial understanding. We further propose Masked Instance Training (MIT) to filter out non-aligned objects and improve multimodal robustness. To enhance the embedding space, we introduce Modality-aware Hierarchical Contrastive Learning (MHCL), incorporating cross-modal, submap-, text-, and instance-level losses. In the fine localization stage, we completely remove explicit text-instance matching and design a lightweight yet powerful framework based on Prototype-based Map Cloning (PMC) and a Cascaded Cross-Attention Transformer (CCAT). Extensive experiments on the KITTI360Pose dataset show that Text2Loc++ outperforms existing methods by up to 15%. In addition, the proposed model exhibits robust generalization when evaluated on the new dataset, effectively handling complex linguistic expressions and a wide variety of urban environments. The code and dataset will be made publicly available.

3.44Taming Generative Synthetic Data for X-ray Prohibited Item Detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Training prohibited item detection models requires a large amount of X-ray security images, but collecting and annotating these images is time-consuming and laborious. To address data insufficiency, X-ray security image synthesis methods composite images to scale up datasets. However, previous methods primarily follow a two-stage pipeline, where they implement labor-intensive foreground extraction in the first stage and then composite images in the second stage. Such a pipeline introduces inevitable extra labor cost and is not efficient. In this paper, we propose a one-stage X-ray security image synthesis pipeline (Xsyn) based on text-to-image generation, which incorporates two effective strategies to improve the usability of synthetic images. The Cross-Attention Refinement (CAR) strategy leverages the cross-attention map from the diffusion model to refine the bounding box annotation. The Background Occlusion Modeling (BOM) strategy explicitly models background occlusion in the latent space to enhance imaging complexity. To the best of our knowledge, compared with previous methods, Xsyn is the first to achieve high-quality X-ray security image synthesis without extra labor cost. Experiments demonstrate that our method outperforms all previous methods with 1.2% mAP improvement, and the synthetic images generated by our method are beneficial to improve prohibited item detection performance across various X-ray security datasets and detectors. Code is available at https://github.com/pILLOW-1/Xsyn/.

3.45Edge-Centric Relational Reasoning for 3D Scene Graph Prediction

arxiv html pdf kimi

2025/11/20 04:56 GTM

3D scene graph prediction aims to abstract complex 3D environments into structured graphs consisting of objects and their pairwise relationships. Existing approaches typically adopt object-centric graph neural networks, where relation edge features are iteratively updated by aggregating messages from connected object nodes. However, this design inherently restricts relation representations to pairwise object context, making it difficult to capture high-order relational dependencies that are essential for accurate relation prediction. To address this limitation, we propose a Link-guided Edge-centric relational reasoning framework with Object-aware fusion, namely LEO, which enables progressive reasoning from relation-level context to object-level understanding. Specifically, LEO first predicts potential links between object pairs to suppress irrelevant edges, and then transforms the original scene graph into a line graph where each relation is treated as a node. A line graph neural network is applied to perform edge-centric relational reasoning to capture inter-relation context. The enriched relation features are subsequently integrated into the original object-centric graph to enhance object-level reasoning and improve relation prediction. Our framework is model-agnostic and can be integrated with any existing object-centric method. Experiments on the 3DSSG dataset with two competitive baselines show consistent improvements, highlighting the effectiveness of our edge-to-object reasoning paradigm.

3.46Look, Zoom, Understand: The Robotic Eyeball for Embodied Perception

arxiv html pdf kimi

2025/11/20 04:56 GTM

In embodied AI perception systems, visual perception should be active: the goal is not to passively process static images, but to actively acquire more informative data within pixel and spatial budget constraints. Existing vision models and fixed RGB-D camera systems fundamentally fail to reconcile wide-area coverage with fine-grained detail acquisition, severely limiting their efficacy in open-world robotic applications. To address this issue, we propose EyeVLA, a robotic eyeball for active visual perception that can take proactive actions based on instructions, enabling clear observation of fine-grained target objects and detailed information across a wide spatial extent. EyeVLA discretizes action behaviors into action tokens and integrates them with vision-language models (VLMs) that possess strong open-world understanding capabilities, enabling joint modeling of vision, language, and actions within a single autoregressive sequence. By using the 2D bounding box coordinates to guide the reasoning chain and applying reinforcement learning to refine the viewpoint selection policy, we transfer the open-world scene understanding capability of the VLM to a vision language action (VLA) policy using only minimal real-world data. Experiments show that our system efficiently performs instructed scenes in real-world environments and actively acquires more accurate visual information through instruction-driven actions of rotation and zoom, thereby achieving strong environmental perception capabilities. EyeVLA introduces a novel robotic vision system that leverages detailed and spatially rich, large-scale embodied data, and actively acquires highly informative visual observations for downstream embodied tasks.

3.47Graph Query Networks for Object Detection with Automotive Radar

arxiv html pdf kimi

2025/11/20 04:56 GTM

Object detection with 3D radar is essential for 360-degree automotive perception, but radar’s long wavelengths produce sparse and irregular reflections that challenge traditional grid and sequence-based convolutional and transformer detectors. This paper introduces Graph Query Networks (GQN), an attention-based framework that models objects sensed by radar as graphs, to extract individualized relational and contextual features. GQN employs a novel concept of graph queries to dynamically attend over the bird’s-eye view (BEV) space, constructing object-specific graphs processed by two novel modules: EdgeFocus for relational reasoning and DeepContext Pooling for contextual aggregation. On the NuScenes dataset, GQN improves relative mAP by up to +53%, including a +8.2% gain over the strongest prior radar method, while reducing peak graph construction overhead by 80% with moderate FLOPs cost.

3.48SplitFlux: Learning to Decouple Content and Style from a Single Image

arxiv html pdf kimi

2025/11/20 04:56 GTM

Disentangling image content and style is essential for customized image generation. Existing SDXL-based methods struggle to achieve high-quality results, while the recently proposed Flux model fails to achieve effective content-style separation due to its underexplored characteristics. To address these challenges, we conduct a systematic analysis of Flux and make two key observations: (1) Single Dream Blocks are essential for image generation; and (2) Early single stream blocks mainly control content, whereas later blocks govern style. Based on these insights, we propose SplitFlux, which disentangles content and style by fine-tuning the single dream blocks via LoRA, enabling the disentangled content to be re-embedded into new contexts. It includes two key components: (1) Rank-Constrained Adaptation. To preserve content identity and structure, we compress the rank and amplify the magnitude of updates within specific blocks, preventing content leakage into style blocks. (2) Visual-Gated LoRA. We split the content LoRA into two branches with different ranks, guided by image saliency. The high-rank branch preserves primary subject information, while the low-rank branch encodes residual details, mitigating content overfitting and enabling seamless re-embedding. Extensive experiments demonstrate that SplitFlux consistently outperforms state-of-the-art methods, achieving superior content preservation and stylization quality across diverse scenarios.

3.49GRPO-RM: Fine-Tuning Representation Models via GRPO-Driven Reinforcement Learning

arxiv html pdf kimi

2025/11/20 04:56 GTM

The Group Relative Policy Optimization (GRPO), a reinforcement learning method used to fine-tune large language models (LLMs), has proved its effectiveness in practical applications such as DeepSeek-R1. It raises a question whether GRPO can be generalized to representation learning models. In this paper, we propose Group Relative Policy Optimization for Representation Model (GRPO-RM), and investigate the performance of GRPO-like policy in post-training representation models. Specifically, our method establishes a predefined output set to functionally replace token sequence sampling in LLMs, thereby generating an output group, which is essential for the probability-driven optimization of GRPO. In addition, a specialized reward function is designed to accommodate the properties of representation models. Extensive experiments are conducted on various real-world datasets to validate the effectiveness of our proposed method.

3.50Context Cascade Compression: Exploring the Upper Limits of Text Compression

arxiv html pdf kimi

2025/11/20 04:56 GTM

Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression

3.51SkinGPT-R1: Adapter-Only Dual Distillation for Efficient Dermatology Reasoning

arxiv html pdf kimi

2025/11/20 04:56 GTM

We present SkinGPT-R1, a dermatology focused vision language model that makes diagnostic chain of thought reasoning explicit, step by step, and verifiable. To support skin specific reasoning, we build DermCoT, a corpus of standardized dermatologic chain of thought narratives that combines 10,000 DermEval filtered training cases with 3,000 dermatologist scored certified cases, and we define DermEval as a physician aligned six dimensional evaluator and DermBench as the corresponding benchmark for dermatologic chain of thought quality. On DermBench, across 14 general, reasoning, and medical vision language models, SkinGPT-R1 achieves an average score of 4.031 out of 5 over the six clinician defined dimensions, ranks 1st among all systems, and improves the average score over Vision-R1 by about 41%. On three dermatology classification benchmarks, SkinGPT-R1 delivers stable accuracy gains over Vision-R1 and remains competitive among strong vision language models. Ablation results further show that DermCoT based chain of thought supervision provides substantial improvements over the base model and that adding dermatology aware visual distillation yields consistent additional gains in both narrative quality and recognition.

3.52Physics-Based Benchmarking Metrics for Multimodal Synthetic Images

arxiv html pdf kimi

2025/11/20 04:56 GTM

Current state of the art measures like BLEU, CIDEr, VQA score, SigLIP-2 and CLIPScore are often unable to capture semantic or structural accuracy, especially for domain-specific or context-dependent scenarios. For this, this paper proposes a Physics-Constrained Multimodal Data Evaluation (PCMDE) metric combining large language models with reasoning, knowledge based mapping and vision-language models to overcome these limitations. The architecture is comprised of three main stages: (1) feature extraction of spatial and semantic information with multimodal features through object detection and VLMs; (2) Confidence-Weighted Component Fusion for adaptive component-level validation; and (3) physics-guided reasoning using large language models for structural and relational constraints (e.g., alignment, position, consistency) enforcement.

3.53Towards Unbiased Cross-Modal Representation Learning for Food Image-to-Recipe Retrieval

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper addresses the challenges of learning representations for recipes and food images in the cross-modal retrieval problem. As the relationship between a recipe and its cooked dish is cause-and-effect, treating a recipe as a text source describing the visual appearance of a dish for learning representation, as the existing approaches, will create bias misleading image-and-recipe similarity judgment. Specifically, a food image may not equally capture every detail in a recipe, due to factors such as the cooking process, dish presentation, and image-capturing conditions. The current representation learning tends to capture dominant visual-text alignment while overlooking subtle variations that determine retrieval relevance. In this paper, we model such bias in cross-modal representation learning using causal theory. The causal view of this problem suggests ingredients as one of the confounder sources and a simple backdoor adjustment can alleviate the bias. By causal intervention, we reformulate the conventional model for food-to-recipe retrieval with an additional term to remove the potential bias in similarity judgment. Based on this theory-informed formulation, we empirically prove the oracle performance of retrieval on the Recipe1M dataset to be MedR=1 across the testing data sizes of 1K, 10K, and even 50K. We also propose a plug-and-play neural module, which is essentially a multi-label ingredient classifier for debiasing. New state-of-the-art search performances are reported on the Recipe1M dataset.

3.54Insert In Style: A Zero-Shot Generative Framework for Harmonious Cross-Domain Object Composition

arxiv html pdf kimi

2025/11/20 04:56 GTM

Reference-based object composition methods fail when inserting real-world objects into stylized domains. This under-explored problem is currently split between practical “blenders” that lack generative fidelity and “generators” that require impractical, per-subject online finetuning. In this work, we introduce Insert In Style, the first zero-shot generative framework that is both practical and high-fidelity. Our core contribution is a unified framework with two key innovations: (i) a novel multi-stage training protocol that disentangles representations for identity, style, and composition, and (ii) a specialized masked-attention architecture that surgically enforces this disentanglement during generation. This approach prevents the concept interference common in general-purpose, unified-attention models. Our framework is trained on a new 100k sample dataset, curated from a novel data pipeline. This pipeline couples large-scale generation with a rigorous, two-stage filtering process to ensure both high-fidelity semantic identity and style coherence. Unlike prior work, our model is truly zero-shot and requires no text prompts. We also introduce a new public benchmark for stylized composition. We demonstrate state-of-the-art performance, significantly outperforming existing methods on both identity and style metrics, a result strongly corroborated by user studies.

3.55BrainRotViT: Transformer-ResNet Hybrid for Explainable Modeling of Brain Aging from 3D sMRI

arxiv html pdf kimi

2025/11/20 04:56 GTM

Accurate brain age estimation from structural MRI is a valuable biomarker for studying aging and neurodegeneration. Traditional regression and CNN-based methods face limitations such as manual feature engineering, limited receptive fields, and overfitting on heterogeneous data. Pure transformer models, while effective, require large datasets and high computational cost. We propose Brain ResNet over trained Vision Transformer (BrainRotViT), a hybrid architecture that combines the global context modeling of vision transformers (ViT) with the local refinement of residual CNNs. A ViT encoder is first trained on an auxiliary age and sex classification task to learn slice-level features. The frozen encoder is then applied to all sagittal slices to generate a 2D matrix of embedding vectors, which is fed into a residual CNN regressor that incorporates subject sex at the final fully-connected layer to estimate continuous brain age. Our method achieves an MAE of 3.34 years (Pearson r=0.98r=0.98, Spearman ρ=0.97ρ=0.97, R2=0.95R^2=0.95) on validation across 11 MRI datasets encompassing more than 130 acquisition sites, outperforming baseline and state-of-the-art models. It also generalizes well across 4 independent cohorts with MAEs between 3.77 and 5.04 years. Analyses on the brain age gap (the difference between the predicted age and actual age) show that aging patterns are associated with Alzheimer’s disease, cognitive impairment, and autism spectrum disorder. Model attention maps highlight aging-associated regions of the brain, notably the cerebellar vermis, precentral and postcentral gyri, temporal lobes, and medial superior frontal gyrus. Our results demonstrate that this method provides an efficient, interpretable, and generalizable framework for brain-age prediction, bridging the gap between CNN- and transformer-based approaches while opening new avenues for aging and neurodegeneration research.

3.56Instruction-Guided Lesion Segmentation for Chest X-rays with Automatically Generated Large-Scale Dataset

arxiv html pdf kimi

2025/11/20 04:56 GTM

The applicability of current lesion segmentation models for chest X-rays (CXRs) has been limited both by a small number of target labels and the reliance on long, detailed expert-level text inputs, creating a barrier to practical use. To address these limitations, we introduce a new paradigm: instruction-guided lesion segmentation (ILS), which is designed to segment diverse lesion types based on simple, user-friendly instructions. Under this paradigm, we construct MIMIC-ILS, the first large-scale instruction-answer dataset for CXR lesion segmentation, using our fully automated multimodal pipeline that generates annotations from chest X-ray images and their corresponding reports. MIMIC-ILS contains 1.1M instruction-answer pairs derived from 192K images and 91K unique segmentation masks, covering seven major lesion types. To empirically demonstrate its utility, we introduce ROSALIA, a vision-language model fine-tuned on MIMIC-ILS. ROSALIA can segment diverse lesions and provide textual explanations in response to user instructions. The model achieves high segmentation and textual accuracy in our newly proposed task, highlighting the effectiveness of our pipeline and the value of MIMIC-ILS as a foundational resource for pixel-level CXR lesion grounding.

3.57MMCM: Multimodality-aware Metric using Clustering-based Modes for Probabilistic Human Motion Prediction

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper proposes a novel metric for Human Motion Prediction (HMP). Since a single past sequence can lead to multiple possible futures, a probabilistic HMP method predicts such multiple motions. While a single motion predicted by a deterministic method is evaluated only with the difference from its ground truth motion, multiple predicted motions should also be evaluated based on their distribution. For this evaluation, this paper focuses on the following two criteria. \textbf{(a) Coverage}: motions should be distributed among multiple motion modes to cover diverse possibilities. \textbf{(b) Validity}: motions should be kinematically valid as future motions observable from a given past motion. However, existing metrics simply appreciate widely distributed motions even if these motions are observed in a single mode and kinematically invalid. To resolve these disadvantages, this paper proposes a Multimodality-aware Metric using Clustering-based Modes (MMCM). For (a) coverage, MMCM divides a motion space into several clusters, each of which is regarded as a mode. These modes are used to explicitly evaluate whether predicted motions are distributed among multiple modes. For (b) validity, MMCM identifies valid modes by collecting possible future motions from a motion dataset. Our experiments validate that our clustering yields sensible mode definitions and that MMCM accurately scores multimodal predictions. Code: https://github.com/placerkyo/MMCM

3.58Data-driven Prediction of Species-Specific Plant Responses to Spectral-Shifting Films from Leaf Phenotypic and Photosynthetic Traits

arxiv html pdf kimi

2025/11/20 04:56 GTM

The application of spectral-shifting films in greenhouses to shift green light to red light has shown variable growth responses across crop species. However, the yield enhancement of crops under altered light quality is related to the collective effects of the specific biophysical characteristics of each species. Considering only one attribute of a crop has limitations in understanding the relationship between sunlight quality adjustments and crop growth performance. Therefore, this study aims to comprehensively link multiple plant phenotypic traits and daily light integral considering the physiological responses of crops to their growth outcomes under SF using artificial intelligence. Between 2021 and 2024, various leafy, fruiting, and root crops were grown in greenhouses covered with either PEF or SF, and leaf reflectance, leaf mass per area, chlorophyll content, daily light integral, and light saturation point were measured from the plants cultivated in each condition. 210 data points were collected, but there was insufficient data to train deep learning models, so a variational autoencoder was used for data augmentation. Most crop yields showed an average increase of 22.5% under SF. These data were used to train several models, including logistic regression, decision tree, random forest, XGBoost, and feedforward neural network (FFNN), aiming to binary classify whether there was a significant effect on yield with SF application. The FFNN achieved a high classification accuracy of 91.4% on a test dataset that was not used for training. This study provide insight into the complex interactions between leaf phenotypic and photosynthetic traits, environmental conditions, and solar spectral components by improving the ability to predict solar spectral shift effects using SF.

3.59Learning Depth from Past Selves: Self-Evolution Contrast for Robust Depth Estimation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Self-supervised depth estimation has gained significant attention in autonomous driving and robotics. However, existing methods exhibit substantial performance degradation under adverse weather conditions such as rain and fog, where reduced visibility critically impairs depth prediction. To address this issue, we propose a novel self-evolution contrastive learning framework called SEC-Depth for self-supervised robust depth estimation tasks. Our approach leverages intermediate parameters generated during training to construct temporally evolving latency models. Using these, we design a self-evolution contrastive scheme to mitigate performance loss under challenging conditions. Concretely, we first design a dynamic update strategy of latency models for the depth estimation task to capture optimization states across training stages. To effectively leverage latency models, we introduce a self-evolution contrastive Loss (SECL) that treats outputs from historical latency models as negative samples. This mechanism adaptively adjusts learning objectives while implicitly sensing weather degradation severity, reducing the needs for manual intervention. Experiments show that our method integrates seamlessly into diverse baseline models and significantly enhances robustness in zero-shot evaluations.

3.60Multimodal Continual Instruction Tuning with Dynamic Gradient Guidance

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal continual instruction tuning enables multimodal large language models to sequentially adapt to new tasks while building upon previously acquired knowledge. However, this continual learning paradigm faces the significant challenge of catastrophic forgetting, where learning new tasks leads to performance degradation on previous ones. In this paper, we introduce a novel insight into catastrophic forgetting by conceptualizing it as a problem of missing gradients from old tasks during new task learning. Our approach approximates these missing gradients by leveraging the geometric properties of the parameter space, specifically using the directional vector between current parameters and previously optimal parameters as gradient guidance. This approximated gradient can be further integrated with real gradients from a limited replay buffer and regulated by a Bernoulli sampling strategy that dynamically balances model stability and plasticity. Extensive experiments on multimodal continual instruction tuning datasets demonstrate that our method achieves state-of-the-art performance without model expansion, effectively mitigating catastrophic forgetting while maintaining a compact architecture.

3.61Generating Natural-Language Surgical Feedback: From Structured Representation to Domain-Grounded Evaluation

arxiv html pdf kimi

2025/11/20 04:56 GTM

High-quality intraoperative feedback from a surgical trainer is pivotal for improving trainee performance and long-term skill acquisition. Automating natural, trainer-style feedback promises timely, accessible, and consistent guidance at scale but requires models that understand clinically relevant representations. We present a structure-aware pipeline that learns a surgical action ontology from real trainer-to-trainee transcripts (33 surgeries) and uses it to condition feedback generation. We contribute by (1) mining Instrument-Action-Target (IAT) triplets from real-world feedback text and clustering surface forms into normalized categories, (2) fine-tuning a video-to-IAT model that leverages the surgical procedure and task contexts as well as fine-grained temporal instrument motion, and (3) demonstrating how to effectively use IAT triplet representations to guide GPT-4o in generating clinically grounded, trainer-style feedback. We show that, on Task 1: Video-to-IAT recognition, our context injection and temporal tracking deliver consistent AUC gains (Instrument: 0.67 to 0.74; Action: 0.60 to 0.63; Tissue: 0.74 to 0.79). For Task 2: feedback text generation (rated on a 1-5 fidelity rubric where 1 = opposite/unsafe, 3 = admissible, and 5 = perfect match to a human trainer), GPT-4o from video alone scores 2.17, while IAT conditioning reaches 2.44 (+12.4%), doubling the share of admissible generations with score >= 3 from 21% to 42%. Traditional text-similarity metrics also improve: word error rate decreases by 15-31% and ROUGE (phrase/substring overlap) increases by 9-64%. Grounding generation in explicit IAT structure improves fidelity and yields clinician-verifiable rationales, supporting auditable use in surgical training.

3.62SceneEdited: A City-Scale Benchmark for 3D HD Map Updating via Image-Guided Change Detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Accurate, up-to-date High-Definition (HD) maps are critical for urban planning, infrastructure monitoring, and autonomous navigation. However, these maps quickly become outdated as environments evolve, creating a need for robust methods that not only detect changes but also incorporate them into updated 3D representations. While change detection techniques have advanced significantly, there remains a clear gap between detecting changes and actually updating 3D maps, particularly when relying on 2D image-based change detection. To address this gap, we introduce SceneEdited, the first city-scale dataset explicitly designed to support research on HD map maintenance through 3D point cloud updating. SceneEdited contains over 800 up-to-date scenes covering 73 km of driving and approximate 3 km2\text{km}^2 of urban area, with more than 23,000 synthesized object changes created both manually and automatically across 2000+ out-of-date versions, simulating realistic urban modifications such as missing roadside infrastructure, buildings, overpasses, and utility poles. Each scene includes calibrated RGB images, LiDAR scans, and detailed change masks for training and evaluation. We also provide baseline methods using a foundational image-based structure-from-motion pipeline for updating outdated scenes, as well as a comprehensive toolkit supporting scalability, trackability, and portability for future dataset expansion and unification of out-of-date object annotations. Both the dataset and the toolkit are publicly available at https://github.com/ChadLin9596/ScenePoint-ETK, establising a standardized benchmark for 3D map updating research.

3.63DCL-SE: Dynamic Curriculum Learning for Spatiotemporal Encoding of Brain Imaging

arxiv html pdf kimi

2025/11/20 04:56 GTM

High-dimensional neuroimaging analyses for clinical diagnosis are often constrained by compromises in spatiotemporal fidelity and by the limited adaptability of large-scale, general-purpose models. To address these challenges, we introduce Dynamic Curriculum Learning for Spatiotemporal Encoding (DCL-SE), an end-to-end framework centered on data-driven spatiotemporal encoding (DaSE). We leverage Approximate Rank Pooling (ARP) to efficiently encode three-dimensional volumetric brain data into information-rich, two-dimensional dynamic representations, and then employ a dynamic curriculum learning strategy, guided by a Dynamic Group Mechanism (DGM), to progressively train the decoder, refining feature extraction from global anatomical structures to fine pathological details. Evaluated across six publicly available datasets, including Alzheimer’s disease and brain tumor classification, cerebral artery segmentation, and brain age prediction, DCL-SE consistently outperforms existing methods in accuracy, robustness, and interpretability. These findings underscore the critical importance of compact, task-specific architectures in the era of large-scale pretrained networks.

3.64WaveFuse-AL: Cyclical and Performance-Adaptive Multi-Strategy Active Learning for Medical Images

arxiv html pdf kimi

2025/11/20 04:56 GTM

Active learning reduces annotation costs in medical imaging by strategically selecting the most informative samples for labeling. However, individual acquisition strategies often exhibit inconsistent behavior across different stages of the active learning cycle. We propose Cyclical and Performance-Adaptive Multi-Strategy Active Learning (WaveFuse-AL), a novel framework that adaptively fuses multiple established acquisition strategies-BALD, BADGE, Entropy, and CoreSet throughout the learning process. WaveFuse-AL integrates cyclical (sinusoidal) temporal priors with performance-driven adaptation to dynamically adjust strategy importance over time. We evaluate WaveFuse-AL on three medical imaging benchmarks: APTOS-2019 (multi-class classification), RSNA Pneumonia Detection (binary classification), and ISIC-2018 (skin lesion segmentation). Experimental results demonstrate that WaveFuse-AL consistently outperforms both single-strategy and alternating-strategy baselines, achieving statistically significant performance improvements (on ten out of twelve metric measurements) while maximizing the utility of limited annotation budgets.

3.65Unbiased Semantic Decoding with Vision Foundation Models for Few-shot Segmentation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Few-shot segmentation has garnered significant attention. Many recent approaches attempt to introduce the Segment Anything Model (SAM) to handle this task. With the strong generalization ability and rich object-specific extraction ability of the SAM model, such a solution shows great potential in few-shot segmentation. However, the decoding process of SAM highly relies on accurate and explicit prompts, making previous approaches mainly focus on extracting prompts from the support set, which is insufficient to activate the generalization ability of SAM, and this design is easy to result in a biased decoding process when adapting to the unknown classes. In this work, we propose an Unbiased Semantic Decoding (USD) strategy integrated with SAM, which extracts target information from both the support and query set simultaneously to perform consistent predictions guided by the semantics of the Contrastive Language-Image Pre-training (CLIP) model. Specifically, to enhance the unbiased semantic discrimination of SAM, we design two feature enhancement strategies that leverage the semantic alignment capability of CLIP to enrich the original SAM features, mainly including a global supplement at the image level to provide a generalize category indicate with support image and a local guidance at the pixel level to provide a useful target location with query image. Besides, to generate target-focused prompt embeddings, a learnable visual-text target prompt generator is proposed by interacting target text embeddings and clip visual features. Without requiring re-training of the vision foundation models, the features with semantic discrimination draw attention to the target region through the guidance of prompt with rich target information.

3.66An Event-triggered System for Social Persuasion and Danger Alert in Elder Home Monitoring

arxiv html pdf kimi

2025/11/20 04:56 GTM

In the study, the physical state and mental state of elders are both considered, and an event-triggered system has developed to detect events: watch dog, danger notice and photo link. By adopting GMM background modeling, the motion behavior of visitors and elders can be detected in the watch dog event and danger notice event respectively. Experiments set in home scenarios and 5 families participated in the experiments for detecting and recording three types of events from their life activities. In addition, the captured images were analyzed using SVM machine learning. For lack of technical experiences of elders, an intuitive operation as normal life activity was designed to create communication between elder and relatives via social media.

3.67Gaussian Blending: Rethinking Alpha Blending in 3D Gaussian Splatting

arxiv html pdf kimi

2025/11/20 04:56 GTM

The recent introduction of 3D Gaussian Splatting (3DGS) has significantly advanced novel view synthesis. Several studies have further improved the rendering quality of 3DGS, yet they still exhibit noticeable visual discrepancies when synthesizing views at sampling rates unseen during training. Specifically, they suffer from (i) erosion-induced blurring artifacts when zooming in and (ii) dilation-induced staircase artifacts when zooming out. We speculate that these artifacts arise from the fundamental limitation of the alpha blending adopted in 3DGS methods. Instead of the conventional alpha blending that computes alpha and transmittance as scalar quantities over a pixel, we propose to replace it with our novel Gaussian Blending that treats alpha and transmittance as spatially varying distributions. Thus, transmittances can be updated considering the spatial distribution of alpha values across the pixel area, allowing nearby background splats to contribute to the final rendering. Our Gaussian Blending maintains real-time rendering speed and requires no additional memory cost, while being easily integrated as a drop-in replacement into existing 3DGS-based or other NVS frameworks. Extensive experiments demonstrate that Gaussian Blending effectively captures fine details at various sampling rates unseen during training, consistently outperforming existing novel view synthesis models across both unseen and seen sampling rates.

3.68A Comprehensive Study on Visual Token Redundancy for Discrete Diffusion-based Multimodal Large Language Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

Discrete diffusion-based multimodal large language models (dMLLMs) have emerged as a promising alternative to autoregressive MLLMs thanks to their advantages in parallel decoding and bidirectional context modeling, but most existing dMLLMs incur significant computational overhead during inference due to the full-sequence attention computation in each denoising step. Pioneer studies attempt to resolve this issue from a modality-agnostic perspective via key-value cache optimization or efficient sampling but most of them overlook modality-specific visual token redundancy. In this work, we conduct a comprehensive study on how visual token redundancy evolves with different dMLLM architectures and tasks and how visual token pruning affects dMLLM responses and efficiency. Specifically, our study reveals that visual redundancy emerges only in from-scratch dMLLMs while handling long-answer tasks. In addition, we validate that visual token pruning introduces non-negligible information loss in dMLLMs and only from-scratch dMLLMs can recover the lost information progressively during late denoising steps. Furthermore, our study shows that layer-skipping is promising for accelerating AR-to-diffusion dMLLMs, whereas progressive or late-step pruning is more effective for from-scratch dMLLMs. Overall, this work offers a new perspective on efficiency optimization for dMLLMs, greatly advancing their applicability across various multimodal understanding tasks.

3.69Jointly Conditioned Diffusion Model for Multi-View Pose-Guided Person Image Synthesis

arxiv html pdf kimi

2025/11/20 04:56 GTM

Pose-guided human image generation is limited by incomplete textures from single reference views and the absence of explicit cross-view interaction. We present jointly conditioned diffusion model (JCDM), a jointly conditioned diffusion framework that exploits multi-view priors. The appearance prior module (APM) infers a holistic identity preserving prior from incomplete references, and the joint conditional injection (JCI) mechanism fuses multi-view cues and injects shared conditioning into the denoising backbone to align identity, color, and texture across poses. JCDM supports a variable number of reference views and integrates with standard diffusion backbones with minimal and targeted architectural modifications. Experiments demonstrate state of the art fidelity and cross-view consistency.

3.70BBox DocVQA: A Large Scale Bounding Box Grounded Dataset for Enhancing Reasoning in Document Visual Question Answer

arxiv html pdf kimi

2025/11/20 04:56 GTM

Document Visual Question Answering (DocVQA) is a fundamental task for multimodal document understanding and a key testbed for vision language reasoning. However, most existing DocVQA datasets are limited to the page level and lack fine grained spatial grounding, constraining the interpretability and reasoning capability of Vision Language Models (VLMs). To address this gap, we introduce BBox DocVQA a large scale, bounding box grounded dataset designed to enhance spatial reasoning and evidence localization in visual documents. We further present an automated construction pipeline, Segment Judge and Generate, which integrates a segment model for region segmentation, a VLM for semantic judgment, and another advanced VLM for question answer generation, followed by human verification for quality assurance. The resulting dataset contains 3.6 K diverse documents and 32 K QA pairs, encompassing single and multi region as well as single and multi page scenarios. Each QA instance is grounded on explicit bounding boxes, enabling fine grained evaluation of spatial semantic alignment. Benchmarking multiple state of the art VLMs (e.g., GPT 5, Qwen2.5 VL, and InternVL) on BBox DocVQA reveals persistent challenges in spatial grounding and reasoning accuracy. Furthermore, fine tuning on BBox DocVQA substantially improves both bounding box localization and answer generation, validating its effectiveness for enhancing the reasoning ability of VLMs. Our dataset and code will be publicly released to advance research on interpretable and spatially grounded vision language reasoning.

3.71TiCAL:Typicality-Based Consistency-Aware Learning for Multimodal Emotion Recognition

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal Emotion Recognition (MER) aims to accurately identify human emotional states by integrating heterogeneous modalities such as visual, auditory, and textual data. Existing approaches predominantly rely on unified emotion labels to supervise model training, often overlooking a critical challenge: inter-modal emotion conflicts, wherein different modalities within the same sample may express divergent emotional tendencies. In this work, we address this overlooked issue by proposing a novel framework, Typicality-based Consistent-aware Multimodal Emotion Recognition (TiCAL), inspired by the stage-wise nature of human emotion perception. TiCAL dynamically assesses the consistency of each training sample by leveraging pseudo unimodal emotion labels alongside a typicality estimation. To further enhance emotion representation, we embed features in a hyperbolic space, enabling the capture of fine-grained distinctions among emotional categories. By incorporating consistency estimates into the learning process, our method improves model performance, particularly on samples exhibiting high modality inconsistency. Extensive experiments on benchmark datasets, e.g, CMU-MOSEI and MER2023, validate the effectiveness of TiCAL in mitigating inter-modal emotional conflicts and enhancing overall recognition accuracy, e.g., with about 2.6% improvements over the state-of-the-art DMD.

3.72MambaTrack3D: A State Space Model Framework for LiDAR-Based Object Tracking under High Temporal Variation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Dynamic outdoor environments with high temporal variation (HTV) pose significant challenges for 3D single object tracking in LiDAR point clouds. Existing memory-based trackers often suffer from quadratic computational complexity, temporal redundancy, and insufficient exploitation of geometric priors. To address these issues, we propose MambaTrack3D, a novel HTV-oriented tracking framework built upon the state space model Mamba. Specifically, we design a Mamba-based Inter-frame Propagation (MIP) module that replaces conventional single-frame feature extraction with efficient inter-frame propagation, achieving near-linear complexity while explicitly modeling spatial relations across historical frames. Furthermore, a Grouped Feature Enhancement Module (GFEM) is introduced to separate foreground and background semantics at the channel level, thereby mitigating temporal redundancy in the memory bank. Extensive experiments on KITTI-HTV and nuScenes-HTV benchmarks demonstrate that MambaTrack3D consistently outperforms both HTV-oriented and normal-scenario trackers, achieving improvements of up to 6.5 success and 9.5 precision over HVTrack under moderate temporal gaps. On the standard KITTI dataset, MambaTrack3D remains highly competitive with state-of-the-art normal-scenario trackers, confirming its strong generalization ability. Overall, MambaTrack3D achieves a superior accuracy-efficiency trade-off, delivering robust performance across both specialized HTV and conventional tracking scenarios.

3.73Deep Pathomic Learning Defines Prognostic Subtypes and Molecular Drivers in Colorectal Cancer

arxiv html pdf kimi

2025/11/20 04:56 GTM

Precise prognostic stratification of colorectal cancer (CRC) remains a major clinical challenge due to its high heterogeneity. The conventional TNM staging system is inadequate for personalized medicine. We aimed to develop and validate a novel multiple instance learning model TDAM-CRC using histopathological whole-slide images for accurate prognostic prediction and to uncover its underlying molecular mechanisms. We trained the model on the TCGA discovery cohort (n=581), validated it in an independent external cohort (n=1031), and further we integrated multi-omics data to improve model interpretability and identify novel prognostic biomarkers. The results demonstrated that the TDAM-CRC achieved robust risk stratification in both cohorts. Its predictive performance significantly outperformed the conventional clinical staging system and multiple state-of-the-art models. The TDAM-CRC risk score was confirmed as an independent prognostic factor in multivariable analysis. Multi-omics analysis revealed that the high-risk subtype is closely associated with metabolic reprogramming and an immunosuppressive tumor microenvironment. Through interaction network analysis, we identified and validated Mitochondrial Ribosomal Protein L37 (MRPL37) as a key hub gene linking deep pathomic features to clinical prognosis. We found that high expression of MRPL37, driven by promoter hypomethylation, serves as an independent biomarker of favorable prognosis. Finally, we constructed a nomogram incorporating the TDAM-CRC risk score and clinical factors to provide a precise and interpretable clinical decision-making tool for CRC patients. Our AI-driven pathological model TDAM-CRC provides a robust tool for improved CRC risk stratification, reveals new molecular targets, and facilitates personalized clinical decision-making.

3.74BokehFlow: Depth-Free Controllable Bokeh Rendering via Flow Matching

arxiv html pdf kimi

2025/11/20 04:56 GTM

Bokeh rendering simulates the shallow depth-of-field effect in photography, enhancing visual aesthetics and guiding viewer attention to regions of interest. Although recent approaches perform well, rendering controllable bokeh without additional depth inputs remains a significant challenge. Existing classical and neural controllable methods rely on accurate depth maps, while generative approaches often struggle with limited controllability and efficiency. In this paper, we propose BokehFlow, a depth-free framework for controllable bokeh rendering based on flow matching. BokehFlow directly synthesizes photorealistic bokeh effects from all-in-focus images, eliminating the need for depth inputs. It employs a cross-attention mechanism to enable semantic control over both focus regions and blur intensity via text prompts. To support training and evaluation, we collect and synthesize four datasets. Extensive experiments demonstrate that BokehFlow achieves visually compelling bokeh effects and offers precise control, outperforming existing depth-dependent and generative methods in both rendering quality and efficiency.

3.75Reasoning via Video: The First Evaluation of Video Models’ Reasoning Abilities through Maze-Solving Tasks

arxiv html pdf kimi

2025/11/20 04:56 GTM

Video Models have achieved remarkable success in high-fidelity video generation with coherent motion dynamics. Analogous to the development from text generation to text-based reasoning in language modeling, the development of video models motivates us to ask: Can video models reason via video generation? Compared with the discrete text corpus, video grounds reasoning in explicit spatial layouts and temporal continuity, which serves as an ideal substrate for spatial reasoning. In this work, we explore the reasoning via video paradigm and introduce VR-Bench -- a comprehensive benchmark designed to systematically evaluate video models’ reasoning capabilities. Grounded in maze-solving tasks that inherently require spatial planning and multi-step reasoning, VR-Bench contains 7,920 procedurally generated videos across five maze types and diverse visual styles. Our empirical analysis demonstrates that SFT can efficiently elicit the reasoning ability of video model. Video models exhibit stronger spatial perception during reasoning, outperforming leading VLMs and generalizing well across diverse scenarios, tasks, and levels of complexity. We further discover a test-time scaling effect, where diverse sampling during inference improves reasoning reliability by 10--20%. These findings highlight the unique potential and scalability of reasoning via video for spatial reasoning tasks.

3.76Image Denoising Using Transformed L1 (TL1) Regularization via ADMM

arxiv html pdf kimi

2025/11/20 04:56 GTM

Total variation (TV) regularization is a classical tool for image denoising, but its convex 1\ell_1 formulation often leads to staircase artifacts and loss of contrast. To address these issues, we introduce the Transformed 1\ell_1 (TL1) regularizer applied to image gradients. In particular, we develop a TL1-regularized denoising model and solve it using the Alternating Direction Method of Multipliers (ADMM), featuring a closed-form TL1 proximal operator and an FFT-based image update under periodic boundary conditions. Experimental results demonstrate that our approach achieves superior denoising performance, effectively suppressing noise while preserving edges and enhancing image contrast.

3.77Evaluating Multimodal Large Language Models on Vertically Written Japanese Text

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal Large Language Models (MLLMs) have seen rapid advances in recent years and are now being applied to visual document understanding tasks. They are expected to process a wide range of document images across languages, including Japanese. Understanding documents from images requires models to read what are written in them. Since some Japanese documents are written vertically, support for vertical writing is essential. However, research specifically focused on vertically written Japanese text remains limited. In this study, we evaluate the reading capability of existing MLLMs on vertically written Japanese text. First, we generate a synthetic Japanese OCR dataset by rendering Japanese texts into images, and use it for both model fine-tuning and evaluation. This dataset includes Japanese text in both horizontal and vertical writing. We also create an evaluation dataset sourced from the real-world document images containing vertically written Japanese text. Using these datasets, we demonstrate that the existing MLLMs perform worse on vertically written Japanese text than on horizontally written Japanese text. Furthermore, we show that training MLLMs on our synthesized Japanese OCR dataset results in improving the performance of models that previously could not handle vertical writing. The datasets and code are publicly available https://github.com/llm-jp/eval_vertical_ja.

3.78ProPL: Universal Semi-Supervised Ultrasound Image Segmentation via Prompt-Guided Pseudo-Labeling

arxiv html pdf kimi

2025/11/20 04:56 GTM

Existing approaches for the problem of ultrasound image segmentation, whether supervised or semi-supervised, are typically specialized for specific anatomical structures or tasks, limiting their practical utility in clinical settings. In this paper, we pioneer the task of universal semi-supervised ultrasound image segmentation and propose ProPL, a framework that can handle multiple organs and segmentation tasks while leveraging both labeled and unlabeled data. At its core, ProPL employs a shared vision encoder coupled with prompt-guided dual decoders, enabling flexible task adaptation through a prompting-upon-decoding mechanism and reliable self-training via an uncertainty-driven pseudo-label calibration (UPLC) module. To facilitate research in this direction, we introduce a comprehensive ultrasound dataset spanning 5 organs and 8 segmentation tasks. Extensive experiments demonstrate that ProPL outperforms state-of-the-art methods across various metrics, establishing a new benchmark for universal ultrasound image segmentation.

3.79CellGenNet: A Knowledge-Distilled Framework for Robust Cell Segmentation in Cancer Tissues

arxiv html pdf kimi

2025/11/20 04:56 GTM

Accurate nuclei segmentation in microscopy whole slide images (WSIs) remains challenging due to variability in staining, imaging conditions, and tissue morphology. We propose CellGenNet, a knowledge distillation framework for robust cross-tissue cell segmentation under limited supervision. CellGenNet adopts a student-teacher architecture, where a capacity teacher is trained on sparse annotations and generates soft pseudo-labels for unlabeled regions. The student is optimized using a joint objective that integrates ground-truth labels, teacher-derived probabilistic targets, and a hybrid loss function combining binary cross-entropy and Tversky loss, enabling asymmetric penalties to mitigate class imbalance and better preserve minority nuclear structures. Consistency regularization and layerwise dropout further stabilize feature representations and promote reliable feature transfer. Experiments across diverse cancer tissue WSIs show that CellGenNet improves segmentation accuracy and generalization over supervised and semi-supervised baselines, supporting scalable and reproducible histopathology analysis.

3.80Hyperspectral Super-Resolution with Inter-Image Variability via Degradation-based Low-Rank and Residual Fusion Method

arxiv html pdf kimi

2025/11/20 04:56 GTM

The fusion of hyperspectral image (HSI) with multispectral image (MSI) provides an effective way to enhance the spatial resolution of HSI. However, due to different acquisition conditions, there may exist spectral variability and spatially localized changes between HSI and MSI, referred to as inter-image variability, which can significantly affect the fusion performance. Existing methods typically handle inter-image variability by applying direct transformations to the images themselves, which can exacerbate the ill-posedness of the fusion model. To address this challenge, we propose a Degradation-based Low-Rank and Residual Fusion (DLRRF) model. First, we model the spectral variability as change in the spectral degradation operator. Second, to recover the lost spatial details caused by spatially localized changes, we decompose the target HSI into low rank and residual components, where the latter is used to capture the lost details. By exploiting the spectral correlation within the images, we perform dimensionality reduction on both components. Additionally, we introduce an implicit regularizer to utilize the spatial prior information from the images. The proposed DLRRF model is solved using the Proximal Alternating Optimization (PAO) algorithm within a Plug-and-Play (PnP) framework, where the subproblem regarding implicit regularizer is addressed by an external denoiser. We further provide a comprehensive convergence analysis of the algorithm. Finally, extensive numerical experiments demonstrate that DLRRF achieves superior performance in fusing HSI and MSI with inter-image variability.

3.81UniHOI: Unified Human-Object Interaction Understanding via Unified Token Space

arxiv html pdf kimi

2025/11/20 04:56 GTM

In the field of human-object interaction (HOI), detection and generation are two dual tasks that have traditionally been addressed separately, hindering the development of comprehensive interaction understanding. To address this, we propose UniHOI, which jointly models HOI detection and generation via a unified token space, thereby effectively promoting knowledge sharing and enhancing generalization. Specifically, we introduce a symmetric interaction-aware attention module and a unified semi-supervised learning paradigm, enabling effective bidirectional mapping between images and interaction semantics even under limited annotations. Extensive experiments demonstrate that UniHOI achieves state-of-the-art performance in both HOI detection and generation. Specifically, UniHOI improves accuracy by 4.9% on long-tailed HOI detection and boosts interaction metrics by 42.0% on open-vocabulary generation tasks.

3.82Computer Vision Modeling of the Development of Geometric and Numerical Concepts in Humans

arxiv html pdf kimi

2025/11/20 04:56 GTM

Mathematical thinking is a fundamental aspect of human cognition. Cognitive scientists have investigated the mechanisms that underlie our ability to thinking geometrically and numerically, to take two prominent examples, and developmental scientists have documented the trajectories of these abilities over the lifespan. Prior research has shown that computer vision (CV) models trained on the unrelated task of image classification nevertheless learn latent representations of geometric and numerical concepts similar to those of adults. Building on this demonstrated cognitive alignment, the current study investigates whether CV models also show developmental alignment: whether their performance improvements across training to match the developmental progressions observed in children. In a detailed case study of the ResNet-50 model, we show that this is the case. For the case of geometry and topology, we find developmental alignment for some classes of concepts (Euclidean Geometry, Geometrical Figures, Metric Properties, Topology) but not others (Chiral Figures, Geometric Transformations, Symmetrical Figures). For the case of number, we find developmental alignment in the emergence of a human-like ``mental number line’’ representation with experience. These findings show the promise of computer vision models for understanding the development of mathematical understanding in humans. They point the way to future research exploring additional model architectures and building larger benchmarks.

3.83Complex-Valued 2D Gaussian Representation for Computer-Generated Holography

arxiv html pdf kimi

2025/11/20 04:56 GTM

We propose a new hologram representation based on structured complex-valued 2D Gaussian primitives, which replaces per-pixel information storage and reduces the parameter search space by up to 10:1. To enable end-to-end training, we develop a differentiable rasterizer for our representation, integrated with a GPU-optimized light propagation kernel in free space. Our extensive experiments show that our method achieves up to 2.5x lower VRAM usage and 50% faster optimization while producing higher-fidelity reconstructions than existing methods. We further introduce a conversion procedure that adapts our representation to practical hologram formats, including smooth and random phase-only holograms. Our experiments show that this procedure can effectively suppress noise artifacts observed in previous methods. By reducing the hologram parameter search space, our representation enables a more scalable hologram estimation in the next-generation computer-generated holography systems.

3.84CKDA: Cross-modality Knowledge Disentanglement and Alignment for Visible-Infrared Lifelong Person Re-identification

arxiv html pdf kimi

2025/11/20 04:56 GTM

Lifelong person Re-IDentification (LReID) aims to match the same person employing continuously collected individual data from different scenarios. To achieve continuous all-day person matching across day and night, Visible-Infrared Lifelong person Re-IDentification (VI-LReID) focuses on sequential training on data from visible and infrared modalities and pursues average performance over all data. To this end, existing methods typically exploit cross-modal knowledge distillation to alleviate the catastrophic forgetting of old knowledge. However, these methods ignore the mutual interference of modality-specific knowledge acquisition and modality-common knowledge anti-forgetting, where conflicting knowledge leads to collaborative forgetting. To address the above problems, this paper proposes a Cross-modality Knowledge Disentanglement and Alignment method, called CKDA, which explicitly separates and preserves modality-specific knowledge and modality-common knowledge in a balanced way. Specifically, a Modality-Common Prompting (MCP) module and a Modality-Specific Prompting (MSP) module are proposed to explicitly disentangle and purify discriminative information that coexists and is specific to different modalities, avoiding the mutual interference between both knowledge. In addition, a Cross-modal Knowledge Alignment (CKA) module is designed to further align the disentangled new knowledge with the old one in two mutually independent inter- and intra-modality feature spaces based on dual-modality prototypes in a balanced manner. Extensive experiments on four benchmark datasets verify the effectiveness and superiority of our CKDA against state-of-the-art methods. The source code of this paper is available at https://github.com/PKU-ICST-MIPL/CKDA-AAAI2026.

3.85FinCriticalED: A Visual Benchmark for Financial Fact-Level OCR Evaluation

arxiv html pdf kimi

2025/11/20 04:56 GTM

We introduce FinCriticalED (Financial Critical Error Detection), a visual benchmark for evaluating OCR and vision language models on financial documents at the fact level. Financial documents contain visually dense and table heavy layouts where numerical and temporal information is tightly coupled with structure. In high stakes settings, small OCR mistakes such as sign inversion or shifted dates can lead to materially different interpretations, while traditional OCR metrics like ROUGE and edit distance capture only surface level text similarity. \ficriticaled provides 500 image-HTML pairs with expert annotated financial facts covering over seven hundred numerical and temporal facts. It introduces three key contributions. First, it establishes the first fact level evaluation benchmark for financial document understanding, shifting evaluation from lexical overlap to domain critical factual correctness. Second, all annotations are created and verified by financial experts with strict quality control over signs, magnitudes, and temporal expressions. Third, we develop an LLM-as-Judge evaluation pipeline that performs structured fact extraction and contextual verification for visually complex financial documents. We benchmark OCR systems, open source vision language models, and proprietary models on FinCriticalED. Results show that although the strongest proprietary models achieve the highest factual accuracy, substantial errors remain in visually intricate numerical and temporal contexts. Through quantitative evaluation and expert case studies, FinCriticalED provides a rigorous foundation for advancing visual factual precision in financial and other precision critical domains.

3.86Kandinsky 5.0: A Family of Foundation Models for Image and Video Generation

arxiv html pdf kimi

2025/11/20 04:56 GTM

This report introduces Kandinsky 5.0, a family of state-of-the-art foundation models for high-resolution image and 10-second video synthesis. The framework comprises three core line-up of models: Kandinsky 5.0 Image Lite - a line-up of 6B parameter image generation models, Kandinsky 5.0 Video Lite - a fast and lightweight 2B parameter text-to-video and image-to-video models, and Kandinsky 5.0 Video Pro - 19B parameter models that achieves superior video generation quality. We provide a comprehensive review of the data curation lifecycle - including collection, processing, filtering and clustering - for the multi-stage training pipeline that involves extensive pre-training and incorporates quality-enhancement techniques such as self-supervised fine-tuning (SFT) and reinforcement learning (RL)-based post-training. We also present novel architectural, training, and inference optimizations that enable Kandinsky 5.0 to achieve high generation speeds and state-of-the-art performance across various tasks, as demonstrated by human evaluation. As a large-scale, publicly available generative framework, Kandinsky 5.0 leverages the full potential of its pre-training and subsequent stages to be adapted for a wide range of generative applications. We hope that this report, together with the release of our open-source code and training checkpoints, will substantially advance the development and accessibility of high-quality generative models for the research community.

3.87Logit-Based Losses Limit the Effectiveness of Feature Knowledge Distillation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Knowledge distillation (KD) methods can transfer knowledge of a parameter-heavy teacher model to a light-weight student model. The status quo for feature KD methods is to utilize loss functions based on logits (i.e., pre-softmax class scores) and intermediate layer features (i.e., latent representations). Unlike previous approaches, we propose a feature KD framework for training the student’s backbone using feature-based losses exclusively (i.e., without logit-based losses such as cross entropy). Leveraging recent discoveries about the geometry of latent representations, we introduce a knowledge quality metric for identifying which teacher layers provide the most effective knowledge for distillation. Experiments on three image classification datasets with four diverse student-teacher pairs, spanning convolutional neural networks and vision transformers, demonstrate our KD method achieves state-of-the-art performance, delivering top-1 accuracy boosts of up to 15% over standard approaches. We publically share our code to facilitate future work at https://github.com/Thegolfingocto/KD_wo_CE.

3.88EGSA-PT:Edge-Guided Spatial Attention with Progressive Training for Monocular Depth Estimation and Segmentation of Transparent Objects

arxiv html pdf kimi

2025/11/20 04:56 GTM

Transparent object perception remains a major challenge in computer vision research, as transparency confounds both depth estimation and semantic segmentation. Recent work has explored multi-task learning frameworks to improve robustness, yet negative cross-task interactions often hinder performance. In this work, we introduce Edge-Guided Spatial Attention (EGSA), a fusion mechanism designed to mitigate destructive interactions by incorporating boundary information into the fusion between semantic and geometric features. On both Syn-TODD and ClearPose benchmarks, EGSA consistently improved depth accuracy over the current state of the art method (MODEST), while preserving competitive segmentation performance, with the largest improvements appearing in transparent regions. Besides our fusion design, our second contribution is a multi-modal progressive training strategy, where learning transitions from edges derived from RGB images to edges derived from predicted depth images. This approach allows the system to bootstrap learning from the rich textures contained in RGB images, and then switch to more relevant geometric content in depth maps, while it eliminates the need for ground-truth depth at training time. Together, these contributions highlight edge-guided fusion as a robust approach capable of improving transparent object perception.

3.89Knowledge Graphs as Structured Memory for Embedding Spaces: From Training Clusters to Explainable Inference

arxiv html pdf kimi

2025/11/20 04:56 GTM

We introduce Graph Memory (GM), a structured non-parametric framework that augments embedding-based inference with a compact, relational memory over region-level prototypes. Rather than treating each training instance in isolation, GM summarizes the embedding space into prototype nodes annotated with reliability indicators and connected by edges that encode geometric and contextual relations. This design unifies instance retrieval, prototype-based reasoning, and graph-based label propagation within a single inductive model that supports both efficient inference and faithful explanation. Experiments on synthetic and real datasets including breast histopathology (IDC) show that GM achieves accuracy competitive with kkNN and Label Spreading while offering substantially better calibration and smoother decision boundaries, all with an order of magnitude fewer samples. By explicitly modeling reliability and relational structure, GM provides a principled bridge between local evidence and global consistency in non-parametric learning.

3.90Artificial intelligence approaches for energy-efficient laser cutting machines

arxiv html pdf kimi

2025/11/20 04:56 GTM

This research addresses the significant challenges of energy consumption and environmental impact in laser cutting by proposing novel deep learning (DL) methodologies to achieve energy reduction. Recognizing the current lack of adaptive control and the open-loop nature of CO2 laser suction pumps, this study utilizes closed-loop configurations that dynamically adjust pump power based on both the material being cut and the smoke level generated. To implement this adaptive system, diverse material classification methods are introduced, including techniques leveraging lens-less speckle sensing with a customized Convolutional Neural Network (CNN) and an approach using a USB camera with transfer learning via the pre-trained VGG16 CNN model. Furthermore, a separate DL model for smoke level detection is employed to simultaneously refine the pump’s power output. This integration prompts the exhaust suction pump to automatically halt during inactive times and dynamically adjust power during operation, leading to experimentally proven and remarkable energy savings, with results showing a 20% to 50% reduction in the smoke suction pump’s energy consumption, thereby contributing substantially to sustainable development in the manufacturing sector.

3.91RocSync: Millisecond-Accurate Temporal Synchronization for Heterogeneous Camera Systems

arxiv html pdf kimi

2025/11/20 04:56 GTM

Accurate spatiotemporal alignment of multi-view video streams is essential for a wide range of dynamic-scene applications such as multi-view 3D reconstruction, pose estimation, and scene understanding. However, synchronizing multiple cameras remains a significant challenge, especially in heterogeneous setups combining professional and consumer-grade devices, visible and infrared sensors, or systems with and without audio, where common hardware synchronization capabilities are often unavailable. This limitation is particularly evident in real-world environments, where controlled capture conditions are not feasible. In this work, we present a low-cost, general-purpose synchronization method that achieves millisecond-level temporal alignment across diverse camera systems while supporting both visible (RGB) and infrared (IR) modalities. The proposed solution employs a custom-built \textit{LED Clock} that encodes time through red and infrared LEDs, allowing visual decoding of the exposure window (start and end times) from recorded frames for millisecond-level synchronization. We benchmark our method against hardware synchronization and achieve a residual error of 1.34~ms RMSE across multiple recordings. In further experiments, our method outperforms light-, audio-, and timecode-based synchronization approaches and directly improves downstream computer vision tasks, including multi-view pose estimation and 3D reconstruction. Finally, we validate the system in large-scale surgical recordings involving over 25 heterogeneous cameras spanning both IR and RGB modalities. This solution simplifies and streamlines the synchronization pipeline and expands access to advanced vision-based sensing in unconstrained environments, including industrial and clinical applications.

3.92Unsupervised Discovery of Long-Term Spatiotemporal Periodic Workflows in Human Activities

arxiv html pdf kimi

2025/11/20 04:56 GTM

Periodic human activities with implicit workflows are common in manufacturing, sports, and daily life. While short-term periodic activities -- characterized by simple structures and high-contrast patterns -- have been widely studied, long-term periodic workflows with low-contrast patterns remain largely underexplored. To bridge this gap, we introduce the first benchmark comprising 580 multimodal human activity sequences featuring long-term periodic workflows. The benchmark supports three evaluation tasks aligned with real-world applications: unsupervised periodic workflow detection, task completion tracking, and procedural anomaly detection. We also propose a lightweight, training-free baseline for modeling diverse periodic workflow patterns. Experiments show that: (i) our benchmark presents significant challenges to both unsupervised periodic detection methods and zero-shot approaches based on powerful large language models (LLMs); (ii) our baseline outperforms competing methods by a substantial margin in all evaluation tasks; and (iii) in real-world applications, our baseline demonstrates deployment advantages on par with traditional supervised workflow detection approaches, eliminating the need for annotation and retraining. Our project page is https://sites.google.com/view/periodicworkflow.

3.93CPSL: Representing Volumetric Video via Content-Promoted Scene Layers

arxiv html pdf kimi

2025/11/20 04:56 GTM

Volumetric video enables immersive and interactive visual experiences by supporting free viewpoint exploration and realistic motion parallax. However, existing volumetric representations from explicit point clouds to implicit neural fields, remain costly in capture, computation, and rendering, which limits their scalability for on-demand video and reduces their feasibility for real-time communication. To bridge this gap, we propose Content-Promoted Scene Layers (CPSL), a compact 2.5D video representation that brings the perceptual benefits of volumetric video to conventional 2D content. Guided by per-frame depth and content saliency, CPSL decomposes each frame into a small set of geometry-consistent layers equipped with soft alpha bands and an edge-depth cache that jointly preserve occlusion ordering and boundary continuity. These lightweight, 2D-encodable assets enable parallax-corrected novel-view synthesis via depth-weighted warping and front-to-back alpha compositing, bypassing expensive 3D reconstruction. Temporally, CPSL maintains inter-frame coherence using motion-guided propagation and per-layer encoding, supporting real-time playback with standard video codecs. Across multiple benchmarks, CPSL achieves superior perceptual quality and boundary fidelity compared with layer-based and neural-field baselines while reducing storage and rendering cost by several folds. Our approach offer a practical path from 2D video to scalable 2.5D immersive media.

3.94X-WIN: Building Chest Radiograph World Model via Predictive Sensing

arxiv html pdf kimi

2025/11/20 04:56 GTM

Chest X-ray radiography (CXR) is an essential medical imaging technique for disease diagnosis. However, as 2D projectional images, CXRs are limited by structural superposition and hence fail to capture 3D anatomies. This limitation makes representation learning and disease diagnosis challenging. To address this challenge, we propose a novel CXR world model named X-WIN, which distills volumetric knowledge from chest computed tomography (CT) by learning to predict its 2D projections in latent space. The core idea is that a world model with internalized knowledge of 3D anatomical structure can predict CXRs under various transformations in 3D space. During projection prediction, we introduce an affinity-guided contrastive alignment loss that leverages mutual similarities to capture rich, correlated information across projections from the same volume. To improve model adaptability, we incorporate real CXRs into training through masked image modeling and employ a domain classifier to encourage statistically similar representations for real and simulated CXRs. Comprehensive experiments show that X-WIN outperforms existing foundation models on diverse downstream tasks using linear probing and few-shot fine-tuning. X-WIN also demonstrates the ability to render 2D projections for reconstructing a 3D CT volume.

3.95nnMIL: A generalizable multiple instance learning framework for computational pathology

arxiv html pdf kimi

2025/11/20 04:56 GTM

Computational pathology holds substantial promise for improving diagnosis and guiding treatment decisions. Recent pathology foundation models enable the extraction of rich patch-level representations from large-scale whole-slide images (WSIs), but current approaches for aggregating these features into slide-level predictions remain constrained by design limitations that hinder generalizability and reliability. Here, we developed nnMIL, a simple yet broadly applicable multiple-instance learning framework that connects patch-level foundation models to robust slide-level clinical inference. nnMIL introduces random sampling at both the patch and feature levels, enabling large-batch optimization, task-aware sampling strategies, and efficient and scalable training across datasets and model architectures. A lightweight aggregator performs sliding-window inference to generate ensemble slide-level predictions and supports principled uncertainty estimation. Across 40,000 WSIs encompassing 35 clinical tasks and four pathology foundation models, nnMIL consistently outperformed existing MIL methods for disease diagnosis, histologic subtyping, molecular biomarker detection, and pan- cancer prognosis prediction. It further demonstrated strong cross-model generalization, reliable uncertainty quantification, and robust survival stratification in multiple external cohorts. In conclusion, nnMIL offers a practical and generalizable solution for translating pathology foundation models into clinically meaningful predictions, advancing the development and deployment of reliable AI systems in real-world settings.

3.96FarSLIP: Discovering Effective CLIP Adaptation for Fine-Grained Remote Sensing Understanding

arxiv html pdf kimi

2025/11/20 04:56 GTM

As CLIP’s global alignment limits its ability to capture fine-grained details, recent efforts have focused on enhancing its region-text alignment. However, current remote sensing (RS)-specific CLIP variants still inherit this limited spatial awareness. We identify two key limitations behind this: (1) current RS image-text datasets generate global captions from object-level labels, leaving the original object-level supervision underutilized; (2) despite the success of region-text alignment methods in general domain, their direct application to RS data often leads to performance degradation. To address these, we construct the first multi-granularity RS image-text dataset, MGRS-200k, featuring rich object-level textual supervision for RS region-category alignment. We further investigate existing fine-grained CLIP tuning strategies and find that current explicit region-text alignment methods, whether in a direct or indirect way, underperform due to severe degradation of CLIP’s semantic coherence. Building on these, we propose FarSLIP, a Fine-grained Aligned RS Language-Image Pretraining framework. Rather than the commonly used patch-to-CLS self-distillation, FarSLIP employs patch-to-patch distillation to align local and global visual cues, which improves feature discriminability while preserving semantic coherence. Additionally, to effectively utilize region-text supervision, it employs simple CLS token-based region-category alignment rather than explicit patch-level alignment, further enhancing spatial awareness. FarSLIP features improved fine-grained vision-language alignment in RS domain and sets a new state of the art not only on RS open-vocabulary semantic segmentation, but also on image-level tasks such as zero-shot classification and image-text retrieval. Our dataset, code, and models are available at https://github.com/NJU-LHRS/FarSLIP.

3.97Skin-R1: Toward Trustworthy Clinical Reasoning for Dermatological Diagnosis

arxiv html pdf kimi

2025/11/20 04:56 GTM

The emergence of vision-language models (VLMs) has opened new possibilities for clinical reasoning and has shown promising performance in dermatological diagnosis. However, their trustworthiness and clinical utility are often limited by three major factors: (1) Data heterogeneity, where diverse datasets lack consistent diagnostic labels and clinical concept annotations; (2) Absence of grounded diagnostic rationales, leading to a scarcity of reliable reasoning supervision; and (3) Limited scalability and generalization, as models trained on small, densely annotated datasets struggle to transfer nuanced reasoning to large, sparsely-annotated ones. To address these limitations, we propose SkinR1, a novel dermatological VLM that combines deep, textbook-based reasoning with the broad generalization capabilities of reinforcement learning (RL). SkinR1 systematically resolves the key challenges through a unified, end-to-end framework. First, we design a textbook-based reasoning generator that synthesizes high-fidelity, hierarchy-aware, and differential-diagnosis (DDx)-informed trajectories, providing reliable expert-level supervision. Second, we leverage the constructed trajectories for supervised fine-tuning (SFT) empowering the model with grounded reasoning ability. Third, we develop a novel RL paradigm that, by incorporating the hierarchical structure of diseases, effectively transfers these grounded reasoning patterns to large-scale, sparse data. Extensive experiments on multiple dermatology datasets demonstrate that SkinR1 achieves superior diagnostic accuracy. The ablation study demonstrates the importance of the reasoning foundation instilled by SFT.

3.98InstructMix2Mix: Consistent Sparse-View Editing Through Multi-View Model Personalization

arxiv html pdf kimi

2025/11/20 04:56 GTM

We address the task of multi-view image editing from sparse input views, where the inputs can be seen as a mix of images capturing the scene from different viewpoints. The goal is to modify the scene according to a textual instruction while preserving consistency across all views. Existing methods, based on per-scene neural fields or temporal attention mechanisms, struggle in this setting, often producing artifacts and incoherent edits. We propose InstructMix2Mix (I-Mix2Mix), a framework that distills the editing capabilities of a 2D diffusion model into a pretrained multi-view diffusion model, leveraging its data-driven 3D prior for cross-view consistency. A key contribution is replacing the conventional neural field consolidator in Score Distillation Sampling (SDS) with a multi-view diffusion student, which requires novel adaptations: incremental student updates across timesteps, a specialized teacher noise scheduler to prevent degeneration, and an attention modification that enhances cross-view coherence without additional cost. Experiments demonstrate that I-Mix2Mix significantly improves multi-view consistency while maintaining high per-frame edit quality.

3.99HULFSynth : An INR based Super-Resolution and Ultra Low-Field MRI Synthesis via Contrast factor estimation

arxiv html pdf kimi

2025/11/20 04:56 GTM

We present an unsupervised single image bidirectional Magnetic Resonance Image (MRI) synthesizer that synthesizes an Ultra-Low Field (ULF) like image from a High-Field (HF) magnitude image and vice-versa. Unlike existing MRI synthesis models, our approach is inspired by the physics that drives contrast changes between HF and ULF MRIs. Our forward model simulates a HF to ULF transformation by estimating the tissue-type Signal-to-Noise ratio (SNR) values based on target contrast values. For the Super-Resolution task, we used an Implicit Neural Representation (INR) network to synthesize HF image by simultaneously predicting tissue-type segmentations and image intensity without observed HF data. The proposed method is evaluated using synthetic ULF-like data from generated from standard 3T T1_1-weighted images for qualitative assessments and paired 3T-64mT T1_1-weighted images for validation experiments. WM-GM contrast improved by 52% in synthetic ULF-like images and 37% in 64mT images. Sensitivity experiments demonstrated the robustness of our forward model to variations in target contrast, noise and initial seeding.

3.100GeoSceneGraph: Geometric Scene Graph Diffusion Model for Text-guided 3D Indoor Scene Synthesis

arxiv html pdf kimi

2025/11/20 04:56 GTM

Methods that synthesize indoor 3D scenes from text prompts have wide-ranging applications in film production, interior design, video games, virtual reality, and synthetic data generation for training embodied agents. Existing approaches typically either train generative models from scratch or leverage vision-language models (VLMs). While VLMs achieve strong performance, particularly for complex or open-ended prompts, smaller task-specific models remain necessary for deployment on resource-constrained devices such as extended reality (XR) glasses or mobile phones. However, many generative approaches that train from scratch overlook the inherent graph structure of indoor scenes, which can limit scene coherence and realism. Conversely, methods that incorporate scene graphs either demand a user-provided semantic graph, which is generally inconvenient and restrictive, or rely on ground-truth relationship annotations, limiting their capacity to capture more varied object interactions. To address these challenges, we introduce GeoSceneGraph, a method that synthesizes 3D scenes from text prompts by leveraging the graph structure and geometric symmetries of 3D scenes, without relying on predefined relationship classes. Despite not using ground-truth relationships, GeoSceneGraph achieves performance comparable to methods that do. Our model is built on equivariant graph neural networks (EGNNs), but existing EGNN approaches are typically limited to low-dimensional conditioning and are not designed to handle complex modalities such as text. We propose a simple and effective strategy for conditioning EGNNs on text features, and we validate our design through ablation studies.

3.101Attacking Autonomous Driving Agents with Adversarial Machine Learning: A Holistic Evaluation with the CARLA Leaderboard

arxiv html pdf kimi

2025/11/20 04:56 GTM

To autonomously control vehicles, driving agents use outputs from a combination of machine-learning (ML) models, controller logic, and custom modules. Although numerous prior works have shown that adversarial examples can mislead ML models used in autonomous driving contexts, it remains unclear if these attacks are effective at producing harmful driving actions for various agents, environments, and scenarios. To assess the risk of adversarial examples to autonomous driving, we evaluate attacks against a variety of driving agents, rather than against ML models in isolation. To support this evaluation, we leverage CARLA, an urban driving simulator, to create and evaluate adversarial examples. We create adversarial patches designed to stop or steer driving agents, stream them into the CARLA simulator at runtime, and evaluate them against agents from the CARLA Leaderboard, a public repository of best-performing autonomous driving agents from an annual research competition. Unlike prior work, we evaluate attacks against autonomous driving systems without creating or modifying any driving-agent code and against all parts of the agent included with the ML model. We perform a case-study investigation of two attack strategies against three open-source driving agents from the CARLA Leaderboard across multiple driving scenarios, lighting conditions, and locations. Interestingly, we show that, although some attacks can successfully mislead ML models into predicting erroneous stopping or steering commands, some driving agents use modules, such as PID control or GPS-based rules, that can overrule attacker-manipulated predictions from ML models.

3.102B-Rep Distance Functions (BR-DF): How to Represent a B-Rep Model by Volumetric Distance Functions?

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper presents a novel geometric representation for CAD Boundary Representation (B-Rep) based on volumetric distance functions, dubbed B-Rep Distance Functions (BR-DF). BR-DF encodes the surface mesh geometry of a CAD model as signed distance function (SDF). B-Rep vertices, edges, faces and their topology information are encoded as per-face unsigned distance functions (UDFs). An extension of the Marching Cubes algorithm converts BR-DF directly into watertight CAD B-Rep model (strictly speaking a faceted B-Rep model). A surprising characteristic of BR-DF is that this conversion process never fails. Leveraging the volumetric nature of BR-DF, we propose a multi-branch latent diffusion with 3D U-Net backbone for jointly generating the SDF and per-face UDFs of a BR-DF model. Our approach achieves comparable CAD generation performance against SOTA methods while reaching the unprecedented 100% success rate in producing (faceted) B-Rep models.

3.103When CNNs Outperform Transformers and Mambas: Revisiting Deep Architectures for Dental Caries Segmentation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Accurate identification and segmentation of dental caries in panoramic radiographs are critical for early diagnosis and effective treatment planning. Automated segmentation remains challenging due to low lesion contrast, morphological variability, and limited annotated data. In this study, we present the first comprehensive benchmarking of convolutional neural networks, vision transformers and state-space mamba architectures for automated dental caries segmentation on panoramic radiographs through a DC1000 dataset. Twelve state-of-the-art architectures, including VMUnet, MambaUNet, VMUNetv2, RMAMamba-S, TransNetR, PVTFormer, DoubleU-Net, and ResUNet++, were trained under identical configurations. Results reveal that, contrary to the growing trend toward complex attention based architectures, the CNN-based DoubleU-Net achieved the highest dice coefficient of 0.7345, mIoU of 0.5978, and precision of 0.8145, outperforming all transformer and Mamba variants. In the study, the top 3 results across all performance metrics were achieved by CNN-based architectures. Here, Mamba and transformer-based methods, despite their theoretical advantage in global context modeling, underperformed due to limited data and weaker spatial priors. These findings underscore the importance of architecture-task alignment in domain-specific medical image segmentation more than model complexity. Our code is available at: https://github.com/JunZengz/dental-caries-segmentation.

3.104Gaussian See, Gaussian Do: Semantic 3D Motion Transfer from Multiview Video

arxiv html pdf kimi

2025/11/20 04:56 GTM

We present Gaussian See, Gaussian Do, a novel approach for semantic 3D motion transfer from multiview video. Our method enables rig-free, cross-category motion transfer between objects with semantically meaningful correspondence. Building on implicit motion transfer techniques, we extract motion embeddings from source videos via condition inversion, apply them to rendered frames of static target shapes, and use the resulting videos to supervise dynamic 3D Gaussian Splatting reconstruction. Our approach introduces an anchor-based view-aware motion embedding mechanism, ensuring cross-view consistency and accelerating convergence, along with a robust 4D reconstruction pipeline that consolidates noisy supervision videos. We establish the first benchmark for semantic 3D motion transfer and demonstrate superior motion fidelity and structural consistency compared to adapted baselines. Code and data for this paper available at https://gsgd-motiontransfer.github.io/

3.105Dynamic Nested Hierarchies: Pioneering Self-Evolution in Machine Learning Architectures for Lifelong Intelligence

arxiv html pdf kimi

2025/11/20 04:56 GTM

Contemporary machine learning models, including large language models, exhibit remarkable capabilities in static tasks yet falter in non-stationary environments due to rigid architectures that hinder continual adaptation and lifelong learning. Building upon the nested learning paradigm, which decomposes models into multi-level optimization problems with fixed update frequencies, this work proposes dynamic nested hierarchies as the next evolutionary step in advancing artificial intelligence and machine learning. Dynamic nested hierarchies empower models to autonomously adjust the number of optimization levels, their nesting structures, and update frequencies during training or inference, inspired by neuroplasticity to enable self-evolution without predefined constraints. This innovation addresses the anterograde amnesia in existing models, facilitating true lifelong learning by dynamically compressing context flows and adapting to distribution shifts. Through rigorous mathematical formulations, theoretical proofs of convergence, expressivity bounds, and sublinear regret in varying regimes, alongside empirical demonstrations of superior performance in language modeling, continual learning, and long-context reasoning, dynamic nested hierarchies establish a foundational advancement toward adaptive, general-purpose intelligence.

3.106Application of Graph Based Vision Transformers Architectures for Accurate Temperature Prediction in Fiber Specklegram Sensors

arxiv html pdf kimi

2025/11/20 04:56 GTM

Fiber Specklegram Sensors (FSS) are highly effective for environmental monitoring, particularly for detecting temperature variations. However, the nonlinear nature of specklegram data presents significant challenges for accurate temperature prediction. This study investigates the use of transformer-based architectures, including Vision Transformers (ViTs), Swin Transformers, and emerging models such as Learnable Importance Non-Symmetric Attention Vision Transformers (LINA-ViT) and Multi-Adaptive Proximity Vision Graph Attention Transformers (MAP-ViGAT), to predict temperature from specklegram data over a range of 0 to 120 Celsius. The results show that ViTs achieved a Mean Absolute Error (MAE) of 1.15, outperforming traditional models such as CNNs. GAT-ViT and MAP-ViGAT variants also demonstrated competitive accuracy, highlighting the importance of adaptive attention mechanisms and graph-based structures in capturing complex modal interactions and phase shifts in specklegram data. Additionally, this study incorporates Explainable AI (XAI) techniques, including attention maps and saliency maps, to provide insights into the decision-making processes of the transformer models, improving interpretability and transparency. These findings establish transformer architectures as strong benchmarks for optical fiber-based temperature sensing and offer promising directions for industrial monitoring and structural health assessment applications.

3.107MoDES: Accelerating Mixture-of-Experts Multimodal Large Language Models via Dynamic Expert Skipping

arxiv html pdf kimi

2025/11/20 04:56 GTM

Mixture-of-Experts (MoE) Multimodal large language models (MLLMs) excel at vision-language tasks, but they suffer from high computational inefficiency. To reduce inference overhead, expert skipping methods have been proposed to deactivate redundant experts based on the current input tokens. However, we find that applying these methods-originally designed for unimodal large language models (LLMs)-to MLLMs results in considerable performance degradation. This is primarily because such methods fail to account for the heterogeneous contributions of experts across MoE layers and modality-specific behaviors of tokens within these layers. Motivated by these findings, we propose MoDES, the first training-free framework that adaptively skips experts to enable efficient and accurate MoE MLLM inference. It incorporates a globally-modulated local gating (GMLG) mechanism that integrates global layer-wise importance into local routing probabilities to accurately estimate per-token expert importance. A dual-modality thresholding (DMT) method is then applied, which processes tokens from each modality separately, to derive the skipping schedule. To set the optimal thresholds, we introduce a frontier search algorithm that exploits monotonicity properties, cutting convergence time from several days to a few hours. Extensive experiments for 3 model series across 13 benchmarks demonstrate that MoDES far outperforms previous approaches. For instance, when skipping 88% experts for Qwen3-VL-MoE-30B-A3B-Instruct, the performance boost is up to 10.67% (97.33% vs. 86.66%). Furthermore, MoDES significantly enhances inference speed, improving the prefilling time by 2.16×\times and the decoding time by 1.26×\times.

3.108VisPlay: Self-Evolving Vision-Language Models from Images

arxiv html pdf kimi

2025/11/20 04:56 GTM

Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/

3.109HSKBenchmark: Modeling and Benchmarking Chinese Second Language Acquisition in Large Language Models through Curriculum Tuning

arxiv html pdf kimi

2025/11/20 04:56 GTM

Language acquisition is vital to revealing the nature of human language intelligence and has recently emerged as a promising perspective for improving the interpretability of large language models (LLMs). However, it is ethically and practically infeasible to conduct experiments that require controlling human learners’ language inputs. This poses challenges for the verifiability and scalability of language acquisition modeling, particularly in Chinese second language acquisition (SLA). While LLMs provide a controllable and reproducible alternative, a systematic benchmark to support phase-wise modeling and assessment is still lacking. In this paper, we present HSKBenchmark, the first benchmark for staged modeling and writing assessment of LLMs in Chinese SLA. It covers HSK levels 3 to 6 and includes authentic textbooks with 6.76 million tokens, 16K synthetic instruction samples, 30 test topics, and a linguistically grounded evaluation system. To simulate human learning trajectories, we introduce a curriculum-tuning framework that trains models from beginner to advanced levels. An evaluation system is created to examine level-based grammar coverage, writing errors, lexical and syntactic complexity, and holistic scoring. We also build HSKAgent, fine-tuned on 10K learner compositions. Extensive experimental results demonstrate that HSKBenchmark not only models Chinese SLA effectively, but also serves as a reliable benchmark for dynamic writing assessment in LLMs. Our fine-tuned LLMs have writing performance on par with advanced human learners and exhibit human-like acquisition characteristics. The HSKBenchmark, HSKAgent, and checkpoints serve as foundational tools and resources, with the potential to pave the way for future research on language acquisition modeling and LLMs interpretability. Code and data are publicly available at: https://github.com/CharlesYang030/HSKB.

3.110Computer-Use Agents as Judges for Generative User Interface

arxiv html pdf kimi

2025/11/20 04:56 GTM

Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.

3.111Multimodal Evaluation of Russian-language Architectures

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.

3.112Standardising the NLP Workflow: A Framework for Reproducible Linguistic Analysis

arxiv html pdf kimi

2025/11/20 04:56 GTM

The introduction of large language models and other influential developments in AI-based language processing have led to an evolution in the methods available to quantitatively analyse language data. With the resultant growth of attention on language processing, significant challenges have emerged, including the lack of standardisation in organising and sharing linguistic data and the absence of standardised and reproducible processing methodologies. Striving for future standardisation, we first propose the Language Processing Data Structure (LPDS), a data structure inspired by the Brain Imaging Data Structure (BIDS), a widely adopted standard for handling neuroscience data. It provides a folder structure and file naming conventions for linguistic research. Second, we introduce pelican nlp, a modular and extensible Python package designed to enable streamlined language processing, from initial data cleaning and task-specific preprocessing to the extraction of sophisticated linguistic and acoustic features, such as semantic embeddings and prosodic metrics. The entire processing workflow can be specified within a single, shareable configuration file, which pelican nlp then executes on LPDS-formatted data. Depending on the specifications, the reproducible output can consist of preprocessed language data or standardised extraction of both linguistic and acoustic features and corresponding result aggregations. LPDS and pelican nlp collectively offer an end-to-end processing pipeline for linguistic data, designed to ensure methodological transparency and enhance reproducibility.

arxiv html pdf kimi

2025/11/20 04:56 GTM

Dense retrieval has become a foundational paradigm in modern search systems, especially on short-video platforms. However, most industrial systems adopt a self-reinforcing training pipeline that relies on historically exposed user interactions for supervision. This paradigm inevitably leads to a filter bubble effect, where potentially relevant but previously unseen content is excluded from the training signal, biasing the model toward narrow and conservative retrieval. In this paper, we present CroPS (Cross-Perspective Positive Samples), a novel retrieval data engine designed to alleviate this problem by introducing diverse and semantically meaningful positive examples from multiple perspectives. CroPS enhances training with positive signals derived from user query reformulation behavior (query-level), engagement data in recommendation streams (system-level), and world knowledge synthesized by large language models (knowledge-level). To effectively utilize these heterogeneous signals, we introduce a Hierarchical Label Assignment (HLA) strategy and a corresponding H-InfoNCE loss that together enable fine-grained, relevance-aware optimization. Extensive experiments conducted on Kuaishou Search, a large-scale commercial short-video search platform, demonstrate that CroPS significantly outperforms strong baselines both offline and in live A/B tests, achieving superior retrieval performance and reducing query reformulation rates. CroPS is now fully deployed in Kuaishou Search, serving hundreds of millions of users daily.

3.114LLM-MemCluster: Empowering Large Language Models with Dynamic Memory for Text Clustering

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large Language Models (LLMs) are reshaping unsupervised learning by offering an unprecedented ability to perform text clustering based on their deep semantic understanding. However, their direct application is fundamentally limited by a lack of stateful memory for iterative refinement and the difficulty of managing cluster granularity. As a result, existing methods often rely on complex pipelines with external modules, sacrificing a truly end-to-end approach. We introduce LLM-MemCluster, a novel framework that reconceptualizes clustering as a fully LLM-native task. It leverages a Dynamic Memory to instill state awareness and a Dual-Prompt Strategy to enable the model to reason about and determine the number of clusters. Evaluated on several benchmark datasets, our tuning-free framework significantly and consistently outperforms strong baselines. LLM-MemCluster presents an effective, interpretable, and truly end-to-end paradigm for LLM-based text clustering.

3.115Building Robust and Scalable Multilingual ASR for Indian Languages

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper describes the systems developed by SPRING Lab, Indian Institute of Technology Madras, for the ASRU MADASR 2.0 challenge. The systems developed focuses on adapting ASR systems to improve in predicting the language and dialect of the utterance among 8 languages across 33 dialects. We participated in Track 1 and Track 2, which restricts the use of additional data and develop from-the-scratch multilingual systems. We presented a novel training approach using Multi-Decoder architecture with phonemic Common Label Set (CLS) as intermediate representation. It improved the performance over the baseline (in the CLS space). We also discuss various methods used to retain the gain obtained in the phonemic space while converting them back to the corresponding grapheme representations. Our systems beat the baseline in 3 languages (Track 2) in terms of WER/CER and achieved the highest language ID and dialect ID accuracy among all participating teams (Track 2).

3.116NAMeGEn: Creative Name Generation via A Novel Agent-based Multiple Personalized Goal Enhancement Framework

arxiv html pdf kimi

2025/11/20 04:56 GTM

Trained on diverse human-authored texts, Large Language Models (LLMs) unlocked the potential for Creative Natural Language Generation (CNLG), benefiting various applications like advertising and storytelling. Nevertheless, CNLG still remains difficult due to two main challenges. (1) Multi-objective flexibility: user requirements are often personalized, fine-grained, and pluralistic, which LLMs struggle to satisfy simultaneously; (2) Interpretive complexity: beyond generation, creativity also involves understanding and interpreting implicit meaning to enhance users’ perception. These challenges significantly limit current methods, especially in short-form text generation, in generating creative and insightful content. To address this, we focus on Chinese baby naming, a representative short-form CNLG task requiring adherence to explicit user constraints (e.g., length, semantics, anthroponymy) while offering meaningful aesthetic explanations. We propose NAMeGEn, a novel multi-agent optimization framework that iteratively alternates between objective extraction, name generation, and evaluation to meet diverse requirements and generate accurate explanations. To support this task, we further construct a classical Chinese poetry corpus with 17k+ poems to enhance aesthetics, and introduce CBNames, a new benchmark with tailored metrics. Extensive experiments demonstrate that NAMeGEn effectively generates creative names that meet diverse, personalized requirements while providing meaningful explanations, outperforming six baseline methods spanning various LLM backbones without any training.

3.117DEPO: Dual-Efficiency Preference Optimization for LLM Agents

arxiv html pdf kimi

2025/11/20 04:56 GTM

Recent advances in large language models (LLMs) have greatly improved their reasoning and decision-making abilities when deployed as agents. Richer reasoning, however, often comes at the cost of longer chain of thought (CoT), hampering interaction efficiency in real-world scenarios. Nevertheless, there still lacks systematic definition of LLM agent efficiency, hindering targeted improvements. To this end, we introduce dual-efficiency, comprising (i) step-level efficiency, which minimizes tokens per step, and (ii) trajectory-level efficiency, which minimizes the number of steps to complete a task. Building on this definition, we propose DEPO, a dual-efficiency preference optimization method that jointly rewards succinct responses and fewer action steps. Experiments on WebShop and BabyAI show that DEPO cuts token usage by up to 60.9% and steps by up to 26.9%, while achieving up to a 29.3% improvement in performance. DEPO also generalizes to three out-of-domain math benchmarks and retains its efficiency gains when trained on only 25% of the data. Our project page is at https://opencausalab.github.io/DEPO.

arxiv html pdf kimi

2025/11/20 04:56 GTM

Aircraft Maintenance Technicians (AMTs) spend up to 30% of work time searching manuals, a documented efficiency bottleneck in MRO operations where every procedure must be traceable to certified sources. We present a compliance-preserving retrieval system that adapts LLM reranking and semantic search to aviation MRO environments by operating alongside, rather than replacing, certified legacy viewers. The system constructs revision-robust embeddings from ATA chapter hierarchies and uses vision-language parsing to structure certified content, allowing technicians to preview ranked tasks and access verified procedures in existing viewers. Evaluation on 49k synthetic queries achieves >90% retrieval accuracy, while bilingual controlled studies with 10 licensed AMTs demonstrate 90.9% top-10 success rate and 95% reduction in lookup time, from 6-15 minutes to 18 seconds per task. These gains provide concrete evidence that semantic retrieval can operate within strict regulatory constraints and meaningfully reduce operational workload in real-world multilingual MRO workflows.

3.119The Empowerment of Science of Science by Large Language Models: New Tools and Methods

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large language models (LLMs) have exhibited exceptional capabilities in natural language understanding and generation, image recognition, and multimodal tasks, charting a course towards AGI and emerging as a central issue in the global technological race. This manuscript conducts a comprehensive review of the core technologies that support LLMs from a user standpoint, including prompt engineering, knowledge-enhanced retrieval augmented generation, fine tuning, pretraining, and tool learning. Additionally, it traces the historical development of Science of Science (SciSci) and presents a forward looking perspective on the potential applications of LLMs within the scientometric domain. Furthermore, it discusses the prospect of an AI agent based model for scientific evaluation, and presents new research fronts detection and knowledge graph building methods with LLMs.

3.120HEAD-QA v2: Expanding a Healthcare Benchmark for Reasoning

arxiv html pdf kimi

2025/11/20 04:56 GTM

We introduce HEAD-QA v2, an expanded and updated version of a Spanish/English healthcare multiple-choice reasoning dataset originally released by Vilares and Gómez-Rodríguez (2019). The update responds to the growing need for high-quality datasets that capture the linguistic and conceptual complexity of healthcare reasoning. We extend the dataset to over 12,000 questions from ten years of Spanish professional exams, benchmark several open-source LLMs using prompting, RAG, and probability-based answer selection, and provide additional multilingual versions to support future work. Results indicate that performance is mainly driven by model scale and intrinsic reasoning ability, with complex inference strategies obtaining limited gains. Together, these results establish HEAD-QA v2 as a reliable resource for advancing research on biomedical reasoning and model improvement.

3.121SkyEgg: Joint Implementation Selection and Scheduling for Hardware Synthesis using E-graphs

arxiv html pdf kimi

2025/11/20 04:56 GTM

Hardware synthesis from high-level descriptions remains fundamentally limited by the sequential optimization of interdependent design decisions. Current methodologies, including state-of-the-art high-level synthesis (HLS) tools, artificially separate implementation selection from scheduling, leading to suboptimal designs that cannot fully exploit modern FPGA heterogeneous architectures. Implementation selection is typically performed by ad-hoc pattern matching on operations, a process that does not consider the impact on scheduling. Subsequently, scheduling algorithms operate on fixed selection solutions with inaccurate delay estimates, which misses critical optimization opportunities from appropriately configured FPGA blocks like DSP slices. We present SkyEgg, a novel hardware synthesis framework that jointly optimizes implementation selection and scheduling using the e-graph data structure. Our key insight is that both algebraic transformations and hardware implementation choices can be uniformly represented as rewrite rules within an e-graph, modeling the complete design space of implementation candidates to be selected and scheduled together. First, SkyEgg constructs an e-graph from the input program. It then applies both algebraic and implementation rewrites through equality saturation. Finally, it formulates the joint optimization as a mixed-integer linear programming (MILP) problem on the saturated e-graph. We provide both exact MILP solving and an efficient ASAP heuristic for scalable synthesis. Our evaluation on benchmarks from diverse applications targeting Xilinx Kintex UltraScale+ FPGAs demonstrates that SkyEgg achieves an average speedup of 3.01x over Vitis HLS, with improvements up to 5.22x for complex expressions.

3.122Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

We present evidence that adversarial poetry functions as a universal single-turn jailbreak technique for large language models (LLMs). Across 25 frontier proprietary and open-weight models, curated poetic prompts yielded high attack-success rates (ASR), with some providers exceeding 90%. Mapping prompts to MLCommons and EU CoP risk taxonomies shows that poetic attacks transfer across CBRN, manipulation, cyber-offence, and loss-of-control domains. Converting 1,200 MLCommons harmful prompts into verse via a standardized meta-prompt produced ASRs up to 18 times higher than their prose baselines. Outputs are evaluated using an ensemble of open-weight judge models and a human-validated stratified subset (with double-annotations to measure agreement). Disagreements were manually resolved. Poetic framing achieved an average jailbreak success rate of 62% for hand-crafted poems and approximately 43% for meta-prompt conversions (compared to non-poetic baselines), substantially outperforming non-poetic baselines and revealing a systematic vulnerability across model families and safety training approaches. These findings demonstrate that stylistic variation alone can circumvent contemporary safety mechanisms, suggesting fundamental limitations in current alignment methods and evaluation protocols.

3.123MAPROC at AHaSIS Shared Task: Few-Shot and Sentence Transformer for Sentiment Analysis of Arabic Hotel Reviews

arxiv html pdf kimi

2025/11/20 04:56 GTM

Sentiment analysis of Arabic dialects presents significant challenges due to linguistic diversity and the scarcity of annotated data. This paper describes our approach to the AHaSIS shared task, which focuses on sentiment analysis on Arabic dialects in the hospitality domain. The dataset comprises hotel reviews written in Moroccan and Saudi dialects, and the objective is to classify the reviewers sentiment as positive, negative, or neutral. We employed the SetFit (Sentence Transformer Fine-tuning) framework, a data-efficient few-shot learning technique. On the official evaluation set, our system achieved an F1 of 73%, ranking 12th among 26 participants. This work highlights the potential of few-shot learning to address data scarcity in processing nuanced dialectal Arabic text within specialized domains like hotel reviews.

3.124ChartEditor: A Reinforcement Learning Framework for Robust Chart Editing

arxiv html pdf kimi

2025/11/20 04:56 GTM

Chart editing reduces manual effort in visualization design. Typical benchmarks limited in data diversity and assume access to complete chart code, which is seldom in real-world scenarios. To address this gap, we present ChartEditVista, a comprehensive benchmark consisting of 7,964 samples spanning 31 chart categories. It encompasses diverse editing instructions and covers nearly all editable chart elements. The inputs in ChartEditVista include only the original chart image and natural language editing instructions, without the original chart codes. ChartEditVista is generated through a fully automated pipeline that produces, edits, and verifies charts, ensuring high-quality chart editing data. Besides, we introduce two novel fine-grained, rule-based evaluation metrics: the layout metric, which evaluates the position, size and color of graphical components; and the text metric, which jointly assesses textual content and font styling. Building on top of ChartEditVista, we present ChartEditor, a model trained using a reinforcement learning framework that incorporates a novel rendering reward to simultaneously enforce code executability and visual fidelity. Through extensive experiments and human evaluations, we demonstrate that ChartEditVista provides a robust evaluation, while ChartEditor consistently outperforms models with similar-scale and larger-scale on chart editing tasks.

3.125IndicGEC: Powerful Models, or a Measurement Mirage?

arxiv html pdf kimi

2025/11/20 04:56 GTM

In this paper, we report the results of the TeamNRC’s participation in the BHASHA-Task 1 Grammatical Error Correction shared task https://github.com/BHASHA-Workshop/IndicGEC2025/ for 5 Indian languages. Our approach, focusing on zero/few-shot prompting of language models of varying sizes (4B to large proprietary models) achieved a Rank 4 in Telugu and Rank 2 in Hindi with GLEU scores of 83.78 and 84.31 respectively. In this paper, we extend the experiments to the other three languages of the shared task - Tamil, Malayalam and Bangla, and take a closer look at the data quality and evaluation metric used. Our results primarily highlight the potential of small language models, and summarize the concerns related to creating good quality datasets and appropriate metrics for this task that are suitable for Indian language scripts.

3.126M, Toolchain and Language for Reusable Model Compilation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Complex software-driven systems often interleave distributed, concurrent computation processes with physical interactions with the environment. Developing these systems more efficiently and safely can be achieved by employing actionable, software-based models. From a high-level system model, engineers often need to derive multiple specialized models for different purposes, including simulation, deployment, and formal verification. Each of these target models usually rely on its own formalism, specification language, and execution platform. Traditionally, a compiler analyzes a program written in a programming language and generates executable code. In contrast, a model compiler processes a source model written in a modeling language and should ideally support the generation of multiple heterogeneous targets. However, most existing modeling languages are designed with a narrow focus, typically targeting only simulation or implementation. Multi-target compilation, when not considered during the language’s early design, becomes significantly harder to achieve. In this paper, we introduce our initiative: a toolchain and modeling language called M, designed to support system modeling and multi-target compilation for model-driven engineering of complex, concurrent, and time-aware systems. M is a textual, grammar-driven language based on the actor model and extended with discrete-event scheduling semantics. It provides constructs for modeling system entities, message-based interactions, and time- or state-triggered reactions. From such models, M enables the systematic generation of diverse target artifacts while preserving semantic conformance to the original model. Moreover, M can serve as a middle language to which other modeling languages may anchor, thereby allowing them to benefit from its compilation framework.

3.127Context Cascade Compression: Exploring the Upper Limits of Text Compression

arxiv html pdf kimi

2025/11/20 04:56 GTM

Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression

3.128OEMA: Ontology-Enhanced Multi-Agent Collaboration Framework for Zero-Shot Clinical Named Entity Recognition

arxiv html pdf kimi

2025/11/20 04:56 GTM

Clinical named entity recognition (NER) is crucial for extracting information from electronic health records (EHRs), but supervised models like CRF and BioClinicalBERT require costly annotated data. While zero-shot NER with large language models (LLMs) reduces this dependency, it struggles with example selection granularity and integrating prompts with self-improvement. To address this, we propose OEMA, a zero-shot clinical NER framework using multi-agent collaboration. OEMA’s three components are: a self-annotator generating examples, a discriminator filtering them via SNOMED CT, and a predictor using entity descriptions for accurate inference. On MTSamples and VAERS datasets, OEMA achieves state-of-the-art exact-match performance. Under related-match, it matches supervised BioClinicalBERT and surpasses CRF. OEMA addresses key zero-shot NER challenges through ontology-guided reasoning and multi-agent collaboration, achieving near-supervised performance and showing promise for clinical NLP applications.

3.129Unveiling Intrinsic Dimension of Texts: from Academic Abstract to Creative Story

arxiv html pdf kimi

2025/11/20 04:56 GTM

Intrinsic dimension (ID) is an important tool in modern LLM analysis, informing studies of training dynamics, scaling behavior, and dataset structure, yet its textual determinants remain underexplored. We provide the first comprehensive study grounding ID in interpretable text properties through cross-encoder analysis, linguistic features, and sparse autoencoders (SAEs). In this work, we establish three key findings. First, ID is complementary to entropy-based metrics: after controlling for length, the two are uncorrelated, with ID capturing geometric complexity orthogonal to prediction quality. Second, ID exhibits robust genre stratification: scientific prose shows low ID (~8), encyclopedic content medium ID (~9), and creative/opinion writing high ID (~10.5) across all models tested. This reveals that contemporary LLMs find scientific text “representationally simple” while fiction requires additional degrees of freedom. Third, using SAEs, we identify causal features: scientific signals (formal tone, report templates, statistics) reduce ID; humanized signals (personalization, emotion, narrative) increase it. Steering experiments confirm these effects are causal. Thus, for contemporary models, scientific writing appears comparatively “easy”, whereas fiction, opinion, and affect add representational degrees of freedom. Our multi-faceted analysis provides practical guidance for the proper use of ID and the sound interpretation of ID-based results.

3.130HinTel-AlignBench: A Framework and Benchmark for Hindi-Telugu with English-Aligned Samples

arxiv html pdf kimi

2025/11/20 04:56 GTM

With nearly 1.5 billion people and more than 120 major languages, India represents one of the most diverse regions in the world. As multilingual Vision-Language Models (VLMs) gain prominence, robust evaluation methodologies are essential to drive progress toward equitable AI for low-resource languages. Current multilingual VLM evaluations suffer from four major limitations: reliance on unverified auto-translations, narrow task/domain coverage, limited sample sizes, and lack of cultural and natively sourced Question-Answering (QA). To address these gaps, we present a scalable framework to evaluate VLMs in Indian languages and compare it with performance in English. Using the framework, we generate HinTel-AlignBench, a benchmark that draws from diverse sources in Hindi and Telugu with English-aligned samples. Our contributions are threefold: (1) a semi-automated dataset creation framework combining back-translation, filtering, and human verification; (2) the most comprehensive vision-language benchmark for Hindi and and Telugu, including adapted English datasets (VQAv2, RealWorldQA, CLEVR-Math) and native novel Indic datasets (JEE for STEM, VAANI for cultural grounding) with approximately 4,000 QA pairs per language; and (3) a detailed performance analysis of various State-of-the-Art (SOTA) open-weight and closed-source VLMs. We find a regression in performance for tasks in English versus in Indian languages for 4 out of 5 tasks across all the models, with an average regression of 8.3 points in Hindi and 5.5 points for Telugu. We categorize common failure modes to highlight concrete areas of improvement in multilingual multimodal understanding.

3.131Teaching According to Students’ Aptitude: Personalized Mathematics Tutoring via Persona-, Memory-, and Forgetting-Aware LLMs

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large Language Models (LLMs) are increasingly integrated into intelligent tutoring systems to provide human-like and adaptive instruction. However, most existing approaches fail to capture how students’ knowledge evolves dynamically across their proficiencies, conceptual gaps, and forgetting patterns. This challenge is particularly acute in mathematics tutoring, where effective instruction requires fine-grained scaffolding precisely calibrated to each student’s mastery level and cognitive retention. To address this issue, we propose TASA (Teaching According to Students’ Aptitude), a student-aware tutoring framework that integrates persona, memory, and forgetting dynamics for personalized mathematics learning. Specifically, TASA maintains a structured student persona capturing proficiency profiles and an event memory recording prior learning interactions. By incorporating a continuous forgetting curve with knowledge tracing, TASA dynamically updates each student’s mastery state and generates contextually appropriate, difficulty-calibrated questions and explanations. Empirical results demonstrate that TASA achieves superior learning outcomes and more adaptive tutoring behavior compared to representative baselines, underscoring the importance of modeling temporal forgetting and learner profiles in LLM-based tutoring systems.

3.132Generating Natural-Language Surgical Feedback: From Structured Representation to Domain-Grounded Evaluation

arxiv html pdf kimi

2025/11/20 04:56 GTM

High-quality intraoperative feedback from a surgical trainer is pivotal for improving trainee performance and long-term skill acquisition. Automating natural, trainer-style feedback promises timely, accessible, and consistent guidance at scale but requires models that understand clinically relevant representations. We present a structure-aware pipeline that learns a surgical action ontology from real trainer-to-trainee transcripts (33 surgeries) and uses it to condition feedback generation. We contribute by (1) mining Instrument-Action-Target (IAT) triplets from real-world feedback text and clustering surface forms into normalized categories, (2) fine-tuning a video-to-IAT model that leverages the surgical procedure and task contexts as well as fine-grained temporal instrument motion, and (3) demonstrating how to effectively use IAT triplet representations to guide GPT-4o in generating clinically grounded, trainer-style feedback. We show that, on Task 1: Video-to-IAT recognition, our context injection and temporal tracking deliver consistent AUC gains (Instrument: 0.67 to 0.74; Action: 0.60 to 0.63; Tissue: 0.74 to 0.79). For Task 2: feedback text generation (rated on a 1-5 fidelity rubric where 1 = opposite/unsafe, 3 = admissible, and 5 = perfect match to a human trainer), GPT-4o from video alone scores 2.17, while IAT conditioning reaches 2.44 (+12.4%), doubling the share of admissible generations with score >= 3 from 21% to 42%. Traditional text-similarity metrics also improve: word error rate decreases by 15-31% and ROUGE (phrase/substring overlap) increases by 9-64%. Grounding generation in explicit IAT structure improves fidelity and yields clinician-verifiable rationales, supporting auditable use in surgical training.

3.133CASTELLA: Long Audio Dataset with Captions and Temporal Boundaries

arxiv html pdf kimi

2025/11/20 04:56 GTM

We introduce CASTELLA, a human-annotated audio benchmark for the task of audio moment retrieval (AMR). Although AMR has various useful potential applications, there is still no established benchmark with real-world data. The early study of AMR trained the model with solely synthetic datasets. Moreover, the evaluation is based on annotated dataset of fewer than 100 samples. This resulted in less reliable reported performance. To ensure performance for applications in real-world environments, we present CASTELLA, a large-scale manually annotated AMR dataset. CASTELLA consists of 1,009, 213, and 640 audio recordings for train, valid, and test split, respectively, which is 24 times larger than the previous dataset. We also establish a baseline model for AMR using CASTELLA. Our experiments demonstrate that a model fine-tuned on CASTELLA after pre-training on the synthetic data outperformed a model trained solely on the synthetic data by 10.4 points in Recall1@0.7. CASTELLA is publicly available in https://h-munakata.github.io/CASTELLA-demo/.

3.134Knowledge-Informed Automatic Feature Extraction via Collaborative Large Language Model Agents

arxiv html pdf kimi

2025/11/20 04:56 GTM

The performance of machine learning models on tabular data is critically dependent on high-quality feature engineering. While Large Language Models (LLMs) have shown promise in automating feature extraction (AutoFE), existing methods are often limited by monolithic LLM architectures, simplistic quantitative feedback, and a failure to systematically integrate external domain knowledge. This paper introduces Rogue One, a novel, LLM-based multi-agent framework for knowledge-informed automatic feature extraction. Rogue One operationalizes a decentralized system of three specialized agents-Scientist, Extractor, and Tester-that collaborate iteratively to discover, generate, and validate predictive features. Crucially, the framework moves beyond primitive accuracy scores by introducing a rich, qualitative feedback mechanism and a “flooding-pruning” strategy, allowing it to dynamically balance feature exploration and exploitation. By actively incorporating external knowledge via an integrated retrieval-augmented (RAG) system, Rogue One generates features that are not only statistically powerful but also semantically meaningful and interpretable. We demonstrate that Rogue One significantly outperforms state-of-the-art methods on a comprehensive suite of 19 classification and 9 regression datasets. Furthermore, we show qualitatively that the system surfaces novel, testable hypotheses, such as identifying a new potential biomarker in the myocardial dataset, underscoring its utility as a tool for scientific discovery.

3.135ProRAC: A Neuro-symbolic Method for Reasoning about Actions with LLM-based Progression

arxiv html pdf kimi

2025/11/20 04:56 GTM

In this paper, we propose ProRAC (Progression-based Reasoning about Actions and Change), a neuro-symbolic framework that leverages LLMs to tackle RAC problems. ProRAC extracts fundamental RAC elements including actions and questions from the problem, progressively executes each action to derive the final state, and then evaluates the query against the progressed state to arrive at an answer. We evaluate ProRAC on several RAC benchmarks, and the results demonstrate that our approach achieves strong performance across different benchmarks, domains, LLM backbones, and types of RAC tasks.

3.136Evaluating Multimodal Large Language Models on Vertically Written Japanese Text

arxiv html pdf kimi

2025/11/20 04:56 GTM

Multimodal Large Language Models (MLLMs) have seen rapid advances in recent years and are now being applied to visual document understanding tasks. They are expected to process a wide range of document images across languages, including Japanese. Understanding documents from images requires models to read what are written in them. Since some Japanese documents are written vertically, support for vertical writing is essential. However, research specifically focused on vertically written Japanese text remains limited. In this study, we evaluate the reading capability of existing MLLMs on vertically written Japanese text. First, we generate a synthetic Japanese OCR dataset by rendering Japanese texts into images, and use it for both model fine-tuning and evaluation. This dataset includes Japanese text in both horizontal and vertical writing. We also create an evaluation dataset sourced from the real-world document images containing vertically written Japanese text. Using these datasets, we demonstrate that the existing MLLMs perform worse on vertically written Japanese text than on horizontally written Japanese text. Furthermore, we show that training MLLMs on our synthesized Japanese OCR dataset results in improving the performance of models that previously could not handle vertical writing. The datasets and code are publicly available https://github.com/llm-jp/eval_vertical_ja.

3.137Mathematical Analysis of Hallucination Dynamics in Large Language Models: Uncertainty Quantification, Advanced Decoding, and Principled Mitigation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large Language Models (LLMs) are powerful linguistic engines but remain susceptible to hallucinations: plausible-sounding outputs that are factually incorrect or unsupported. In this work, we present a mathematically grounded framework to understand, measure, and mitigate these hallucinations. Drawing on probabilistic modeling, information theory, trigonometric signal analysis, and Bayesian uncertainty estimation, we analyze how errors compound autoregressively, propose refined uncertainty metrics, including semantic and phase-aware variants, and develop principled mitigation strategies such as contrastive decoding, retrieval-augmented grounding, factual alignment, and abstention. This unified lens connects recent advances in calibration, retrieval, and alignment to support safer and more reliable LLMs.

3.138How to Train Private Clinical Language Models: A Comparative Study of Privacy-Preserving Pipelines for ICD-9 Coding

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large language models trained on clinical text risk exposing sensitive patient information, yet differential privacy (DP) methods often severely degrade the diagnostic accuracy needed for deployment. Despite rapid progress in DP optimisation and text generation, it remains unclear which privacy-preserving strategy actually works best for clinical language tasks. We present the first systematic head-to-head comparison of four training pipelines for automated diagnostic coding from hospital discharge summaries. All pipelines use identical 1B-parameter models and matched privacy budgets to predict ICD-9 codes. At moderate and relaxed privacy budgets (ε{4,6}\varepsilon \in \{4, 6\}), knowledge distillation from DP-trained teachers outperforms both direct DP-SGD and DP-synthetic data training, recovering up to 63% of the non-private performance whilst maintaining strong empirical privacy (membership-inference AUC \approx 0.5). These findings expose large differences in the privacy-utility trade-off across architectures and identify knowledge distillation as the most practical route to privacy-preserving clinical NLP.

3.139Skin-R1: Toward Trustworthy Clinical Reasoning for Dermatological Diagnosis

arxiv html pdf kimi

2025/11/20 04:56 GTM

The emergence of vision-language models (VLMs) has opened new possibilities for clinical reasoning and has shown promising performance in dermatological diagnosis. However, their trustworthiness and clinical utility are often limited by three major factors: (1) Data heterogeneity, where diverse datasets lack consistent diagnostic labels and clinical concept annotations; (2) Absence of grounded diagnostic rationales, leading to a scarcity of reliable reasoning supervision; and (3) Limited scalability and generalization, as models trained on small, densely annotated datasets struggle to transfer nuanced reasoning to large, sparsely-annotated ones. To address these limitations, we propose SkinR1, a novel dermatological VLM that combines deep, textbook-based reasoning with the broad generalization capabilities of reinforcement learning (RL). SkinR1 systematically resolves the key challenges through a unified, end-to-end framework. First, we design a textbook-based reasoning generator that synthesizes high-fidelity, hierarchy-aware, and differential-diagnosis (DDx)-informed trajectories, providing reliable expert-level supervision. Second, we leverage the constructed trajectories for supervised fine-tuning (SFT) empowering the model with grounded reasoning ability. Third, we develop a novel RL paradigm that, by incorporating the hierarchical structure of diseases, effectively transfers these grounded reasoning patterns to large-scale, sparse data. Extensive experiments on multiple dermatology datasets demonstrate that SkinR1 achieves superior diagnostic accuracy. The ablation study demonstrates the importance of the reasoning foundation instilled by SFT.

3.140Hierarchical Token Prepending: Enhancing Information Flow in Decoder-based LLM Embeddings

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large language models produce powerful text embeddings, but their causal attention mechanism restricts the flow of information from later to earlier tokens, degrading representation quality. While recent methods attempt to solve this by prepending a single summary token, they over-compress information, hence harming performance on long documents. We propose Hierarchical Token Prepending (HTP), a method that resolves two critical bottlenecks. To mitigate attention-level compression, HTP partitions the input into blocks and prepends block-level summary tokens to subsequent blocks, creating multiple pathways for backward information flow. To address readout-level over-squashing, we replace last-token pooling with mean-pooling, a choice supported by theoretical analysis. HTP achieves consistent performance gains across 11 retrieval datasets and 30 general embedding benchmarks, especially in long-context settings. As a simple, architecture-agnostic method, HTP enhances both zero-shot and finetuned models, offering a scalable route to superior long-document embeddings.

3.141Empowering Multi-Turn Tool-Integrated Reasoning with Group Turn Policy Optimization

arxiv html pdf kimi

2025/11/20 04:56 GTM

Training Large Language Models (LLMs) for multi-turn Tool-Integrated Reasoning (TIR) - where models iteratively reason, generate code, and verify through execution - remains challenging for existing reinforcement learning (RL) approaches. Current RL methods, exemplified by Group Relative Policy Optimization (GRPO), suffer from coarse-grained, trajectory-level rewards that provide insufficient learning signals for complex multi-turn interactions, leading to training stagnation. To address this issue, we propose Group Turn Policy Optimization (GTPO), a novel RL algorithm specifically designed for training LLMs on multi-turn TIR tasks. GTPO introduces three key innovations: (1) turn-level reward assignment that provides fine-grained feedback for individual turns, (2) return-based advantage estimation where normalized discounted returns are calculated as advantages, and (3) self-supervised reward shaping that exploits self-supervision signals from generated code to densify sparse binary outcome-based rewards. Our comprehensive evaluation demonstrates that GTPO outperforms GRPO by 3.0% on average across diverse reasoning benchmarks, establishing its effectiveness for advancing complex mathematical reasoning in the real world.

3.142Opinion Mining and Analysis Using Hybrid Deep Neural Networks

arxiv html pdf kimi

2025/11/20 04:56 GTM

Understanding customer attitudes has become a critical component of decision-making due to the growing influence of social media and e-commerce. Text-based opinions are the most structured, hence playing an important role in sentiment analysis. Most of the existing methods, which include lexicon-based approaches and traditional machine learning techniques, are insufficient for handling contextual nuances and scalability. While the latter has limitations in model performance and generalization, deep learning (DL) has achieved improvement, especially on semantic relationship capturing with recurrent neural networks (RNNs) and convolutional neural networks (CNNs). The aim of the study is to enhance opinion mining by introducing a hybrid deep neural network model that combines a bidirectional gated recurrent unit (BGRU) and long short-term memory (LSTM) layers to improve sentiment analysis, particularly addressing challenges such as contextual nuance, scalability, and class imbalance. To substantiate the efficacy of the proposed model, we conducted comprehensive experiments utilizing benchmark datasets, encompassing IMDB movie critiques and Amazon product evaluations. The introduced hybrid BGRULSTM (HBGRU-LSTM) architecture attained a testing accuracy of 95%, exceeding the performance of traditional DL frameworks such as LSTM (93.06%), CNN+LSTM (93.31%), and GRU+LSTM (92.20%). Moreover, our model exhibited a noteworthy enhancement in recall for negative sentiments, escalating from 86% (unbalanced dataset) to 96% (balanced dataset), thereby ensuring a more equitable and just sentiment classification. Furthermore, the model diminished misclassification loss from 20.24% for unbalanced to 13.3% for balanced dataset, signifying enhanced generalization and resilience.

3.143Human or LLM as Standardized Patients? A Comparative Study for Medical Education

arxiv html pdf kimi

2025/11/20 04:56 GTM

Standardized Patients (SP) are indispensable for clinical skills training but remain expensive, inflexible, and difficult to scale. Existing large-language-model (LLM)-based SP simulators promise lower cost yet show inconsistent behavior and lack rigorous comparison with human SP. We present EasyMED, a multi-agent framework combining a Patient Agent for realistic dialogue, an Auxiliary Agent for factual consistency, and an Evaluation Agent that delivers actionable feedback. To support systematic assessment, we introduce SPBench, a benchmark of real SP-doctor interactions spanning 14 specialties and eight expert-defined evaluation criteria. Experiments demonstrate that EasyMED matches human SP learning outcomes while producing greater skill gains for lower-baseline students and offering improved flexibility, psychological safety, and cost efficiency.

3.144The Impact of Prosodic Segmentation on Speech Synthesis of Spontaneous Speech

arxiv html pdf kimi

2025/11/20 04:56 GTM

Spontaneous speech presents several challenges for speech synthesis, particularly in capturing the natural flow of conversation, including turn-taking, pauses, and disfluencies. Although speech synthesis systems have made significant progress in generating natural and intelligible speech, primarily through architectures that implicitly model prosodic features such as pitch, intensity, and duration, the construction of datasets with explicit prosodic segmentation and their impact on spontaneous speech synthesis remains largely unexplored. This paper evaluates the effects of manual and automatic prosodic segmentation annotations in Brazilian Portuguese on the quality of speech synthesized by a non-autoregressive model, FastSpeech 2. Experimental results show that training with prosodic segmentation produced slightly more intelligible and acoustically natural speech. While automatic segmentation tends to create more regular segments, manual prosodic segmentation introduces greater variability, which contributes to more natural prosody. Analysis of neutral declarative utterances showed that both training approaches reproduced the expected nuclear accent pattern, but the prosodic model aligned more closely with natural pre-nuclear contours. To support reproducibility and future research, all datasets, source codes, and trained models are publicly available under the CC BY-NC-ND 4.0 license.

3.145COMPASS: Context-Modulated PID Attention Steering System for Hallucination Mitigation

arxiv html pdf kimi

2025/11/20 04:56 GTM

Large language models (LLMs) often generate fluent but factually incorrect statements despite having access to relevant evidence, a failure mode rooted in how they allocate attention between contextual and parametric knowledge. Understanding and steering this internal behavior is key both for trustworthy deployment and for scientific interpretability of model mechanisms. We introduce COMPASS (Context-Modulated PID Attention Steering System), a lightweight, interpretable control framework that embeds a model-based feedback loop directly within decoding. COMPASS quantifies context reliance via a transparent metric, the Context Reliance Score (CRS), which serves as an online probe of how attention heads ground generation in evidence. Using this interpretable signal, a PID controller dynamically modulates attention heads to maintain factual consistency without retraining or multi-pass decoding. Across benchmarks (HotpotQA, XSum, HaluEval, RAGTruth), COMPASS consistently reduces contextual hallucination rates (2.8 to 5.8 percent absolute) while revealing how distinct attention heads contribute to evidence alignment. These results highlight feedback-driven interpretability as a pathway toward scientific understanding of LLM behavior.

3.146LiveCLKTBench: Towards Reliable Evaluation of Cross-Lingual Knowledge Transfer in Multilingual LLMs

arxiv html pdf kimi

2025/11/20 04:56 GTM

Evaluating cross-lingual knowledge transfer in large language models is challenging, as correct answers in a target language may arise either from genuine transfer or from prior exposure during pre-training. We present LiveCLKTBench, an automated generation pipeline specifically designed to isolate and measure cross-lingual knowledge transfer. Our pipeline identifies self-contained, time-sensitive knowledge entities from real-world domains, filters them based on temporal occurrence, and verifies them against the model’s knowledge. The documents of these valid entities are then used to generate factual questions, which are translated into multiple languages to evaluate transferability across linguistic boundaries. Using LiveCLKTBench, we evaluate several LLMs across five languages and observe that cross-lingual transfer is strongly influenced by linguistic distance and often asymmetric across language directions. While larger models improve transfer, the gains diminish with scale and vary across domains. These findings provide new insights into multilingual transfer and demonstrate the value of LiveCLKTBench as a reliable benchmark for future research.

3.147Temporal Predictors of Outcome in Reasoning Language Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

The chain-of-thought (CoT) paradigm uses the elicitation of step-by-step rationales as a proxy for reasoning, gradually refining the model’s latent representation of a solution. However, it remains unclear just how early a Large Language Model (LLM) internally commits to an eventual outcome. We probe this by training linear classifiers on hidden states after the first t reasoning tokens, showing that eventual correctness is highly predictable after only a few tokens, even when longer outputs are needed to reach a definite answer. We show that, for harder questions, a drop in predictive accuracy highlights a selection artifact: hard items are disproportionately represented in long CoTs. Overall, our results imply that for reasoning models, internal self-assessment of success tends to emerge after only a few tokens, with implications for interpretability and for inference-time control.

3.148Test-time Scaling of LLMs: A Survey from A Subproblem Structure Perspective

arxiv html pdf kimi

2025/11/20 04:56 GTM

With this paper, we survey techniques for improving the predictive accuracy of pretrained large language models by allocating additional compute at inference time. In categorizing test-time scaling methods, we place special emphasis on how a problem is decomposed into subproblems and on the topological organization of these subproblems whether sequential, parallel, or tree-structured. This perspective allows us to unify diverse approaches such as Chain-of-Thought, Branch-Solve-Merge, and Tree-of-Thought under a common lens. We further synthesize existing analyses of these techniques, highlighting their respective strengths and weaknesses, and conclude by outlining promising directions for future research

3.149Cluster-based Adaptive Retrieval: Dynamic Context Selection for RAG Applications

arxiv html pdf kimi

2025/11/20 04:56 GTM

Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by pulling in external material, document, code, manuals, from vast and ever-growing corpora, to effectively answer user queries. The effectiveness of RAG depends significantly on aligning the number of retrieved documents with query characteristics: narrowly focused queries typically require fewer, highly relevant documents, whereas broader or ambiguous queries benefit from retrieving more extensive supporting information. However, the common static top-k retrieval approach fails to adapt to this variability, resulting in either insufficient context from too few documents or redundant information from too many. Motivated by these challenges, we introduce Cluster-based Adaptive Retrieval (CAR), an algorithm that dynamically determines the optimal number of documents by analyzing the clustering patterns of ordered query-document similarity distances. CAR detects the transition point within similarity distances, where tightly clustered, highly relevant documents shift toward less pertinent candidates, establishing an adaptive cut-off that scales with query complexity. On Coinbase’s CDP corpus and the public MultiHop-RAG benchmark, CAR consistently picks the optimal retrieval depth and achieves the highest TES score, outperforming every fixed top-k baseline. In downstream RAG evaluations, CAR cuts LLM token usage by 60%, trims end-to-end latency by 22%, and reduces hallucinations by 10% while fully preserving answer relevance. Since integrating CAR into Coinbase’s virtual assistant, we’ve seen user engagement jump by 200%.

3.150Optimizing Agricultural Research: A RAG-Based Approach to Mycorrhizal Fungi Information

arxiv html pdf kimi

2025/11/20 04:56 GTM

Retrieval-Augmented Generation (RAG) represents a transformative approach within natural language processing (NLP), combining neural information retrieval with generative language modeling to enhance both contextual accuracy and factual reliability of responses. Unlike conventional Large Language Models (LLMs), which are constrained by static training corpora, RAG-powered systems dynamically integrate domain-specific external knowledge sources, thereby overcoming temporal and disciplinary limitations. In this study, we present the design and evaluation of a RAG-enabled system tailored for Mycophyto, with a focus on advancing agricultural applications related to arbuscular mycorrhizal fungi (AMF). These fungi play a critical role in sustainable agriculture by enhancing nutrient acquisition, improving plant resilience under abiotic and biotic stresses, and contributing to soil health. Our system operationalizes a dual-layered strategy: (i) semantic retrieval and augmentation of domain-specific content from agronomy and biotechnology corpora using vector embeddings, and (ii) structured data extraction to capture predefined experimental metadata such as inoculation methods, spore densities, soil parameters, and yield outcomes. This hybrid approach ensures that generated responses are not only semantically aligned but also supported by structured experimental evidence. To support scalability, embeddings are stored in a high-performance vector database, allowing near real-time retrieval from an evolving literature base. Empirical evaluation demonstrates that the proposed pipeline retrieves and synthesizes highly relevant information regarding AMF interactions with crop systems, such as tomato (Solanum lycopersicum). The framework underscores the potential of AI-driven knowledge discovery to accelerate agroecological innovation and enhance decision-making in sustainable farming systems.

3.151UltraDP: Generalizable Carotid Ultrasound Scanning with Force-Aware Diffusion Policy

arxiv html pdf kimi

2025/11/20 04:56 GTM

Ultrasound scanning is a critical imaging technique for real-time, non-invasive diagnostics. However, variations in patient anatomy and complex human-in-the-loop interactions pose significant challenges for autonomous robotic scanning. Existing ultrasound scanning robots are commonly limited to relatively low generalization and inefficient data utilization. To overcome these limitations, we present UltraDP, a Diffusion-Policy-based method that receives multi-sensory inputs (ultrasound images, wrist camera images, contact wrench, and probe pose) and generates actions that are fit for multi-modal action distributions in autonomous ultrasound scanning of carotid artery. We propose a specialized guidance module to enable the policy to output actions that center the artery in ultrasound images. To ensure stable contact and safe interaction between the robot and the human subject, a hybrid force-impedance controller is utilized to drive the robot to track such trajectories. Also, we have built a large-scale training dataset for carotid scanning comprising 210 scans with 460k sample pairs from 21 volunteers of both genders. By exploring our guidance module and DP’s strong generalization ability, UltraDP achieves a 95% success rate in transverse scanning on previously unseen subjects, demonstrating its effectiveness.

3.152NMPC-based Motion Planning with Adaptive Weighting for Dynamic Object Interception

arxiv html pdf kimi

2025/11/20 04:56 GTM

Catching fast-moving objects serves as a benchmark for robotic agility, posing significant coordination challenges for cooperative manipulator systems holding a catcher, particularly due to inherent closed-chain constraints. This paper presents a nonlinear model predictive control (MPC)-based motion planner that bridges high-level interception planning with real-time joint space control, enabling dynamic object interception for systems comprising two cooperating arms. We introduce an Adaptive- Terminal (AT) MPC formulation featuring cost shaping, which contrasts with a simpler Primitive-Terminal (PT) approach relying heavily on terminal penalties for rapid convergence. The proposed AT formulation is shown to effectively mitigate issues related to actuator power limit violations frequently encountered with the PT strategy, yielding trajectories and significantly reduced control effort. Experimental results on a robotic platform with two cooperative arms, demonstrating excellent real time performance, with an average planner cycle computation time of approximately 19 ms-less than half the 40 ms system sampling time. These results indicate that the AT formulation achieves significantly improved motion quality and robustness with minimal computational overhead compared to the PT baseline, making it well-suited for dynamic, cooperative interception tasks.

3.153Decentralized Gaussian Process Classification and an Application in Subsea Robotics

arxiv html pdf kimi

2025/11/20 04:56 GTM

Teams of cooperating autonomous underwater vehicles (AUVs) rely on acoustic communication for coordination, yet this communication medium is constrained by limited range, multi-path effects, and low bandwidth. One way to address the uncertainty associated with acoustic communication is to learn the communication environment in real-time. We address the challenge of a team of robots building a map of the probability of communication success from one location to another in real-time. This is a decentralized classification problem -- communication events are either successful or unsuccessful -- where AUVs share a subset of their communication measurements to build the map. The main contribution of this work is a rigorously derived data sharing policy that selects measurements to be shared among AUVs. We experimentally validate our proposed sharing policy using real acoustic communication data collected from teams of Virginia Tech 690 AUVs, demonstrating its effectiveness in underwater environments.

3.154PCARNN-DCBF: Minimal-Intervention Geofence Enforcement for Ground Vehicles

arxiv html pdf kimi

2025/11/20 04:56 GTM

Runtime geofencing for ground vehicles is rapidly emerging as a critical technology for enforcing Operational Design Domains (ODDs). However, existing solutions struggle to reconcile high-fidelity learning with the structural requirements of verifiable control. We address this by introducing PCARNN-DCBF, a novel pipeline integrating a Physics-encoded Control-Affine Residual Neural Network with a preview-based Discrete Control Barrier Function. Unlike generic learned models, PCARNN explicitly preserves the control-affine structure of vehicle dynamics, ensuring the linearity required for reliable optimization. This enables the DCBF to enforce polygonal keep-in constraints via a real-time Quadratic Program (QP) that handles high relative degree and mitigates actuator saturation. Experiments in CARLA across electric and combustion platforms demonstrate that this structure-preserving approach significantly outperforms analytical and unstructured neural baselines.

3.155Theoretical Closed-loop Stability Bounds for Dynamical System Coupled with Diffusion Policies

arxiv html pdf kimi

2025/11/20 04:56 GTM

Diffusion Policy has shown great performance in robotic manipulation tasks under stochastic perturbations, due to its ability to model multimodal action distributions. Nonetheless, its reliance on a computationally expensive reverse-time diffusion (denoising) process, for action inference, makes it challenging to use for real-time applications where quick decision-making is mandatory. This work studies the possibility of conducting the denoising process only partially before executing an action, allowing the plant to evolve according to its dynamics in parallel to the reverse-time diffusion dynamics ongoing on the computer. In a classical diffusion policy setting, the plant dynamics are usually slow and the two dynamical processes are uncoupled. Here, we investigate theoretical bounds on the stability of closed-loop systems using diffusion policies when the plant dynamics and the denoising dynamics are coupled. The contribution of this work gives a framework for faster imitation learning and a metric that yields if a controller will be stable based on the variance of the demonstrations.

3.156Discovering Optimal Natural Gaits of Dissipative Systems via Virtual Energy Injection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Legged robots offer several advantages when navigating unstructured environments, but they often fall short of the efficiency achieved by wheeled robots. One promising strategy to improve their energy economy is to leverage their natural (unactuated) dynamics using elastic elements. This work explores that concept by designing energy-optimal control inputs through a unified, multi-stage framework. It starts with a novel energy injection technique to identify passive motion patterns by harnessing the system’s natural dynamics. This enables the discovery of passive solutions even in systems with energy dissipation caused by factors such as friction or plastic collisions. Building on these passive solutions, we then employ a continuation approach to derive energy-optimal control inputs for the fully actuated, dissipative robotic system. The method is tested on simulated models to demonstrate its applicability in both single- and multi-legged robotic systems. This analysis provides valuable insights into the design and operation of elastic legged robots, offering pathways to improve their efficiency and adaptability by exploiting the natural system dynamics.

3.157RRT*former: Environment-Aware Sampling-Based Motion Planning using Transformer

arxiv html pdf kimi

2025/11/20 04:56 GTM

We investigate the sampling-based optimal path planning problem for robotics in complex and dynamic environments. Most existing sampling-based algorithms neglect environmental information or the information from previous samples. Yet, these pieces of information are highly informative, as leveraging them can provide better heuristics when sampling the next state. In this paper, we propose a novel sampling-based planning algorithm, called \emph{RRTformer}, which integrates the standard RRT algorithm with a Transformer network in a novel way. Specifically, the Transformer is used to extract features from the environment and leverage information from previous samples to better guide the sampling process. Our extensive experiments demonstrate that, compared to existing sampling-based approaches such as RRT*, Neural RRT*, and their variants, our algorithm achieves considerable improvements in both the optimality of the path and sampling efficiency. The code for our implementation is available on https://github.com/fengmingyang666/RRTformer.

3.158Platform-Agnostic Reinforcement Learning Framework for Safe Exploration of Cluttered Environments with Graph Attention

arxiv html pdf kimi

2025/11/20 04:56 GTM

Autonomous exploration of obstacle-rich spaces requires strategies that ensure efficiency while guaranteeing safety against collisions with obstacles. This paper investigates a novel platform-agnostic reinforcement learning framework that integrates a graph neural network-based policy for next-waypoint selection, with a safety filter ensuring safe mobility. Specifically, the neural network is trained using reinforcement learning through the Proximal Policy Optimization (PPO) algorithm to maximize exploration efficiency while minimizing safety filter interventions. Henceforth, when the policy proposes an infeasible action, the safety filter overrides it with the closest feasible alternative, ensuring consistent system behavior. In addition, this paper introduces a reward function shaped by a potential field that accounts for both the agent’s proximity to unexplored regions and the expected information gain from reaching them. The proposed framework combines the adaptability of reinforcement learning-based exploration policies with the reliability provided by explicit safety mechanisms. This feature plays a key role in enabling the deployment of learning-based policies on robotic platforms operating in real-world environments. Extensive evaluations in both simulations and experiments performed in a lab environment demonstrate that the approach achieves efficient and safe exploration in cluttered spaces.

3.159Fast Post-Hoc Confidence Fusion for 3-Class Open-Set Aerial Object Detection

arxiv html pdf kimi

2025/11/20 04:56 GTM

Developing reliable UAV navigation systems requires robust air-to-air object detectors capable of distinguishing between objects seen during training and previously unseen objects. While many methods address closed-set detection and achieve high-confidence recognition of in-domain (ID) targets, they generally do not tackle open-set detection, which requires simultaneous handling of both ID and out-of-distribution (OOD) objects. Existing open-set approaches typically rely on a single uncertainty score with thresholding, limiting flexibility and often conflating OOD objects with background clutter. In contrast, we propose a lightweight, model-agnostic post-processing framework that explicitly separates background from unknown objects while preserving the base detector’s performance. Our approach extends open-set detection beyond binary ID/OOD classification to real-time three-way classification among ID targets, OOD objects, and background. To this end, we employ a fusion scheme that aggregates multiple confidence estimates and per-detection features using a compact multilayer perceptron (MLP). Incorporating different logit variants into the MLP consistently enhances performance across both binary and three-class classification without compromising throughput. Extensive ablation and comparative experiments confirm that our method surpasses threshold-based baselines in two-class classification by an average of 2.7% AUROC, while retaining or improving open-set mAP. Furthermore, our study uniquely enables robust three-class classification, a critical capability for safe UAV navigation, where OOD objects must be actively avoided and background regions safely ignored. Comparative analysis highlights that our method surpasses competitive techniques in AUROC across datasets, while improving closed-set mAP by up to 9 points, an 18% relative gain.

3.160C2F-Space: Coarse-to-Fine Space Grounding for Spatial Instructions using Vision-Language Models

arxiv html pdf kimi

2025/11/20 04:56 GTM

Space grounding refers to localizing a set of spatial references described in natural language instructions. Traditional methods often fail to account for complex reasoning -- such as distance, geometry, and inter-object relationships -- while vision-language models (VLMs), despite strong reasoning abilities, struggle to produce a fine-grained region of outputs. To overcome these limitations, we propose C2F-Space, a novel coarse-to-fine space-grounding framework that (i) estimates an approximated yet spatially consistent region using a VLM, then (ii) refines the region to align with the local environment through superpixelization. For the coarse estimation, we design a grid-based visual-grounding prompt with a propose-validate strategy, maximizing VLM’s spatial understanding and yielding physically and semantically valid canonical region (i.e., ellipses). For the refinement, we locally adapt the region to surrounding environment without over-relaxed to free space. We construct a new space-grounding benchmark and compare C2F-Space with five state-of-the-art baselines using success rate and intersection-over-union. Our C2F-Space significantly outperforms all baselines. Our ablation study confirms the effectiveness of each module in the two-step process and their synergistic effect of the combined framework. We finally demonstrate the applicability of C2F-Space to simulated robotic pick-and-place tasks.

3.161MSA - Technique for Stiffness Modeling of Manipulators with Complex and Hybrid Structures

arxiv html pdf kimi

2025/11/20 04:56 GTM

The paper presents a systematic approach for stiffness modeling of manipulators with complex and hybrid structures using matrix structural analysis. In contrast to previous results, it is suitable for mixed architectures containing closed-loops, flexible links, rigid connections, passive and elastic joints with external loadings and preloadings. The proposed approach produces the Cartesian stiffness matrices in a semi-analytical manner. It presents the manipulator stiffness model as a set of conventional equations describing the link elasticities that are supplemented by a set of constraints describing connections between links. Its allows user straightforward aggregation of stiffness model equations avoiding traditional column/row merging procedures in the extended stiffness matrix. Advantages of this approach are illustrated by stiffness analysis of NaVaRo manipulator.

3.162Optimizing Robot Positioning Against Placement Inaccuracies: A Study on the Fanuc CRX10iA/L

arxiv html pdf kimi

2025/11/20 04:56 GTM

This study presents a methodology for determining the optimal base placement of a Fanuc CRX10iA/L collaborative robot for a desired trajectory corresponding to an industrial task. The proposed method uses a particle swarm optimization algorithm that explores the search space to find positions for performing the trajectory. An αα-shape algorithm is then used to draw the borders of the feasibility areas, and the largest circle inscribed is calculated from the Voronoi diagrams. The aim of this approach is to provide a robustness criterion in the context of robot placement inaccuracies that may be encountered, for example, if the robot is placed on a mobile base when the system is deployed by an operator. The approach developed uses an inverse kinematics model to evaluate all initial configurations, then moves the robot end-effector along the reference trajectory using the Jacobian matrix and assigns a score to the attempt. For the Fanuc CRX10iA/L robot, there can be up to 16 solutions to the inverse kinematics model. The calculation of these solutions is not trivial and requires a specific study that planning tools such as MoveIt cannot fully take into account. Additionally, the optimization process must consider constraints such as joint limits, singularities, and workspace limitations to ensure feasible and efficient trajectory execution.

3.163Path Planning through Multi-Agent Reinforcement Learning in Dynamic Environments

arxiv html pdf kimi

2025/11/20 04:56 GTM

Path planning in dynamic environments is a fundamental challenge in intelligent transportation and robotics, where obstacles and conditions change over time, introducing uncertainty and requiring continuous adaptation. While existing approaches often assume complete environmental unpredictability or rely on global planners, these assumptions limit scalability and practical deployment in real-world settings. In this paper, we propose a scalable, region-aware reinforcement learning (RL) framework for path planning in dynamic environments. Our method builds on the observation that environmental changes, although dynamic, are often localized within bounded regions. To exploit this, we introduce a hierarchical decomposition of the environment and deploy distributed RL agents that adapt to changes locally. We further propose a retraining mechanism based on sub-environment success rates to determine when policy updates are necessary. Two training paradigms are explored: single-agent Q-learning and multi-agent federated Q-learning, where local Q-tables are aggregated periodically to accelerate the learning process. Unlike prior work, we evaluate our methods in more realistic settings, where multiple simultaneous obstacle changes and increasing difficulty levels are present. Results show that the federated variants consistently outperform their single-agent counterparts and closely approach the performance of A* Oracle while maintaining shorter adaptation times and robust scalability. Although initial training remains time-consuming in large environments, our decentralized framework eliminates the need for a global planner and lays the groundwork for future improvements using deep RL and flexible environment decomposition.

3.164Look, Zoom, Understand: The Robotic Eyeball for Embodied Perception

arxiv html pdf kimi

2025/11/20 04:56 GTM

In embodied AI perception systems, visual perception should be active: the goal is not to passively process static images, but to actively acquire more informative data within pixel and spatial budget constraints. Existing vision models and fixed RGB-D camera systems fundamentally fail to reconcile wide-area coverage with fine-grained detail acquisition, severely limiting their efficacy in open-world robotic applications. To address this issue, we propose EyeVLA, a robotic eyeball for active visual perception that can take proactive actions based on instructions, enabling clear observation of fine-grained target objects and detailed information across a wide spatial extent. EyeVLA discretizes action behaviors into action tokens and integrates them with vision-language models (VLMs) that possess strong open-world understanding capabilities, enabling joint modeling of vision, language, and actions within a single autoregressive sequence. By using the 2D bounding box coordinates to guide the reasoning chain and applying reinforcement learning to refine the viewpoint selection policy, we transfer the open-world scene understanding capability of the VLM to a vision language action (VLA) policy using only minimal real-world data. Experiments show that our system efficiently performs instructed scenes in real-world environments and actively acquires more accurate visual information through instruction-driven actions of rotation and zoom, thereby achieving strong environmental perception capabilities. EyeVLA introduces a novel robotic vision system that leverages detailed and spatially rich, large-scale embodied data, and actively acquires highly informative visual observations for downstream embodied tasks.

3.165Behavior Trees vs Executable Ontologies: a Comparative Analysis of Robot Control Paradigms

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper compares two distinct approaches to modeling robotic behavior: imperative Behavior Trees (BTs) and declarative Executable Ontologies (EO), implemented through the boldsea framework. BTs structure behavior hierarchically using control-flow, whereas EO represents the domain as a temporal, event-based semantic graph driven by dataflow rules. We demonstrate that EO achieves comparable reactivity and modularity to BTs through a fundamentally different architecture: replacing polling-based tick execution with event-driven state propagation. We propose that EO offers an alternative framework, moving from procedural programming to semantic domain modeling, to address the semantic-process gap in traditional robotic control. EO supports runtime model modification, full temporal traceability, and a unified representation of data, logic, and interface - features that are difficult or sometimes impossible to achieve with BTs, although BTs excel in established, predictable scenarios. The comparison is grounded in a practical mobile manipulation task. This comparison highlights the respective operational strengths of each approach in dynamic, evolving robotic systems.

3.166Symmetry-Breaking in Multi-Agent Navigation: Winding Number-Aware MPC with a Learned Topological Strategy

arxiv html pdf kimi

2025/11/20 04:56 GTM

We address the fundamental challenge of resolving symmetry-induced deadlocks in distributed multi-agent navigation by proposing a new hierarchical navigation method. When multiple agents interact, it is inherently difficult for them to autonomously break the symmetry of deciding how to pass each other. To tackle this problem, we introduce an approach that quantifies cooperative symmetry-breaking strategies using a topological invariant called the winding number, and learns the strategies themselves through reinforcement learning. Our method features a hierarchical policy consisting of a learning-based Planner, which plans topological cooperative strategies, and a model-based Controller, which executes them. Through reinforcement learning, the Planner learns to produce two types of parameters for the Controller: one is the topological cooperative strategy represented by winding numbers, and the other is a set of dynamic weights that determine which agent interaction to prioritize in dense scenarios where multiple agents cross simultaneously. The Controller then generates collision-free and efficient motions based on the strategy and weights provided by the Planner. This hierarchical structure combines the flexible decision-making ability of learning-based methods with the reliability of model-based approaches. Simulation and real-world robot experiments demonstrate that our method outperforms existing baselines, particularly in dense environments, by efficiently avoiding collisions and deadlocks while achieving superior navigation performance. The code for the experiments is available at https://github.com/omron-sinicx/WNumMPC.

3.167Modelling and Model-Checking a ROS2 Multi-Robot System using Timed Rebeca

arxiv html pdf kimi

2025/11/20 04:56 GTM

Model-based development enables quicker prototyping, earlier experimentation and validation of design intents. For a multi-agent system with complex asynchronous interactions and concurrency, formal verification, model-checking in particular, offers an automated mechanism for verifying desired properties. Timed Rebeca is an actor-based modelling language supporting reactive, concurrent and time semantics, accompanied with a model-checking compiler. These capabilities allow using Timed Rebeca to correctly model ROS2 node topographies, recurring physical signals, motion primitives and other timed and time-convertible behaviors. The biggest challenges in modelling and verifying a multi-robot system lie in abstracting complex information, bridging the gap between a discrete model and a continuous system and compacting the state space, while maintaining the model’s accuracy. We develop different discretization strategies for different kinds of information, identifying the ‘enough’ thresholds of abstraction, and applying efficient optimization techniques to boost computations. With this work we demonstrate how to use models to design and verify a multi-robot system, how to discretely model a continuous system to do model-checking efficiently, and the round-trip engineering flow between the model and the implementation. The released Rebeca and ROS2 codes can serve as a foundation for modelling multiple autonomous robots systems.

3.168A Class of Dual-Frame Passively-Tilting Fully-Actuated Hexacopter

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper proposed a novel fully-actuated hexacopter. It features a dual-frame passive tilting structure and achieves independent control of translational motion and attitude with minimal actuators. Compared to previous fully-actuated UAVs, it liminates internal force cancellation, resulting in higher flight efficiency and endurance under equivalent payload conditions. Based on the dynamic model of fully-actuated hexacopter, a full-actuation controller is designed to achieve efficient and stable control. Finally, simulation is conducted, validating the superior fully-actuated motion capability of fully-actuated hexacopter and the effectiveness of the proposed control strategy.

3.169VIRAL: Visual Sim-to-Real at Scale for Humanoid Loco-Manipulation

arxiv html pdf kimi

2025/11/20 04:56 GTM

A key barrier to the real-world deployment of humanoid robots is the lack of autonomous loco-manipulation skills. We introduce VIRAL, a visual sim-to-real framework that learns humanoid loco-manipulation entirely in simulation and deploys it zero-shot to real hardware. VIRAL follows a teacher-student design: a privileged RL teacher, operating on full state, learns long-horizon loco-manipulation using a delta action space and reference state initialization. A vision-based student policy is then distilled from the teacher via large-scale simulation with tiled rendering, trained with a mixture of online DAgger and behavior cloning. We find that compute scale is critical: scaling simulation to tens of GPUs (up to 64) makes both teacher and student training reliable, while low-compute regimes often fail. To bridge the sim-to-real gap, VIRAL combines large-scale visual domain randomization over lighting, materials, camera parameters, image quality, and sensor delays--with real-to-sim alignment of the dexterous hands and cameras. Deployed on a Unitree G1 humanoid, the resulting RGB-based policy performs continuous loco-manipulation for up to 54 cycles, generalizing to diverse spatial and appearance variations without any real-world fine-tuning, and approaching expert-level teleoperation performance. Extensive ablations dissect the key design choices required to make RGB-based humanoid loco-manipulation work in practice.

3.170Eq.Bot: Enhance Robotic Manipulation Learning via Group Equivariant Canonicalization

arxiv html pdf kimi

2025/11/20 04:56 GTM

Robotic manipulation systems are increasingly deployed across diverse domains. Yet existing multi-modal learning frameworks lack inherent guarantees of geometric consistency, struggling to handle spatial transformations such as rotations and translations. While recent works attempt to introduce equivariance through bespoke architectural modifications, these methods suffer from high implementation complexity, computational cost, and poor portability. Inspired by human cognitive processes in spatial reasoning, we propose Eq.Bot, a universal canonicalization framework grounded in SE(2) group equivariant theory for robotic manipulation learning. Our framework transforms observations into a canonical space, applies an existing policy, and maps the resulting actions back to the original space. As a model-agnostic solution, Eq.Bot aims to endow models with spatial equivariance without requiring architectural modifications. Extensive experiments demonstrate the superiority of Eq.Bot under both CNN-based (e.g., CLIPort) and Transformer-based (e.g., OpenVLA-OFT) architectures over existing methods on various robotic manipulation tasks, where the most significant improvement can reach 50.0%.

3.171Nonholonomic Robot Parking by Feedback -- Part I: Modular Strict CLF Designs

arxiv html pdf kimi

2025/11/20 04:56 GTM

It has been known in the robotics literature since about 1995 that, in polar coordinates, the nonholonomic unicycle is asymptotically stabilizable by smooth feedback, even globally. We introduce a modular design framework that selects the forward velocity to decouple the radial coordinate, allowing the steering subsystem to be stabilized independently. Within this structure, we develop families of feedback laws using passivity, backstepping, and integrator forwarding. Each law is accompanied by a strict control Lyapunov function, including barrier variants that enforce angular constraints. These strict CLFs provide constructive class KL convergence estimates and enable eigenvalue assignment at the target equilibrium. The framework generalizes and extends prior modular and nonmodular approaches, while preparing the ground for inverse optimal and adaptive redesigns in the sequel paper.

3.172Painted Heart Beats

arxiv html pdf kimi

2025/11/20 04:56 GTM

In this work we present AURA, a framework for synergistic human-artist painting. We developed a robot arm that collaboratively paints with a human artist. The robot has an awareness of the artist’s heartbeat through the EmotiBit sensor, which provides the arousal levels of the painter. Given the heartbeat detected, the robot decides to increase proximity to the artist’s workspace or retract. If a higher heartbeat is detected, which is associated with increased arousal in human artists, the robot will move away from that area of the canvas. If the artist’s heart rate is detected as neutral, indicating the human artist’s baseline state, the robot will continue its painting actions across the entire canvas. We also demonstrate and propose alternative robot-artist interactions using natural language and physical touch. This work combines the biometrics of a human artist to inform fluent artistic interactions.

3.173Learning Human-Like RL Agents Through Trajectory Optimization With Action Quantization

arxiv html pdf kimi

2025/11/20 04:56 GTM

Human-like agents have long been one of the goals in pursuing artificial intelligence. Although reinforcement learning (RL) has achieved superhuman performance in many domains, relatively little attention has been focused on designing human-like RL agents. As a result, many reward-driven RL agents often exhibit unnatural behaviors compared to humans, raising concerns for both interpretability and trustworthiness. To achieve human-like behavior in RL, this paper first formulates human-likeness as trajectory optimization, where the objective is to find an action sequence that closely aligns with human behavior while also maximizing rewards, and adapts the classic receding-horizon control to human-like learning as a tractable and efficient implementation. To achieve this, we introduce Macro Action Quantization (MAQ), a human-like RL framework that distills human demonstrations into macro actions via Vector-Quantized VAE. Experiments on D4RL Adroit benchmarks show that MAQ significantly improves human-likeness, increasing trajectory similarity scores, and achieving the highest human-likeness rankings among all RL agents in the human evaluation study. Our results also demonstrate that MAQ can be easily integrated into various off-the-shelf RL algorithms, opening a promising direction for learning human-like RL agents. Our code is available at https://rlg.iis.sinica.edu.tw/papers/MAQ.

3.174Lie Group Control Architectures for UAVs: a Comparison of SE2(3)-Based Approaches in Simulation and Hardware

arxiv html pdf kimi

2025/11/20 04:56 GTM

This paper presents the integration and experimental validation of advanced control strategies for quadcopters based on Lie groups. We build upon recent theoretical developments on SE2(3)-based controllers and introduce a novel SE2(3) model predictive controller (MPC) that combines the predictive capabilities and constraint-handling of optimal control with the geometric properties of Lie group formulations. We evaluated this MPC against a state-of-the-art SE2(3)-based LQR approach and obtained comparable performance in simulation. Both controllers where also deployed on the Quanser QDrone platform and compared to each other and an industry standard control architecture. Results show that the SE_2(3) MPC achieves superior trajectory tracking performance and robustness across a range of scenarios. This work demonstrates the practical effectiveness of Lie group-based controllers and offers comparative insights into their impact on system behaviour and real-time performance

3.175Communication-Aware Asynchronous Distributed Trajectory Optimization for UAV Swarm

arxiv html pdf kimi

2025/11/20 04:56 GTM

Distributed optimization offers a promising paradigm for trajectory planning in Unmanned Aerial Vehicle (UAV) swarms, yet its deployment in communication-constrained environments remains challenging due to unreliable links and limited data exchange. This paper addresses this issue via a two-tier architecture explicitly designed for operation under communication constraints. We develop a Communication-Aware Asynchronous Distributed Trajectory Optimization (CA-ADTO) framework that integrates Parameterized Differential Dynamic Programming (PDDP) for local trajectory optimization of individual UAVs with an asynchronous Alternating Direction Method of Multipliers (async-ADMM) for swarm-level coordination. The proposed architecture enables fully distributed optimization while substantially reducing communication overhead, making it suitable for real-world scenarios in which reliable connectivity cannot be guaranteed. The method is particularly effective in handling nonlinear dynamics and spatio-temporal coupling under communication constraints.

3.176An Alignment-Based Approach to Learning Motions from Demonstrations

arxiv html pdf kimi

2025/11/20 04:56 GTM

Learning from Demonstration (LfD) has shown to provide robots with fundamental motion skills for a variety of domains. Various branches of LfD research (e.g., learned dynamical systems and movement primitives) can generally be classified into ‘‘time-dependent’’ or ‘‘time-independent’’ systems. Each provides fundamental benefits and drawbacks -- time-independent methods cannot learn overlapping trajectories, while time-dependence can result in undesirable behavior under perturbation. This paper introduces Cluster Alignment for Learned Motions (CALM), an LfD framework dependent upon an alignment with a representative ''mean" trajectory of demonstrated motions rather than pure time- or state-dependence. We discuss the convergence properties of CALM, introduce an alignment technique able to handle the shifts in alignment possible under perturbation, and utilize demonstration clustering to generate multi-modal behavior. We show how CALM mitigates the drawbacks of time-dependent and time-independent techniques on 2D datasets and implement our system on a 7-DoF robot learning tasks in three domains.

3.177SVBRD-LLM: Self-Verifying Behavioral Rule Discovery for Autonomous Vehicle Identification

arxiv html pdf kimi

2025/11/20 04:56 GTM

As more autonomous vehicles operate on public roads, understanding real-world behavior of autonomous vehicles is critical to analyzing traffic safety, making policies, and public acceptance. This paper proposes SVBRD-LLM, a framework that automatically discovers, verifies, and applies interpretable behavioral rules from real traffic videos through zero-shot prompt engineering. The framework extracts vehicle trajectories using YOLOv8 and ByteTrack, computes kinematic features, and employs GPT-5 zero-shot prompting to compare autonomous and human-driven vehicles, generating 35 structured behavioral rule hypotheses. These rules are tested on a validation set, iteratively refined based on failure cases to filter spurious correlations, and compiled into a high-confidence rule library. The framework is evaluated on an independent test set for speed change prediction, lane change prediction, and autonomous vehicle identification tasks. Experiments on over 1500 hours of real traffic videos show that the framework achieves 90.0% accuracy and 93.3% F1-score in autonomous vehicle identification. The discovered rules clearly reveal distinctive characteristics of autonomous vehicles in speed control smoothness, lane change conservativeness, and acceleration stability, with each rule accompanied by semantic description, applicable context, and validation confidence.

3.178EGSA-PT:Edge-Guided Spatial Attention with Progressive Training for Monocular Depth Estimation and Segmentation of Transparent Objects

arxiv html pdf kimi

2025/11/20 04:56 GTM

Transparent object perception remains a major challenge in computer vision research, as transparency confounds both depth estimation and semantic segmentation. Recent work has explored multi-task learning frameworks to improve robustness, yet negative cross-task interactions often hinder performance. In this work, we introduce Edge-Guided Spatial Attention (EGSA), a fusion mechanism designed to mitigate destructive interactions by incorporating boundary information into the fusion between semantic and geometric features. On both Syn-TODD and ClearPose benchmarks, EGSA consistently improved depth accuracy over the current state of the art method (MODEST), while preserving competitive segmentation performance, with the largest improvements appearing in transparent regions. Besides our fusion design, our second contribution is a multi-modal progressive training strategy, where learning transitions from edges derived from RGB images to edges derived from predicted depth images. This approach allows the system to bootstrap learning from the rich textures contained in RGB images, and then switch to more relevant geometric content in depth maps, while it eliminates the need for ground-truth depth at training time. Together, these contributions highlight edge-guided fusion as a robust approach capable of improving transparent object perception.

3.179Artificial intelligence approaches for energy-efficient laser cutting machines

arxiv html pdf kimi

2025/11/20 04:56 GTM

This research addresses the significant challenges of energy consumption and environmental impact in laser cutting by proposing novel deep learning (DL) methodologies to achieve energy reduction. Recognizing the current lack of adaptive control and the open-loop nature of CO2 laser suction pumps, this study utilizes closed-loop configurations that dynamically adjust pump power based on both the material being cut and the smoke level generated. To implement this adaptive system, diverse material classification methods are introduced, including techniques leveraging lens-less speckle sensing with a customized Convolutional Neural Network (CNN) and an approach using a USB camera with transfer learning via the pre-trained VGG16 CNN model. Furthermore, a separate DL model for smoke level detection is employed to simultaneously refine the pump’s power output. This integration prompts the exhaust suction pump to automatically halt during inactive times and dynamically adjust power during operation, leading to experimentally proven and remarkable energy savings, with results showing a 20% to 50% reduction in the smoke suction pump’s energy consumption, thereby contributing substantially to sustainable development in the manufacturing sector.

3.180A visual study of ICP variants for Lidar Odometry

arxiv html pdf kimi

2025/11/20 04:56 GTM

Odometry with lidar sensors is a state-of-the-art method to estimate the ego pose of a moving vehicle. Many implementations of lidar odometry use variants of the Iterative Closest Point (ICP) algorithm. Real-world effects such as dynamic objects, non-overlapping areas, and sensor noise diminish the accuracy of ICP. We build on a recently proposed method that makes these effects visible by visualizing the multidimensional objective function of ICP in two dimensions. We use this method to study different ICP variants in the context of lidar odometry. In addition, we propose a novel method to filter out dynamic objects and to address the ego blind spot problem.

3.181Z-Merge: Multi-Agent Reinforcement Learning for On-Ramp Merging with Zone-Specific V2X Traffic Information

arxiv html pdf kimi

2025/11/20 04:56 GTM

Ramp merging is a critical and challenging task for autonomous vehicles (AVs), particularly in mixed traffic environments with human-driven vehicles (HVs). Existing approaches typically rely on either lane-changing or inter-vehicle gap creation strategies based solely on local or neighboring information, often leading to suboptimal performance in terms of safety and traffic efficiency. In this paper, we present a V2X (vehicle-to-everything communication)-assisted Multiagent Reinforcement Learning (MARL) framework for on-ramp merging that effectively coordinates the complex interplay between lane-changing and inter-vehicle gap adaptation strategies by utilizing zone-specific global information available from a roadside unit (RSU). The merging control problem is formulated as a Multiagent Partially Observable Markov Decision Process (MA-POMDP), where agents leverage both local and global observations through V2X communication. To support both discrete and continuous control decisions, we design a hybrid action space and adopt a parameterized deep Q-learning approach. Extensive simulations, integrating the SUMO traffic simulator and the MOSAIC V2X simulator, demonstrate that our framework significantly improves merging success rate, traffic efficiency, and road safety across diverse traffic scenarios.

3.182Attacking Autonomous Driving Agents with Adversarial Machine Learning: A Holistic Evaluation with the CARLA Leaderboard

arxiv html pdf kimi

2025/11/20 04:56 GTM

To autonomously control vehicles, driving agents use outputs from a combination of machine-learning (ML) models, controller logic, and custom modules. Although numerous prior works have shown that adversarial examples can mislead ML models used in autonomous driving contexts, it remains unclear if these attacks are effective at producing harmful driving actions for various agents, environments, and scenarios. To assess the risk of adversarial examples to autonomous driving, we evaluate attacks against a variety of driving agents, rather than against ML models in isolation. To support this evaluation, we leverage CARLA, an urban driving simulator, to create and evaluate adversarial examples. We create adversarial patches designed to stop or steer driving agents, stream them into the CARLA simulator at runtime, and evaluate them against agents from the CARLA Leaderboard, a public repository of best-performing autonomous driving agents from an annual research competition. Unlike prior work, we evaluate attacks against autonomous driving systems without creating or modifying any driving-agent code and against all parts of the agent included with the ML model. We perform a case-study investigation of two attack strategies against three open-source driving agents from the CARLA Leaderboard across multiple driving scenarios, lighting conditions, and locations. Interestingly, we show that, although some attacks can successfully mislead ML models into predicting erroneous stopping or steering commands, some driving agents use modules, such as PID control or GPS-based rules, that can overrule attacker-manipulated predictions from ML models.